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Hypothesis 

The Kinetic and Energetic Pull of Chemical Entropy 

Josh E. Baker 

University of Nevada, Reno School of Medicine: Reno, NV 89521 USA; jebaker@unr.edu 

Abstract: Proteins in biological systems function at the interface of single molecule and bulk chemistry and 

thus provide novel insights into the basic physical chemistry of scaling and emergent phenomena. For example, 

a binary mechanical model based on the chemistry of muscle contraction unifies molecular mechanics and 

thermodynamics and provides an explicit solution to the Gibbs paradox. Using the same model system, here I 

show that chemical activities of molecular states have no effect on chemical kinetics or energetics. Specifically, 

while the concentration or number of molecules in a molecular state is widely thought to contribute to reaction 

free energies, here I show that it is not the physical presence of molecules that pushes a reaction forward but 

the number of microstates, Ω, accessible in a chemical state that pulls a reaction toward equilibrium with an 

entropic force down an entropic funnel. With the derivation of an entropic contribution to chemical kinetics, I 

develop a novel chemical kinetic formulation that fully describes the chemical thermodynamics of both equi-

librium and non-equilibrium reactions in terms of an a priori system reaction energy landscape. 

Keywords: entropy; chemical thermodynamics; free energy; reaction energy landscape; microstates; 

micropathways; non-equilibrium; kinetics; entropic funnel 

 

Introduction 

Technological advances over the past 70 years have fueled a molecular revolution in the biolog-

ical sciences, providing remarkably detailed descriptions of the structure and function of a myriad of 

biomolecules. The question remains, however, to what extent is biological function the sum of these 

molecular parts versus an emergent property of systems of molecules? While this is fundamentally a 

physical chemical question, insights from small molecular ensembles in biological systems are in-

forming new perspectives on this important chemical thermodynamic problem. For example, a 

model system based on the chemistry of muscle contraction offers a new perspective on entropic 

forces in enzyme-catalyzed reactions [1,2]. Using this model system, the mechanisms required to con-

tain entropic forces have been clearly characterized, providing an explicit solution to the Gibbs par-

adox [3]. Here I show this entropic force, not some physical force exerted by molecules, balances 

chemical reactions. 

Specifically, emergent properties of a system are broadly described by chemical activities, and 

the chemical activity, ai, of a molecular state, i, in a reaction is typically described by the number, Ni, 

or concentration of molecules, [i], in that molecular state. However, while N molecules have chemical 

activity, here I show that this chemical activity does not in general change with a change in the mo-

lecular state of those N molecules. What is referred to as a concentration of a molecular state in fact 

describes the number of microstates accessible to a system within a given chemical state. It follows 

that the “concentration” of a molecular state describes an entropic reaction free energy, not a chemical 

potential, and the “concentration”-dependence of reaction rates are physically determined by the 

number of micropathways between microstates, not by the activity or active mass of a molecular 

state. 

Reaction Free Energy 

Chemical systems have properties that are described both by the state of the system (T, P, V) and 

by the state of molecules within the system (a system containing yellow molecules appears yellow). 

In a given system state, the standard free energy, ∆G°, for a reaction is a molecular property. For 

example, under standard conditions, ∆G° for the hydrolysis of ATP to ADP and Pi can be physically 
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defined for one molecule as the change in free energy associated with breaking a single phospho-

anhydride bond. The reaction free energy, ∆rG, on the other hand, is a system property because it 

includes free energy changes that do not exist within individual molecules or molecular bonds. 

