
Article

Not peer-reviewed version

EvolveNet: Evolving Networks by

Learning Scale of Depth and

Width

Athul Shibu and Dong-Gyu Lee

*

Posted Date: 26 July 2023

doi: 10.20944/preprints202307.1795.v1

Keywords: Convolutional Neural Network; Network Scaling; Evolutionary Computation

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1867373

Article

EvolveNet: Evolving Networks by Learning Scale of
Depth and Width

Athul Shibu and Dong-Gyu Lee∗

Department of Artificial Intelligence, Kyungpook National University; athulshibu@knu.ac.kr

* Correspondence: dglee@knu.ac.kr

Abstract: Convolutional Neural Networks (CNNs) are largely hand-crafted, which leads to

inefficiency in the constructed network. Various other algorithms have been proposed to address

this issue, but the inefficiencies resulting from human intervention have not been addressed. Our

proposed EvolveNet algorithm is a task-agnostic evolutionary search algorithm that can find optimal

depth and width scales automatically in an efficient way. The optimal configurations are not found

using grid search, instead evolved from an existing network. This eliminates inefficiencies that

emanate from hand-crafting, thus reducing the drop in accuracy. The proposed algorithm is a

framework to search through a large search space of subnetworks until a suitable configuration is

found. Extensive experiments on the ImageNet dataset demonstrate the superiority of the proposed

method by outperforming the state-of-the-art methods.

Keywords: convolutional neural network; network scaling; evolutionary computation

1. Introduction

Convolutional Neural Network (CNN) is one of the most significant networks in the field of deep

learning, showing decent performance in various computer vision tasks including classification

[1,2], semantic segmentation [3,4], and action recognition [5,6]. They were designed to extract

two-dimensional features by taking structured data such as images as input and then processing

them using convolutional operators [7,8]. Studies have shown that a larger number of layers results in

increased receptive fields and therefore captures more detail of the image [9]. Recent networks have

achieved higher accuracy by becoming deeper and more complex [10–12]. There have also been cases

of improved block architecture that yielded higher accuracy without significantly increasing the size

of the networks [13,14].

Scaling is a widely used technique to achieve better accuracy and numerous methods have been

utilized to scale networks. Upscaling depth is the most prevalent method, although scaling models

by image resolution is also becoming increasingly popular. Figure 1 represents the depth and width

of a network. EfficientNet [15] was created by compound scaling MobileNets [14,16] and ResNet

[9] networks, i.e., scaling the network width, depth, and resolution by fixed coefficients. Upscaling,

however, could result in the configurations of the upscaled networks being ill-suited to their tasks

because hand-crafting networks lead to human errors and consequent inaccuracies, resulting in an

inefficient network. Filter pruning has long been considered a good alternative to accelerate deep

neural networks, but this does not solve the core inefficiencies in the construction of the network. He

et al. [9] observed that the accuracy of a network saturates quickly as its size increases. In other words,

the accuracy gain diminishes as networks get larger because all parameters in a network have different

sensitivity to its accuracy.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.1795.v1
http://creativecommons.org/licenses/by/4.0/

2 of 14

Figure 1. Configuration of a network. The depth represents the number of layers in a network, while

the width of a layer represents the number of filters present in it.

Identifying these superfluous parameters in a network is crucial to the optimization process. The

Lottery Ticket Hypothesis [17] states that any trained dense neural network contains a subnetwork

(called a winning ticket) which, when trained in isolation for at most the same number of epochs,

can match the test accuracy of the original network. Automated Machine Learning (AutoML) [18]

introduced the process of automating the steps in the machine learning pipeline, from hyperparameter

optimization to parameter evaluation. This concept has been applied for Neural Architecture Search

(NAS) [19–21] to optimize the search for winning tickets within large networks. However, applying

AutoML concepts for NAS has wider consequences that can be aggravated during the search stage. The

No Free Lunch Theorem [22] posits that no universal optimization algorithm consistently outperforms

all other algorithms across every optimization problem. Therefore, it is necessary to optimize networks

with respect to the tasks at hand.

Networks can be optimized by removing all channel connections in the depth-wise layer, instead

increasing the number of channels to boost capacity [15]. This reduces the number of parameters, but

significantly increases data movement, resulting in poor performance on hardware accelerators. The

final scaling coefficients are determined by grid search [23]. However, the search cost of using grid

search is very expensive when scaling larger networks. Therefore, scaling algorithms are primarily

applied to small networks, and large networks are created by massively upscaling small networks. The

proposed algorithm addresses this issue by downscaling large networks to generate slightly smaller

networks. Larger networks downscaled from models designed with larger channel connections in

mind would not increase the number of channels. Thus, the generated network is similar in both size

and accuracy to the large networks but is much closer in size to its corresponding original network.

Grid search can be used to search through various scaling coefficients until the ideal network size was

found, but this is only possible with relatively smaller networks like MobileNets and ResNet-50 [24].

However, as the size of the networks increases, the search space also increases exponentially.

