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Abstract: Convolution forms one of the most essential operations for the FPGA-based hardware accelerator.
However, the existing designs often neglect the inherent architecture of FPGA, which puts forward an austere
challenge on hardware resource requirements. Even though some previous works have proposed approximate
multipliers or convolution acceleration algorithms to deal with this issue, the inevitable accuracy loss and
resource occupation easily lead to performance degradation. Toward this, we first propose two kinds of
resource-efficient optimized accurate multipliers based on LUTs or carry chains. Then targeting FPGA-based
platforms, a generic multiply-accumulate structure is constructed by directly accumulating the partial products
produced by our proposed optimized radix-4 Booth multipliers without intermediate multiplication and
addition results. Experimental results demonstrate that our proposed multiplier achieves a maximum 51%
look-up-table (LUT) reduction compared to the Vivado area optimized multiplier IP. Furthermore, the
convolutional process unit using the proposed structure achieves a 36% LUT reduction compared to existing
methods. As case studies, the proposed method is applied to DCT transformer and LeNet to achieves hardware
resource saving without loss of accuracy.

Keywords: convolution; multiplier; look-up table; carry chain; FPGA

1. Introduction

In recent years, with the development of neural networks and image processing, there brings
out a substantial growth of the convolution operation featuring by large number of multiply-
accumulate calculations. Generally, the field-programmable gate array (FPGA) has become a
promising platform for hardware acceleration of CNN due to its flexibility and energy efficiency [1].
However, when the convolution processing units are directly implemented on FPGA, the
corresponding multiplication and addition operations, which have been widely investigated for
ASIC-based systems, are achieved based on the configurable logic blocks instead of logic gates. It
may probably result in unnecessary waste of hardware resources due to inherent architectural
differences between FPGA and ASIC. Therefore, optimization and acceleration of convolution
processing units form one of the essential topics for FPGA-based accelerator.

When directly implementing the convolutional process units on FPGA, although the vendors,
such as AMD and Intel, have provided DSPs to achieve fast multipliers, it may probably result in
performance degradation due to their fixed locations and limited quantity for multiplier-intensive
applications [2]. For the implementation of large-scale neural network, such as VGG-16, the quantity
of DSPs is usually insufficient [3]. In addition, previous works have also reported that with
exhaustive use of DSPs, performance degradation will appear because of their fixed locations when
implementing applications like Nova and Viterbi decoder [4]. Furthermore, the fixed bit-width
multiplier of DSP, usually 25x18, will easily lead to higher latency of convolutional process units,
most of which employs only 8x8 or 16x16 multipliers. Therefore, it is necessary to adopt some other
methods to achieve convolution processing units implemented on FPGA.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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The existing literature on convolution processing units implemented on FPGA is extensive and
focuses mainly on multiplier or adder optimization. That is, accurate intermediate computations are
considered to be unnecessary, so approximate operations can be employed to improve performance
and energy efficiency further. For example, G. Lentaris and Z. Ebrahimi use optimized approximate
logarithmic multipliers in convolution processing units [5,6]. G. Csordas converts the similar weights
into a canonical signed digit code, then a multiplier is employed for each code [7]. H. Zhang [8] and
C. Lammie [9] employ the Karatsuba algorithm and random calculation to realize approximate
multipliers. Besides, approximate adders are also proposed to optimize convolution processing units
in [10-12]. While in fact, compared with accurate multipliers, despite saving hardware resources, the
existing accuracy loss will inevitably reduce the performance of CNN.

Among the other available designs, S. Sarwar proposes an alphabet set multiplier and shares the
alphabets with multiple multiplication units [13]. However, a strict requirement exists for the
multiplication order, which must be one input multiplied by multiple weights. This special order
results in more storage resources being occupied. S. Kala [14], Toan [15], and X. Wang [16] use
Winograd to reduce the number of multiplications, but the number of additions is increased instead.
Not to say that it has to fulfill the requirement of the order of input data, which may bring out
additional latency. Moreover, the methods mentioned above also impose challenges on storage
resources, additionally.