Figure 1A describes the physical chemistry of a single molecule in a solution held at constant 

T,P, and V that reversibly switches between molecular states A and B with forward and reverse rate 

constants, k°+ and k°–, and a free energy difference between A and B of ∆G° = ∆H° – T∆S°, where ∆H° 

and ∆S° are the molecular enthalpic and entropic contributions to ∆G° [4]. The free energy landscape 

of the molecule (Figure 1A) describes changes in free energy along the reaction (or conformational) 

coordinate of that molecule [5]. The inverse times to diffuse in both forward, k°+, and reverse, k°–, 

directions over an activation energy barrier separating A and B (Figure 1A) are related to ∆G° as k°+/k°- 

= exp(–∆G°/kBT) [6]. For an isolated single molecule, the time-averaged occupancy of molecular states 

A and B is then 

NB/NA = exp(-∆Go/kT). (1)

 

Figure 1. The molecular and system contributions to the reaction free energy. (A) The molecular 

contribution to the reaction free energy is described by a molecular energy landscape. The free energy 

difference between the two metastable states, A and B, is ∆G°. The rate, k°+, at which a molecule tran-

sitions from molecular state A to B varies exponentially with –G‡+, where G‡+ is the height of the acti-

vation barrier in the forward direction. The rate, k°–, at which a molecule transitions from B to A varies 

exponentially with –G‡–, where G‡– is the height of the activation energy barrier in the reverse direc-

tion. (B) The system contribution to the reaction free energy is entropic. For N = 5, there are 6 system 

states, {NA,NB}, along the reaction coordinate each with ΩNA,NB = N!/(NA!NB!) microstates, illustrated 

with circles, and entropy kB·ln(ΩNA,NB). There are five micropathways (right arrows) by which a mol-

ecule in state {5,0} can transition to state {4,1}, and one micropathway (left arrow) by which a molecule 

in state {4,1} can transition to state {5,0}. 
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For an ensemble of N such molecules contained in a solution held at constant T, P, and V, the 

reaction occurs along a system reaction coordinate that describes changes in free energy of the system, 

∆rG, with changes in the chemical (not molecular) state of the system [7,8]. In other words, in addition 

to ∆Go, ∆rG accounts for non-∆Go changes in the free energy of the system with a chemical step 

from{NA,NB} to {NA–1,NB+1}. These non-∆Go free energy changes include P∆V work performed with 

changes in solution volume, ∆V; non-P∆V work (F·d-work) performed with molecular displacements, 

d, against system forces, F [9]; and changes in system entropy, ∆Ssys [7]. In general [7], 

∆rG = ∆G° + P∆V + F·d – T∆Ssys. (2)

The terms on the right hand side of Equation (2) are the chemical forces that (when ∆rG < 0) energet-

ically drive a reaction from {NA,NB} to {NA–1,NB+1}, or that (when ∆rG > 0) energetically drive a reac-

tion from {NA–1,NB+1} to {NA,NB}, or that (when ∆rG = 0) balance the reaction. 

In 1864, Waage and Guldberg [10] proposed that the forces that balance chemical reactions are 

Newtonian, arguing that an active mass, NA, of molecules in state A pushes against an equal and 

opposite reactive mass, NB, of molecules in state B, such that NA·k°+ = NB·k°–. However, no term in 

Equation (2) is consistent with the concept of an active mass. It was subsequently shown that a change 

in the number of molecules, N, (the chemical activity) in a system affects the volume of a system, 

which through Equation (1) (P∆V) accounts for the partial pressure of a gas. In the early 1900’s, this 

approach was modified in an attempt to account for the forces that balance chemical reactions. Spe-

cifically, it was proposed that the chemical activity of N molecules fundamentally changes when the 

molecular state of those N molecules change. However, the state of a molecule is a property of that 

molecule and is in general fully defined by the molecular reaction energy landscape (Figure 1A) in-

dependent of system chemical activities. This is evident in the nonsensical description below that 

results from defining a molecular property as a chemical activity. 

