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Abstract: The prognosis for patients with skin cancer improves with regular screening and checkups. 
Unfortunately, many people with skin cancer do not receive a diagnosis until the disease has advanced beyond 
the point of effective therapy. Early detection is critical, and automated diagnostic technologies like 
dermoscopy, an imaging device that detects skin lesions early in the disease, are a driving factor. The lack of 
annotated data and class-imbalance datasets makes using automated diagnostic methods challenging for skin 
lesion classification. In recent years, deep learning models have performed well in medical diagnoses. 
Unfortunately, such models require a substantial amount of annotated data for training.  Applying a data 
augmentation method based on generative adversarial networks (GANs) to classify skin lesions is a plausible 
solution by generating synthetic images to address the problem. This article proposes a skin lesion synthesis 
and classification model based on an Improved Deep Convolutional Generative Adversarial Network 
(DCGAN). The proposed system generates realistic images using several convolutional neural networks, 
making training easier. Scaling, normalization, sharpening, colour transformation, and median filters enhance 
image details during training. The proposed model uses generator and discriminator networks, global average 
pooling with 2 x 2 fractional-stride, and backpropagation with a constant learning rate of 0.01 instead of 0.0002 
and the most effective hyperparameters for optimization to efficiently generate high-quality synthetic skin 
lesion images. As for the classification, the final layer of the Discriminator is labelled as a classifier for 
predicting the target class. This study deals with a binary classification predicting two classes- benign and 
malignant- in the ISIC2017 dataset: accuracy, recall, precision, and F1-score model classification performance. 
BAS measures classifier accuracy on imbalanced datasets. The DCGAN Classifier model demonstrated 
superior performance with a notable accuracy of 99.38%, 99% for recall, precision, F1 score, and BAS, 
outperforming the state-of-the-art deep learning models.  These results show that the DCGAN Classifier can 
generate high-quality skin lesion images and accurately classify them, making it a promising tool for deep 
learning-based medical image analysis. 

Keywords: convolutional neural network; deep learning; skin cancer; generative adversarial 
network 
 

1. Introduction 

According to research on human anatomy by medical professionals, the skin is the largest and 
heaviest single biological tissue in the human body, covering roughly 20 square feet in average 
surface area and 6 pounds in typical weight [1] [2]. The skin is the body's first line of defence, yet it 
is not entirely impenetrable. As a result, the skin is continually susceptible to diverse environmental 
and genetic factors. Therefore, skin conditions affect everyone, regardless of age, skin tone, way of 
life, or socioeconomic status. In a recent study, the Skin Cancer Index 2018 [3] shows that geographic 
and geopolitical factors make some places more likely than others to have skin cancer, which can 
occasionally be fatal. Computer-aided systems that automate the diagnosis of skin problems are the 
focus of research [4–8]. There have been created methods for image acquisition, preprocessing, 
segmentation, extracting features, and classification. Medical images can be taken with non-standard 
cameras, cell phones, and digital cameras [9, 10]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Diagnostic imaging, such as CT scans, MRIs, dermoscopy, radiography, and ultrasound, is often 
used in medical diagnoses. Medical images assist physicians in more effectively, accurately, and 
consistently diagnosing patients by displaying the internal anatomy of the patient's body and 
assisting them in identifying any potential problems. Dermoscopy is most commonly used to identify 
skin lesions. Dermoscopic images benefit from bright lighting and a low noise level [11]. Therefore, 
applying deep learning techniques can speed up the development of image-assisted medical 
diagnostics [12, 13]. Deep learning has facilitated resolving complicated learning problems 
previously intractable to rule-based methods [14]. Deep learning-based algorithms have come close 
to matching human performance on various challenging computer vision and image classification 
tasks. In [15], it was demonstrated that deep learning systems matched the results of skin cancer 
classification performed by 21 certified dermatologists. 

However, applying deep learning to medical image-assisted diagnosis still presents numerous 
challenges. A common issue in healthcare applications is a scarcity of adequately diverse, large 
training datasets. These datasets typically exhibit severe class imbalance [16], which can lead to 
biased models [17]. Class imbalance occurs when there are disproportionately many samples of one 
pathology compared to another. As such, networks frequently overfit [18] and fail to generalize to 
new models [19]. Although more data is available online, most of it is still unlabeled. Annotating 
medical data is time-consuming and expensive as it requires specialized diagnostic tools and expert 
clinicians, which is why it is one of the key challenges to generating models suitable for clinical 
application.  

This strong restriction results in two major issues: (1) restricted generalization and dataset bias 
and (2) precise classification. To address the first problem, the authors proposed an improved Deep 
Convolution Generative Adversarial Networks (DCGANs) classifier approach to create convincing 
synthetic data for training skin lesions for classification models with better generalization and to 
boost classification performance [20]. Skin lesions are treated using effective image filtering and 
enhancement methods to improve the model's ability to find and extract features during training. As 
a solution to the problem of scarce medical datasets, basic GANs and networks based on GANs that 
generate synthetic medical images have gained significant traction in recent years. GANs [21] attempt 
to mimic the distribution of actual images by making the synthetic samples look precisely like real 
images, thereby it increases the Classifier's capacity to distinguish between the skin types. Generator-
Discriminator networks are used to generate synthetic skin lesions using dermoscopic features. 
Synthetic images of skin lesions using multiple modalities could solve the problem and give deep 
learning models more and better data. Several medical algorithms [22] rely heavily on these features, 
which are local patterns in the lesion. To address the second issue, we used a stack of convolution 
layers in the discriminator network, which acts as a classifier for class prediction. Our proposed 
framework demonstrates that DCGAN augmentation improves performance, which is critical in 
high-stakes clinical decision-making, although it requires an additional trained network compared 
to typical augmentation procedures. This study investigated the prospect of improving Deep Neural 
Network diagnostic performance by incorporating DCGAN data into training data. 

The main contribution to this study is as follows:  

1. Construct and train an improved DCGAN classifier using customized synthetic augmentation 
techniques and fine-tune the parameters for skin lesion classification that can accurately 
diagnose skin lesions. 

2. Investigate whether the synthetic images generated by a multi-layered convolutional generative 
network accurately reflect the distribution of the original image dataset. In contrast, a 
discriminator perceptron, which is also multi-layered, tries to distinguish between false and real 
image samples. 

3. Evaluate the performance of the improved DCGAN Classifier compared with existing state-of-
the-art classifiers for skin lesion classification. 

The rest of the work is organized as follows: Section 2 describes the ISIC Standards for medical 
imaging; Section 3 discusses the literature study; Section 4 provides the methodology used for the 
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model; the performed experiments and results are described and discussed in Section 5, and finally, 
the conclusion is presented in section 6. 