In particular, most of the state-of-art designs only considers ASIC-based system. Actually,
resulting from the inherent architectural difference between FPGA and ASIC, the performance of the
proposed optimization methods will be limited when directly synthesized and implemented on
FPGA [17]. In addition, the bulks of the existing accelerators have to be operated according to a strict
multiplication and addition order. Considering the possible discontinuous memory address existing
in the input data, it may lead to significant latency and increased storage resources.

To address the above limitations, we present a general novel methodology of implementing
convolutional process unit for FPGA-based accelerator. To the best of our knowledge, there has been
no extensive research on convolution accelerators based on high performance single-cycle accurate
multipliers for FPGA-based systems with comparable performance to those based on approximate
multipliers.

The main contributions of this work are:

e  Utilizing the 6-input look-up-table (LUT) and associated carry chain of FPGA, two resource-
efficient optimization methods of single-cycle radix-4 accurate Booth multiplier are proposed,
further supporting the addition operation for the multiply-accumulate functionality.

e Based on partial product accumulation, a multiply-accumulate structure is proposed without
calculating intermediate multiplication and addition results for each input data, which further
reduces the hardware utilization effectively and can be expanded to other multiply-accumulate
operations.

e  Our proposed convolution accelerator based on optimized multiply-accumulate structure
achieves comparable performance and resource utilization to those based on approximate
multipliers without accuracy loss.

The rest of this paper is organized as follows. Section 2 presents the problem formulation. The
FPGA-targeted optimization methods are described in Section 3. Section 4 provides the experimental
results and discussion. Finally, Section 5 concludes the paper.

2. Problem Formulation

A convolution processing unit consists of multipliers and adders. Practically, for the FPGA-
based convolutional process unit, multiplier occupies more than 96% of the LUT resources [18].
Therefore, multiplier optimization plays a critical role in high-performance FPGA-based accelerators.
Even though state-of-the-art FPGAs provide DSPs for high-performance multiplication, owing to
their fixed locations and bit-width, the exhaustive use of DSPs may result in performance
degradation. Moreover, the quantity of DSPs is usually insufficient for large scale industrial
application. Hence, previous designs have attempted to reduce the multipliers for resource saving by
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decreasing the partial products and dots [19]. However, when implemented on FPGAs, they may
increase the LUT utilization due to the inherent architectural difference.

Taking 8x8 radix-4 Booth-Wallace tree multiplier as an example, the partial products can be
compressed to 4 and the dots can be reduced to 44 by sign bit extension, which has become the most
resource-efficient method [20]. Nevertheless, when synthesized for FPGAs, it actually takes more
LUTs, as listed in Table 1. We consider the reason is due to the inherited architectural difference
between FPGA and ASIC, together with the operation modes of LUT. That is, the multiplier above is
designed for ASIC-based systems, which are at the logic gate level, whereas FPGA-based systems use
configurable logic blocks, including LUTs and carry chains. In addition, LUT usually operates in the
mode of either 6-input 1-output or 5-input 2-output. A LUT can calculate 5 dots, whereas a full adder
calculates 3. When implemented on FPGAs, a full adder will be transformed into a LUT, which makes
two ports of a LUT idle, as shown in Figure 1. Considering the dots generated by compression, the
number of dots will increase from 44 to 83. Excluding bits with insufficient dots, every five dots will
use one more LUT due to the accumulation of idle ports, resulting in a waste of hardware resources.
In addition, plenty of carry chains are always idle in application. Therefore, it is available to make
full use of carry chains to improve LUT utilization further.

Table 1. LUT utilization of Multipliers (8x8).

Designs LUT
Unoptimized 92
Sign bit extension 77
Proposed (LUT) 63
Proposed (carry-chain) 41
Full adder
s 1T A
; ) S
7 B LUTS —1 S
Cin 0
Cin )
— Cout i
| LUTS Cout
(@) (b)

Figure 1. Full adder deployment (a) Logic gates; (b) LUT.

Moreover, the existing methods operate multiplication and addition separately in hardware
accelerators. That is, calculating the results of each multiplication and then performing accumulation.
However, in each multiplier, the LUTs or carry chains will not be fully used during the final
processing due to the fewer dots, which causes unnecessary waste of hardware resources in a
multiply-accumulate structure. For further saving resources, the partial products should be
accumulated without deriving the multiplication results first.