Evolutionary algorithms have been found to significantly outperform random and systemic

search methods when searching in large search spaces [25]. Over the years, various multi-objective

evolutionary algorithms have been proposed to varying degrees of success [26,27]. But they tend to

suffer from a weak global search ability in low inter-task relevance problems [28] because the cross-over

operator is unable to distinguish between information and noise. This problem can be addressed by

introducing multiple search strategies into the fitness landscape. Incorporating multiple objectives

into the fitness function is crucial to evolve an efficient network with high accuracy.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

3 of 14

In this paper, we present a framework to automatically generate the optimal number of layers

and channels for a network without manual interference. We use evolutionary algorithms to search

through the large sample space of possible subnetworks to address this issue. The proposed method

uses evolutionary search to find an optimized subnetwork that keeps the number of parameters low

without compromising accuracy. Instead of upscaling networks, a collection of layers and channels

are downscaled to find the optimal configuration. The evolved network is built to counteract the

lack of expressiveness and effectiveness that is inherent to hand-crafted and grid-searched networks.

Generated networks counteract these drawbacks by integrating pruning concepts into the creation of

new networks, resulting in more efficient networks.

Our contribution lies in three folds:

• We propose an algorithm to counter inefficiencies in subnetworks by evolving task-agnostic

networks of ideal depth and width for a given architecture.
• We created a framework to efficiently search through a large sample space of subnetworks to

identify smaller networks without a major loss in accuracy.
• We experimentally show the superiority of the network generated by the proposed method on

publicly available pre-trained CNNs.

The remainder of this study is organized as follows: Section 3 briefly discusses the algorithm and

its working concept, and Section 4 describes the result of experiments conducted on networks evolved

using the EvolveNet algorithm. We also discuss the advantages and future work of this algorithm in

Section 4.4 and conclude this study in Section 5.

2. Related Works

2.1. Convolutional Neural Networks

CNN is the popular design choice for visual recognition tasks and has gone through many

upgrades over the years. VGG [29] used very small convolution filters and increased the depth of the

model to achieve high accuracy. GoogLeNet [30] proposed the idea of an Inception module to find the

optimal local sparse structure in a CNN that can be approximated by its dense components. ResNet [9]

stacked layers to fit a residual mapping using skip connections, which further improved the accuracy.

MobileNet [16] introduced depth-wise separable convolution layers which separated the filtering

and combining operations of the convolution operation, which in turn reduced the computational

complexity and model size. DenseNet [13] connected all layers to combine the feature maps together

instead of just the feature summations, resulting in larger models with higher accuracy. ConvNeXt [1]

improved a standard ResNet by gradually modernizing the architecture to construct a hierarchical

vision transformer, Swin-T [31]. These models have one thing in common; beyond just the architecture

or convolution layers, the depth of the networks and width of each layer were handcrafted by humans.

2.2. Neural Architecture Search

Searching for optimal network structures has been studied using reinforcement learning [11,32],

gradient-based approaches [33], parameter sharing [34], weight prediction [35], and genetic algorithms

[36,37]. Zoph et al. [11] uses reinforcement learning to optimize the networks generated from the

model descriptions given by a recurrent network. MetaQNN [32] uses reinforcement learning with a

greedy exploration strategy to generate high-performance CNN architectures. Gradient-based learning

allows a network to efficiently optimize new instances of a task [38]. FBNets (Facebook-Berkeley-Nets)

[33] uses a gradient-based method to optimize CNNs created by a differentiable neural architecture

search framework. DARTS [39] formulate tasks in a differentiable manner to address the scalability of

the architecture search. LEMONADE [40] penalizes excessive resource consumption by approximating

the network morphism operators while generating subnetworks. ENAS [41] constructs a large

computational graph, where each subgraph represents a neural network architecture. Thus all

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

4 of 14

subgraphs share parameters, delivering strong empirical performances while using a lower amount of

resources. TE-NAS [42] ranks the architectures by analyzing the spectrum of the neural tangent kernel

and the number of linear regions in the input space, which imply the trainability and expressivity of

the networks. RENAS [43] integrates reinforced mutation into the evolutionary search algorithm for

architectural exploration, which efficiently evolves the model.

Evolutionary algorithms are widely used to deal with complex and non-linear optimization

problems [44–46]. It is a common solution for difficult real-world problems where the sample space

is large. Genetic algorithms are used to solve search and optimization problems using bio-inspired

operators [36]. Real et al. [37] uses genetic algorithms to discover neural network architectures,

minimizing the role of humans in the design.

2.3. Network Scaling

Network scaling is necessary to keep up with the growing datasets that have very large samples

and large memory requirements. Network scaling is usually implemented on network architectures

after they are constructed. Residual Networks [9] were scaled up to ResNet-200, and down to ResNet-18.

WideResNet [47] is a width-scaled interpretation of the original Residual Network, with the number of

channels in various layers increased to increase the resolution of feature maps. Modern CNNs have

also been shown to use higher-resolution input images. Higher accuracies were obtained when using

higher resolution images at 299× 299 [48] and 331× 331 [12]. Dryden et al. [49] exploits parallelism in

convolutional layers beyond data parallelism to tackle scaling and memory issues. However, this does

not focus on batch normalization, ReLUs, pooling, and fully-connected layers which are also present

in conventional networks.