In most chemistry textbooks today, a term kBT·ln(NB/NA) [or the molar equivalent RT·ln([B]/[A])] 

is derived from the envisaged chemical activities of molecular states A and B, and Equation (1) takes 

the form 

∆rG = ∆G° + kBT·ln(NB/NA), 

which at equilibrium (∆rG = 0 and forces balance the chemical reaction) becomes 

(NB/NA)eq = exp(–∆Go/kBT). (3)

Equation (3) is equivalent to Equation (1), implying the following circular argument: if chemical 

activities assigned to molecular states, NA and NB, are defined by ∆G° (Equation (3)), then NA and NB 

are molecular (∆G°) properties (Equation (1)), not non-∆G° chemical activities. Chemical activities 

describe interactions between an individual molecule and the system of N molecules within which it 

is contained, which means chemical activities contribute to a system reaction energy landscape with 

reaction coordinates {NA,NB} not a molecular energy landscape with reaction coordinates A and B 

(Figure 1A). Equation (2) nonsensically describes N molecules diffusing within the reaction free en-

ergy landscape of a single molecule. Perhaps the intent is that each of N molecular energy landscapes 

has one molecule diffusing within it, in which case there is no chemical activity – the whole is the 

sum of its molecular ∆G° parts with no emergent non-∆G° system behaviors – and if there is no chem-

ical activity, the question remains what are the forces that balance chemical reactions? 

Here, I develop a formulation that describes chemical entropy, T∆Ssys, as the force that balances 

chemical reactions. I show that while active masses and chemical activities purportedly push reac-

tions forward, chemical entropy kinetically and energetically pulls chemical reactions down an en-

tropic funnel. 

System Entropy 

For a system of N molecules (Figure 1A) contained in a solution held at constant T,P, and V, 

Equation (1) is 

∆rG = ∆G° – T∆Ssys. 
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According to Boltzmann, Ssys = kB·ln(ΩNA,NB), where ΩNA,NB is the number of microstates available 

to the system in chemical state {NA,NB}. Specifically, ΩNA,NB = N!/(NA!NB!). The change in entropy with 

a single chemical step from {NA,NB} to {NA–1,NB+1} is then 

∆Ssys = –kB·ln[((NA – 1)!(NB + 1)!)/(NA!NB!)] = –kB·ln[(NB + 1))/(NA)], and so 

∆rG = ∆G° + kBT·ln[(NB + 1))/(NA)]. (4)

Equation (4) resembles Equation (3), only here NB and NA are reaction coordinates {NA,NB} in a system 

energy landscape that are defined independent from the physical occupancy of states A and B. 

The change in system entropy associated with δN chemical steps from. 

{NA,NB} to {NA– δN,NB+δN} is 

∆Ssys = –kB·ln[((NA – δN)!(NB + δN)!)/(NA!NB!)] ≈ –δN·kB·ln[(NB + δN/2))/(NA – δN/2)], and so 

∆rG = δN·∆G° + δN·kBT·ln[(NB + δN/2)/(NA – δN/2)]. (5)

Here again the gradient established by δN is not a physical gradient that energetically drives the 

reaction. The reaction is driven by the average change in entropy per chemical step, kBT·ln[(NB + 

δN/2)/(NA – δN/2)], summed over δN chemical steps, where the average change in entropy is defined 

by the system reaction coordinate {NA,NB} independent from the physical occupancy of states A and 

B. 

A change in ∆Ssys relative to Ssys = 0 occurs from {N/2,N/2} to {N/2–δN, N/2+δN}, or 

∆Ssys = –δN·kB·ln[(N/2 + δN/2))/(NA – δN/2), or 

∆Ssys = –δN·kB·ln[(1 + δN/N))/(1 – δN/N), (6)

where δN/N is a fractional change in the extent of the reaction relative to unity. Assuming δN = 1 mol, 

Equation (6) can be written 

∆Ssys = –R·ln([B]/[A]), and 

∆rG = ∆G° + RT·ln([B]/[A]) 

While this demonstrates consistency with the results of a chemical activity analysis, it does not 

demonstrate that physical concentration gradients drive chemical reactions. Again, here [B]/[A] is not 

a physical concentration gradient. At equilibrium [B]/[A] equals exp(–∆G°/RT) not because [A] + [B] 

molecules physically equilibrate within the energy landscape of a single molecule, but because ∆G° 

a priori determines the approximate point along the system reaction coordinate, {NA,NB}, at which 

the system equilibrates. This is illustrated in Figures 1B and 2 for small numbers of molecules. 