Therefore, in this paper, we try to investigate the optimization methods based on LUT and carry-
chain for the radix-4 Booth multipliers in FPGA-based accelerators by making full use of LUT and
idle carry chains. The proposed method makes full use of the ports of LUT and idle resources, thus,
achieving a 55% maximum reduction of LUTs, as shown in Table 1. Then an optimized multiply-
accumulate structure based on accumulating partial products is proposed, achieving a reduction of
LUTs without accuracy loss.
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3. Proposed Designs

3.1. Radix-4 Booth multiplier and its sign bit extension

Since the bit-width of the multiplication is the sum of the bit-width of multipliers, the symbol
bits should be extended if using Wallace tree for partial product compression. The procedure of the
sign bit extension method for Radix-4 Booth multiplier can be separated into the following steps.

Stepl. Reverse the sign bit of each partial product.

Step2. Add 1 to the lowest sign bit.

Step3. Add 1 to the previous bit of the sign bit of all partial products.

The structure of the 8x8 radix-4 Booth multiplier using the sign bit expansion method is shown
in Figure 2. However, when this multiplier is directly implemented on FPGA, it will cause
unnecessary waste of resources due to inherent architectural differences.

A B
Radix4-booth encoder

pp, PP, [PP, [PR——{{A2A 2A A0}
B, Bs B; |B;

Wallace Tree — Product

1 5 o0 0000 08
1 s e e e e e e e e B,
1 s e e 0 e s 800 By
1 s #0000 0 00 Bs
1 B,

Figure 2. 8x8 Radix-4 Booth multiplier (S represents sign bit of partial products).

3.2. LUT-based optimization of radix-4 Booth multiplier

The mentioned radix-4 Booth multiplier uses logic gates as basic units, while FPGA-based
computational blocks are configurable logic blocks, mainly including LUTs and carry chains. LUT
corresponds to inputs and outputs by storing a truth table, and carry chains are used to perform
addition. Therefore, two optimization methods can be proposed for the FPGA-based convolution
processing units.

When the radix-4 Booth multipliers are directly implemented on FPGA, lots of 3-input/4-input
1-output LUTSs will be generated, whereas a fully utilized LUT is usually 5-input 2-output or 6-input
1-output. Therefore, using the 3-2 compression of the traditional Wallace tree will cause many idle
ports. In radix-4 Booth multipliers, the demand for output ports is always higher than the input ones
for the multi-input structure of LUT. Therefore, full utilization of the output ports should be primarily
taken into consideration during implementation. Taking the 8x8 radix-4 Booth multiplier as an
example, we treat all partial products as inputs, multiplication results as outputs, and middle carry
as both inputs and outputs. The number of inputs and outputs are 126 and 57, respectively, which
approximates 5:2 rather than 6:1. In this case, the demand for output ports is always higher than the
input ones for the multi-input structure of LUT.

The following optimization method is proposed for Wallace tree, as shown in Figure 3. For each
parallel bit, if the number of addends is less than 5, they are compressed according to the previous
Wallace tree. Otherwise, every 5 addends are compressed to 3. Loop this operation until the addend
of each bit is less than 3.
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Figure 3. LUT-based optimization for Wallace tree.

3.3. Carry-chain-based optimization of radix-4 Booth multiplier

For each configurable logic unit of FPGA, the ratio of 6-input LUT and 8-bit carry chain is 8:1.
However, during the Vivado synthesis procedure, low-bit-width additions (less than 16 bits) are
implemented using LUT resources prior to carry chains. Moreover, the resource requirement for
carry chains is commonly very low. Consequently, it is possible to improve LUT utilization further
by using surplus carry chain resources on FPGA.

For the carry-chain-based optimization method, a partial product reduction tree is proposed,
aiming to fully utilize the carry chains. Using an 8-bit carry chain, two 8-bit numbers and a carry bit
will be compressed into a 9-bit number. This operation is repeated until the addends of each bit are
less than 3. The result then can be obtained by adding the remaining addends. Different from other
multipliers, a sign bit is left at the lowest bit of each partial product of the radix-4 Booth multiplier. It
meets the requirement that there should be a carry bit in a low bit number so that the carry chain can
be fully used. Figure 4 shows the optimization of the 8x8 radix-4 Booth multiplier. Compared with
LUT compression using optimized Wallace tree, the carry chain compression has the same height,
which means the latency is mainly related to the device itself.