3. EvolveNet

EvolveNet algorithm attempts to build new networks from scratch by evolving an ideal

configuration of layers for a pre-defined architecture. There are four major steps to EvolveNet:

1) Filter training to strengthen the individuality of layers, 2) Depth evolution to find the ideal number

of layers, 3) Width evolution to compute the ideal width for each layer, and 4) Retraining to fine-tune

the evolved network.

Pre-built networks used bottleneck blocks used by EfficientNet. The bottleneck blocks allow

the network to reduce the number of parameters, and consequently, the number of floating-point

operations. This makes the network more compact and efficient. The bottleneck operation consists of

three operators: a linear transformation followed by a non-linear transformation, then another linear

transformation. Each bottleneck first expands a low-dimensional feature map into a high-dimensional

feature map using a point-wise convolution. A depth-wise convolution then performs spatial filtering

on the high-dimensional tensor. Finally, another point-wise convolution projects the spatially-filtered

map back down into a low-dimensional tensor.

3.1. Filter Training

An initial network N is constructed as a set of layers and filters whose configurations are ideal as

found from existing network architectures as follows:

N = {Lj : j ∈ (0, N)}, (1)

where Lj represents each layer with channel and kernel sizes. N is the total number of layers, with each

group of a layer consisting of N∗ layers. Using the weights θ, the new collection of layers is derived

into a pseudo network N ∗θ , which is a parameterized subset of the layers in N , i.e., N ∗θ ⊆ θ(N).

During each epoch of the training stage, random layers and filters are chosen to be trained which

omits certain layers and filters from N as shown in Figure 2. N ∗θ is trained and its cross-entropy loss is

computed as follows:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

5 of 14

LDt
(N ∗θ) = −

n

∑
i=1

ti log pi, (2)

where LDt
represents the cross entropy loss w.r.t. training data Dt, and ti and pi are the truth label and

softmax probability of class i w.r.t. N ∗θ . This loss is smoothed as a consequence of cross-entropy, then

backpropagated through every layer of N including the omitted layers as follows:

θ ← θ − β
∂L(Nθ)

∂θ
, (3)

where β is the learning rate, adjusted by the Lambda scheduler [50] to converge quickly and optimally.

This trains the larger network, which will have layers that can efficiently be recalibrated into smaller

networks composed of only a few of its layers without impacting the overall accuracy. Each layer

contributes to the feature map without taking away from the feature map of the larger network, which

is made up of other layers trained in a similar fashion.

Figure 2. Overview of the filter training step. White and green layers represent the temporary and

permanent layers of the network. During each of the m epochs, a random layer filter is generated,

which filters out some temporary layers to create a network. This recalibrated network is trained and

the loss is back-propagated through all the temporary and permanent layers.

3.2. Evolving Depth

The networkNθ , which is now a collection of layers that have been trained to work independently

of the network, is used to evolve a recalibrated network with ideal depth configurations. Configurations

of the architecture of each block, such as the number of out-channels, kernel sizes, and strides of each

layer remain the same as before. The depth of the recalibrated network, i.e., the layers chosen to be

trained, are chosen by Depth Encoding Vectors (DEVs). DEV is a vector that has the depths of each

layer of the recalibrated network encoded into it as the presence or absence of a layer in the network.

These DEVs generate networks of parameter sizes within preset constraints, and the computed reward

is assigned as the reward of each DEV. Since Nθ is only a collection of layers strung together to build a

network, the recalibrated layer, the layers of which are chosen by the DEV, shows the various layers

that will be present in the network to be built.

The reward function computes the pre-train accuracy of the generated network. The networks are

then evolved as chromosomes under the same preset constraints to maximize their rewards, as seen

in Algorithm 1. The best chromosomes are chosen, then mutated, and crossed over to be propagated

through to the next chromosome pool. Mutation is the genetic operation of flipping arbitrary genes in a

parent chromosome to generate offspring. Cross-over is the genetic operation of combining the genetic

information of the two parent genes to generate offspring. In EvolveNet, the mutation is implemented

by giving every gene on a random chromosome the 10% chance to be switched to a random new gene.

Cross-over is implemented by choosing two random chromosomes and then selecting a gene from

either chromosome with a 50% chance of being selected from either parent. We assume that every

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

6 of 14

genetically modified offspring will not be better than every parent, hence the subsequent chromosome

pools are selected from the overall pool and not just the genetically modified pool.

After multiple chromosome pools are generated, the best chromosome is chosen and the network

generated from it has the ideal depth configuration for a network block architecture for the given task.

