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Abstract: Convolution forms one of the most essential operations for the FPGA-based hardware accelerator. 

However, the existing designs often neglect the inherent architecture of FPGA, which puts forward an austere 

challenge on hardware resource requirements. Even though some previous works have proposed approximate 

multipliers or convolution acceleration algorithms to deal with this issue, the inevitable accuracy loss and 

resource occupation easily lead to performance degradation. Toward this, we first propose two kinds of 

resource-efficient optimized accurate multipliers based on LUTs or carry chains. Then targeting FPGA-based 

platforms, a generic multiply-accumulate structure is constructed by directly accumulating the partial products 

produced by our proposed optimized radix-4 Booth multipliers without intermediate multiplication and 

addition results. Experimental results demonstrate that our proposed multiplier achieves a maximum 51% 

look-up-table (LUT) reduction compared to the Vivado area optimized multiplier IP. Furthermore, the 

convolutional process unit using the proposed structure achieves a 36% LUT reduction compared to existing 

methods. As case studies, the proposed method is applied to DCT transformer and LeNet to achieves hardware 

resource saving without loss of accuracy. 

Keywords: convolution; multiplier; look-up table; carry chain; FPGA 

 

1. Introduction 

In recent years, with the development of neural networks and image processing, there brings 

out a substantial growth of the convolution operation featuring by large number of multiply-

accumulate calculations. Generally, the field-programmable gate array (FPGA) has become a 

promising platform for hardware acceleration of CNN due to its flexibility and energy efficiency [1]. 

However, when the convolution processing units are directly implemented on FPGA, the 

corresponding multiplication and addition operations, which have been widely investigated for 

ASIC-based systems, are achieved based on the configurable logic blocks instead of logic gates. It 

may probably result in unnecessary waste of hardware resources due to inherent architectural 

differences between FPGA and ASIC. Therefore, optimization and acceleration of convolution 

processing units form one of the essential topics for FPGA-based accelerator.  

When directly implementing the convolutional process units on FPGA, although the vendors, 

such as AMD and Intel, have provided DSPs to achieve fast multipliers, it may probably result in 

performance degradation due to their fixed locations and limited quantity for multiplier-intensive 

applications [2]. For the implementation of large-scale neural network, such as VGG-16, the quantity 

of DSPs is usually insufficient [3]. In addition, previous works have also reported that with 

exhaustive use of DSPs, performance degradation will appear because of their fixed locations when 

implementing applications like Nova and Viterbi decoder [4]. Furthermore, the fixed bit-width 

multiplier of DSP, usually 25×18, will easily lead to higher latency of convolutional process units, 

most of which employs only 8×8 or 16×16 multipliers. Therefore, it is necessary to adopt some other 

methods to achieve convolution processing units implemented on FPGA. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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The existing literature on convolution processing units implemented on FPGA is extensive and 

focuses mainly on multiplier or adder optimization. That is, accurate intermediate computations are 

considered to be unnecessary, so approximate operations can be employed to improve performance 

and energy efficiency further. For example, G. Lentaris and Z. Ebrahimi use optimized approximate 

logarithmic multipliers in convolution processing units [5,6]. G. Csordas converts the similar weights 

into a canonical signed digit code, then a multiplier is employed for each code [7]. H. Zhang [8] and 

C. Lammie [9] employ the Karatsuba algorithm and random calculation to realize approximate 

multipliers. Besides, approximate adders are also proposed to optimize convolution processing units 

in [10–12]. While in fact, compared with accurate multipliers, despite saving hardware resources, the 

existing accuracy loss will inevitably reduce the performance of CNN. 

Among the other available designs, S. Sarwar proposes an alphabet set multiplier and shares the 

alphabets with multiple multiplication units [13]. However, a strict requirement exists for the 

multiplication order, which must be one input multiplied by multiple weights. This special order 

results in more storage resources being occupied. S. Kala [14], Toan [15], and X. Wang [16] use 

Winograd to reduce the number of multiplications, but the number of additions is increased instead. 

Not to say that it has to fulfill the requirement of the order of input data, which may bring out 

additional latency. Moreover, the methods mentioned above also impose challenges on storage 

resources, additionally. 

