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Abstract: The prognosis for patients with skin cancer improves with regular screening and checkups.
Unfortunately, many people with skin cancer do not receive a diagnosis until the disease has advanced beyond
the point of effective therapy. Early detection is critical, and automated diagnostic technologies like
dermoscopy, an imaging device that detects skin lesions early in the disease, are a driving factor. The lack of
annotated data and class-imbalance datasets makes using automated diagnostic methods challenging for skin
lesion classification. In recent years, deep learning models have performed well in medical diagnoses.
Unfortunately, such models require a substantial amount of annotated data for training. Applying a data
augmentation method based on generative adversarial networks (GANS) to classify skin lesions is a plausible
solution by generating synthetic images to address the problem. This article proposes a skin lesion synthesis
and classification model based on an Improved Deep Convolutional Generative Adversarial Network
(DCGAN). The proposed system generates realistic images using several convolutional neural networks,
making training easier. Scaling, normalization, sharpening, colour transformation, and median filters enhance
image details during training. The proposed model uses generator and discriminator networks, global average
pooling with 2 x 2 fractional-stride, and backpropagation with a constant learning rate of 0.01 instead of 0.0002
and the most effective hyperparameters for optimization to efficiently generate high-quality synthetic skin
lesion images. As for the classification, the final layer of the Discriminator is labelled as a classifier for
predicting the target class. This study deals with a binary classification predicting two classes- benign and
malignant- in the ISIC2017 dataset: accuracy, recall, precision, and F1-score model classification performance.
BAS measures classifier accuracy on imbalanced datasets. The DCGAN Classifier model demonstrated
superior performance with a notable accuracy of 99.38%, 99% for recall, precision, F1 score, and BAS,
outperforming the state-of-the-art deep learning models. These results show that the DCGAN Classifier can
generate high-quality skin lesion images and accurately classify them, making it a promising tool for deep
learning-based medical image analysis.

Keywords: convolutional neural network; deep learning; skin cancer; generative adversarial
network

1. Introduction

According to research on human anatomy by medical professionals, the skin is the largest and
heaviest single biological tissue in the human body, covering roughly 20 square feet in average
surface area and 6 pounds in typical weight [1] [2]. The skin is the body's first line of defence, yet it
is not entirely impenetrable. As a result, the skin is continually susceptible to diverse environmental
and genetic factors. Therefore, skin conditions affect everyone, regardless of age, skin tone, way of
life, or socioeconomic status. In a recent study, the Skin Cancer Index 2018 [3] shows that geographic
and geopolitical factors make some places more likely than others to have skin cancer, which can
occasionally be fatal. Computer-aided systems that automate the diagnosis of skin problems are the
focus of research [4-8]. There have been created methods for image acquisition, preprocessing,
segmentation, extracting features, and classification. Medical images can be taken with non-standard
cameras, cell phones, and digital cameras [9, 10].
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Diagnostic imaging, such as CT scans, MRIs, dermoscopy, radiography, and ultrasound, is often
used in medical diagnoses. Medical images assist physicians in more effectively, accurately, and
consistently diagnosing patients by displaying the internal anatomy of the patient's body and
assisting them in identifying any potential problems. Dermoscopy is most commonly used to identify
skin lesions. Dermoscopic images benefit from bright lighting and a low noise level [11]. Therefore,
applying deep learning techniques can speed up the development of image-assisted medical
diagnostics [12, 13]. Deep learning has facilitated resolving complicated learning problems
previously intractable to rule-based methods [14]. Deep learning-based algorithms have come close
to matching human performance on various challenging computer vision and image classification
tasks. In [15], it was demonstrated that deep learning systems matched the results of skin cancer
classification performed by 21 certified dermatologists.

However, applying deep learning to medical image-assisted diagnosis still presents numerous
challenges. A common issue in healthcare applications is a scarcity of adequately diverse, large
training datasets. These datasets typically exhibit severe class imbalance [16], which can lead to
biased models [17]. Class imbalance occurs when there are disproportionately many samples of one
pathology compared to another. As such, networks frequently overfit [18] and fail to generalize to
new models [19]. Although more data is available online, most of it is still unlabeled. Annotating
medical data is time-consuming and expensive as it requires specialized diagnostic tools and expert
clinicians, which is why it is one of the key challenges to generating models suitable for clinical
application.

This strong restriction results in two major issues: (1) restricted generalization and dataset bias
and (2) precise classification. To address the first problem, the authors proposed an improved Deep
Convolution Generative Adversarial Networks (DCGANSs) classifier approach to create convincing
synthetic data for training skin lesions for classification models with better generalization and to
boost classification performance [20]. Skin lesions are treated using effective image filtering and
enhancement methods to improve the model's ability to find and extract features during training. As
a solution to the problem of scarce medical datasets, basic GANs and networks based on GANs that
generate synthetic medical images have gained significant traction in recent years. GANs [21] attempt
to mimic the distribution of actual images by making the synthetic samples look precisely like real
images, thereby it increases the Classifier's capacity to distinguish between the skin types. Generator-
Discriminator networks are used to generate synthetic skin lesions using dermoscopic features.
Synthetic images of skin lesions using multiple modalities could solve the problem and give deep
learning models more and better data. Several medical algorithms [22] rely heavily on these features,
which are local patterns in the lesion. To address the second issue, we used a stack of convolution
layers in the discriminator network, which acts as a classifier for class prediction. Our proposed
framework demonstrates that DCGAN augmentation improves performance, which is critical in
high-stakes clinical decision-making, although it requires an additional trained network compared
to typical augmentation procedures. This study investigated the prospect of improving Deep Neural
Network diagnostic performance by incorporating DCGAN data into training data.

The main contribution to this study is as follows:

1. Construct and train an improved DCGAN classifier using customized synthetic augmentation
techniques and fine-tune the parameters for skin lesion classification that can accurately
diagnose skin lesions.

2. Investigate whether the synthetic images generated by a multi-layered convolutional generative
network accurately reflect the distribution of the original image dataset. In contrast, a
discriminator perceptron, which is also multi-layered, tries to distinguish between false and real
image samples.

3. Evaluate the performance of the improved DCGAN Classifier compared with existing state-of-
the-art classifiers for skin lesion classification.

The rest of the work is organized as follows: Section 2 describes the ISIC Standards for medical
imaging; Section 3 discusses the literature study; Section 4 provides the methodology used for the
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model; the performed experiments and results are described and discussed in Section 5, and finally,
the conclusion is presented in section 6.