Algorithm 1 Algorithm for evolving Depth

Hyperparameters: Number of searching epochs Ns, Number of fine-tuning epochs N f , Number of

chromosomes in C n, Number of
Input: Dtrain: training images that can be split into batches, X f : Filter trained network
Functions: reward(dev) computes reward of the network created using dev, mutation and crossover

are evolutionary operations performed on a list of chromosomes, layers(dev, network) converts n

dev into a list of layers using trained network, create(layers) creates a network from a list of layers,

f (model, data) trains model using given data, ∇ computes gradient of loss of trained network

Output: Depth-evolved network x

C = List of n random devs

C
top
k = {}

for i = 0 to Ns do

R = [r1,r2,...,rn]
for j = 0 to n do

rj = reward(devj)

end for

C
top
k .append(C)

sort C
top
k in descending order of R

Cmu = mutation(C
top
k [: 10])

Cco = crossover(C
top
k [: 10])

C = Cmu + Cco

C
top
k = C

top
k [:k]

end for

[l1,l2, ... ,ln] = layers(C
top
k [0], X f)

x = create([l1,l2, ... ,ln])

for i = 0 to N f do

x += ∇f(x,Dtrain)
end for

3.3. Evolving Width

The best DEV after depth evolution is used to build a recalibrated network for width evolution, as

explained in Algorithm 1. The recalibrated network is then used to compute rewards for the networks

derived from it, using the Width Encoding Vectors (WEVs). Unlike DEVs, each WEV is injectively

mapped to a network of specific depth and layers of out-channels, i.e., the networks created by every

WEV are unique to each element in it, and also to the DEV it is evolved from. As shown in Figure 3,

50 WEVs are built from the recalibrated network, and their rewards are computed. Each gene of a

chromosome, represented by the WEV, is encoded with the ratio of channels of each layer compared to

the original. The individual genes chosen do not matter, as this evolution is used to resolve the size of

the final network, not the specific configuration. The size of each chromosome is dependent on the

size of the recalibrated network. At every step before evolution, random chromosomes are used to

generate sub-networks for the recalibrated network, and their reward is computed agnostic to the

training dataset. The chromosomes with the highest rewards are mutated and crossed over, and the

subsequent chromosome pool is created by selecting the best chromosomes from a pool of the parents

and their offspring.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

7 of 14

Figure 3. Overview of width evolution. White layers denote the layers omitted by DEVs while

the width of red channels denotes the channels omitted by WEV. Each search epoch generates 50

chromosomes, and the rewards corresponding to the network generated from them are appended.

The best chromosomes, after mutation and crossover, are selected and propagated to the subsequent

epochs.

The chromosome with the highest reward from the final chromosome pool is used to derive the

final network from the recalibrated network. The final derived network has had its depth and width

evolved to be ideal for the given task and architecture.

3.4. Retraining

Once the final configurations of the network have been evolved, the derived network is retrained

to achieve competitive accuracy with minimum parameters. The final network is a subnetwork, hence

according to Frankle et al., it has to be trained to achieve similar accuracy. The number of retraining

epochs is determined by the network whose architecture is used to build Nθ , i.e., EfficientNet [15].

The number of layers and their configurations have been determined by the DEV, while the number

of channels in each specific layer is determined by the WEV. Thus, unlike in EfficientNet, where the

network configuration was found using grid search, the channel configurations of the final network

here are selected by evolutionary computation without manual influence.

4. Experiments

In this section, we demonstrate the superiority of networks generated by EvolveNet. We compare

the results obtained with other major state-of-the-art models. Lastly, we discuss the impact of various

hyperparameters to understand their impact on the proposed method.

4.1. Experimental Settings

The networks generated were trained on ImageNet dataset [51] for image classification tasks. The

kernel sizes were selected after conducting ablation studies and the best results were found for kernels

of sizes 1× 1 and 3× 3. In other words, the ideal resolution was hand-crafted. The images were

randomly cropped to size 224× 224, after resizing to 256× 256, to augment the data. Experiments

were conducted on four NVIDIA RTX A6000 GPUs with 40 workers and a batch size of 512.

4.2. Evaluation Protocol

We measured the Top-1 and Top-5 accuracies, as well as the number of parameters, to evaluate the

evolved networks and compared them to existing state-of-the-art networks. The primary aim of this

experiment is to showcase an improvement in the performance and efficiency of a network before and

after the depth and width have evolved. Accuracy is the proportion of images that have been labeled

correctly. For each image, the network computes the probability of them being classified into each

label. Top-1 accuracy is the proportion of images in which the predicted label is the same as the actual

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

8 of 14

label. Top-5 accuracy is the proportion of images where the actual label is present as at least one of the

top five predictions. A fewer number of parameters result in a more streamlined and efficient network.

4.3. Experimental Results

We present the performance of different networks created using EvolveNet. The networks

have been created by setting the parameter size as a constraint and generating networks with an

ideal network configuration. The generated networks have been called EvolveNet-XS, EvolveNet-S,

EvolveNet-M, and EvolveNet-L. These networks are then compared with state-of-the-art methods of

similar size.

4.3.1. Performance against Very Small Networks

A set of very small state-of-the-art networks including DenseNet121 [13], HRFormer-T [52],

EfficientNetB1 [15], and EfficientNetV2B1 [53] are selected for comparing to EvolveNet-XS. Table 1

presents the result of the comparison with those networks. EvolveNet-XS shows Top-1 and Top-5

accuracy of 80.4% and 95.1% respectively, with 7.8M parameters. Overall, it shows competitive

performance compared to other methods with the least number of parameters. It outperforms

DenseNet121 and HRFormer-T by 5.4% and 1.9% in Top-1 accuracy. Also, it has 0.3M fewer parameters

compared to DenseNet121. EvolveNet-XS shows comparable performance to the EfficientNetB1 and

EfficientNetV2B1. The difference in number of parameters between EfficientNetB1 and EvolveNet-XS

is only 0.1M. However, EvolveNet-XS shows a gain of 1.3% and 0.7% in Top-1 and Top-5 accuracies

respectively. It outperforms EfficientNetV2B1 by small margins of 0.6% and 0.1% in Top-1 and Top-5

accuracies respectively, in spite of having 0.4M fewer parameters.