2. The Practice Standards for Medical Imaging 

The adoption of artificial intelligence (AI) in medicine is increasing and has the potential to 
revolutionize clinical treatment and dermatology processes. However, to ensure the final output's 
fairness, dependability, and safety, specific criteria-setting development and performance evaluation 
requirements must be met when developing image-based algorithms for dermatology applications 
[23, 24]. In health informatics, ISO 12052:2017 addresses the transfer of digital images and data of 
their creation and management between medical imaging equipment and systems handling the 
management and transmission of that data [25]. 

The International Skin Imaging Collaboration (ISIC) is a university-industry partnership that 
promotes the use of digital imaging systems to reduce the number of mortalities from melanoma. 
Teledermatology, clinical decision support, and automated diagnosis use digital skin lesions images 
to teach specialists and people about melanoma and help diagnose it. ISIC promotes digital skin 
imaging standards and engages dermatologists and computer scientists to improve diagnosis. Lack 
of dermatologic imaging standards degrades skin lesion imaging. ISIC proposed digital skin image 
quality, confidentiality, and interoperability standards (i.e., the capacity to transfer visual data 
between different clinical and technological systems). ISIC is creating dermatological and computer 
science resources, including a vast and expanding open-source public access skin picture database 
(Goals of the Archive). This repository provides images for research, study, and testing of diagnostic 
AI systems. ISIC engages stakeholders through meetings, papers, conferences, and AI Grand 
Challenges [26]. Classification and segmentation are the most common uses for ISIC datasets. To train 
their algorithms, researchers focus primarily on binary classification problems. Researchers began 
experimenting with multiclass classification after the release of ISIC 2018 and ISIC 2019, with the ISIC 
2020 dataset as the primary resource. However, melanoma detection was the main goal of the ISIC 
2020 challenge. As a result, more research on binary classification can be done. ISIC did not extend 
this challenge category beyond 2019, suggesting that segmentation tasks are less popular than lesion 
diagnosis. Segmentation masks were only available for a small subset of datasets (ISIC 2016-2018) 
compared to most classification tasks. Colour constancy research and generative adversarial 
network-based data enhancement are further applications [27] that use ISIC datasets. Variations in 
the metrics for image acquisition at the whole-body, regional, close-up, and dermoscopic levels can 
affect the quality and validity of skin images. Universal imaging standards in dermatology require 
the establishment of consensus norms. Clinical practice information exchange, documentation in 
electronic health records, harmonization of clinical trials, database building, and clinical decision 
assistance all benefit from standard procedures like Delphi for image standardization [28]. 

3. Literature Review 

Variations in skin tone, illness location, and picture capture devices complicate the development 
of automated skin disease detection systems. Furthermore, skin issues have distinctive 
characteristics, making classification difficult. However, CNN has achieved remarkable success in 
the medical industry as in other fields, providing optimism for the future of automated medical 
system development [29, 30].  

The generative adversarial network (GAN) is another technique that has researchers intrigued 
because of its ability to represent complex real-world visual input. It also can normalize unbalanced 
data sets [31]. However, few applications have used GAN beyond simple binary classification and 
data augmentation [32].  

Researchers commonly use data augmentation strategies to boost the models' robustness and 
generalizability [29-32]. Standard augmentation techniques for enhancing image data include 
resizing, rotating, flipping, and shifting the original image. These traditional data augmentation 
techniques have become commonplace in computer vision network training [33, 34]. Unfortunately, 
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these techniques are limited in yielding important new insights from relatively few adjustments to 
the source data.  

Data synthesis, a more advanced data augmentation method [35], shows promise and is the 
subject of much interest. Among the many approaches for creating synthetic data, variational 
autoencoders (VAEs) [36] and generative adversarial networks (GANs) [37] stand out as the most 
common. The latent representation of VAEs is highly structured and continuous, making them 
simple to train. Despite their challenging and unreliable training procedure, GANs can produce high-
quality, realistic images. Although the success of GANs in medical imaging [38, 39], there has been 
little systematic investigation into the synthesis of images of skin lesions and class imbalance [40]. By 
investigating the issue of class imbalance across various data regimens and contrasting the 
effectiveness of conventional and GAN data augmentation methods, we seek to close this gap.  

Academics have developed several variants of GANs to enhance the GANs capacity to generate 
images. Authors of [41,42] integrated a convolution operation into a Deep Convolutional Generative 
Adversarial Network (DCGAN) to improve GAN performance. Moreover, to enhance the diversity 
of generated images, the noise vector is sampled by DeLiGAN and fed into the Generator as noise 
[43]. 

In [44], authors combined meta-learning and CGAN to propose MetaCGAN, a new variation of 
GAN. MetaCGAN can transfer its knowledge from a large dataset training to a new problem with a 
small dataset. In recent years, some researchers created high-resolution images using convolutional 
and recurrent neural networks (CNNs, RNNs). However, the algorithms produce images one pixel 
at a time rather than in their entirety [45,46]. [47] Presented categorical generative adversarial 
networks using (catGAN) [48] and Wasserstein distance [49]. CatWGAN can identify input data and 
generate 64 × 64 pixels images. Using a dataset of 140 labelled images from the ISIC 2016 Challenge, 
the proposed method outperformed the denoising autoencoder and the simple hand-crafted features, 
with an average precision of 0.424 [50]. Using the Pseudo Cycle consistent module and the domain 
control module, a variant of Cycle GAN was introduced in [50] to generate CT images. The domain 
control module supplies supplementary domain information, while the Pseudo Cycle consistent 
module ensures that all created images look identical. Baur et al. [51] proposed deeply discriminated 
GAN to improve image resolution (DDGAN). The authors created realistic 256 X 256 skin lesion 
images and compared DCGAN, LAPGAN and DDGAN [52, 53], showing that both can learn dataset 
distributions and synthesize realistic samples.  

The authors [54] also synthesized realistic, high-resolution skin lesion images. Progressive 
growing of GANs (PGGAN) [55] helped them synthesize images from noise at 1024 × 1024 pixels. 
The Visual Turing Test and Sliced Wasserstein Distance were used to evaluate DCGAN [56], 
LAPGAN [56], and PGGAN images. The Visual Turing Test reveals that even trained dermatologists 
have problems recognising fake from real images. Jiang et al. [57] proposed using a Fused Attentive 
GAN (FA-GAN) to create and reconstruct high-resolution MR images. [57] Built modules for local 
and global feature extraction to extract valuable traits. FA-GAN used PSNR and SSIM performance 
metrics to train the network on 40 sets (256 slices) of 3D MR images. The authors used pix2pixHD 
GAN for image generation in [58, 59] and generated images using semantic and instance mappings. 
The pix2pixHD GAN is an innovative approach to using meaningful skin lesion knowledge to 
synthesise high-quality images and improve skin lesion classification performance; however, it does 
require annotated data to create images. The authors exploited GAN-synthesized breast ultrasound 
images for breast lesion categorization augmentation [60].  

