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GR, 45110, Greece
* Correspondence: gpapamokos@seas.harvard.edu (G.P.); igeroth@uoi.gr (LP.G.)

Abstract: Molecular structures, in chloroform and DMSO solution, of the monounsaturated free
fatty acids (FFAs) caproleic acid (dec-9-enoic acid) and oleic acid (octadec-9-enoic acid) and the w-3
FFAs a-linolenic acid (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid ALA), eicosapentanoic acid
(52,82,112,14Z,17Z)-icosa-5,8,11,14,17-pentaenoic acid) and docosahexaenoic acid
(42,72,102,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid), are reported with the combined
use of NMR and DFT calculations. Variable temperature and concentration chemical shifts of the
COOH protons and transient 1D NOE experiments, in CDCls, demonstrate the major contribution
of low molecular weight aggregates of dimerized fatty acids, through intermolecular hydrogen
bond interactions of the carboxylic groups, with parallel and antiparallel interdigitated structures,
even at the low concentration of 20 mM. For the dimeric DHA, a structural model of an
intermolecular hydrogen bond through carboxylic groups and an intermolecular hydrogen bond
between the carboxylic group of one molecule and the w-3 double bond of a second molecule, is
shown to play a role. In DMSO-ds solution the centro-symmetric hydrogen bond interactions are
broken and the carboxylic groups form strong intermolecular hydrogen bond interactions with a
discrete solvation molecule of DMSO. These solvation species form parallel and antiparallel
interdigitated structures of low molecular weight. DFT structural models in CHCls and DMSO, in
agreement with the NMR data, are compared with the structures in the liquid state.

Keywords: 1D 'H NOE; 'H chemical shift; ALA; EPA; DHA; DFT

1. Introduction

Free fatty acids are carboxylic acids with long saturated or unsaturated aliphatic chains, with 4
to 28 carbon atoms, which are stored as triacylglycerol in adipose tissue. Saturated, mono- and
polyunsaturated free fatty acids, in the form of glycerolipids and phospholipids, are the major lipid
components of cell membranes [1-4]. Fatty acids play essential roles in maintaining the correct
membrane fluidity and environment for membrane protein function. FFAs have, also, essential roles
in the regulation of energy metabolism, inflammation, neurological and cardiovascular diseases [3—
9]. Omega-3 FFAs are polyunsaturated fatty acids (PUFAs) which are characterized by the presence
of a double bond, three atoms away from the terminal CHs- group. Three of the most important w-3
PUFAs for human diet and physiology are a-linolenic acid ((9Z,12Z,15Z)-octadeca-9,12,15-trienoic
acid, ALA), eicosapentaenoic acid ((5Z,8Z,11Z,147,17Z)-icosa-5,8,11,14,17-pentaenoic acid, EPA) and
docosahexaenoic acid ((4Z2,72,102,132,162,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid, DHA). ALA
is widely distributed in plants, while DHA and EPA are found in algae and fish [1-3,10,11].

Structural and conformational properties of the unsaturated and the w-3 FFAs have been
investigated with the use of 'H and “C NMR spectroscopy [10-14], molecular dynamics and
molecular mechanics [15-17], and NMR and computational studies of mono- and polyunsaturated
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FFAs bound to human and bovine serum albumin and in competition with various drugs [18,19].
Combination of various physicochemical techniques and molecular dynamics simulations were
reported to investigate ~membranes of 1-stearoyl(dss)-2-docosahexaenoyl-sn-glycero-3-
phosphocholine and 1-stearoyl(dss)-2-docosapentaenoyl-sn-glycero-3-phosphocholine [20]. Law et al.
[21] performed detailed DFT studies of a variety of conformations of w-3 polyunsaturated free fatty
acids. Translational motion, molecular conformation, and interdigitated hydrogen bonded
aggregates in the liquid state of n-saturated and unsaturated free fatty acids were investigated with
the use of *C NMR spin-lattice relaxation times, self-diffusion coefficients and X-ray diffraction at
various temperatures [22,23]. Raman spectroscopy and differential scanning calorimetry [24] and 2D-
NMR were used to investigate structures of polyunsaturated free fatty acids [25]. A quantum
chemical study of the folding of EPA and DHA was reported by Bagheri et al. [26] and Veniannakis
et al. [27,28] provided low energy structures of w-3 fatty acids, in the liquid state, based on NMR and
DFT calculations of 'TH NMR chemical shifts. Emphasis has been given on an atomistic structural
model of DHA.

We report herein detailed structural studies of the monounsaturated caproleic and oleic acids,
and the w-3 polyunsaturated FFAs, a-linolenic acid, EPA, and DHA in chloroform and DMSO
solution, with the combined use of NMR (variable concentration 1D transient NOEs and variable
temperature NMR chemical shifts of the carboxylic groups) and DFT calculations. The results are
compared with previous studies in the liquid state [27,28]. DFT atomistic structural models, in
agreement with the NMR data, are critically evaluated.