2. The Practice Standards for Medical Imaging

The adoption of artificial intelligence (AI) in medicine is increasing and has the potential to
revolutionize clinical treatment and dermatology processes. However, to ensure the final output's
fairness, dependability, and safety, specific criteria-setting development and performance evaluation
requirements must be met when developing image-based algorithms for dermatology applications
[23, 24]. In health informatics, ISO 12052:2017 addresses the transfer of digital images and data of
their creation and management between medical imaging equipment and systems handling the
management and transmission of that data [25].

The International Skin Imaging Collaboration (ISIC) is a university-industry partnership that
promotes the use of digital imaging systems to reduce the number of mortalities from melanoma.
Teledermatology, clinical decision support, and automated diagnosis use digital skin lesions images
to teach specialists and people about melanoma and help diagnose it. ISIC promotes digital skin
imaging standards and engages dermatologists and computer scientists to improve diagnosis. Lack
of dermatologic imaging standards degrades skin lesion imaging. ISIC proposed digital skin image
quality, confidentiality, and interoperability standards (i.e., the capacity to transfer visual data
between different clinical and technological systems). ISIC is creating dermatological and computer
science resources, including a vast and expanding open-source public access skin picture database
(Goals of the Archive). This repository provides images for research, study, and testing of diagnostic
Al systems. ISIC engages stakeholders through meetings, papers, conferences, and Al Grand
Challenges [26]. Classification and segmentation are the most common uses for ISIC datasets. To train
their algorithms, researchers focus primarily on binary classification problems. Researchers began
experimenting with multiclass classification after the release of ISIC 2018 and ISIC 2019, with the ISIC
2020 dataset as the primary resource. However, melanoma detection was the main goal of the ISIC
2020 challenge. As a result, more research on binary classification can be done. ISIC did not extend
this challenge category beyond 2019, suggesting that segmentation tasks are less popular than lesion
diagnosis. Segmentation masks were only available for a small subset of datasets (ISIC 2016-2018)
compared to most classification tasks. Colour constancy research and generative adversarial
network-based data enhancement are further applications [27] that use ISIC datasets. Variations in
the metrics for image acquisition at the whole-body, regional, close-up, and dermoscopic levels can
affect the quality and validity of skin images. Universal imaging standards in dermatology require
the establishment of consensus norms. Clinical practice information exchange, documentation in
electronic health records, harmonization of clinical trials, database building, and clinical decision
assistance all benefit from standard procedures like Delphi for image standardization [28].

3. Literature Review

Variations in skin tone, illness location, and picture capture devices complicate the development
of automated skin disease detection systems. Furthermore, skin issues have distinctive
characteristics, making classification difficult. However, CNN has achieved remarkable success in
the medical industry as in other fields, providing optimism for the future of automated medical
system development [29, 30].

The generative adversarial network (GAN) is another technique that has researchers intrigued
because of its ability to represent complex real-world visual input. It also can normalize unbalanced
data sets [31]. However, few applications have used GAN beyond simple binary classification and
data augmentation [32].

Researchers commonly use data augmentation strategies to boost the models' robustness and
generalizability [29-32]. Standard augmentation techniques for enhancing image data include
resizing, rotating, flipping, and shifting the original image. These traditional data augmentation
techniques have become commonplace in computer vision network training [33, 34]. Unfortunately,
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these techniques are limited in yielding important new insights from relatively few adjustments to
the source data.

Data synthesis, a more advanced data augmentation method [35], shows promise and is the
subject of much interest. Among the many approaches for creating synthetic data, variational
autoencoders (VAEs) [36] and generative adversarial networks (GANs) [37] stand out as the most
common. The latent representation of VAEs is highly structured and continuous, making them
simple to train. Despite their challenging and unreliable training procedure, GANs can produce high-
quality, realistic images. Although the success of GANs in medical imaging [38, 39], there has been
little systematic investigation into the synthesis of images of skin lesions and class imbalance [40]. By
investigating the issue of class imbalance across various data regimens and contrasting the
effectiveness of conventional and GAN data augmentation methods, we seek to close this gap.

Academics have developed several variants of GANs to enhance the GANs capacity to generate
images. Authors of [41,42] integrated a convolution operation into a Deep Convolutional Generative
Adversarial Network (DCGAN) to improve GAN performance. Moreover, to enhance the diversity
of generated images, the noise vector is sampled by DeLiGAN and fed into the Generator as noise
[43].

In [44], authors combined meta-learning and CGAN to propose MetaCGAN, a new variation of
GAN. MetaCGAN can transfer its knowledge from a large dataset training to a new problem with a
small dataset. In recent years, some researchers created high-resolution images using convolutional
and recurrent neural networks (CNNs, RNNs). However, the algorithms produce images one pixel
at a time rather than in their entirety [45,46]. [47] Presented categorical generative adversarial
networks using (catGAN) [48] and Wasserstein distance [49]. CatWGAN can identify input data and
generate 64 x 64 pixels images. Using a dataset of 140 labelled images from the ISIC 2016 Challenge,
the proposed method outperformed the denoising autoencoder and the simple hand-crafted features,
with an average precision of 0.424 [50]. Using the Pseudo Cycle consistent module and the domain
control module, a variant of Cycle GAN was introduced in [50] to generate CT images. The domain
control module supplies supplementary domain information, while the Pseudo Cycle consistent
module ensures that all created images look identical. Baur et al. [51] proposed deeply discriminated
GAN to improve image resolution (DDGAN). The authors created realistic 256 X 256 skin lesion
images and compared DCGAN, LAPGAN and DDGAN [52, 53], showing that both can learn dataset
distributions and synthesize realistic samples.

The authors [54] also synthesized realistic, high-resolution skin lesion images. Progressive
growing of GANs (PGGAN) [55] helped them synthesize images from noise at 1024 x 1024 pixels.
The Visual Turing Test and Sliced Wasserstein Distance were used to evaluate DCGAN [56],
LAPGAN [56], and PGGAN images. The Visual Turing Test reveals that even trained dermatologists
have problems recognising fake from real images. Jiang et al. [57] proposed using a Fused Attentive
GAN (FA-GAN) to create and reconstruct high-resolution MR images. [57] Built modules for local
and global feature extraction to extract valuable traits. FA-GAN used PSNR and SSIM performance
metrics to train the network on 40 sets (256 slices) of 3D MR images. The authors used pix2pixHD
GAN for image generation in [58, 59] and generated images using semantic and instance mappings.
The pix2pixHD GAN is an innovative approach to using meaningful skin lesion knowledge to
synthesise high-quality images and improve skin lesion classification performance; however, it does
require annotated data to create images. The authors exploited GAN-synthesized breast ultrasound
images for breast lesion categorization augmentation [60].