The study in [61] presented Cascade Ensemble Super-Resolution CESR-GAN to rebuild high-
resolution skin lesion images from low-resolution photos. They created an image-based loss function 
[61]. In [62], the author enhanced the image data of skin lesions using GANs. The GAN discriminator 
was the final Classifier trained to recognise seven categories of skin lesions from the ISIC 2018 
challenge dataset [63, 64]. Transfer learning was utilized to improve the DenseNet [65] and ResNet 
[66] architectures' classification performance compared to the GAN-based data augmentation model. 
The suggested method raised the score for balancing correctness. 
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One of the most challenging and well-liked research areas is the simulation of medical imaging 
in many medical specialities. Researchers use intense architectures to enhance their findings. GANs 
are frequently employed in a variety of medical imaging applications. GAN input noise management 
in medical imaging still has room for innovation. Medical image synthesis, segmentation, detection, 
classification, and reconstruction using GANs are becoming increasingly common [67]. However, 
over the last two years, the image synthesis-based data augmentation technique has been applied for 
skin lesion imaging. Previous literature searches reveal few related studies on skin lesion 
classification. Table 1 summarizes the research needs in determining and analyzing the available 
literature. Skin lesion image generation requires further use of specific, more advanced GAN designs 
that can produce high-resolution representations. 

Table 1. State-of-the-art Methods Comparison. 

Authors Techniques Dataset Observations Accuracy 

(%) 

[19] Pix2Pix GAN ISIC 2017 The image-to-image translation was done via binary 
classification using a combination of semantic and instance 
mappings. 

84.7 

[34] GAN with 
Raman 

Spectroscopy 

Raman 
Spectroscopy 

The authors created a data augmentation module that uses a 
GAN to generate RS data comparable to the training data 
classes. 

92 

[46] cGAN and 
WGAN 

ISIC 2016 The authors have proposed a categorical generative 
adversarial network that is both unsupervised and semi-
supervised to automatically learn the feature representation 
of dermoscopy images. 

81 

[51] DDGAN ISIC2017 High-resolution skin lesion synthesis was demonstrated. 
However, synthetic images were visually low in contrast. 

72 

[54] ACGAN, 
CycleGAN 
and Path- 

Rank-Filter 

ISIC 2019 Research has proven that random noise and image 
translation can create high-quality images that look real to 
the untrained eye. However, these images did not increase 
classifier performance. 

85.6 

[59] DCGAN ISIC 2016-
2021  

Conducted Turing test on the generated images, with 7000 
images 

58.72 

[62] GAN ISIC 2018 Created a GAN-based classifier by fine-tuning the existing 
deep neural architecture. 

86.1 

[67] DCGAN ISIC  Bilateral filter improved training feature recognition and 
extraction. Fine-tuning the Deep Convolutional Generative 
Adversarial Network (DCGAN) increased its return. 
Optimization picked the best network and hyperparameter 
combinations. Fine-tuning hyperparameter settings takes 
time and GPU power. 

93.5 

[97] styleGAN ISIC 2018 The generator and discriminator are modified to synthesize 
high-quality skin lesion images by modifying the generator's 
style control and noise input structure. Transfer learning on 
a pre-trained deep neural network classifies images. Finally, 
skin lesion style-based GAN synthetic images are added to 
the training set to improve classifier performance. 

95.2 

[98] DGAN PH2 
SD-198 

Interactive 
Atlas of 

Dermoscopy 
DermNet 

A multiclass technique was utilized to solve the dataset's 
class imbalance. Improving the DGAN model's stability 
during training has been one of the development's primary 
challenges. 

91.1 
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[99] SLA- 
StyleGAN 

ISIC 2019 The proposed approach outperforms GANs and StyleGAN 
in key quantitative assessment parameters and quickly 
produces high-quality skin lesion images. It rebuilds the 
StyleGAN generator and discriminator structures. 
Shortcoming Two skin lesions in one photograph might 
make classification difficult and raise the risk of 
misdiagnosis. 

93.64 

The research gap is identified by analyzing the available literature and is summarized in Table 
1. We have investigated DCGAN's potential on our dataset to contribute to developing a reliable skin 
cancer detection and classification application. 

4. Methodology 

This study proposes a skin lesion DCGAN Classifier model based on a GANs framework, which 
can produce high-quality images of skin lesions. The authors have investigated the potential of 
DCGAN on the ISIC 2017 dataset to create a reliable tool for detecting and classifying skin cancer. 

4.1. Skin Cancer Dataset 

The first stage in skin lesion classification is acquiring a high-quality dataset to train our 
proposed model. The ISIC datasets are widely utilized for automated skin lesion analysis due to the 
need for more high-quality, annotated images of skin lesions. Our DCGAN model was trained using 
2000 images from the ISIC 2017 skin cancer dataset, uniformly distributed between benign and 
malignant cases. When using deep learning to classify skin lesions, gathering an extensive dataset 
representing a wide range of lesions is essential. Images are typically labelled with the type of skin 
lesion depicted, providing the algorithm with ground truth. The dataset contains images of varying 
resolutions. It is a complex task to categorize accurately due to the resolution variability and class 
imbalance. Figure 1 shows the sample representation of both benign and melanoma skin lesions. 
During the random selection of test images, the authors tried to maintain a consistent class 
distribution of the data set and ensure that each class's percentage of test images was comparable to 
that of the train data set. For this purpose, the classes in the data were first labelled and annotated as 
follows: 

• Image name: a unique identifier that refers to the filename of the corresponding image. 
• Patient id: a unique identifier assigned to each patient. 
• Sex: the gender of the patient or a blank field if unknown. 
• Approximate age: the patient's approximate age at the time of the imaging was conducted. 
• Anatomical site: the location of the imaged site on the patient's body. 
• Diagnosis: detailed diagnostic information (only included in the training data). 
• Benign/malignant indicates whether the imaged lesion is benign or malignant. 
• Target: a binarized form of the target variable. 

 

Figure 1. Sample images of Benign and Malignant. 

4.2. Proposed Framework of the DCGAN-Based Classifier  

The proposed framework consists of three distinct phases, namely (1) Image Preprocessing, (2) 
DCGAN Modeling, and (3) Classification, as depicted in Figure 2. Each of these phases is addressed 
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in greater detail in the following subsections. The image Preprocessing methods were performed 
before the images were fed into the GAN model for classification. 
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Figure 2. A Framework of the Proposed GAN-based Classifier. 

4.3. Image Preprocessing Techniques 

In image preprocessing, the images are transformed using various preprocessing techniques to 
reduce noise and other potential artefacts and to put it in a format that can be used for more 
sophisticated processing. Before being used in image processing, the dataset is divided into train 
(70%) and test (30%) datasets. The first step in image preprocessing is image scaling, where images 
are resized to a specified pixel width using the bicubic interpolation method [68-74]. Each image in 
the dataset varied in size; therefore, images were scaled to a standard size to improve faster and easier 
processing. Histogram equalization techniques are used after rescaling the image to improve the 
image's intensity values and to modify contrast to increase the brightness of dark images [75-79]. 
Next, to capture the edges and fine details of the image, the authors used a combination of two image 
sharpening techniques Unsharp Masking (USM) [80, 82-83] and Gaussian High Pass Filtering (GHPF) 
[81, 84-85] and then color space transformations [81, 86-90] are applied to the image. Since color 
information is essential for skin disease detection systems, we attempted to extract the most relevant 
color for faster processing. Since the pictures for the model training came from different online 
dermatology sites and could be different sizes and colour spaces, image scaling and colour space 
transformation were used to make all images the same size and colour space. All images will be 
changed to function in RGB space. After analyzing the potential image restoration procedures, the 
median filter was implemented using Gaussian noise to smoothen the images [91- 94]. 