2. Results and Discussion

2.1. Variable Temperature and Concentration '"H NMR Chemical Shifts of Carboxylic Protons and 1D 'H
NMR Transient NOE in CDCls

The chemical shifts of the carboxylic protons, 5(COOH), and phenol OH group, 5(OH), are very
informative criteria for the investigation of various types of hydrogen bond interactions [28-31].
O(COOH) and d(OH) are deshielded in the presence of hydrogen bond interactions and linear
correlations between 'H NMR chemical shifts and hydrogen bond distances have been reported
[30,31]. Temperature has also a significant effect, thus, by increasing the temperature, the 'H NMR
chemical shifts are shielded due to breaking of hydrogen bond interactions (negative temperature
coefficients, Ad/AT). The 'H NMR resonances of the COOH groups display broad signals at room
temperature in CDCls. The broadening is mainly due to intermolecular proton exchange of the COOH
group with the residual H20 in CDClIs solution. The use of low concentrations (c < 100 mM) has a
profound effect on proton exchange rate, which results in excessive line broadening and variable
chemical shifts. The use of activated molecular shifts in the bottom of the NMR tube, but outside the
active volume of the NMR coil, resulted in a significant reduction in the line widths which allowed
the accurate determination of the chemical shifts and Ad/AT values.

d(COOH) chemical shifts at 298 K, Ad/AT (ppb K1), and statistical analysis (coefficient of linear
regression R? and intercept) of the data of Figure 1 are shown in Table 1. The temperature-dependent
changes of the chemical shifts of the free fatty acids investigated are linear and the derived Ad/AT
values, with R2>0.992, cover a range of -42.74 to -29.52 ppb K-1. These values are significantly larger,
in absolute terms, than those obtained in the liquid state for caproleic acid, oleic acid, a-linolenic acid,
EPA and DHA (-16.43 to -10.32 ppb K) [28] (Table 1) and semi-fluorinated oleic, elaidic and stearic
acids [32]. This shows that, by increasing the temperature, the intermolecular hydrogen bonds are
more readily broken in CDCls solution than those in the liquid state.

Numerous investigations of various carboxylic acids in CCls and CHCIs were interpreted in
terms of mixtures of cyclic and linear dimers, cyclic and linear trimers and monomers [33-39]. For
long chain carboxylic acids, such as in FFAs, the formation of centro-symmetric hydrogen bond
species through carboxylic groups appears to be the major structural mode. Thus, the single crystal
X-ray structural analysis of linoleic acid, a-linolenic acid and arachidonic acid [40] showed the
formation of centro-symmetric cyclic hydrogen bonds, which deviate from planarity by 26.7°, with
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short O-O distances of 2.67 A. Figure 1 and the data of Table 1 demonstrate that caproleic acid and
oleic acid and the w-3 ALA and EPA form intermolecular hydrogen bond interactions, since the
chemical shifts of the carboxylic protons are strongly deshielded (11.17 to 10.39 ppm, at 298 K) (Table
1). In caproleic acid, oleic acid, ALA and EPA the hydrogen bond species through carboxylic groups,
therefore, are the major components in CDCls solution. This is in agreement with literature data [41]
of the minor presence (1% to 3%) of the monomeric species in the liquid state for octanoic, nonanoic,
decanoic and undecanoic acids in the temperature range of 280 K to 360 K.

The chemical shifts of the carboxylic groups of CA, OA, ALA, and EPA in CDCl; (Table 1) are
slightly more shielded by 1.17 to 0.14 ppm, relative to those in the liquid state [28]. This can be
attributed to the major role of the centro-symmetric cyclic dimers relative to contributions of other
components of the equilibrium mixtures in both liquid state and CDCIs solution. Detailed dilution
studies of caproleic acid in the range of 400 mM to 1 mM showed a very significant shielding in the
concentration range below 15 mM due to increased contribution of the monomeric species. Thus, at
10 mM, the chemical shift of caproleic acid is ~ 8.6 ppm, while that of oleic acid, at 2 mM, is ~ 9.3 ppm.
Further research in needed to determine the precise values of dimer-to-monomer dissociation
constants, which apparently depend on the length of the side chain and the presence of multiple cis
double bonds, as in the case of w-3 fatty acids, which result in a significant ‘kink’ into the chain (see
discussion below).
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Figure 1. The temperature dependence of the COOH 'H NMR chemical shifts of caproleic acid (CA),
oleic acid (OA), ALA, EPA and DHA in DMSO-d¢, ¢ =20 mM (A) and CDCls, ¢ =40 mM (B).
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Table 1. (COOH) chemical shifts at 298 K, Ad/AT, and statistical analysis (R? and intercept) of the
data of Figure 1 of d('H) vs T(K) of the free fatty acids in CDCls (c=40 mM), DMSO-ds (¢=20 mM) and
in the liquid state.