The study in [61] presented Cascade Ensemble Super-Resolution CESR-GAN to rebuild high-
resolution skin lesion images from low-resolution photos. They created an image-based loss function
[61]. In [62], the author enhanced the image data of skin lesions using GANs. The GAN discriminator
was the final Classifier trained to recognise seven categories of skin lesions from the ISIC 2018
challenge dataset [63, 64]. Transfer learning was utilized to improve the DenseNet [65] and ResNet
[66] architectures' classification performance compared to the GAN-based data augmentation model.
The suggested method raised the score for balancing correctness.
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One of the most challenging and well-liked research areas is the simulation of medical imaging
in many medical specialities. Researchers use intense architectures to enhance their findings. GANs
are frequently employed in a variety of medical imaging applications. GAN input noise management

in medical imaging still has room for innovation. Medical image synthesis, segmentation, detection,
classification, and reconstruction using GANs are becoming increasingly common [67]. However,
over the last two years, the image synthesis-based data augmentation technique has been applied for
skin lesion imaging. Previous literature searches reveal few related studies on skin lesion

classification. Table 1 summarizes the research needs in determining and analyzing the available
literature. Skin lesion image generation requires further use of specific, more advanced GAN designs
that can produce high-resolution representations.

Table 1. State-of-the-art Methods Comparison.

Authors Techniques Dataset Observations Accuracy
(%)
[19] Pix2Pix GAN  ISIC2017  The image-to-image translation was done via binary 84.7
classification using a combination of semantic and instance
mappings.
[34] GAN with Raman The authors created a data augmentation module that uses a 92
Raman Spectroscopy GAN to generate RS data comparable to the training data
Spectroscopy classes.
[46] cGAN and ISIC2016  The authors have proposed a categorical generative 81
WGAN adversarial network that is both unsupervised and semi-
supervised to automatically learn the feature representation
of dermoscopy images.
[51] DDGAN ISIC2017 High-resolution skin lesion synthesis was demonstrated. 72
However, synthetic images were visually low in contrast.
[54] ACGAN, ISIC 2019 Research has proven that random noise and image 85.6
CycleGAN translation can create high-quality images that look real to
and Path- the untrained eye. However, these images did not increase
Rank-Filter classifier performance.
[59] DCGAN ISIC2016-  Conducted Turing test on the generated images, with 7000 58.72
2021 images
[62] GAN ISIC2018  Created a GAN-based classifier by fine-tuning the existing 86.1
deep neural architecture.
[67] DCGAN ISIC Bilateral filter improved training feature recognition and 93.5
extraction. Fine-tuning the Deep Convolutional Generative
Adversarial Network (DCGAN) increased its return.
Optimization picked the best network and hyperparameter
combinations. Fine-tuning hyperparameter settings takes
time and GPU power.
[97] styleGAN ISIC 2018  The generator and discriminator are modified to synthesize 95.2
high-quality skin lesion images by modifying the generator's
style control and noise input structure. Transfer learning on
a pre-trained deep neural network classifies images. Finally,
skin lesion style-based GAN synthetic images are added to
the training set to improve classifier performance.
[98] DGAN PH2 A multiclass technique was utilized to solve the dataset's 91.1
SD-198 class imbalance. Improving the DGAN model's stability
Interactive  during training has been one of the development's primary
Atlas of challenges.
Dermoscopy

DermNet
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[99] SLA- ISIC2019  The proposed approach outperforms GANs and StyleGAN 93.64
StyleGAN in key quantitative assessment parameters and quickly
produces high-quality skin lesion images. It rebuilds the
StyleGAN  generator and discriminator  structures.
Shortcoming Two skin lesions in one photograph might
make classification difficult and raise the risk of
misdiagnosis.

The research gap is identified by analyzing the available literature and is summarized in Table
1. We have investigated DCGAN's potential on our dataset to contribute to developing a reliable skin
cancer detection and classification application.

4. Methodology

This study proposes a skin lesion DCGAN Classifier model based on a GANs framework, which
can produce high-quality images of skin lesions. The authors have investigated the potential of
DCGAN on the ISIC 2017 dataset to create a reliable tool for detecting and classifying skin cancer.

4.1. Skin Cancer Dataset

The first stage in skin lesion classification is acquiring a high-quality datasetto train our
proposed model. The ISIC datasets are widely utilized for automated skin lesion analysis due to the
need for more high-quality, annotated images of skin lesions. Our DCGAN model was trained using
2000 images from the ISIC 2017 skin cancer dataset, uniformly distributed between benign and
malignant cases. When using deep learning to classify skin lesions, gathering an extensive dataset
representing a wide range of lesions is essential. Images are typically labelled with the type of skin
lesion depicted, providing the algorithm with ground truth. The dataset contains images of varying
resolutions. It is a complex task to categorize accurately due to the resolution variability and class
imbalance. Figure 1 shows the sample representation of both benign and melanoma skin lesions.
During the random selection of test images, the authors tried to maintain a consistent class
distribution of the data set and ensure that each class's percentage of test images was comparable to
that of the train data set. For this purpose, the classes in the data were first labelled and annotated as
follows:

¢ Image name: a unique identifier that refers to the filename of the corresponding image.

e Patient id: a unique identifier assigned to each patient.

e  Sex: the gender of the patient or a blank field if unknown.

e  Approximate age: the patient's approximate age at the time of the imaging was conducted.
e  Anatomical site: the location of the imaged site on the patient's body.

e Diagnosis: detailed diagnostic information (only included in the training data).

¢  Benign/malignant indicates whether the imaged lesion is benign or malignant.

e  Target: a binarized form of the target variable.

Benign Benign
- 2 - 0 [ § 0 f =

Figure 1. Sample images of Benign and Malignant.

4.2. Proposed Framework of the DCGAN-Based Classifier

The proposed framework consists of three distinct phases, namely (1) Image Preprocessing, (2)
DCGAN Modeling, and (3) Classification, as depicted in Figure 2. Each of these phases is addressed
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in greater detail in the following subsections. The image Preprocessing methods were performed
before the images were fed into the GAN model for classification.

Image Pre-processing

DCGAN
DCGAN Model —»  Based
Classifier

Masking

]
— §
s
8
il Random -
’T}mrp‘ Input
3l

Color
Transformation

ISIC 2020
Dataset

I‘_
Benign

Median Filter

H| Test

Figure 2. A Framework of the Proposed GAN-based Classifier.