System Reaction Coordinate 

Figure 1B illustrates entropic changes along the reaction coordinate for a system of N = 5 mole-

cules each occupying either molecular state A or B. When the system is in state {5,0}, Ω5,0 = 1. Unlike 

in chemical activity models where kB·ln(0/5) is undefined, here the system entropy, kB·ln(1), is zero. 

After one net forward step, the system enters state {4,1}, increasing the number of microstates from 1 

to 5 and increasing the system entropy from 0 to kB·ln(5). This increase in the number of microstates 

physically pulls the reaction forward since there are five-times more micropathways in the forward 

direction than in the reverse direction. This contrasts with the chemical forces of molecules that pur-

ported push a reaction forward. When ∆Go = 0, the reaction continues until a maximum system en-

tropy is reached along the reaction coordinate, equilibrating in system state {3,2} when (NB + 1)/NA = 

exp(0) (Equation (3)). 

Figure 2A is a plot of Equation (3), illustrating both the change in entropic energy, 

kBT·ln[NB+1,NA], and the change in molecular free energy, ∆Go, along the system reaction coordinate 

{NA,NB} for a system containing N = 10 molecules. Figure 2A illustrates that the change in system 
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entropy increases logarithmically with each step whereas the change in molecular free energy, ∆Go, 

is the same for each step (the effect of ∆Go on ∆rG is a constant offset). When ∆Go decreases from 0 to 

–1.5 kBT (Figure 2A, down arrow) the equilibrium state of the system changes from {5.5,4.5} to {2,8} 

(Figure 2, right arrow) corresponding to a change from (NB + 1)/NA = exp(0) to (NB + 1)/NA = exp(1.5). 

 

Figure 2. Change in Free energy along a reaction coordinate. (A) For N = 10, Equation (3) is plotted 

for a ∆G° of 0 (green line) and –1.5 kBT (blue line). For ∆G° = 0, the reaction equilibrates (∆rG = 0) at 

{5.5,4.5}. When ∆G° is decreased from 0 to –1.5 kBT (down arrow) the system re-equilibrates (right 

arrow) at {2,8}. (B) The system free energy, G, (the integral of ∆rG over the reaction coordinate) is 

calculated and plotted for ∆G° of 0 (green line) and –1.5 kBT (blue line) values in panel A. The same 

trajectory in panel A describing re-equilibration following a decrease in ∆G° is illustrated in panel B 

(arrows). 

Because ∆rG is the change in free energy, G, of the system with a chemical step, the integral of 

Equation (3) over the reaction coordinate is the free energy, G, of the system. The two graphs in Figure 

2A are integrated and replotted in Figure 2B as free energy, G. These are the system free energy 

landscapes described by Gibbs within which the reaction equilibrates at a point along the reaction 

coordinate{NA,NB} where G is a minimum. According to Gibbs, the walls of the energy landscape 

represent the energy that balances a reaction at equilibrium, and here the walls of the energy land-

scape are TSsys (the integral of T∆Ssys). In other words, entropic forces, T∆Ssys, (Figure 2A) drive a 

reaction toward equilibrium down an entropic funnel, TSsys (Figure 2B). 
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Figure 2B illustrates how changes in ∆G° affect the energy landscape. Changes in non-∆G° chem-

ical activities have similar effects [2]. However, changes in NA and NB have no effect on the energy 

landscape because they are reaction coordinates, not chemical activities, and changes in reaction co-

ordinates describe movement along the landscape, not changes to the landscape. Because reaction 

kinetics and energetics are defined by reaction energy landscapes, NA and NB have no effect on the 

kinetics or energetics of a reaction. 