In particular, most of the state-of-art designs only considers ASIC-based system. Actually, 

resulting from the inherent architectural difference between FPGA and ASIC, the performance of the 

proposed optimization methods will be limited when directly synthesized and implemented on 

FPGA [17]. In addition, the bulks of the existing accelerators have to be operated according to a strict 

multiplication and addition order. Considering the possible discontinuous memory address existing 

in the input data, it may lead to significant latency and increased storage resources. 

To address the above limitations, we present a general novel methodology of implementing 

convolutional process unit for FPGA-based accelerator. To the best of our knowledge, there has been 

no extensive research on convolution accelerators based on high performance single-cycle accurate 

multipliers for FPGA-based systems with comparable performance to those based on approximate 

multipliers.  

The main contributions of this work are: 

 Utilizing the 6-input look-up-table (LUT) and associated carry chain of FPGA, two resource-

efficient optimization methods of single-cycle radix-4 accurate Booth multiplier are proposed, 

further supporting the addition operation for the multiply-accumulate functionality. 

 Based on partial product accumulation, a multiply-accumulate structure is proposed without 

calculating intermediate multiplication and addition results for each input data, which further 

reduces the hardware utilization effectively and can be expanded to other multiply-accumulate 

operations. 

 Our proposed convolution accelerator based on optimized multiply-accumulate structure 

achieves comparable performance and resource utilization to those based on approximate 

multipliers without accuracy loss. 

The rest of this paper is organized as follows. Section 2 presents the problem formulation. The 

FPGA-targeted optimization methods are described in Section 3. Section 4 provides the experimental 

results and discussion. Finally, Section 5 concludes the paper. 

2. Problem Formulation 

A convolution processing unit consists of multipliers and adders. Practically, for the FPGA-

based convolutional process unit, multiplier occupies more than 96% of the LUT resources [18]. 

Therefore, multiplier optimization plays a critical role in high-performance FPGA-based accelerators. 

Even though state-of-the-art FPGAs provide DSPs for high-performance multiplication, owing to 

their fixed locations and bit-width, the exhaustive use of DSPs may result in performance 

degradation. Moreover, the quantity of DSPs is usually insufficient for large scale industrial 

application. Hence, previous designs have attempted to reduce the multipliers for resource saving by 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 July 2023                   doi:10.20944/preprints202307.1705.v1

https://doi.org/10.20944/preprints202307.1705.v1


 3 

 

decreasing the partial products and dots [19]. However, when implemented on FPGAs, they may 

increase the LUT utilization due to the inherent architectural difference. 

Taking 8×8 radix-4 Booth-Wallace tree multiplier as an example, the partial products can be 

compressed to 4 and the dots can be reduced to 44 by sign bit extension, which has become the most 

resource-efficient method [20]. Nevertheless, when synthesized for FPGAs, it actually takes more 

LUTs, as listed in Table 1. We consider the reason is due to the inherited architectural difference 

between FPGA and ASIC, together with the operation modes of LUT. That is, the multiplier above is 

designed for ASIC-based systems, which are at the logic gate level, whereas FPGA-based systems use 

configurable logic blocks, including LUTs and carry chains. In addition, LUT usually operates in the 

mode of either 6-input 1-output or 5-input 2-output. A LUT can calculate 5 dots, whereas a full adder 

calculates 3. When implemented on FPGAs, a full adder will be transformed into a LUT, which makes 

two ports of a LUT idle, as shown in Figure 1. Considering the dots generated by compression, the 

number of dots will increase from 44 to 83. Excluding bits with insufficient dots, every five dots will 

use one more LUT due to the accumulation of idle ports, resulting in a waste of hardware resources. 

In addition, plenty of carry chains are always idle in application. Therefore, it is available to make 

full use of carry chains to improve LUT utilization further. 

Table 1. LUT utilization of Multipliers (8×8). 

Designs LUT 

Unoptimized 92 

Sign bit extension 77 

Proposed (LUT) 63 

Proposed (carry-chain) 41 

 

(a)                       (b) 

Figure 1. Full adder deployment (a) Logic gates; (b) LUT. 

Moreover, the existing methods operate multiplication and addition separately in hardware 

accelerators. That is, calculating the results of each multiplication and then performing accumulation. 

However, in each multiplier, the LUTs or carry chains will not be fully used during the final 

processing due to the fewer dots, which causes unnecessary waste of hardware resources in a 

multiply-accumulate structure. For further saving resources, the partial products should be 

accumulated without deriving the multiplication results first. 