4.3. Image Preprocessing Techniques

In image preprocessing, the images are transformed using various preprocessing techniques to
reduce noise and other potential artefacts and to put it in a format that can be used for more
sophisticated processing. Before being used in image processing, the dataset is divided into train
(70%) and test (30%) datasets. The first step in image preprocessing is image scaling, where images
are resized to a specified pixel width using the bicubic interpolation method [68-74]. Each image in
the dataset varied in size; therefore, images were scaled to a standard size to improve faster and easier
processing. Histogram equalization techniques are used after rescaling the image to improve the
image's intensity values and to modify contrast to increase the brightness of dark images [75-79].
Next, to capture the edges and fine details of the image, the authors used a combination of two image
sharpening techniques Unsharp Masking (USM) [80, 82-83] and Gaussian High Pass Filtering (GHPF)
[81, 84-85] and then color space transformations [81, 86-90] are applied to the image. Since color
information is essential for skin disease detection systems, we attempted to extract the most relevant
color for faster processing. Since the pictures for the model training came from different online
dermatology sites and could be different sizes and colour spaces, image scaling and colour space
transformation were used to make all images the same size and colour space. All images will be
changed to function in RGB space. After analyzing the potential image restoration procedures, the
median filter was implemented using Gaussian noise to smoothen the images [91- 94].

Additionally, it reduces the impact of insignificant factors like fine hairs in pictures of skin
lesions. Figure 3 shows the image preprocessing pipeline used in this study. The preprocessed images
are fed to the GAN model.

ISIC 2017
Dataset

4.4. DCGAN Architecture

Image Pre-processing
Bicubic High-Pass Unsharp
Interpolation Filter Masking

Figure 3. Preprocessing Pipeline.

Color
Transformation

» Median Filter

Deep learning is gaining recognition in image classification because it can extract and choose
more features than traditional techniques [95, 96]. However, large, labelled datasets are required to
maximize deep learning's potential. Researchers have reported that dermoscopy images are often
unlabeled or under-labeled, necessitating expert annotations. GANs are a new and intriguing method
that has recently appeared to solve unlabeled datasets [97-99]. The ability of GANs to generate precise
synthetic data has recently increased their prominence. Also, GANs are seen to be a promising
approach to the problem of accurately classifying data with low levels of inter-class variation. For
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learning or sampling complicated probability distributions of image data, GANs are a popular
generative model type.

Many researchers have implemented DCGAN on various real-world applications and have
produced significantly good results in data synthesis and classification [100]. GANs are prone to
instability and might be difficult to train. Finding the ideal balance might be challenging because the
training involves a minmax game between the generator and discriminator networks. It is common
for GANSs to suffer from mode collapse, which occurs when the generator doesn't accurately reflect
the diversity of the target distribution. To address these gaps, the authors in [101] proposed Deep
Convolutional Generative Adversarial Networks (DCGAN), which have a set of architectural
constraints to balance GANs [117].

DCGAN is an extension of the GAN design that uses deep convolutional neural networks for
both the generator and discriminator models, as well as configurations for the models and training
that lead to stable training of a generator model. The DCGAN offers model constraints needed to
construct high-quality generator models. This architecture enabled the rapid development of several
GAN extensions and applications [99].

The architecture of GANSs consists of two multi-layered networks, Generator and Discriminator.
Both networks of a GAN are trained simultaneously [97]. The Generator network is tasked with
creating synthetic images that closely resemble real images in the training dataset. On the other hand,
the Discriminator network seeks to discriminate between real and fake images by evaluating the
likelihood that a particular input sample is real or fake [98]. The two networks are trained so that the
generator is encouraged to create images that the discriminator finds increasingly difficult to
distinguish from real ones. Since GANs may be used to simulate the underlying data distribution,
they form the basis of the proposed methodology. As a result, they get better at distinguishing various
data sets with minimal alterations. As such, it produces synthetic data for each category to train the
discriminator by employing a GAN to anticipate the data distribution. After training, the
discriminator can accurately classify brand-new samples in each category, even when like examples
in other classes [99].

Mathematically, to learn the generator's distribution p, over the image data represented as x,
define the input noise vector z with a prior distribution p,(z), then represent the data mapping to
Generator G(z;W,) a neural network with parameters Wj. The discriminator D(x; W,) outputs a
single scalar, where D(x) is the probability that x comes from data rather than p,. Discriminator D
is trained to maximize the likelihood of correctly labelling training examples and G samples. At the
same time, Generator G is trained to mislead the discriminator by attempting to minimize

log (1 -D(G (z))). So, D and G play the following two-player minimax game with the value function
V (G, D) [20] [97-99]:

mingmaxpV (G, D) = Ex-pdatate 1080 + Ex-pa(s [log (1 - D(6(2)) )] )

Theoretically, the discriminator makes a random guess as to whether the inputs are real or fake,
and the solution to this minimax game is where p; = pya¢q-

The primary goal of DCGAN is to extend the capabilities of GAN by making use of Convolution
Network designs. Radford [101] achieved consistent outcomes by advocating for a few critical
architectural limits on DCGAN. The authors of this study employed the basic ideas proposed by
Radford [101] to classify skin lesions. Figure 4 and Figure 5 illustrate the flow diagram and improved
simulation model used for the DCGAN framework. The following modifications are made to the
Generator and Discriminator networks to avoid mode collapse, model instability and convergence
[101]:

Modifications to the Generator:

e The generator uses five deconvolutional layers instead of four.

¢  Replace deterministic spatial pooling layers such as global average pooling with 2 x 2 fractional-
stride convolutions (Generator), which allows the networks to learn by themselves spatial
downsampling.
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e Eliminate connected hidden layers to avoid model instability and stabilize the convergence
speed.

e  Update the generator weights using backpropagation and an optimizer SGDM with a constant
learning rate of 0.01 instead of 0.0002.

e  Batch normalization is used to stabilize the learning of the generator.

e  All generating levels use the ReLu activation, except the output layer, which employs the Tanh
activation to scale the output between -1 and 1.

Modifications to Discriminator:

e  The discriminator uses five convolutional- layers to train the networks instead of four.

e  Replace deterministic spatial pooling layers such as max pooling with 2 x 2 stride convolutions
(Discriminator), allowing the networks to learn spatial upsampling by themselves.

e Eliminate connected hidden layers to avoid model instability and stabilize the convergence
speed.

e  Update the weights of the discriminator using backpropagation and an optimization step.

e  Batch normalization is used to stabilize the learning of the discriminator.

e  The LeakyReLU activation function is used for all layers in the discriminator except the output
layer to allow gradients to flow backwards through the layer.

e The final layer functions as a classifier and uses the SoftMax activation function for classification.

Real Images
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Figure 4. Flow diagram of proposed DCGAN Architecture for Skin Lesion Classification.
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Figure 5. Improved DCGAN Framework.