To further study the latency, we implemented 10 LUTs and 8-bit carry chains on FPGA. The
average delays of LUTs and 8-bit carry chains are 0.179ns and 0.209ns, respectively. In spite of an
increase of 16% delay, using carry chains to compress partial products can effectively reduce the LUT
cost.

Figure 4. Optimization of 8x8 radix-4 Booth multiplier, a red box represents an 8-bit carry chain.

3.4. Partial product accumulation based optimization of convolutional process unit

The convolution calculation can be described as a large number of parallel multiply-accumulate
operations. Due to the resource limitation of FPGA, most of the convolution process units have to
execute the multiplication and addition of each channel and window individually in one clock cycle.
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As shown in Figure 5, in traditional convolution processing units, after computing each product of
the characteristic graph and weight, the calculated results are accumulated by the adder. It means
that assuming an nxn convolution kernel, we have to use nxn single-circle multipliers and nxn-1
adders in a convolutional process unit. To further save the resources, LUT utilization can be
optimized by a direct partial product accumulation. That is, instead of calculating and adding the
result of each multiplier successively, we can calculate all partial products and achieve accumulation
by the same partial product reduction tree, as shown in Figure 6.
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Figure 5. Traditional structure of convolutional process unit.
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Figure 6. The optimized multiply-accumulate structure based on partial product accumulation.

It is worthy of noticing that, different from the previous work of a general compressor tree [21],
our proposed method first calculates the partial products through the radix-4 Booth encoder. Then,
all partial products are accumulated in an optimized partial product reduction tree for compression
and calculation. Moreover, the partial product reduction tree is more resource-efficient on
accumulating partial products generated by radix-4 Booth encoder.

Besides, in our proposed method, there is no need to derive the intermediate results of each
multiplication, the partial products in accumulation are directly sent to the adder, which occupies
fewer hardware resources than all previous similar works because the 1s generated by the sign bit
extension method in radix-4 booth encoders can be calculated ahead without resources occupation
when multiple partial products are accumulated.

Specifically, suppose there are M multipliers in a convolutional process unit with the bit-width
of 4. If calculating the result of each multiplier first, as shown in Figure 7(a), then 3xM-1 carry chains
are needed, where 2xM are for each multiplier, and the others are for the final addition. However, if
direct accumulating all partial products, there are only 2xM carry chains, as shown in Figure 7(b),
which reduces M-1 carry chains. Moreover, the height of partial product reduction tree will not be
increased due to its parallelism, neither be the delay. In fact, the proposed method can not only reduce
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the resource utilization but also be effective for all multiply-accumulate structures without
requirement for the input data order, different from the Systolic Array Architecture and Winograd

Algorithm.
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Figure 7. Strategy comparison, a red box represents an 8-bit carry chain: (a) Calculating the result of
multipliers first; (b) Accumulating partial products.

4. Discussion

4.1. Experimental Setup

The proposed designs have been implemented in Verilog HDL and synthesized by Xilinx
Vivado 2021.2 for the Virtex-7 xczu3cg-sfvc784-1-e FPGA. For calculating their critical path delay
(CPD), power, and hardware resource usage, the Vivado simulator and power analyzer tools are
employed. In order to evaluate the effectiveness of our proposed designs, we have implemented the
present multipliers [17,22-25] on our FPGA. Further, our proposed multipliers have been
implemented for our proposed multiply-accumulate structure, then applied to image processing and
CNN for comparison.

4.2. Implementation results of optimized multiplier

Table 2 compares the resource utilization, CPD, and energy consumption of our proposed
multipliers with other typical multipliers of different bit-width. It is demonstrated that our proposed
multipliers are more resource-efficient than the others across different bit-width without obvious
performance degradation on CPD and energy consumption. Taking 8x8 multipliers as an example,
the LUT utilization is reduced by 18.18% and 46.75% with our proposed multipliers to the radix-4
Booth multiplier using sign-bit expansion, respectively. Even compared with the approximate
multiplier [17], our proposed carry-chain-based optimized multiplier still exhibits fewer LUT
utilization.