Additionally, it reduces the impact of insignificant factors like fine hairs in pictures of skin 
lesions. Figure 3 shows the image preprocessing pipeline used in this study. The preprocessed images 
are fed to the GAN model.  

ISIC 2017 

Dataset

Bicubic 

Interpolation

High-Pass 

Filter

Color 

Transformation

Unsharp 

Masking
Median Filter

Image Pre-processing

 

Figure 3. Preprocessing Pipeline. 

4.4. DCGAN Architecture  

Deep learning is gaining recognition in image classification because it can extract and choose 
more features than traditional techniques [95, 96]. However, large, labelled datasets are required to 
maximize deep learning's potential. Researchers have reported that dermoscopy images are often 
unlabeled or under-labeled, necessitating expert annotations. GANs are a new and intriguing method 
that has recently appeared to solve unlabeled datasets [97-99]. The ability of GANs to generate precise 
synthetic data has recently increased their prominence. Also, GANs are seen to be a promising 
approach to the problem of accurately classifying data with low levels of inter-class variation. For 
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learning or sampling complicated probability distributions of image data, GANs are a popular 
generative model type.  

Many researchers have implemented DCGAN on various real-world applications and have 
produced significantly good results in data synthesis and classification [100]. GANs are prone to 
instability and might be difficult to train. Finding the ideal balance might be challenging because the 
training involves a minmax game between the generator and discriminator networks. It is common 
for GANs to suffer from mode collapse, which occurs when the generator doesn't accurately reflect 
the diversity of the target distribution. To address these gaps, the authors in [101] proposed Deep 
Convolutional Generative Adversarial Networks (DCGAN), which have a set of architectural 
constraints to balance GANs [117]. 

DCGAN is an extension of the GAN design that uses deep convolutional neural networks for 
both the generator and discriminator models, as well as configurations for the models and training 
that lead to stable training of a generator model. The DCGAN offers model constraints needed to 
construct high-quality generator models. This architecture enabled the rapid development of several 
GAN extensions and applications [99]. 

The architecture of GANs consists of two multi-layered networks, Generator and Discriminator. 
Both networks of a GAN are trained simultaneously [97]. The Generator network is tasked with 
creating synthetic images that closely resemble real images in the training dataset. On the other hand, 
the Discriminator network seeks to discriminate between real and fake images by evaluating the 
likelihood that a particular input sample is real or fake [98]. The two networks are trained so that the 
generator is encouraged to create images that the discriminator finds increasingly difficult to 
distinguish from real ones. Since GANs may be used to simulate the underlying data distribution, 
they form the basis of the proposed methodology. As a result, they get better at distinguishing various 
data sets with minimal alterations.  As such, it produces synthetic data for each category to train the 
discriminator by employing a GAN to anticipate the data distribution. After training, the 
discriminator can accurately classify brand-new samples in each category, even when like examples 
in other classes [99]. 

Mathematically, to learn the generator's distribution 𝑝௚ over the image data represented as x, 
define the input noise vector 𝑧 with a prior distribution 𝑝௭ሺ𝑧ሻ, then represent the data mapping to 
Generator 𝐺൫𝑧;𝑊௚൯ a neural network with parameters 𝑊௚ . The discriminator 𝐷ሺ𝑥;𝑊ௗሻ outputs a 
single scalar, where 𝐷ሺ𝑥ሻ is the probability that x comes from data rather than 𝑝௚. Discriminator D 
is trained to maximize the likelihood of correctly labelling training examples and G samples. At the 
same time, Generator G is trained to mislead the discriminator by attempting to minimize 

log ቀ1− 𝐷൫𝐺ሺ𝑧ሻ൯ቁ. So, D and G play the following two-player minimax game with the value function 

V (G, D) [20] [97-99]: 𝑚𝑖𝑛ீ𝑚𝑎𝑥஽𝑉ሺ𝐺,𝐷ሻ = 𝐸௫~௉ௗ௔௧௔ሺ௫ሻሾlogሺ𝑥ሻሿ+ 𝐸௫~௉௭ሺ௭ሻ ቂlog ቀ1− 𝐷൫𝐺ሺ𝑧ሻ൯ቁቃ (1)

Theoretically, the discriminator makes a random guess as to whether the inputs are real or fake, 
and the solution to this minimax game is where 𝑝௚ = 𝑝ௗ௔௧௔. 

The primary goal of DCGAN is to extend the capabilities of GAN by making use of Convolution 
Network designs. Radford [101] achieved consistent outcomes by advocating for a few critical 
architectural limits on DCGAN. The authors of this study employed the basic ideas proposed by 
Radford [101] to classify skin lesions. Figure 4 and Figure 5 illustrate the flow diagram and improved 
simulation model used for the DCGAN framework. The following modifications are made to the 
Generator and Discriminator networks to avoid mode collapse, model instability and convergence 
[101]: 

Modifications to the Generator: 

• The generator uses five deconvolutional layers instead of four.  
• Replace deterministic spatial pooling layers such as global average pooling with 2 x 2 fractional-

stride convolutions (Generator), which allows the networks to learn by themselves spatial 
downsampling. 
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• Eliminate connected hidden layers to avoid model instability and stabilize the convergence 
speed. 

• Update the generator weights using backpropagation and an optimizer SGDM with a constant 
learning rate of 0.01 instead of 0.0002. 

• Batch normalization is used to stabilize the learning of the generator. 
• All generating levels use the ReLu activation, except the output layer, which employs the Tanh 

activation to scale the output between -1 and 1. 

Modifications to Discriminator: 

• The discriminator uses five convolutional- layers to train the networks instead of four.  
• Replace deterministic spatial pooling layers such as max pooling with 2 x 2 stride convolutions 

(Discriminator), allowing the networks to learn spatial upsampling by themselves. 
• Eliminate connected hidden layers to avoid model instability and stabilize the convergence 

speed. 
• Update the weights of the discriminator using backpropagation and an optimization step. 
• Batch normalization is used to stabilize the learning of the discriminator. 
• The LeakyReLU activation function is used for all layers in the discriminator except the output 

layer to allow gradients to flow backwards through the layer. 
• The final layer functions as a classifier and uses the SoftMax activation function for classification. 
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Figure 4. Flow diagram of proposed DCGAN Architecture for Skin Lesion Classification. 