4.4.1. Model Training and Classification

The authors trained the proposed Improved DCGAN model on the ISIC 2017 dataset to classify
the cutaneous skin lesion. Firstly, the dataset is split into train (70%) and test (30%) datasets. The
training dataset is preprocessed and augmented and then passed into the proposed DCGAN model
for training. A preprocessed random latent vector input is fed to the generator to generate synthetic
data. The deconvolution neural network of our generator is activated by calling the
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transposedConv2dLayer function to perform weight multiplication and the Bias function to execute
bias addition. In addition to performing weight multiplication and bias addition, the convolution
neural network in the discriminator called the convolution2dLayer function performs weight
multiplication. A transposed convolutional layer is typically used for upsampling or to generate an
output feature map with a larger spatial dimension than the input feature map, thereby generating
synthetic images. As shown in Figure 5, the authors built the generator to meet DCGAN framework
requirements and set OUTPUT_SIZE to 64. The deconvolution step is 2, and each output is four times
the input, so each layer's output size is 4 x 4, 8 x 8, 16 x 16, and 32 x 32, as well as feature maps are set
to 512, 256, 128 and 64, respectively. The Generator images were rescaled to the range of [-1,1] for the
tanh activation function. The model was trained with mini-batch size 64 using Stochastic Gradient
Descent with Momentum (SGDM) optimizer with a learning rate set to 0.01 and momentum set to
0.5 to stabilize the training. The default values were initialized to zero for all the weights, and normal
distribution, with a 0.02% standard deviation.

The discriminator is a feed-forward neural network with four convolutional neural networks.
The LeakyReLU is set to 0.2. In addition to discriminating between three target classes, the
discriminator also functions as a classifier. As a result, the discriminator output layer contains N + 1
(= 3) units, where n is the number of target classes. The final layer, D, is labelled for predicting the
probability of an image being real or fake. The remaining N units in three layers are trained using a
standard cross-entropy loss function which is represented as [101]:

Lsupervised =-p (D (x) log (d(D (X)))) ()

Whereas D(x) is the correct class label corresponding to the input x and p(D(x)) is the
probability of predicted class by discriminator D. Adding an extra label for the fake class allows us
to train the discriminator network across two loss functions simultaneously: one for recognizing fake
and genuine images and the other for classification inside actual images. The discriminator network
backpropagates discriminator loss to update its weights.

The training step involves changing the network's weights based on the training data while
minimizing the loss function, which measures the difference between the anticipated and real data.
During the discriminator training phase, the generator is kept constant. Also, the discriminator is
kept constant during the Generator training phase. As discriminator training seeks to determine how
to differentiate between real and fake data, it learns how to identify the generator's defects. When it
comes to discriminators, it is assumed that the real input needs to be close to 1 and that the result of
the generators will be 0. For the generator network, the discriminator should predict 1 for each image
it makes. During training, the validation data assesses the network's performance and prevent
overfitting. Probability distributions are what GANs attempt to reproduce. Therefore, we employed
loss functions that account for the discrepancy between GAN’s output and real distribution. The total
loss for the discriminator is the sum of the losses for real and fake images [101]:

D_loss = D_real_loss + D_fake_loss (3)

G_loss is the cross entropy resulting from the difference between the generator's generated data
and the discriminator's input data. In our study, the discriminator also serves as a classifier to
distinguish between benign and malignant cancers. The mathematical description of a classifier with
a training algorithm is shown below:

Algorithm 1 Training the Classification Model Based on DCGAN-based classifier.

Input:

1: Load the dataset ISIC2017_Training_Data, S17;

2. Split the dataset: Training 70% and Testing 30%

3: Preprocessing of S17: interp2(), histeq(), imsharpen(), imfilter(), rgb2lab(), gaussian_median_filter()

4: Initialize the networks: Generator G(latent_noise), Discriminator D ();

5. Create optimizers to update the weights using backpropagation sgdmupdate () and learning rate();
6. Train the networks G with noise and D with real and G-generated images for a number of epochs.
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mingmax,V (G, D) = Ex-pata( 108C0)] + Ex-pa [l0g (1~ D(6(2)) )]
7.ReLu and Tanh activation function for G; Leaky ReLu and SoftMax for D;
8. Calculate the loss function and repeat 5-7.

D_loss = D_real_loss + D_fake_loss

9. D acts as Classifier N+1 output
Output:
1: N+1 Output
2: Confusion Matrix of Classification; Plots of AUC_ROC.
3: return Accuracy, Recall, Precision, Specificity and F1_Score.

5. Experiments and Results

In this section, experimental tests were carried out, including quantitative evaluation of GANs
and classifier evaluation, to assess the performance of the proposed skin lesion DCGANSs in image
synthesis and their application to image classification. The studies used procedural preprocessing
processes such as image scaling using the bicubic interpolation approach, normalization, which
normalizes image pixel values to the range [0, 1], Sharpening techniques, color transformation and
median filters. The study is performed on an Intel Core i7 processor running at 4 GHz, 12 GB of GPU
RAM from an NVIDIA K80 GPU, with 4.1 TFLOPS of performance.

5.1. Evaluation Metrics

The authors employed qualitative and quantitative evaluation measures to assess the
effectiveness of the DCGAN model. In the qualitative approach, the authors focused on the quality
of the image; and in quantitative overfitting, diverse images and mode-dropping problems were
evaluated. In this study, evaluation is done in two phases (1) the Image Preprocessing phase and (2)
the Classification Phase. In the Image Preprocessing phase, Mean Square Error (MSE) [100], Structural
Similarity Index (SSIM) [104] and Peak Signal-to-Noise Ratio (PSNR) [100] were used. To assess the
classification performance of the model, Balanced Accuracy Score (BAS) [99], accuracy, recall,
precision, specificity, and F1-Score [103] were used as evaluation metrics, which are developed from
True Positive (TP), True negative (TN), False positive (FP), and False negative (FN) predictions. The
confusion matrix and AUC-ROC plot are used for the graphical presentation of the accuracy of the
proposed improved model [100].

In a binary classification problem, there are only two outcomes that can be either positive or
negative. The key metrics in medical diagnosis are recall and specificity, which are used to compute
BAS. Specificity refers to the instances of positives, whereas recall refers to the instances of negatives.
The Balanced Accuracy Score (BAS) is a metric used to assess a classifier's performance on
imbalanced datasets. It is determined by averaging the Classifier's sensitivity and specificity. The
ROC curve illustrates the compromise between sensitivity and specificity (false positive and false
negative rates) as a function of the threshold value. The proportion of real negatives incorrectly
identified as positives is known as the false positive rate. A contrast to this is the actual positive rate,
which measures how successfully positive samples are recognized. The ROC figure compares
different thresholds in terms of the true positive rate (y-axis) and the false positive rate (x-axis). The
curve of a random classifier, depicted as a diagonal from left to right, has 50% sensitivity and 50%
specificity. A perfect classifier, however, would have a ROC curve that intersects the upper left corner
of the plot with a sensitivity and specificity of 100%. The area under the curve (AUC) measures the
Classifier's overall efficacy. An AUC of 1 indicates an ideal classifier, while an AUC of 0.5 indicates
an unpredictable classifier. The Classifier's performance is generally better the closer the AUC is to 1
[100].