Equilibrium Energetics 

At equilibrium (∆rG = 0), the probability of finding the system in state {NA+1,NB–1} relative to 

{NA,NB} is exp[–∆G°/kBT + ln(ΩNA-1,NB+1/ΩNA,NB)], where ln(ΩNA-1,NB+1/ΩNA,NB) = T∆Ssys/kBT. Thus, when 

∆G° = 0, ΩNA,NB is the probability density function, PNA,NB. For comparison, according to chemical ac-

tivity models the probability of finding a molecule in state B relative to state A is exp[–∆G°/kBT], and 

when ∆G° = 0, PNA,NB is a binomial distribution. The equilibrium constant, K = (ΩNA,NB/ΩNA-1,NB+1)eq = 

exp[–∆G°/kBT] is K = (NB(eq) + 1)/NA(eq), and describes the reaction coordinate {NA,NB}eq at equilibrium 

(Figure 2). For comparison, in chemical activity models the equilibrium constant K = NB(eq)/NA(eq) de-

scribes the physical distribution of N molecules within the energy landscape of a single molecule 

(Figure 1A). 

Non-Equilibrium Energetics 

When the system is perturbed from equilibrium by a change in the internal energy of the system, 

δE, [i.e., a change in ∆G° or kBT·ln[(ΩNA-1,NB+1/ΩNA,NB) ], the free energy equation becomes 

∆rG = [∆G° – kBT·ln(ΩNA-1,NB+1/ΩNA,NB)] eq + δE = δE, 

where δE is a non-equilibrium (ne) perturbation to any of the energy term on the right-hand side of 

Equation (1). Here, 

δE = [∆G° – kBT·ln(ΩNA-1,NB+1/ΩNA,NB)]ne. 

As illustrated in Figure 2, if the system perturbation is a change in ∆G°, the system relaxes to a 

new equilibrium state, {NA,NB}eq, as kBT·ln(ΩNA-1,NB+1/ΩNA,NB) approaches the new ∆G°. Through this 

process, ∆rG returns to zero and δE remains in the system in the form of a change in system entropy. 

If the system perturbation is a change in kBT·ln(ΩNA-1,NB+1/ΩNA,NB) [an irreversible transfer of molecules 

between molecular states] the system relaxes back to the original equilibrium state, {NA,NB}eq, as 

kBT·ln(ΩNA-1,NB+1/ΩNA,NB)ne approaches ∆G°. Through this process the entropic δE is lost from the sys-

tem as heat. This analysis becomes more complex when non-P∆V work is performed, in which case 

upon a chemical relaxation, in addition to exchanges between kBT·ln(ΩNA-1,NB+1/ΩNA,NB) and ∆G°, δE 

can be exchanged with internal mechanical potentials. And, in addition to being lost from the system 

as heat or stored in the system as entropy, δE can be lost from the system as work performed on the 

surroundings [2]. 

Equilibrium Kinetics 

Chemical kinetics, like energetics, have both molecular and system components. The net rate at 

which the system transitions from chemical state {NA,NB} to chemical state {NA–1,NB+1} is 

d{NA,NB}/dt = k+ – k–, 

where k+ and k– are the forward and reverse transition rates between these states. At equilibrium, the 

probability of finding the system in state {NA+1,NB–1} relative to state {NA,NB} is 

k+(eq)/k–(eq) = exp[(–∆G° + kBT·ln[ΩNA-1,NB+1/ΩNA,NB]eq)/kBT] or 

k+(eq)/k–(eq) = (k°+/k°–)·exp[kBT·ln(ΩNA-1,NB+1/ΩNA,NB)eq/kBT] 

Here, k°+ and k°– are molecular contributions to k+ and k– and exp[–T∆Ssys/kBT] is the system contribu-

tion to k+ and k–. The influence of –∆Ssys/kB on kinetics can be understood energetically as a tilt of the 
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system landscape that adds to the tilt of the molecular landscape, ∆G°. It can also be understood 

kinetically as 

k+(eq)/k–(eq) = (k°+/k°–)·(ΩNA-1,NB+1/ΩNA,NB)eq 

where the factor ΩNA-1,NB+1/ΩNA,NB describes the number of micropathways available for the forward 

reaction relative to the reverse reaction. For example, in Figure 1B there are five micropathways from 

{5,0} to {4,1} and one micropathway back from {4,1} to {5,0}, which means that the forward reaction is 

entropically five-fold more likely than the reverse reaction (ΩNA-1,NB+1/ΩNA,NB = 5). This implies forward 

and reverse rate constants of 

k+(eq) = k°+·ΩNA-1,NB+1(eq) 

k–(eq) = k°–·ΩNA,NB(eq). 