 

Figure 5. Improved DCGAN Framework. 

4.4.1. Model Training and Classification 

The authors trained the proposed Improved DCGAN model on the ISIC 2017 dataset to classify 
the cutaneous skin lesion. Firstly, the dataset is split into train (70%) and test (30%) datasets. The 
training dataset is preprocessed and augmented and then passed into the proposed DCGAN model 
for training. A preprocessed random latent vector input is fed to the generator to generate synthetic 
data. The deconvolution neural network of our generator is activated by calling the 
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transposedConv2dLayer function to perform weight multiplication and the Bias function to execute 
bias addition. In addition to performing weight multiplication and bias addition, the convolution 
neural network in the discriminator called the convolution2dLayer function performs weight 
multiplication. A transposed convolutional layer is typically used for upsampling or to generate an 
output feature map with a larger spatial dimension than the input feature map, thereby generating 
synthetic images. As shown in Figure 5, the authors built the generator to meet DCGAN framework 
requirements and set OUTPUT_SIZE to 64. The deconvolution step is 2, and each output is four times 
the input, so each layer's output size is 4 x 4, 8 x 8, 16 x 16, and 32 x 32, as well as feature maps are set 
to 512, 256, 128 and 64, respectively. The Generator images were rescaled to the range of [-1,1] for the 
tanh activation function. The model was trained with mini-batch size 64 using Stochastic Gradient 
Descent with Momentum (SGDM) optimizer with a learning rate set to 0.01 and momentum set to 
0.5 to stabilize the training. The default values were initialized to zero for all the weights, and normal 
distribution, with a 0.02% standard deviation. 

The discriminator is a feed-forward neural network with four convolutional neural networks. 
The LeakyReLU is set to 0.2. In addition to discriminating between three target classes, the 
discriminator also functions as a classifier. As a result, the discriminator output layer contains N + 1 
(= 3) units, where n is the number of target classes. The final layer, D, is labelled for predicting the 
probability of an image being real or fake. The remaining N units in three layers are trained using a 
standard cross-entropy loss function which is represented as [101]:  𝐿௦௨௣௘௥௩௜௦௘ௗ = −∑𝑝 ቀ𝐷ሺ𝑥ሻ log ቀ𝑑൫𝐷ሺ𝑥ሻ൯ቁቁ (2)

Whereas D(x) is the correct class label corresponding to the input x and 𝑝൫𝐷ሺ𝑥ሻ൯  is the 
probability of predicted class by discriminator D. Adding an extra label for the fake class allows us 
to train the discriminator network across two loss functions simultaneously: one for recognizing fake 
and genuine images and the other for classification inside actual images. The discriminator network 
backpropagates discriminator loss to update its weights. 

The training step involves changing the network's weights based on the training data while 
minimizing the loss function, which measures the difference between the anticipated and real data. 
During the discriminator training phase, the generator is kept constant. Also, the discriminator is 
kept constant during the Generator training phase. As discriminator training seeks to determine how 
to differentiate between real and fake data, it learns how to identify the generator's defects. When it 
comes to discriminators, it is assumed that the real input needs to be close to 1 and that the result of 
the generators will be 0. For the generator network, the discriminator should predict 1 for each image 
it makes. During training, the validation data assesses the network's performance and prevent 
overfitting. Probability distributions are what GANs attempt to reproduce. Therefore, we employed 
loss functions that account for the discrepancy between GAN’s output and real distribution. The total 
loss for the discriminator is the sum of the losses for real and fake images [101]: 𝐷_𝑙𝑜𝑠𝑠 =  𝐷_𝑟𝑒𝑎𝑙_𝑙𝑜𝑠𝑠 +  𝐷_𝑓𝑎𝑘𝑒_𝑙𝑜𝑠𝑠 (3)

G_loss is the cross entropy resulting from the difference between the generator's generated data 
and the discriminator's input data. In our study, the discriminator also serves as a classifier to 
distinguish between benign and malignant cancers. The mathematical description of a classifier with 
a training algorithm is shown below: 

Algorithm 1 Training the Classification Model Based on DCGAN-based classifier. 

Input: 

1: Load the dataset ISIC2017_Training_Data, S17; 
2. Split the dataset: Training 70% and Testing 30% 
3: Preprocessing of S17: interp2(), histeq(), imsharpen(), imfilter(), rgb2lab(), gaussian_median_filter() 
4: Initialize the networks: Generator G(latent_noise), Discriminator D (); 
5. Create optimizers to update the weights using backpropagation sgdmupdate () and learning rate(); 
6. Train the networks G with noise and D with real and G-generated images for a number of epochs.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1667.v1

https://doi.org/10.20944/preprints202307.1667.v1


 11 

 

𝑚𝑖𝑛ீ𝑚𝑎𝑥஽𝑉ሺ𝐺,𝐷ሻ = 𝐸௫~௉ௗ௔௧௔ሺ௫ሻሾlogሺ𝑥ሻሿ+ 𝐸௫~௉௭ሺ௭ሻ ቂlog ቀ1− 𝐷൫𝐺ሺ𝑧ሻ൯ቁቃ 
7. ReLu and Tanh activation function for G; Leaky ReLu and SoftMax for D; 
8. Calculate the loss function and repeat 5-7. 𝐷_𝑙𝑜𝑠𝑠 =  𝐷_𝑟𝑒𝑎𝑙_𝑙𝑜𝑠𝑠 +  𝐷_𝑓𝑎𝑘𝑒_𝑙𝑜𝑠𝑠 
9. D acts as Classifier N+1 output 
Output: 

1: N+1 Output 
2: Confusion Matrix of Classification; Plots of AUC_ROC. 
3: return Accuracy, Recall, Precision, Specificity and F1_Score. 

5. Experiments and Results 

In this section, experimental tests were carried out, including quantitative evaluation of GANs 
and classifier evaluation, to assess the performance of the proposed skin lesion DCGANs in image 
synthesis and their application to image classification. The studies used procedural preprocessing 
processes such as image scaling using the bicubic interpolation approach, normalization, which 
normalizes image pixel values to the range [0, 1], Sharpening techniques, color transformation and 
median filters. The study is performed on an Intel Core i7 processor running at 4 GHz, 12 GB of GPU 
RAM from an NVIDIA K80 GPU, with 4.1 TFLOPS of performance. 

5.1. Evaluation Metrics  

The authors employed qualitative and quantitative evaluation measures to assess the 
effectiveness of the DCGAN model. In the qualitative approach, the authors focused on the quality 
of the image; and in quantitative overfitting, diverse images and mode-dropping problems were 
evaluated. In this study, evaluation is done in two phases (1) the Image Preprocessing phase and (2) 
the Classification Phase. In the Image Preprocessing phase, Mean Square Error (MSE) [100], Structural 
Similarity Index (SSIM) [104] and Peak Signal-to-Noise Ratio (PSNR) [100] were used. To assess the 
classification performance of the model, Balanced Accuracy Score (BAS) [99], accuracy, recall, 
precision, specificity, and F1-Score [103] were used as evaluation metrics, which are developed from 
True Positive (TP), True negative (TN), False positive (FP), and False negative (FN) predictions. The 
confusion matrix and AUC-ROC plot are used for the graphical presentation of the accuracy of the 
proposed improved model [100].  