Table 1. Performance against Very Small Networks on ImageNet Dataset

Model Top-1 Accuracy Top-5 Accuracy #Parameters

EfficientNetB1 [15] 79.1% 94.4% 7.9M
HRFormer-T [52] 78.5% - 8.0M
DenseNet121 [13] 75.0% 92.3% 8.1M

EfficientNetV2B1 [53] 79.8% 95.0% 8.2M
EvolveNet-XS 80.4% 95.1% 7.8M

4.3.2. Performance against Small Networks

Table 2 presents the results of the EvolveNet-S network compared to small networks including

EfficientNetB2 [15], and EfficientNetV2B1 [53]. EvolveNet-S shows Top-1 and Top-5 accuracy of

81.1% and 95.6% respectively, with 8.6M parameters. It shows competitive performance against

those networks with the least number of parameters, outperforming LeViT-128 and ConViT-Ti+

by 1.5% and 4.4% respectively in Top-1 accuracy while using 0.2M and 1.4M parameters lower.

EfficientNetV2B1 has 10.2M parameters with Top-1 and Top-5 accuracy of 80.5% and 95.1% respectively.

Although EvolveNet-S outperforms it by a small margin of 0.6% and 0.5% in Top-1 and Top-5 accuracy

respectively, it has 1.6M fewer parameters than EfficientNetV2B1. Similarly, EvolveNet-S outperforms

EfficientNetB2 by a small margin of 0.7% in Top-5 accuracy. It also shows a decent gain of 1.0% in

Top-1 accuracy with 0.6M fewer parameters compared to EfficientNetB2.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

9 of 14

Table 2. Performance against Small Networks on ImageNet Dataset

Model Top-1 Accuracy Top-5 Accuracy #Parameters

LeViT-128 [54] 79.6% - 8.8M
EfficientNetB2 [15] 80.1% 94.9% 9.2M

ConViT-Ti+ [55] 76.7% - 10.0M
EfficientNetV2B2 [53] 80.5% 95.1% 10.2M

RevBiFPN [56] 79.0% - 10.6M
EvolveNet-S 81.1% 95.6% 8.6M

4.3.3. Performance against Medium-sized Networks

A set of medium-sized networks including DenseNet169 [13], TinyNet [58], EfficientNetB3 [15],

EfficientNetV2B3 [53] are selected for comparing EvolveNet-M network. Table 3 shows the results for

EvolveNet-M compared to these networks. It shows top-1 and top-5 accuracy of 82. 8% and 96. 3%,

respectively. Overall, it outperforms other networks by a decent margin, with fewer parameters. It

outperforms SAMix ResNet-18, which has 0.4M more parameters, by 10.5%. DenseNet169, with 14.3M

parameters, shows 76.2% and 93.2% of Top-1 and Top-5 accuracy, respectively. However, EvolveNet-M

with 3M fewer parameters outperforms it by a significant margin of 6.6% and 3.1% in Top-1 and

Top-5 accuracies. Similarly, it outperforms TinyNet by 3.4% and 1.8% in Top-1 and Top-5 accuracy,

respectively, despite having 0.6M fewer parameters. EvolveNet-M shows comparable performance

with EfficientNetB3 and EfficientNetV2B3 in Top-5 accuracy. It outperforms them by a small margin of

0.6% and 0.5%. However, EvolveNet-M has 1M and 3.2M fewer parameters, respectively. Also, the

Top-1 accuracy of EvolveNet-M is 1.2% and 0.8% higher than EfficientNetB3 and EfficientNetV2B3,

respectively.

Table 3. Performance against Medium-sized Networks on ImageNet Dataset

Model Top-1 Accuracy Top-5 Accuracy #Parameters

SAMix ResNet-18 [57] 72.33% 91.8% 11.7M
Densenet169 [13] 76.2% 93.2% 14.3M

TinyNet [58] 79.4% 94.5% 11.9M
EfficientNetB3 [15] 81.6% 95.7% 12.3M

EfficientNetV2B3 [53] 82.0% 95.8% 14.5M
EvolveNet-M 82.8% 96.3% 11.3M

4.3.4. Performance against Large Networks

For the comparison of EvolveNet-L, a collection of larger networks with a significantly large

number of parameters is selected. These include Xception [59], ConNeXtTiny [1], ConvNeXtSmall

[1], NASNETLarge [12] and EfficientNetB4 [15]. The results of EvolveNet-L compared to the above

networks are presented in Table 4. EvolveNet-L outperforms other networks with a decent margin

in Top-1 accuracy, with the least number of parameters. It shows Top-1 and Top-5 accuracy of

83.2% and 96.5% respectively, with 17.6M parameters. The performance of EfficientNetB4 with

Top-1 and Top-5 accuracy of 82.9% and 96.4% respectively are comparable to EvolveNet-L. However,

EvolveNet-L has significantly fewer parameters compared to EfficientNetB4. With 1.9M fewer

parameters EvolveNet-L outperforms it by 0.3% and 0.1% in Top-1 and Top-5 accuracy respectively.