5.2. Results of Image Preprocessing Techniques

This section presents the experimental results of the image processing phase. MSE, SSIM and
PSNR evaluation methods are used to measure the quality of the image.
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5.2.1. Image Scaling

In this study, we have used the bicubic interpolation technique to accurately assess a pixel's
intensity by extrapolating from neighbouring pixels' values. We compared the image produced by
the bicubic interpolation with the other image scaling techniques, namely, nearest neighbor and
bilinear interpolation, as shown in Figure 6. As bicubic interpolation determines the value of each
pixel by taking the weighted average of the 16 most relative neighbouring pixels, the output of bicubic
algorithms is smoother and more accurate in preserving tiny features from the input image. As shown
in Figure 6 and Table 2, bicubic yields significantly sharper images compared to the other two
techniques and represents the optimum balance between processing speed and output quality.

(a) Original Image (d) Bicubic Interpolation

(b) Nearest Neighbor Interpolatic . (<) Bilinear Interpolation

°

100 100
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Figure 6. Three Methods of Interpolation for Rescaling the Image (a) Original image (b) Nearest
Neighbor (c) Bilinear (d) Bicubic Interpolation.

Table 2. Performance metrics of Image interpolation.

Nearest Bilinear Bicubic
Neighbor
SSIM 0.88 0.91 0.98
PSNR 31.23 34.62 39.68
MSE 0.0087 0.0089 0.0001

5.2.2. Histogram Equalization

After bicubic interpolation, Histogram Equalization is performed to increase the contrast of an
image. Contrast is achieved by effectively distributing the most commonly occurring intensity values,
which stretches the intensity range of the image. This method often increases the overall contrast of
the images, which is helpful when close contrast levels indicate meaningful data. It makes it possible
for areas of lower local contrast to improve their contrast. Normalization is performed by dividing
the histogram by the number of pixels in the analysed image. To assess the performance of a
histogram equalizer, we analysed histograms before and after equalization to see how the
distribution of pixel intensities changed, as shown in Figure 7.
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Figure 7. Distribution of Pixel Intensities.

Figure 8 displays the outcome of applying histogram equalization to the low-contrast test image.
After adjusting the contrast and brightness, the equalized image's histogram was computed. Then
the equalized images were normalized by the cumulative sum of the histogram values to generate
the cumulative distribution function (CDF). Finally, the equalized image CDF is plotted. The pixel
intensity values are on the x-axis, while the cumulative probability is on the y-axis. Figure 9
demonstrates the distribution of pixel intensities across the image and provides an overview of the
transformation caused by histogram equalization.
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Figure 8. Equalized Image Histogram.
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Figure 9. Transformed Equalized Histogram.

5.2.3. Unsharp Masking and Gaussian High Pass Filtering

We performed the USM and GHPF filtering techniques on the equalised image to sharpen the
images and capture the fine details of skin lesion images. The authors first used the USM method to
enhance the image's boundaries and fine details, followed by the GHPF method to separate and
sharpen the image's high-frequency values. Figure 10 illustrates the histogram comparison between
the original image, the enhanced USM and the GPHEF. The image contrast is adjusted with a
histogram equalization method. Then the enhanced images of USM and GHPF are added and
multiplied with a weight factor of the image. Figure 11 shows the enhanced combined sharpened
image. The combined image shows increased visibility of skin lesions and sharpens the image
frequency value.
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Figure 10. Histogram Comparison (a) USM image (b) GPHF.
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Figure 11. Image comparison between Original, USM, GHPF and combined sharpening.

5.2.4. Color Space Transformation

We used CIELAB transformation to match numerical value changes to perceived colour changes.
CIELAB colour balance approach preserves color by choosing each channel's scale factor separately.
The first step is to convert each uint8 image to float32 format, map it to LAB colour space, split the
channels, and calculate the mean and standard deviation along the first axis. The mean and standard
deviation determine each colour channel's scale factor. Scaling factors are then added to each colour
channel along the first axis. After that, reduce the pixel values to make the colour channels 0-255.
After that, uint8-format the image. Figure 12 shows the color balance transformation, and Table 3
presents the image's performance after applying the color transformation.

(a) Original Image (b) Color balanced image

0
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200 200
300
400

500 500

Figure 12. Balanced Color Space Image Transformation.

Table 3. MSE and PSNR metrics for Color Space Transformation.

SSIM PSNR MSE
CIELAB 0.86 96.92 9.07

5.2.5. Median Filter

In 2D images, the median filter is widely used to eliminate noises such as salt and pepper,
speckle, Poisson, and Gaussian noise [93]. Figure 13 shows the implementation of the median filter
on these noises. The Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR) metrics have been
used to evaluate these noises. MSE is used to determine whether there is unexpected noise in the
image. The value of MSE should generally be low. If so, it suggests that a filter is the best for reducing
noise. As illustrated in Figure 13, the MSE values are compared to select the most effective noise-
reduction filter. From Table 4, we can build that the median filter is best for removing Gaussian noise.

Table 4. MSE and PSNR metrics for Median Filter.

Salt and Pepper Poisson Speckle Gaussian
Noise Noise Noise Noise
MSE 7.26 47.65 103.65 6.61

PSNR (dB) 36.64 28.47 25.09 37.05
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Figure 13. Implementation of Median Filter on various noises.

5.3. Results of Improved DCGAN-based Classifier

The ISIC 2017 dataset is used to train the proposed DCGAN-based Classifier. Image
preprocessing techniques are applied before DCGAN modelling to ensure the model can learn
reliable representations. As discussed in sub-section 4.4.1, 70% of the original datasets were used for
training and 30% for testing each image class. Notably, 30% of the images were taken as unlabeled
data. The adversarial network inputs random noise and provides the discriminator's final prediction
on the created images. By altering the noise vector, we may thoroughly understand how the generator
works and which noise vector results in the desired class. However, we have used 100 random latent
input noises.