In a binary classification problem, there are only two outcomes that can be either positive or 
negative. The key metrics in medical diagnosis are recall and specificity, which are used to compute 
BAS. Specificity refers to the instances of positives, whereas recall refers to the instances of negatives. 
The Balanced Accuracy Score (BAS) is a metric used to assess a classifier's performance on 
imbalanced datasets. It is determined by averaging the Classifier's sensitivity and specificity. The 
ROC curve illustrates the compromise between sensitivity and specificity (false positive and false 
negative rates) as a function of the threshold value. The proportion of real negatives incorrectly 
identified as positives is known as the false positive rate. A contrast to this is the actual positive rate, 
which measures how successfully positive samples are recognized. The ROC figure compares 
different thresholds in terms of the true positive rate (y-axis) and the false positive rate (x-axis). The 
curve of a random classifier, depicted as a diagonal from left to right, has 50% sensitivity and 50% 
specificity. A perfect classifier, however, would have a ROC curve that intersects the upper left corner 
of the plot with a sensitivity and specificity of 100%. The area under the curve (AUC) measures the 
Classifier's overall efficacy. An AUC of 1 indicates an ideal classifier, while an AUC of 0.5 indicates 
an unpredictable classifier. The Classifier's performance is generally better the closer the AUC is to 1 
[100]. 

5.2. Results of Image Preprocessing Techniques 

This section presents the experimental results of the image processing phase. MSE, SSIM and 
PSNR evaluation methods are used to measure the quality of the image. 
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5.2.1. Image Scaling  

In this study, we have used the bicubic interpolation technique to accurately assess a pixel's 
intensity by extrapolating from neighbouring pixels' values. We compared the image produced by 
the bicubic interpolation with the other image scaling techniques, namely, nearest neighbor and 
bilinear interpolation, as shown in Figure 6. As bicubic interpolation determines the value of each 
pixel by taking the weighted average of the 16 most relative neighbouring pixels, the output of bicubic 
algorithms is smoother and more accurate in preserving tiny features from the input image. As shown 
in Figure 6 and Table 2, bicubic yields significantly sharper images compared to the other two 
techniques and represents the optimum balance between processing speed and output quality.  

Figure 6. Three Methods of Interpolation for Rescaling the Image (a) Original image (b) Nearest 
Neighbor (c) Bilinear (d) Bicubic Interpolation. 

Table 2. Performance metrics of Image interpolation. 

 Nearest 

Neighbor  

Bilinear Bicubic 

SSIM 0.88 0.91 0.98 
PSNR 31.23 34.62 39.68 
MSE 0.0087 0.0089 0.0001 

5.2.2. Histogram Equalization  

After bicubic interpolation, Histogram Equalization is performed to increase the contrast of an 
image. Contrast is achieved by effectively distributing the most commonly occurring intensity values, 
which stretches the intensity range of the image. This method often increases the overall contrast of 
the images, which is helpful when close contrast levels indicate meaningful data. It makes it possible 
for areas of lower local contrast to improve their contrast. Normalization is performed by dividing 
the histogram by the number of pixels in the analysed image. To assess the performance of a 
histogram equalizer, we analysed histograms before and after equalization to see how the 
distribution of pixel intensities changed, as shown in Figure 7.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1667.v1

https://doi.org/10.20944/preprints202307.1667.v1


 13 

 

 

Figure 7. Distribution of Pixel Intensities. 

Figure 8 displays the outcome of applying histogram equalization to the low-contrast test image. 
After adjusting the contrast and brightness, the equalized image's histogram was computed. Then 
the equalized images were normalized by the cumulative sum of the histogram values to generate 
the cumulative distribution function (CDF). Finally, the equalized image CDF is plotted. The pixel 
intensity values are on the x-axis, while the cumulative probability is on the y-axis. Figure 9 
demonstrates the distribution of pixel intensities across the image and provides an overview of the 
transformation caused by histogram equalization. 

 

Figure 8. Equalized Image Histogram. 
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Figure 9. Transformed Equalized Histogram. 

5.2.3. Unsharp Masking and Gaussian High Pass Filtering 

We performed the USM and GHPF filtering techniques on the equalised image to sharpen the 
images and capture the fine details of skin lesion images. The authors first used the USM method to 
enhance the image's boundaries and fine details, followed by the GHPF method to separate and 
sharpen the image's high-frequency values. Figure 10 illustrates the histogram comparison between 
the original image, the enhanced USM and the GPHF. The image contrast is adjusted with a 
histogram equalization method. Then the enhanced images of USM and GHPF are added and 
multiplied with a weight factor of the image. Figure 11 shows the enhanced combined sharpened 
image. The combined image shows increased visibility of skin lesions and sharpens the image 
frequency value. 

 

Figure 10. Histogram Comparison (a) USM image (b) GPHF. 

 

(a) USM Image (b) GPHF Image 
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Figure 11. Image comparison between Original, USM, GHPF and combined sharpening. 

5.2.4. Color Space Transformation 

We used CIELAB transformation to match numerical value changes to perceived colour changes. 
CIELAB colour balance approach preserves color by choosing each channel's scale factor separately. 
The first step is to convert each uint8 image to float32 format, map it to LAB colour space, split the 
channels, and calculate the mean and standard deviation along the first axis. The mean and standard 
deviation determine each colour channel's scale factor. Scaling factors are then added to each colour 
channel along the first axis. After that, reduce the pixel values to make the colour channels 0-255. 
After that, uint8-format the image. Figure 12 shows the color balance transformation, and Table 3 
presents the image's performance after applying the color transformation. 

 
Figure 12. Balanced Color Space Image Transformation. 

Table 3. MSE and PSNR metrics for Color Space Transformation. 

 SSIM PSNR MSE 
CIELAB 0.86 96.92 9.07 

5.2.5. Median Filter 

In 2D images, the median filter is widely used to eliminate noises such as salt and pepper, 
speckle, Poisson, and Gaussian noise [93]. Figure 13 shows the implementation of the median filter 
on these noises. The Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR) metrics have been 
used to evaluate these noises. MSE is used to determine whether there is unexpected noise in the 
image. The value of MSE should generally be low. If so, it suggests that a filter is the best for reducing 
noise. As illustrated in Figure 13, the MSE values are compared to select the most effective noise-
reduction filter. From Table 4, we can build that the median filter is best for removing Gaussian noise. 

Table 4. MSE and PSNR metrics for Median Filter. 

 Salt and Pepper 

Noise  

Poisson 

Noise 

Speckle 

Noise 

Gaussian 

Noise 

MSE  7.26 47.65 103.65 6.61 
PSNR (dB) 36.64 28.47 25.09 37.05 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1667.v1

https://doi.org/10.20944/preprints202307.1667.v1


 16 

 

 
Figure 13. Implementation of Median Filter on various noises. 