Therefore, in this paper, we try to investigate the optimization methods based on LUT and carry-

chain for the radix-4 Booth multipliers in FPGA-based accelerators by making full use of LUT and 

idle carry chains. The proposed method makes full use of the ports of LUT and idle resources, thus, 

achieving a 55% maximum reduction of LUTs, as shown in Table 1. Then an optimized multiply-

accumulate structure based on accumulating partial products is proposed, achieving a reduction of 

LUTs without accuracy loss. 
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3. Proposed Designs 

3.1. Radix-4 Booth multiplier and its sign bit extension 

Since the bit-width of the multiplication is the sum of the bit-width of multipliers, the symbol 

bits should be extended if using Wallace tree for partial product compression. The procedure of the 

sign bit extension method for Radix-4 Booth multiplier can be separated into the following steps. 

Step1. Reverse the sign bit of each partial product. 

Step2. Add 1 to the lowest sign bit. 

Step3. Add 1 to the previous bit of the sign bit of all partial products. 

The structure of the 8×8 radix-4 Booth multiplier using the sign bit expansion method is shown 

in Figure 2. However, when this multiplier is directly implemented on FPGA, it will cause 

unnecessary waste of resources due to inherent architectural differences. 

 

Figure 2. 8×8 Radix-4 Booth multiplier (S represents sign bit of partial products). 

3.2. LUT-based optimization of radix-4 Booth multiplier 

The mentioned radix-4 Booth multiplier uses logic gates as basic units, while FPGA-based 

computational blocks are configurable logic blocks, mainly including LUTs and carry chains. LUT 

corresponds to inputs and outputs by storing a truth table, and carry chains are used to perform 

addition. Therefore, two optimization methods can be proposed for the FPGA-based convolution 

processing units. 

When the radix-4 Booth multipliers are directly implemented on FPGA, lots of 3-input/4-input 

1-output LUTs will be generated, whereas a fully utilized LUT is usually 5-input 2-output or 6-input 

1-output. Therefore, using the 3-2 compression of the traditional Wallace tree will cause many idle 

ports. In radix-4 Booth multipliers, the demand for output ports is always higher than the input ones 

for the multi-input structure of LUT. Therefore, full utilization of the output ports should be primarily 

taken into consideration during implementation. Taking the 8×8 radix-4 Booth multiplier as an 

example, we treat all partial products as inputs, multiplication results as outputs, and middle carry 

as both inputs and outputs. The number of inputs and outputs are 126 and 57, respectively, which 

approximates 5:2 rather than 6:1. In this case, the demand for output ports is always higher than the 

input ones for the multi-input structure of LUT. 

The following optimization method is proposed for Wallace tree, as shown in Figure 3. For each 

parallel bit, if the number of addends is less than 5, they are compressed according to the previous 

Wallace tree. Otherwise, every 5 addends are compressed to 3. Loop this operation until the addend 

of each bit is less than 3. 
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Figure 3. LUT-based optimization for Wallace tree. 

3.3. Carry-chain-based optimization of radix-4 Booth multiplier 

For each configurable logic unit of FPGA, the ratio of 6-input LUT and 8-bit carry chain is 8:1. 

However, during the Vivado synthesis procedure, low-bit-width additions (less than 16 bits) are 

implemented using LUT resources prior to carry chains. Moreover, the resource requirement for 

carry chains is commonly very low. Consequently, it is possible to improve LUT utilization further 

by using surplus carry chain resources on FPGA. 

For the carry-chain-based optimization method, a partial product reduction tree is proposed, 

aiming to fully utilize the carry chains. Using an 8-bit carry chain, two 8-bit numbers and a carry bit 

will be compressed into a 9-bit number. This operation is repeated until the addends of each bit are 

less than 3. The result then can be obtained by adding the remaining addends. Different from other 

multipliers, a sign bit is left at the lowest bit of each partial product of the radix-4 Booth multiplier. It 

meets the requirement that there should be a carry bit in a low bit number so that the carry chain can 

be fully used. Figure 4 shows the optimization of the 8×8 radix-4 Booth multiplier. Compared with 

LUT compression using optimized Wallace tree, the carry chain compression has the same height, 

which means the latency is mainly related to the device itself. 