It is worth noting that although the proposed multipliers demonstrate an increase in CPD
compared with the Vivado IP, it is still at an acceptable level with a significant reduction of LUT and
8-bit carry chain utilization. It is due to the Booth coding, which in spite of reducing the resource
consumption, inevitably leads to the delay.

In addition, our proposed carry-chain-based optimized multipliers can further improve the LUT
utilization and energy consumption for the reason that using carry chains can reduce logical flipping
effectively. It delivers better PDP improvements of 38.67% to the previous best FPGA-targeted design
[22]. Compared to the speed-optimized Vivado IP, the proposed multiplier is higher on PDP because
of the latency. However, we think the increased latency is acceptable with a 43% reduction in LUT
utilization. To highlight the efficiency of our proposed multipliers, Figure 8 illustrates the product of
normalized values of total utilized LUTs and PDP for each design across different bit-width. All
values have been normalized to the corresponding values of Vivado area optimized multiplier IP. A
smaller value of the product (LUTsxPDP) presents an implementation with better performance.
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Although for simple applications, the proposed carry-chain-based optimized multiplier exhibits
similar performance to Vivado speed optimized IP, it has significant advantages for larger scale
designs. Even compared with the approximate multiplier [17,25], there exists a noticeable
improvement of LUTs with our proposed carry-chain-based optimized multipliers without
performance degradation.

Table 2. Implementation Results of Multipliers (Shaded Row: approximate design).

8x8 16x16
Design LUT Carry  Delay Power PDP LUT Carry Delay Power PDP
Chain (ns) (mW) (p)) Chain (ns) (mW) (p])
Sign expansion 77 0 3.011 15.8 47.5 279 0 3583 56.8 203.5
Proposed(LUT) 63 0 2.774 16.3 45.1 256 0 3296 55.1 181.6
Proposed(Carry chain) 41 5 2.530 7.2 18.1 167 18 2782 292 813
Vivado IP area 85 7 1.967 10.8 21.2 324 26 2177 47.0 102.3
Vivado IP speed 73 14 1.602 8.3 13.3 281 45 1922 31.7 60.83
T. Nguyen [22] 69 2 2.927 10.1 29.5 263 4 3.323 418 139
S. Ullah [23] 81 0 2.954 13.8 40.7 296 0 3.738 483 180.7
S. Abbas [24] 73 2 3.037 15.1 45.9 270 4 3.642 67.6 2462
S. Rehman[17] 56 2 1.980 8.9 17.7 240 4 2380 424 101
H. Waris [25] 60 2 2.140 6.6 14.1 194 4 2413 286 69.1
B Proposed (Carry chain) 2 1
B Vivado IP speed
Vivado IP area
B T. Nguyen|[22]
u Proposed (LUT)
§ 1 0.5
S. Ullah[23]
m Sign bit expansion
m S. Abbas [24]
= H. Waris[25] II II II I
B S. Rehman|17] 0 0
8x8 16x16 8x8 16%16
(a) (b)
Figure 8. Comparison results of multipliers: (a) Normalized performance metrics (LUTxPDP); (b)
Normalized LUT.

4.3. Implementation results of multiply-accumulate structure

For hardware resource saving, the proposed carry-chain-based optimized multiplier is
employed. For the 8-bit multiplication, the method of accumulating two partial products can reduce
10 LUTs and 2 8-bit carry chains.

To verify the effectiveness of our proposed method, we implement it to the convolutional
process unit with the bit-width of 8 and convolution kernel size of 3x3. Table 3 lists the comparison
results of our method with DSPs and approximate multipliers [17,25]. Compared with them, our
proposed multiplier and multiply-accumulate structure reduce LUT by 43.9%. For further verifying,
Table 4 lists the comparison results of our proposed convolution processing unit and the others with
the bit-width of 16 and convolution kernel size of 4x4, which is not commonly used, implementing
only for comparison. It should be noted that although the bit-width and multiplication times are the
same, the implemented FPGAs are different, which means some important performances are not
comparable, such as frequency and power. However, the architectures of the present mainstream
Xilinx FPGAs are similar, so we directly compare the utilization of hardware resources. In fact, for
most existing convolutional process units of the hardware accelerator, the realization of multipliers
and multiply-accumulate structures are either ignored or just optimized by ASIC-based multipliers,
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which easily leads to performance degradation. Compared with them, our proposed multiplier and
multiply-accumulate structure reduce LUT by 22.7%.