5.3. Results of Improved DCGAN-based Classifier 

The ISIC 2017 dataset is used to train the proposed DCGAN-based Classifier. Image 
preprocessing techniques are applied before DCGAN modelling to ensure the model can learn 
reliable representations. As discussed in sub-section 4.4.1, 70% of the original datasets were used for 
training and 30% for testing each image class. Notably, 30% of the images were taken as unlabeled 
data. The adversarial network inputs random noise and provides the discriminator's final prediction 
on the created images. By altering the noise vector, we may thoroughly understand how the generator 
works and which noise vector results in the desired class. However, we have used 100 random latent 
input noises. 

During the batch normalization, a mini-batch size of 64 was used. All weights were initialized 
with a normal distribution with a mean of zero and a standard deviation of 0.02. Both the generator 
and discriminator networks are composed of five layers. The generator comprises four 
deconvolutional layers with ReLu activations and one deconvolutional layer with tanh activation at 
the final layer. The discriminator consists of four convolutional layers with Leaky-ReLu activations 
and a SoftMax layer in the last layer. During the training process, both actual data and data from the 
generator network are fed to the discriminator. The generator produces extremely realistic images 
after a few epochs of training, which are also used for additional training. To verify the Improved 
DCGAN model's effectiveness, we randomly generated 100 images for each of the two skin lesions 
and compared them to discriminate between real and fake using the BAS evaluation metric; the 
sample images are shown in Figure 14 (b). Figure 14 (a) presents original images from the training 
data, and Figure 14 (b) shows the random synthetic images generated after training. It is observed 
that each image produced by DCGAN looks very real and is hard to differentiate from the real 
images. 

 

Figure 14. (a): Real Images from the ISIC 2017 Dataset. 
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Figure 14. (b). Synthetic Images Generated by Generator. 

Figure 15 shows the DCGAN model's training process, the score generated by the generator and 
discriminator after 383 epochs/ 9552 iterations. The score must be between 0 to 1; however, 0.5 is the 
best score for each iteration [102]. After each cycle, training losses for generator G and discriminator 
D are recorded. The generator should get massive random noise early in training to learn how to 
generate real data. At the same time, the discriminator can distinguish real from fake images; it does 
not usually collect large samples early on. The generator and discriminator may overcome each other 
during training. If the discriminator gets too accurate, it will return values close to 0 or 1. If the image 
generator method is used for producing and classifying skin lesions during training, GAN becomes 
too accurate; it will constantly harness discriminator mistakes, producing unpleasant effects. In our 
experiment, the discriminator’s score is close to 0.5, indicating that the generator creates a synthetic 
image that makes it impossible for the discriminator to differentiate whether it is real or fake. 

 

Figure 15. DCGAN Generator and Discriminator Score for each iteration. 

The generator and discriminator networks were trained for ten epochs to examine the validation 
accuracy of the model with definite learning rates of 0.01, 0.001, and 0.0002. Seventeen iterations per 
epoch were taken during the training phase, while a validation frequency of 50 iterations was used 
for testing. Accuracy and loss during training for the generator and discriminator are depicted in 
Figures 16–18 for ten epochs. The loss convergence at the end demonstrates that the GAN model has 
found its optimal state. Compared to the learning rates of 0.001 and 0.0002, the proposed DCGAN 
model achieves an optimal accuracy of 99.38% with a learning rate of 0.01 which outperforms state-
of-the-art methods of GAN models as suggested in the literature, depicted in Figures 16-18. The 
images were trained using a single GPU to accelerate the matrix operations, training and for faster 
and parallel computation. Table 5 shows the time elapsed, validation accuracy and loss of three 
learning rates computed for ten epochs with a batch size of 64. In modern deep-learning models, 
batch size is one of the most important hyperparameters to fine-tune the model performance. To 
enable the model to detect the pattern in the data without having to train on a huge dataset, the 
authors additionally evaluated the model on 128 and 256 batch sizes with a learning rate of 0.01, 
which gives higher accuracy than 0.001 and 0.0002. Table 6 demonstrates that the training time for a 
model is substantially reduced as the batch size increases. 

Table 5. Validation Accuracy and Loss with a Batch Size of 64. 

Learning 

Rate 

Time 

Elapsed 

(hh: mm: ss) 

Accuracy 

Minibatch (%) 

Validation 

Accuracy 

(%) 

Mini-

Batch Loss 

Validation 

Loss 
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0.01 00:13:08 100 99.38 0.0007 0.0293 
0.001 00:16:27 100 98.44 0.0039 0.0312 
0.0002 00:09:17 100 96.04 0.0366 0.1127 

Table 6. Impact of validation accuracy and loss with different batch sizes. 

Batch 

Size 

Time 

Elapsed 

(hh: mm: ss) 

Accuracy 

Minibatch (%) 

Validation 

Accuracy 

(%) 

Mini-Batch 

Loss 

Validation 

Loss 

64 00:13:08 100 99.38 0.0007 0.0293 
128 00:08:58 100 99.79 0.0040 0.0059 
256 00:09:07 100 99.69 0.0003 0.0099 

 

 

Figure 16. DCGAN Training Accuracy and Loss with a Learning Rate of 0.01. 

 
Figure 17. DCGAN Training Accuracy and Loss with a Learning Rate of 0.001. 
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Figure 18. DCGAN Training Accuracy and Loss with a Learning Rate of 0.0002. 

A confusion plot is a graphical representation of a classification model's performance. It 
calculates AUC-ROC, accuracy, precision, recall, and F1 score metrics to evaluate model 
performance. As shown in Figure 19, the discriminator successfully diagnoses benign and malignant 
skin lesions with an extremely high degree of accuracy, demonstrated in the diagonal elements of the 
metrics. The confusion matrix for three learning rates was compared in Figure 19. 

 

Figure 19. DCGAN Confusion Matrix. 

The ROC curve in Figure 20 summarises and displays the binary classification results, 
particularly for the positive class, and has learning rates of 0.01, 0.001, and 0.0002, respectively. We 
used True Positive (TP) and False Positive (FP) to plot the ROC curve, as was mentioned in Section 
5.1. TP is on the y-axis, and FP is on the x-axis in the ROC plot. The plot's grey line is a random 
classifier's ROC curve. The trade-off between sensitivity (TPR) and specificity (1-FPR) is depicted by 
our ROC curve (Figure 20). Good classifiers perform better if their curves are located nearer the top-
left corner. A curve close to the ROC space's 45-degree diagonal indicates a less accurate test. Despite 
the ROC curve's deviation from the diagonal and the little gap between the top left corner and the 
curve, Figure 20 demonstrates that the Classifier is fairly classified. As shown in Figure 20, data1 is a 
linear line, and data2 is the ROC curve, a quadratic pattern. R-squared (R2 )for all three learning rates 
equal 1, indicating that the predicted values are identical to the actual values. 
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Figure 20. DCGAN AUC- ROC Plot. 