EvolveNet-L has significantly fewer parameters than NASNETLarge. In spite of having 71.3M fewer

parameters, it outperforms NASNETLarge by 0.7% and 0.5% in Top-1 and Top-5 accuracy respectively.

Similarly, with 32.6M fewer parameters, it outperforms ConvNeXtSmall by 0.9% in Top-1 accuracy.

EvolveNet-L outperforms ConvNeXtTiny by a decent margin of 1.9% in Top-1 accuracy despite having

11M fewer parameters. Xception has 22.9M parameters and shows Top-1 and Top-5 accuracy of 79.0%

and 94.5% respectively. However, EvolveNet-L with 5.3M fewer parameters outperforms it by a decent

margin of 4.2% and 2.0% in Top-1 and Top-5 accuracy respectively.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

10 of 14

Table 4. Performance against Large Networks on ImageNet Dataset

Model Top-1 Accuracy Top-5 Accuracy #Parameters

Xception [59] 79.0% 94.5% 22.9M
ConvNeXtTiny [1] 81.3% - 28.6M

ConvNeXtSmall [1] 82.3% - 50.2M
NasNetLarge [12] 82.5% 96.0% 88.9M
EfficientNetB4 [15] 82.9% 96.4% 19.5M

EvolveNet-L 83.2% 96.5% 17.6M

4.4. Discussion

We have experimentally shown that the networks generated by the Depth and Width Encoding

Vectors evolved using the EvolveNet method consistently show better performance when compared to

EfficientNet while maintaining their architecture. The improvement is significant, and the generated

network can still be pruned using the same methods that are used on EfficientNet and other similar

CNNs. Hence, it can be inferred that the architecture computed by evolution outperforms the

architectures computed using the grid-search method. MobileNetV2 introduced inverted residuals, and

bottlenecks and improved the accuracy of MobileNetV1 using the new architecture. EfficientNet was

an improvement on the MobileNetV2 architecture, where the accuracy of the network was improved

by scaling the width, depth, and resolution of MobileNetV2 using grid-search. By evolving networks

with higher accuracy and efficiency, EvolveNet has experimentally proven that hand-crafting and grid

search are not ideal methods to build networks. Pruning algorithms have shown that a randomly

initialized dense network contains multiple sub-networks with fewer parameters and comparable

accuracies. However, most pruning algorithms limit themselves by trying to reduce the number of

parameters. Since the proposed algorithm evolves networks to emphasize ideal configurations while

maximizing rewards, the focus is placed on accuracy, and efficiency is taken care of as a consequence

of it. This allows for high accuracies on a relatively smaller network.

The generated network is also independent of the original network, but given the original network

and the depth and width encoding vectors, the network can be regenerated. The generated network is

injectively mapped to each DEV and WEV, and the number of layers in the larger network. Therefore,

changing any of these encoding vectors will significantly change the final network. The number of

randomly generated layers, from which recalibrated networks are generated, is a hyperparameter

used to control the size of the final network, but it has no other bearing on the evolution of the final

network. This can be seen in Table 5. Before evolving the width of the final network, the number of

out-channels in each layer is equal to the number of out-channels in MobileNetV2. The structure is the

same as that of each block in EfficientNet and MobileNetV2. There is one fixed-out channel for each

block layer, but the number of additional blocks is determined by the network encoding vector.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

11 of 14

Table 5. Each layer used in the evolved model. DEVi represents the i-th element of the depth encoding

vector, which indicates the number of layers, and n represents the number of classes.

Input Operation out-channels #layers

2242 × 3 Conv2D 32 1
1122 × 16 Bottleneck 24 DEV0

1122 × 16 Bottleneck 24 1
562 × 24 Bottleneck 32 DEV1

562 × 24 Bottleneck 32 1
282 × 32 Bottleneck 64 DEV2

282 × 32 Bottleneck 64 1
142 × 64 Bottleneck 96 DEV3

142 × 64 Bottleneck 96 1
142 × 96 Bottleneck 160 DEV4

142 × 96 Bottleneck 160 1
72 × 160 Bottleneck 320 DEV5

72 × 160 Bottleneck 320 1
72 × 320 Conv2D 1280 1

72 × 1280 AvgPool - 1
1122 × 32 Conv2D n 1

5. Conclusions

In this study, we described a simple evolutionary algorithm to evolve ideal depths and widths

that are task-agnostic for a given architecture. We also experimentally proved its superiority over

networks where the architecture was hand-crafted or grid-searched. EvolveNet is dependent on the

architectures of individual blocks in a network, but not the network as a whole. The architecture

used can be replaced with better-performing architectures, but the hyperparameters that constrain

the network should be adjusted appropriately. In the future, we intend to pursue this research and

improve the algorithm for the selection of chromosomes. Some constraints are more important to the

overall schema than others, so treating them as the same would cause inefficiencies in the recalibrated

network. EvolveNet can be made more robust with more experiments to understand the importance

of the various hyperparameters that make it function.