To further study the latency, we implemented 10 LUTs and 8-bit carry chains on FPGA. The 

average delays of LUTs and 8-bit carry chains are 0.179ns and 0.209ns, respectively. In spite of an 

increase of 16% delay, using carry chains to compress partial products can effectively reduce the LUT 

cost. 

 

Figure 4. Optimization of 8×8 radix-4 Booth multiplier, a red box represents an 8-bit carry chain. 

3.4. Partial product accumulation based optimization of convolutional process unit 

The convolution calculation can be described as a large number of parallel multiply-accumulate 

operations. Due to the resource limitation of FPGA, most of the convolution process units have to 

execute the multiplication and addition of each channel and window individually in one clock cycle. 
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As shown in Figure 5, in traditional convolution processing units, after computing each product of 

the characteristic graph and weight, the calculated results are accumulated by the adder. It means 

that assuming an n×n convolution kernel, we have to use n×n single-circle multipliers and n×n-1 

adders in a convolutional process unit. To further save the resources, LUT utilization can be 

optimized by a direct partial product accumulation. That is, instead of calculating and adding the 

result of each multiplier successively, we can calculate all partial products and achieve accumulation 

by the same partial product reduction tree, as shown in Figure 6. 

 

Figure 5. Traditional structure of convolutional process unit. 

 

Figure 6. The optimized multiply-accumulate structure based on partial product accumulation. 

It is worthy of noticing that, different from the previous work of a general compressor tree [21], 

our proposed method first calculates the partial products through the radix-4 Booth encoder. Then, 

all partial products are accumulated in an optimized partial product reduction tree for compression 

and calculation. Moreover, the partial product reduction tree is more resource-efficient on 

accumulating partial products generated by radix-4 Booth encoder. 

Besides, in our proposed method, there is no need to derive the intermediate results of each 

multiplication, the partial products in accumulation are directly sent to the adder, which occupies 

fewer hardware resources than all previous similar works because the 1s generated by the sign bit 

extension method in radix-4 booth encoders can be calculated ahead without resources occupation 

when multiple partial products are accumulated. 

Specifically, suppose there are M multipliers in a convolutional process unit with the bit-width 

of 4. If calculating the result of each multiplier first, as shown in Figure 7(a), then 3×M-1 carry chains 

are needed, where 2×M are for each multiplier, and the others are for the final addition. However, if 

direct accumulating all partial products, there are only 2×M carry chains, as shown in Figure 7(b), 

which reduces M-1 carry chains. Moreover, the height of partial product reduction tree will not be 

increased due to its parallelism, neither be the delay. In fact, the proposed method can not only reduce 
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the resource utilization but also be effective for all multiply-accumulate structures without 

requirement for the input data order, different from the Systolic Array Architecture and Winograd 

Algorithm. 

 

(a)                             (b) 

Figure 7. Strategy comparison, a red box represents an 8-bit carry chain: (a) Calculating the result of 

multipliers first; (b) Accumulating partial products. 

4. Discussion 

4.1. Experimental Setup 

The proposed designs have been implemented in Verilog HDL and synthesized by Xilinx 

Vivado 2021.2 for the Virtex-7 xczu3cg-sfvc784-1-e FPGA. For calculating their critical path delay 

(CPD), power, and hardware resource usage, the Vivado simulator and power analyzer tools are 

employed. In order to evaluate the effectiveness of our proposed designs, we have implemented the 

present multipliers [17,22–25] on our FPGA. Further, our proposed multipliers have been 

implemented for our proposed multiply-accumulate structure, then applied to image processing and 

CNN for comparison. 

4.2. Implementation results of optimized multiplier 

Table 2 compares the resource utilization, CPD, and energy consumption of our proposed 

multipliers with other typical multipliers of different bit-width. It is demonstrated that our proposed 

multipliers are more resource-efficient than the others across different bit-width without obvious 

performance degradation on CPD and energy consumption. Taking 8×8 multipliers as an example, 

the LUT utilization is reduced by 18.18% and 46.75% with our proposed multipliers to the radix-4 

Booth multiplier using sign-bit expansion, respectively. Even compared with the approximate 

multiplier [17], our proposed carry-chain-based optimized multiplier still exhibits fewer LUT 

utilization.  