The performance analysis of the improved DCGAN model utilizing the performance metrics 
BAS, accuracy, recall, precision, specificity, and F1 Score is shown in Table 6 and Figure 21 for three 
definite learning rates of 0.01, 0.001, and 0.0002. The model produces good results after 170 epochs, 
with the test loss reaching a minimal state and the resulting BAS being 99 for learning rates 0.01 and 
0.001, and 97 for 0.0002, indicating that the classifier performance is significantly good. The accuracy 
with a learning rate of 0.01 obtains a greater accuracy of 99.38% compared to a 0.001 model's accuracy 
of 98.44% and a 0.0002 model's accuracy of 96.04%. As a result, the findings indicate that the proposed 
model could generalize well and operate well when applied to any skin lesions. 

 

 

Figure 21. Performance Metrics- Improved DCGAN. 

5.4. Discussion 

The results show that the DCGAN method employed in the model's creation accurately 
reproduces real skin lesions. A DCGAN-based model allows the creation of more realistic and diverse 
skin lesions by capturing global structures and detailed textures. Although data augmentation 
methods like rotation, scaling, and flipping can expand dataset size, the improved strategy goes 
above and beyond standard methods by synthesizing new lesions. It allows high-quality synthetic 
samples to be added to missing or unbalanced datasets, improving the model's ability to generalize 
to different lesion types. Skin lesions' enormous diversity and complexity may challenge handmade 
feature extraction methods such as texture analysis or color-based descriptors, which rely on domain-
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specific knowledge. The DCGAN Classifier learns and extracts essential features from synthetic skin 
lesion images automatically, resulting in better generalization, robustness, and accuracy rates, 
thereby reducing the need for manual feature engineering. The DCGAN-based Classifier can handle 
differences in lesion appearance, illumination, and image quality due to its improved generalization 
abilities. Furthermore, image preprocessing procedures that increased feature extraction and learning 
were used to improve the accuracy, generalization, and flexibility of the DCGAN-based model. We 
have used bicubic interpolation, histogram equalization, USM and GHPF, CIELAB color 
transformation, and Gaussian noise median filter to extract the feature. In this study, the ISIC 2017 
dataset containing 4000 benign and malignant images, each class containing 2000 images, is used to 
train and fine-tune the model.  

As a result, classification performance is more robust and consistent even on novel or tough 
datasets. It can enhance training datasets and allow researchers to analyse sparse or unavailable 
lesion samples. Table 7 and Figure 21 shows that the DCGAN-based Classifier reliably diagnoses skin 
lesions. It has a high accuracy of 99.38%, 99% for precision, recall, and F1-Score, demonstrating that 
it can detect and differentiate between different skin lesions. The Classifier is particularly flexible to 
visual contrasts between lesions for precise diagnosis and classification. It solves problems such as 
class imbalance, annotated data, overfitting, and generalization to new models by capitalizing on 
DCGANs. 

Table 7. Performance Analysis of Improved DCGAN. 

Performance 
Metrics 

Learning Rate 
0.01 (%) 

Learning Rate 
0.001 (%) 

Learning Rate 
0.0002 (%) 

BAS 99 99 97 
Accuracy 99.38 99.06 97.08 

Recall 99 100 98 
Precision 99 98 96 

Specificity 99 98 96 
F1-Score 99 99 97 

We have compared our proposed model with the existing models in the literature, such as 
StyleGAN, WGAN, DGAN, SLA-StyleGAN and DDGAN, in which the GAN classification models 
were applied to classify the skin lesions as listed in Table 12. The improved DCGAN outperforms 
cutting-edge approaches for synthesizing and categorizing skin lesions. Results show that the 
proposed improved model is effective at generating accurate predictions based on the test images, 
and the model attained 99.38% accuracy, which is a significant outcome for skin lesion classification.  

Table 12. Comparison with the existing GAN classification models for skin lesion classification. 

Authors Techniques Accuracy (%) 

[19] Pix2Pix GAN 84.7 

[34] GAN with Raman Spectroscopy 92 

[46] cGAN and WGAN 81 

[51] DDGAN 72 

[54] ACGAN, CycleGAN and Path- Rank-
Filter 

85.6 

[59] DCGAN 58.72 

[62] GAN 86.1 

[67] DCGAN 93.5 

[97] styleGAN 95.2 

[98] DGAN 92.3 
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[99] SLA- StyleGAN 93.64 

Proposed work DCGAN 99.38 

Bissoto et al. [19] have achieved a performance of 84.7 using the Pix2Pix GAN model on ISIC 
2017. On the other hand, Wu et al. [34] applied GAN with Raman Spectroscopy to augment and 
generate synthetic images by achieving an accuracy of 92%. Mutepfe et al. [67] have achieved a test 
accuracy of 93.5% using DCGAN. Qin et al. [97] used StyleGAN, achieved an accuracy of 95.2 % and 
balanced multiclass accuracy of 83.1%. Khan et al. [98] performed DGAN on unlabeled and labelled 
datasets achieving an accuracy of 91.1% and 92.3%, respectively. Therefore, it can be observed that 
our proposed model achieved higher accuracy of 99.38% when compared to the models listed in Table 
12.  

6. Conclusion and Future Scope 

This study investigated Deep Convolution Generative Adversarial Networks (DCGANs) for 
their potential application in creating synthetic data for an augmentation technique. This technique 
has been used successfully to classify images of skin lesions with high accuracy using ISIC 2017 
dataset. Furthermore, the results demonstrate that adding GAN-generated image examples to the 
training data significantly outperforms conventional approaches of fine-tuning pre-existing deep 
neural network architectures. Access to unique data creation and augmentation processes like this is 
helpful when large-scale training datasets are not easily accessible. It enables the addition of high-
quality synthetic samples to missing or unbalanced datasets, enhancing the model's ability to 
generalize to diverse lesion types. We observed a significant improvement in training after 
performing image enhancing and preprocessing operations. After fine-tuning the network's 
parameters, we obtained an overall test accuracy of 99.38%. 

Despite achieving high accuracy, this study had limited capacity to fine-tune its hyper-
parameters. Consequently, conducting all the necessary tests to fine-tune our model took 
considerable time. The most problematic aspect of this study was the duration of each training 
session, mainly when training was more than 100 epochs.  It made it significantly more difficult to 
optimize the DCGAN on the dataset. 

In our future work, we intend to investigate how different lesion-generation approaches can 
enhance the quality and authenticity of synthetic skin lesions. To improve the precision and 
dependability of cutaneous lesion classification, we aim to examine how multi-modal fusion with 
other diagnostic techniques, such as histological information or patient metadata, may be done. 
Exploring interpretability methods for the DCGAN-based Classifier may provide valuable insights 
into decision-making and increase reliance on the model's predictions. 
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