Author Contributions: This research was conceptualized and the methodology and software were written by
Athul Shibu. It was then validated and formally analyzed by Dong-Gyu Lee. The writing was drafted, reviewed,
and edited by Athul Shibu under the supervision of Dong-Gyu Lee. The project is administered and funding is
secured by Dong-Gyu Lee.

Funding: This research was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korean Government (MSIT) (No.2021R1C1C1012590), (No. 2022R1A4A1023248), Project BK21 FOUR and
the Information Technology Research Center (ITRC) support program supervised by the Institute of Information
Communications & Technology Planning & Evaluation (IITP) grant funded by the Korean Government (MSIT)
(IITP-2023-2020-0-01808).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Imagenet dataset can be found at https://www.image-net.org/download.php.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References

1. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11976–11986.

2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

Communications of the ACM 2017, 60, 84–90.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://www.image-net.org/download.php
https://doi.org/10.20944/preprints202307.1795.v1

12 of 14

3. Sultana, F.; Sufian, A.; Dutta, P. Evolution of image segmentation using deep convolutional neural network:

A survey. Knowledge-Based Systems 2020, 201, 106062.

4. Kumar, S.; Kumar, A.; Lee, D.G. Semantic Segmentation of UAV Images Based on Transformer Framework

with Context Information. Mathematics 2022, 10, 4735.

5. Duan, H.; Zhao, Y.; Chen, K.; Lin, D.; Dai, B. Revisiting skeleton-based action recognition. Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 2969–2978.

6. Lee, D.G.; Lee, S.W. Human activity prediction based on sub-volume relationship descriptor. 2016 23rd

International Conference on Pattern Recognition (ICPR). IEEE, 2016, pp. 2060–2065.

7. Zhang, Q.; Zhang, M.; Chen, T.; Sun, Z.; Ma, Y.; Yu, B. Recent advances in convolutional neural network

acceleration. Neurocomputing 2019, 323, 37–51.

8. Liu, Y.; Pu, H.; Sun, D.W. Efficient extraction of deep image features using convolutional neural network

(CNN) for applications in detecting and analysing complex food matrices. Trends in Food Science & Technology

2021, 113, 193–204.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 770–778.

10. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks.

Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492–1500.

11. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578

2016.

12. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition.

Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR, 2018, pp. 8697–8710.

13. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.

Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700–4708.

14. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear

bottlenecks. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp.

4510–4520.

15. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. International

conference on machine learning. PMLR, 2019, pp. 6105–6114.

16. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam,

H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861 2017.

17. Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint

arXiv:1803.03635 2018.

18. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated machine learning: methods, systems, challenges; Springer

Nature, 2019.

19. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. The Journal of Machine Learning

Research 2019, 20, 1997–2017.

20. Yu, K.; Sciuto, C.; Jaggi, M.; Musat, C.; Salzmann, M. Evaluating the search phase of neural architecture

search. arXiv preprint arXiv:1902.08142 2019.

21. Mellor, J.; Turner, J.; Storkey, A.; Crowley, E.J. Neural architecture search without training. International

Conference on Machine Learning. PMLR, 2021, pp. 7588–7598.

22. Ho, Y.C.; Pepyne, D.L. Simple explanation of the no free lunch theorem of optimization. Proceedings of the

40th IEEE Conference on Decision and Control (Cat. No. 01CH37228). IEEE, 2001, Vol. 5, pp. 4409–4414.

23. Liashchynskyi, P.; Liashchynskyi, P. Grid search, random search, genetic algorithm: a big comparison for

NAS. arXiv preprint arXiv:1912.06059 2019.

24. Hesterman, J.Y.; Caucci, L.; Kupinski, M.A.; Barrett, H.H.; Furenlid, L.R. Maximum-likelihood estimation

with a contracting-grid search algorithm. IEEE transactions on nuclear science 2010, 57, 1077–1084.

25. Godefroid, P.; Khurshid, S. Exploring very large state spaces using genetic algorithms. Tools and Algorithms

for the Construction and Analysis of Systems: 8th International Conference, TACAS 2002 Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8–12,

2002 Proceedings 8. Springer, 2002, pp. 266–280.

26. Zhang, T.; Qi, W.; Zhao, X.; Yan, Y.; Cao, Y. A local dimming method based on improved multi-objective

evolutionary algorithm. Expert Systems with Applications 2022, p. 117468.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

13 of 14

27. Zheng, W.; Sun, J. Two-stage hybrid learning-based multi-objective evolutionary algorithm based on

objective space decomposition. Information Sciences 2022, 610, 1163–1186.

28. Chen, Q.; Ma, X.; Yu, Y.; Sun, Y.; Zhu, Z. Multi-objective evolutionary multi-tasking algorithm using

cross-dimensional and prediction-based knowledge transfer. Information Sciences 2022, 586, 540–562.

29. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556 2014.

30. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich,

A. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 1–9.

31. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision

transformer using shifted windows. Proceedings of the IEEE/CVF international conference on computer

vision, 2021, pp. 10012–10022.

32. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing neural network architectures using reinforcement

learning. arXiv preprint arXiv:1611.02167 2016.

33. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. Fbnet:

Hardware-aware efficient convnet design via differentiable neural architecture search. Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 10734–10742.