It is worth noting that although the proposed multipliers demonstrate an increase in CPD 

compared with the Vivado IP, it is still at an acceptable level with a significant reduction of LUT and 

8-bit carry chain utilization. It is due to the Booth coding, which in spite of reducing the resource 

consumption, inevitably leads to the delay. 

In addition, our proposed carry-chain-based optimized multipliers can further improve the LUT 

utilization and energy consumption for the reason that using carry chains can reduce logical flipping 

effectively. It delivers better PDP improvements of 38.67% to the previous best FPGA-targeted design 

[22]. Compared to the speed-optimized Vivado IP, the proposed multiplier is higher on PDP because 

of the latency. However, we think the increased latency is acceptable with a 43% reduction in LUT 

utilization. To highlight the efficiency of our proposed multipliers, Figure 8 illustrates the product of 

normalized values of total utilized LUTs and PDP for each design across different bit-width. All 

values have been normalized to the corresponding values of Vivado area optimized multiplier IP. A 

smaller value of the product (LUTs×PDP) presents an implementation with better performance. 
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Although for simple applications, the proposed carry-chain-based optimized multiplier exhibits 

similar performance to Vivado speed optimized IP, it has significant advantages for larger scale 

designs. Even compared with the approximate multiplier [17,25], there exists a noticeable 

improvement of LUTs with our proposed carry-chain-based optimized multipliers without 

performance degradation. 

Table 2. Implementation Results of Multipliers (Shaded Row: approximate design). 

Design 

8×8 16×16 

LUT 
Carry 

Chain 

Delay 

(ns) 

Power 

(mW) 

PDP 

(pJ) 
LUT 

Carry 

Chain 

Delay 

(ns) 

Power 

(mW) 

PDP 

(pJ) 

Sign expansion 77 0 3.011 15.8 47.5 279 0 3.583 56.8 203.5 

Proposed(LUT) 63 0 2.774 16.3 45.1 256 0 3.296 55.1 181.6 

Proposed(Carry chain) 41 5 2.530 7.2 18.1 167 18 2.782 29.2 81.3 

Vivado IP area 85 7 1.967 10.8 21.2 324 26 2.177 47.0 102.3 

Vivado IP speed 73 14 1.602 8.3 13.3 281 45 1.922 31.7 60.83 

T. Nguyen [22] 69 2 2.927 10.1 29.5 263 4 3.323 41.8 139 

S. Ullah [23] 81 0 2.954 13.8 40.7 296 0 3.738 48.3 180.7 

S. Abbas [24] 73 2 3.037 15.1 45.9 270 4 3.642 67.6 246.2 

S. Rehman[17] 56 2 1.980 8.9 17.7 240 4 2.380 42.4 101 

H. Waris [25] 60 2 2.140 6.6 14.1 194 4 2.413 28.6 69.1 

 

                          (a)                         (b) 

Figure 8. Comparison results of multipliers: (a) Normalized performance metrics (LUT×PDP); (b) 

Normalized LUT. 

4.3. Implementation results of multiply-accumulate structure 

For hardware resource saving, the proposed carry-chain-based optimized multiplier is 

employed. For the 8-bit multiplication, the method of accumulating two partial products can reduce 

10 LUTs and 2 8-bit carry chains. 

To verify the effectiveness of our proposed method, we implement it to the convolutional 

process unit with the bit-width of 8 and convolution kernel size of 3×3. Table 3 lists the comparison 

results of our method with DSPs and approximate multipliers [17,25]. Compared with them, our 

proposed multiplier and multiply-accumulate structure reduce LUT by 43.9%. For further verifying, 

Table 4 lists the comparison results of our proposed convolution processing unit and the others with 

the bit-width of 16 and convolution kernel size of 4×4, which is not commonly used, implementing 

only for comparison. It should be noted that although the bit-width and multiplication times are the 

same, the implemented FPGAs are different, which means some important performances are not 

comparable, such as frequency and power. However, the architectures of the present mainstream 

Xilinx FPGAs are similar, so we directly compare the utilization of hardware resources. In fact, for 

most existing convolutional process units of the hardware accelerator, the realization of multipliers 

and multiply-accumulate structures are either ignored or just optimized by ASIC-based multipliers, 
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which easily leads to performance degradation. Compared with them, our proposed multiplier and 

multiply-accumulate structure reduce LUT by 22.7%. 