At equilibrium, k+(eq) = k–(eq), or 

k°+·ΩNA-1,NB+1(eq) = k°–·ΩNA,NB(eq). 

To demonstrate consistency with the chemical activity approach, 

k+(eq) = k°+·NA(eq) 

k–(eq) = k°–·(NB(eq) + 1) 

where here again NA(eq) and NB(eq) are not physical, active numbers of molecules, they are the system 

reaction coordinates {NA,NB}eq at equilibrium. 

Non-Equilibrium Kinetics 

Chemical kinetics is fully determined from the molecular and system tilt of the system energy 

landscape. It follows that non-equilibrium kinetics is fully determined by the non-equilibrium tilt, 

δE, of these landscapes, where a non-equilibrium perturbation to ∆G° affects the molecular rates 

k°+/k°–, and an irreversible transfer of molecules between molecular states affects ΩNA,NB/ΩNA-1,NB+1. In 

general, 

k+(t)/k–(t) = (k°+/k°–)(ΩNA-1,NB+1(t)/ΩNA,NB(t)) = exp[–δE(t)/kBT]. (7)

According to Equation (7), for a negative δE(t), k+(t) > k–(t) which is consistent with the energetic 

requirement that a negative δE(t) drives the reaction forward. This forward reaction increases T∆Ssys 

(Figure 2) until δE(t) = 0, at which point k+(t) = k–(t). For a positive δE(t), k+(t) > k–(t) which is consistent 

with the energetic requirement that a positive δE(t) drives the reaction backward. This reaction de-

creases T∆Ssys (Figure 2) until δE(t) = 0, at which point k+(t) = k–(t). Not only do kinetics fully account 

for thermodynamics, they also describe the constraints placed on mechanisms through which δE is 

exchanged among ∆G°, T∆Ssys, and other energetic components (right side of Equation (2)) in mini-

mizing the free energy of the system. 

The non-equilibrium rate equation is the same as the equilibrium rate equation 

d{NA,NB}/dt = k°+·ΩNA-1,NB+1 – k°–·ΩNA,NB(t). 

For comparison with a chemical activity analysis, from above 

dNA/dt = k°+·NA(t) – k°–·(NB(t) + 1) 

where one last time, NA(t) and NB(t) describe the time dependence of steps along the system reaction 

coordinate {NA,NB}, not the time-dependence of the physical numbers of molecules in different states. 

Changes in NB(t) + 1 are equal and opposite changes in NA(t) along the system reaction coordinate, 

and so 

dNA/dt = –NA(t)·[k°– + k°+] 
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which means that NA(t) decreases exponentially with time as 

NA(t) = NAo·exp(–(k°+ + k°–)t), 

with a relaxation rate, k°+ + k°–, where NAo is the starting point on the reaction coordinate {NA,NB}o. 

Conclusion 

In summary, a molecular energy landscape (Figure 1A) a priori defines ∆G° and rate constants, 

k°+ and k°–, for an isolated molecule (Figure 1A) independent of the physical existence of that molecule  

[5]. Similarly, an entropic energy landscape a priori defines system energetics and rates for N mole-

cules (Figures 1B and 2) independent of the existence of those molecules. Together ∆G° and entropy 

create a system energy landscape within which chemical entropy contains ∆G° and entropic forces 

balance a reaction against ∆G° by driving a reaction down an entropic funnel. The entropic contribu-

tion to chemical kinetics results in a new kinetic formalism that fully accounts for the chemical ther-

modynamics of a system both under equilibrium and non-equilibrium conditions. 
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