34. Cai, H.; Zhu, L.; Han, S. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332 2018.

35. Brock, A.; Lim, T.; Ritchie, J.M.; Weston, N. Smash: one-shot model architecture search through

hypernetworks. arXiv preprint arXiv:1708.05344 2017.

36. Xie, L.; Yuille, A. Genetic cnn. Proceedings of the IEEE international conference on computer vision, 2017,

pp. 1379–1388.

37. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-scale evolution of

image classifiers. International Conference on Machine Learning. PMLR, 2017, pp. 2902–2911.

38. Tancik, M.; Mildenhall, B.; Wang, T.; Schmidt, D.; Srinivasan, P.P.; Barron, J.T.; Ng, R. Learned initializations

for optimizing coordinate-based neural representations. Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2021, pp. 2846–2855.

39. Liu, H.; Simonyan, K.; Yang, Y. Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055

2018.

40. Elsken, T.; Metzen, J.H.; Hutter, F. Efficient multi-objective neural architecture search via lamarckian

evolution. arXiv preprint arXiv:1804.09081 2018.

41. Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient neural architecture search via parameters sharing.

International conference on machine learning. PMLR, 2018, pp. 4095–4104.

42. Chen, W.; Gong, X.; Wang, Z. Neural architecture search on imagenet in four gpu hours: A theoretically

inspired perspective. arXiv preprint arXiv:2102.11535 2021.

43. Chen, Y.; Meng, G.; Zhang, Q.; Xiang, S.; Huang, C.; Mu, L.; Wang, X. Renas: Reinforced evolutionary neural

architecture search. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2019, pp. 4787–4796.

44. Mallipeddi, R.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. Differential evolution algorithm with ensemble

of parameters and mutation strategies. Applied soft computing 2011, 11, 1679–1696.

45. Nguyen, B.M.; Thi Thanh Binh, H.; The Anh, T.; Bao Son, D. Evolutionary algorithms to optimize task

scheduling problem for the IoT based bag-of-tasks application in cloud–fog computing environment. Applied

Sciences 2019, 9, 1730.

46. Bäck, T.; Schwefel, H.P. An overview of evolutionary algorithms for parameter optimization. Evolutionary

computation 1993, 1, 1–23.

47. Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv preprint arXiv:1605.07146 2016.

48. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer

vision. Proceedings of the IEEE conference on computer vision and pattern recognition. CVPR, 2016, pp.

2818–2826.

49. Dryden, N.; Maruyama, N.; Benson, T.; Moon, T.; Snir, M.; Van Essen, B. Improving strong-scaling of CNN

training by exploiting finer-grained parallelism. 2019 IEEE International Parallel and Distributed Processing

Symposium (IPDPS). IEEE, 2019, pp. 210–220.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

14 of 14

50. Lewkowycz, A. How to decay your learning rate. arXiv preprint arXiv:2103.12682 2021.

51. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.

2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

52. Yuan, Y.; Fu, R.; Huang, L.; Lin, W.; Zhang, C.; Chen, X.; Wang, J. Hrformer: High-resolution transformer for

dense prediction. arXiv preprint arXiv:2110.09408 2021.

53. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. International conference on machine

learning. PMLR, 2021, pp. 10096–10106.

54. Graham, B.; El-Nouby, A.; Touvron, H.; Stock, P.; Joulin, A.; Jégou, H.; Douze, M. Levit: a vision transformer

in convnet’s clothing for faster inference. Proceedings of the IEEE/CVF international conference on computer

vision, 2021, pp. 12259–12269.

55. d’Ascoli, S.; Touvron, H.; Leavitt, M.L.; Morcos, A.S.; Biroli, G.; Sagun, L. Convit: Improving vision

transformers with soft convolutional inductive biases. International Conference on Machine Learning.

PMLR, 2021, pp. 2286–2296.

56. Chiley, V.; Thangarasa, V.; Gupta, A.; Samar, A.; Hestness, J.; DeCoste, D. RevBiFPN: The Fully Reversible

Bidirectional Feature Pyramid Network. arXiv preprint arXiv:2206.14098 2022.

57. Li, S.; Liu, Z.; Wu, D.; Liu, Z.; Li, S.Z. Boosting discriminative visual representation learning with

scenario-agnostic mixup. arXiv preprint arXiv:2111.15454 2021.

58. Han, K.; Wang, Y.; Zhang, Q.; Zhang, W.; Xu, C.; Zhang, T. Model rubik’s cube: Twisting resolution, depth

and width for tinynets. Advances in Neural Information Processing Systems 2020, 33, 19353–19364.

59. Chollet, F. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 1251–1258.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 July 2023 doi:10.20944/preprints202307.1795.v1

https://doi.org/10.20944/preprints202307.1795.v1

	Introduction
	Related Works
	Convolutional Neural Networks
	Neural Architecture Search
	Network Scaling

	EvolveNet
	Filter Training
	Evolving Depth
	Evolving Width
	Retraining

	Experiments
	Experimental Settings
	Evaluation Protocol
	Experimental Results
	Performance against Very Small Networks
	Performance against Small Networks
	Performance against Medium-sized Networks
	Performance against Large Networks

	Discussion

	Conclusions
	References