Table 3. Implementation Results of 3×3 convolutional process units (including approximate multipliers). 

Designs LUT DSP Freq.(Mhz) Power(mW) 

Proposed  362 0 395 71 

DSP blocks 68 9 400 81 

Rehman [17] 570 0 397 89 

H. Waris [25] 604 0 383 69 

Table 4. Implementation Results of 4×4 convolutional process units. 

Designs LUT DSP Freq.(Mhz) Power(mW) 

Proposed 2792 0 342 154 

R. Cai [26] 5342 0 330 293 

DSP blocks 158 16 177 226 

F. Farrukh [18] 3612 0 533 176 

For the high-level application environment, we apply the multiply-accumulate structure to 

Discrete Cosine Transform (DCT) in JPEG compression. For each 8×8 block, the DCT is employed as 

two matrix multiplications of sizes 8×8 thus requires 1024 multiplications and 896 additions. As 

shown in Figure 9(a), the input image with bit-width of 16 is from MIT Adobe FiveK dataset. The 

peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) are used to evaluate 

the quality of the output images. Figure 9 and Table 5 indicate that even compared with the ones 

using approximate multipliers [17,25], our proposed structure can obviously reduce the LUT 

utilization without loss of accuracy. 

 
(a) (b) (c) (d) 

Figure 9. Image compression results: (a)Input image; (b)Our proposed method; (c)Approximate 

multiplier [17]; (d)Approximate multiplier [25]. 

Table 5. Comparison Results of DCT Transformation. 

Design LUT DSP Freq.(Mhz) Power(W) PSNR SSIM 

Proposed 9688 0 379 1.144 ∞ 1 

DSP blocks 608 64 383 1.181 ∞ 1 

Rehman [17] 11025 0 393 1.296 56.17 0.990 

H. Waris [25] 10870 0 387 1.004 52.58 0.974 

We also implement LeNet shown in Table 6 with two convolutional layers on FPGA, to realize 

the target recognition of 10 types of common objects by Cifar-10 Dataset. For hardware resource 

reduction, the 8-bit fixed-point quantization is used, resulting in an accuracy of 69.32%. The 

implementation results of using our proposed multiply-accumulate structure and directly using 

DSPs are listed in Table 7. It shows that when dealing with multiplier-intensive applications, our 

proposed method can promote maximum clock frequency and save 58% of the DSP resources by only 

increasing 12% LUT. 
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Table 6. LeNet architecture on FPGA. 

Layer Input Filter Size Stride Output 

Conv1 32×32×3 16 3×3 1 30×30×16 

Conv2 30×30×16 16 3×3 1 28×28×16 

Max pooling1 28×28×16 N/A 2×2 2 14×14×16 

Conv3 14×14×16 32 3×3 1 12×12×32 

Conv4 12×12×32 32 3×3 1 10×10×32 

Max pooling2 10×10×32 N/A 2×2 2 5×5×32 

Full connect1 800 N/A N/A N/A 120 

Full connect2 120 N/A N/A N/A 84 

Table 7. Comparison Results of DCT Transformation. 

Design LUT utilization DSP utilization Freq.(Mhz) 

Proposed 23887(34%) 0(0%) 175 

DSP blocks 15695(22%) 211(58%) 173 

5. Conclusion 

In this paper, a design methodology for convolution accelerator has been presented. Based on 

LUTs and carry chains on FPGA, we first introduced two types of resource-efficient optimization of 

radix-4 Booth’s multiplier. Then a generic multiply-accumulate structure is proposed, which directly 

accumulates the partial products without intermediate multiplication and addition results. The 

proposed methods are implementable on the Xilinx FPGA Virtex-7 xczu3cg-sfvc784-1-e. Compared 

to Vivado area optimized multiplier IP, the optimized multipliers achieve a maximum 51% reduction 

in area (LUT). The proposed multiply-accumulate structure achieves a maximum of 22.7% LUT 

reduction compared to the existing methods. For verifying our proposed convolutional process unit, 

we finally presented high-level applications by implementing DCT transformer and LeNet on FPGA. 

In DCT transformer, our proposed method reduces LUT utilization by 12% without accuracy loss, 

while in LeNet on FPGA, our proposed convolution accelerator saves 58% of the DSP resources. 
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