Table 3. Implementation Results of 3x3 convolutional process units (including approximate multipliers).

Designs LUT DSP Freq.(Mhz) Power(mW)
Proposed 362 0 395 71
DSP blocks 68 9 400 81
Rehman [17] 570 0 397 89
H. Waris [25] 604 0 383 69

Table 4. Implementation Results of 4x4 convolutional process units.

Designs LUT DSP Freq.(Mhz) Power(mW)
Proposed 2792 0 342 154
R. Cai [26] 5342 0 330 293
DSP blocks 158 16 177 226
F. Farrukh [18] 3612 0 533 176

For the high-level application environment, we apply the multiply-accumulate structure to
Discrete Cosine Transform (DCT) in JPEG compression. For each 8x8 block, the DCT is employed as
two matrix multiplications of sizes 8x8 thus requires 1024 multiplications and 896 additions. As
shown in Figure 9(a), the input image with bit-width of 16 is from MIT Adobe FiveK dataset. The
peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) are used to evaluate
the quality of the output images. Figure 9 and Table 5 indicate that even compared with the ones
using approximate multipliers [17,25], our proposed structure can obviously reduce the LUT
utilization without loss of accuracy.

(b)

Figure 9. Image compression results: (a)ilnput image; (b)Our proposed method; (c)Approximate

(d)

multiplier [17]; (d)Approximate multiplier [25].

Table 5. Comparison Results of DCT Transformation.

Design LUT DSP Freq.(Mhz) Power(W) PSNR SSIM
Proposed 9688 0 379 1.144 oo 1
DSP blocks 608 64 383 1.181 0o 1
Rehman [17] 11025 0 393 1.296 56.17 0.990
H. Waris [25] 10870 0 387 1.004 52.58 0.974

We also implement LeNet shown in Table 6 with two convolutional layers on FPGA, to realize
the target recognition of 10 types of common objects by Cifar-10 Dataset. For hardware resource
reduction, the 8-bit fixed-point quantization is used, resulting in an accuracy of 69.32%. The
implementation results of using our proposed multiply-accumulate structure and directly using
DSPs are listed in Table 7. It shows that when dealing with multiplier-intensive applications, our
proposed method can promote maximum clock frequency and save 58% of the DSP resources by only
increasing 12% LUT.
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Table 6. LeNet architecture on FPGA.

Layer Input Filter Size Stride Output
Convl 32x32x3 16 3x3 1 30x30x16
Conv2 30x30x16 16 3x3 1 28x28x16
Max pooling1 28x28x16 N/A 2x2 2 14x14x16
Conv3 14x14x16 32 3x3 1 12x12x32
Conv4 12x12x32 32 3x3 1 10x10%32
Max pooling?2 10x10%32 N/A 2x2 2 5x5%32
Full connectl 800 N/A N/A N/A 120
Full connect2 120 N/A N/A N/A 84

Table 7. Comparison Results of DCT Transformation.

Design LUT utilization DSP utilization Freq.(Mhz)
Proposed 23887(34%) 0(0%) 175
DSP blocks 15695(22%) 211(58%) 173

5. Conclusion

In this paper, a design methodology for convolution accelerator has been presented. Based on
LUTs and carry chains on FPGA, we first introduced two types of resource-efficient optimization of
radix-4 Booth’s multiplier. Then a generic multiply-accumulate structure is proposed, which directly
accumulates the partial products without intermediate multiplication and addition results. The
proposed methods are implementable on the Xilinx FPGA Virtex-7 xczu3cg-sfvc784-1-e. Compared
to Vivado area optimized multiplier IP, the optimized multipliers achieve a maximum 51% reduction
in area (LUT). The proposed multiply-accumulate structure achieves a maximum of 22.7% LUT
reduction compared to the existing methods. For verifying our proposed convolutional process unit,
we finally presented high-level applications by implementing DCT transformer and LeNet on FPGA.
In DCT transformer, our proposed method reduces LUT utilization by 12% without accuracy loss,
while in LeNet on FPGA, our proposed convolution accelerator saves 58% of the DSP resources.
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