During the batch normalization, a mini-batch size of 64 was used. All weights were initialized
with a normal distribution with a mean of zero and a standard deviation of 0.02. Both the generator
and discriminator networks are composed of five layers. The generator comprises four
deconvolutional layers with ReLu activations and one deconvolutional layer with tanh activation at
the final layer. The discriminator consists of four convolutional layers with Leaky-ReLu activations
and a SoftMax layer in the last layer. During the training process, both actual data and data from the
generator network are fed to the discriminator. The generator produces extremely realistic images
after a few epochs of training, which are also used for additional training. To verify the Improved
DCGAN model's effectiveness, we randomly generated 100 images for each of the two skin lesions
and compared them to discriminate between real and fake using the BAS evaluation metric; the
sample images are shown in Figure 14 (b). Figure 14 (a) presents original images from the training
data, and Figure 14 (b) shows the random synthetic images generated after training. It is observed
that each image produced by DCGAN looks very real and is hard to differentiate from the real
images.

Actual Class: Actual Class: Actual Class: Actual Class: Actual Class: Actual Class: Actual Class: Actual Class:
benign benign i li li

alignant malignant benign

Y

Figure 14. (a): Real Images from the ISIC 2017 Dataset.

Predict Class:  Predict Class: Predict Class:  Predict Class:  Predict Class: Predict Class: Predict Class: Predict Class:
benign malignant malignant benign malignant benign benign benign
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Figure 14. (b). Synthetic Images Generated by Generator.

Figure 15 shows the DCGAN model's training process, the score generated by the generator and
discriminator after 383 epochs/ 9552 iterations. The score must be between 0 to 1; however, 0.5 is the
best score for each iteration [102]. After each cycle, training losses for generator G and discriminator
D are recorded. The generator should get massive random noise early in training to learn how to
generate real data. At the same time, the discriminator can distinguish real from fake images; it does
not usually collect large samples early on. The generator and discriminator may overcome each other
during training. If the discriminator gets too accurate, it will return values close to 0 or 1. If the image
generator method is used for producing and classifying skin lesions during training, GAN becomes
too accurate; it will constantly harness discriminator mistakes, producing unpleasant effects. In our
experiment, the discriminator’s score is close to 0.5, indicating that the generator creates a synthetic

image that makes it impossible for the discriminator to differentiate whether it is real or fake.
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Figure 15. DCGAN Generator and Discriminator Score for each iteration.

The generator and discriminator networks were trained for ten epochs to examine the validation
accuracy of the model with definite learning rates of 0.01, 0.001, and 0.0002. Seventeen iterations per
epoch were taken during the training phase, while a validation frequency of 50 iterations was used
for testing. Accuracy and loss during training for the generator and discriminator are depicted in
Figures 1618 for ten epochs. The loss convergence at the end demonstrates that the GAN model has
found its optimal state. Compared to the learning rates of 0.001 and 0.0002, the proposed DCGAN
model achieves an optimal accuracy of 99.38% with a learning rate of 0.01 which outperforms state-
of-the-art methods of GAN models as suggested in the literature, depicted in Figures 16-18. The
images were trained using a single GPU to accelerate the matrix operations, training and for faster
and parallel computation. Table 5 shows the time elapsed, validation accuracy and loss of three
learning rates computed for ten epochs with a batch size of 64. In modern deep-learning models,
batch size is one of the most important hyperparameters to fine-tune the model performance. To
enable the model to detect the pattern in the data without having to train on a huge dataset, the
authors additionally evaluated the model on 128 and 256 batch sizes with a learning rate of 0.01,
which gives higher accuracy than 0.001 and 0.0002. Table 6 demonstrates that the training time for a
model is substantially reduced as the batch size increases.

Table 5. Validation Accuracy and Loss with a Batch Size of 64.

Learning Time Accuracy Validation Mini- Validation
Rate Elapsed Minibatch (%)  Accuracy  Batch Loss Loss
(hh: mm: ss) (%)
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100
100
100

0.01
0.001
0.0002

00:13:08
00:16:27
00:09:17

99.38
98.44
96.04

0.0007
0.0039
0.0366

0.0293
0.0312
0.1127

Table 6. Impact of validation accuracy and loss with different batch sizes.

Time
Elapsed
(hh: mm: ss)

Batch
Size

Accuracy
Minibatch (%)

Validation

Accuracy

(%)

Mini-Batch

Loss

Validation
Loss

100
100
100

64
128
256

00:13:08
00:08:58
00:09:07

99.38
99.79
99.69

0.0007
0.0040
0.0003

0.0293
0.0059
0.0099
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Figure 16. DCGAN Training Accuracy and Loss with a Learning Rate of 0.01.
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Figure 17. DCGAN Training Accuracy and Loss with a Learning Rate of 0.001.
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Results
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Figure 18. DCGAN Training Accuracy and Loss with a Learning Rate of 0.0002.

A confusion plot is a graphical representation of a classification model's performance. It
calculates AUC-ROC, accuracy, precision, recall, and F1 score metrics to evaluate model
performance. As shown in Figure 19, the discriminator successfully diagnoses benign and malignant
skin lesions with an extremely high degree of accuracy, demonstrated in the diagonal elements of the
metrics. The confusion matrix for three learning rates was compared in Figure 19.

Confusion Matrix Confusion Matrix Confusion Matrix
a1t 3 99.4% 480 9 98.2% 470 18 96.3%
b %
benign 49.7% 03% 0.6% benign 50.0% 09% 18% . 49.0% 1.9% 37%
o
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o 3 s 99.4% 0 an 100% 10 462 97.9%
o % (e i t
5 ralignant 03% 49.7% 0.6% malgnant 0.0% 491% 0.0% e 10% 481% 21%
5
o
99.4% 99.4% 99.4% 100% 98.1% 99.1% 97.9% 96.2% 97.1%
0.6% 0.6% 0.6% 0.0% 19% 0.9% 2.1% 37% 2.9%
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Target Class
LR0.01 LR 0.001 LR 0.0002

Figure 19. DCGAN Confusion Matrix.

The ROC curve in Figure 20 summarises and displays the binary classification results,
particularly for the positive class, and has learning rates of 0.01, 0.001, and 0.0002, respectively. We
used True Positive (TP) and False Positive (FP) to plot the ROC curve, as was mentioned in Section
5.1. TP is on the y-axis, and FP is on the x-axis in the ROC plot. The plot's grey line is a random
classifier's ROC curve. The trade-off between sensitivity (TPR) and specificity (1-FPR) is depicted by
our ROC curve (Figure 20). Good classifiers perform better if their curves are located nearer the top-
left corner. A curve close to the ROC space's 45-degree diagonal indicates a less accurate test. Despite
the ROC curve's deviation from the diagonal and the little gap between the top left corner and the
curve, Figure 20 demonstrates that the Classifier is fairly classified. As shown in Figure 20, datal is a
linear line, and data2 is the ROC curve, a quadratic pattern. R-squared (R? )for all three learning rates
equal 1, indicating that the predicted values are identical to the actual values.
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Figure 20. DCGAN AUC- ROC Plot.

The performance analysis of the improved DCGAN model utilizing the performance metrics
BAS, accuracy, recall, precision, specificity, and F1 Score is shown in Table 6 and Figure 21 for three
definite learning rates of 0.01, 0.001, and 0.0002. The model produces good results after 170 epochs,
with the test loss reaching a minimal state and the resulting BAS being 99 for learning rates 0.01 and
0.001, and 97 for 0.0002, indicating that the classifier performance is significantly good. The accuracy
with a learning rate of 0.01 obtains a greater accuracy of 99.38% compared to a 0.001 model's accuracy
of 98.44% and a 0.0002 model's accuracy of 96.04%. As a result, the findings indicate that the proposed
model could generalize well and operate well when applied to any skin lesions.

Performance of the Modified DCGAN Model
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Figure 21. Performance Metrics- Improved DCGAN.

5.4. Discussion

The results show that the DCGAN method employed in the model's creation accurately
reproduces real skin lesions. A DCGAN-based model allows the creation of more realistic and diverse
skin lesions by capturing global structures and detailed textures. Although data augmentation
methods like rotation, scaling, and flipping can expand dataset size, the improved strategy goes
above and beyond standard methods by synthesizing new lesions. It allows high-quality synthetic
samples to be added to missing or unbalanced datasets, improving the model's ability to generalize
to different lesion types. Skin lesions' enormous diversity and complexity may challenge handmade
feature extraction methods such as texture analysis or color-based descriptors, which rely on domain-
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specific knowledge. The DCGAN Classifier learns and extracts essential features from synthetic skin
lesion images automatically, resulting in better generalization, robustness, and accuracy rates,
thereby reducing the need for manual feature engineering. The DCGAN-based Classifier can handle
differences in lesion appearance, illumination, and image quality due to its improved generalization
abilities. Furthermore, image preprocessing procedures that increased feature extraction and learning
were used to improve the accuracy, generalization, and flexibility of the DCGAN-based model. We
have used bicubic interpolation, histogram equalization, USM and GHPF, CIELAB color
transformation, and Gaussian noise median filter to extract the feature. In this study, the ISIC 2017
dataset containing 4000 benign and malignant images, each class containing 2000 images, is used to
train and fine-tune the model.

As a result, classification performance is more robust and consistent even on novel or tough
datasets. It can enhance training datasets and allow researchers to analyse sparse or unavailable
lesion samples. Table 7 and Figure 21 shows that the DCGAN-based Classifier reliably diagnoses skin
lesions. It has a high accuracy of 99.38%, 99% for precision, recall, and F1-Score, demonstrating that
it can detect and differentiate between different skin lesions. The Classifier is particularly flexible to
visual contrasts between lesions for precise diagnosis and classification. It solves problems such as
class imbalance, annotated data, overfitting, and generalization to new models by capitalizing on
DCGANE.

Table 7. Performance Analysis of Improved DCGAN.

Performance Learning Rate  Learning Rate Learning Rate

Metrics 0.01 (%) 0.001 (%) 0.0002 (%)

BAS 99 99 97
Accuracy 99.38 99.06 97.08

Recall 99 100 98
Precision 99 98 96
Specificity 99 98 96
F1-Score 99 99 97

We have compared our proposed model with the existing models in the literature, such as
StyleGAN, WGAN, DGAN, SLA-StyleGAN and DDGAN, in which the GAN classification models
were applied to classify the skin lesions as listed in Table 12. The improved DCGAN outperforms
cutting-edge approaches for synthesizing and categorizing skin lesions. Results show that the
proposed improved model is effective at generating accurate predictions based on the test images,
and the model attained 99.38% accuracy, which is a significant outcome for skin lesion classification.

Table 12. Comparison with the existing GAN classification models for skin lesion classification.

Authors Techniques Accuracy (%)
[19] Pix2Pix GAN 84.7
[34] GAN with Raman Spectroscopy 92
[46] cGAN and WGAN 81
[51] DDGAN 72
[54] ACGAN, CycleGAN and Path- Rank- 85.6
Filter

[59] DCGAN 58.72
[62] GAN 86.1
[67] DCGAN 93.5
[97] styleGAN 95.2
[98] DGAN 92.3

do0i:10.20944/preprints202307.1667.v1
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[99] SLA- StyleGAN 93.64
Proposed work DCGAN 99.38

Bissoto et al. [19] have achieved a performance of 84.7 using the Pix2Pix GAN model on ISIC
2017. On the other hand, Wu et al. [34] applied GAN with Raman Spectroscopy to augment and
generate synthetic images by achieving an accuracy of 92%. Mutepfe et al. [67] have achieved a test
accuracy of 93.5% using DCGAN. Qin et al. [97] used StyleGAN, achieved an accuracy of 95.2 % and
balanced multiclass accuracy of 83.1%. Khan et al. [98] performed DGAN on unlabeled and labelled
datasets achieving an accuracy of 91.1% and 92.3%, respectively. Therefore, it can be observed that
our proposed model achieved higher accuracy of 99.38% when compared to the models listed in Table
12.

6. Conclusion and Future Scope

This study investigated Deep Convolution Generative Adversarial Networks (DCGANSs) for
their potential application in creating synthetic data for an augmentation technique. This technique
has been used successfully to classify images of skin lesions with high accuracy using ISIC 2017
dataset. Furthermore, the results demonstrate that adding GAN-generated image examples to the
training data significantly outperforms conventional approaches of fine-tuning pre-existing deep
neural network architectures. Access to unique data creation and augmentation processes like this is
helpful when large-scale training datasets are not easily accessible. It enables the addition of high-
quality synthetic samples to missing or unbalanced datasets, enhancing the model's ability to
generalize to diverse lesion types. We observed a significant improvement in training after
performing image enhancing and preprocessing operations. After fine-tuning the network's
parameters, we obtained an overall test accuracy of 99.38%.

Despite achieving high accuracy, this study had limited capacity to fine-tune its hyper-
parameters. Consequently, conducting all the necessary tests to fine-tune our model took
considerable time. The most problematic aspect of this study was the duration of each training
session, mainly when training was more than 100 epochs. It made it significantly more difficult to
optimize the DCGAN on the dataset.

In our future work, we intend to investigate how different lesion-generation approaches can
enhance the quality and authenticity of synthetic skin lesions. To improve the precision and
dependability of cutaneous lesion classification, we aim to examine how multi-modal fusion with
other diagnostic techniques, such as histological information or patient metadata, may be done.
Exploring interpretability methods for the DCGAN-based Classifier may provide valuable insights
into decision-making and increase reliance on the model's predictions.

7. Patents

This section is not mandatory but may be added if patents result from the work reported in this
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