CDCls DMSO-ds Liquid state?
5 AB/AT 5 AéT/A 5 AB/AT
FFA R? (ppb Inter. R? Inter. R?  (ppb Inter.
(ppm) ; (ppm) (ppb (ppm) )
K?) K-) K

CA 11.08 0.999 -32.69 20.81 1194 0999 -6.62 13.92 12.25 0.999 -11.31 15.98
OA 11.17 0999 -31.50 20.54 1194 0.999 -6.88 1399 1213 0998 -10.32 15.21
ALA 1039 0998 -42.74 23.13 1195 0999 -6.79 1397 10.88 0.998 -13.06 14.76
EPA 10.77 0997 -3541 2131 12.01 0.997 -7.27 1418 1091 0.999 -14.38 14.19
DHA 9.07 0.992 -2952 1790 1208 0993 -645 14.00 860 0.986 -16.43 13.51

2 Ref. [28].

DHA is a particular case since the chemical shift of the carboxylic group is strongly shielded (d
=9.07 ppm at 298 K). The chemical shift at 298 K is very similar to that in the liquid state (8.60 ppm)
[28] and the AO/AT value (-29.52 ppb K) is larger to that in the liquid state. It can, therefore, be
concluded that for the dimeric DHA in CDCls, a structural mode of intermolecular hydrogen bonds
through carboxylic groups and an intermolecular hydrogen bond between the carboxylic group of
one molecule and the terminal double bond of the second molecule of DHA, plays a significant role,
as in the case of the liquid state [28]. The OH-m hydrogen bond has been suggested to have significant
structural roles in bioorganic chemistry [42,43] and biochemistry [44,45].

1D transient NOE experiments were performed for caproleic acid (CA), oleic acid (OA), a-
linolenic acid (ALA), EPA, and DHA using various concentrations (100 mM, 50 mM, and 20 mM) in
CDCls and various mixing times, tm. The NOE grows during the period tm, starting from zero [33].
Figure 2 shows 1D NOE NMR spectra of oleic acid (OA) and a-linolenic acid (ALA) (concentration =
20 mM), using various = values with selective excitation of the CHs— group. Even for a short tm =100
ms, there are weak NOE connectivities with the H2, H3 protons which are antiphase with respect to
the irradiated CHs- group. This is due to the formation of low molecular weight hydrogen-bonded
species with tcvalues within the extreme narrowing condition (wotc << 1) in the concentration range
of 100 to 20 mM. By increasing tm, an approximately linear increase in the amplitude of the NOE
signal intensities is observed which shows that the NOE is due to, through space, proximity of the
CHs- group and the CH>-CH>-COOH protons in the hydrogen bond species, rather than due to spin
diffusion through the chain of the CH bonds.

Similar results were obtained with EPA (Figure 3A). The magnitude of all the NOE signal
intensities of DHA, however, is significantly reduced relative to those of OA, ALA and EPA. This can
be attributed to the formation of low molecular weight hydrogen-bonded aggregates in the range of
minimum NOE signal intensities, i.e., woTc ~ 1.

1D transient NOE NMR spectra of the caproleic acid (CA), with selective excitation of the a-CH2
protons, is shown in the Supplementary Figure S1(A). As in the case of OA, ALA, EPA, and DHA the
NOE connectivities are anti-phase with respect to the a-CHz group, due to the formation of low
molecular weight hydrogen bond aggregates with 1. values within the extreme narrowing condition
(wote << 1). The magnitude of NOEs, however, with the terminal CH(9) = CH2(10) protons was
significantly less than those observed between a-CH: and the terminal CHs- group of OA, ALA and
EPA. This can be attributed to the minor formation of hydrogen bond interdigitated aggregates.
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Figure 2. 1D transient NOE NMR spectra of: (A) oleic acid (OA) and (B) a-linolenic acid (ALA),
concentration = 20 mM in CDCls solution (number of scans=512, T=298K, Ta«q=4.09s, relaxation
delay=4s), using various tm values. The amplitude of the excited CHs- group (denoted with the
asterisk (*)), is reduced by a factor of 30, relative to the amplitude of the rest of the NOE signals.
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Figure 3. 1D transient NOE NMR spectra of: (A) EPA and (B) DHA, concentration = 20 mM in CDCls
at 298 K (number of scans = 512, Taq=4.09s, relaxation delay=4s), using various tm values. The
amplitude of the excited CHs- group (denoted with the asterisk (*)), is reduced by a factor of 30,
relative to the amplitude of the rest of the NOE signals.
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2.2. Variable Temperature 'TH NMR Chemical Shifts of Carboxylic Protons and 1D 'H NMR Transient NOE
in DMSO-ds

Exchange broadening due to intermolecular proton exchange between COOH groups and
residual H20, can be significantly eliminated in DMSO-ds due to its strong hydrogen bond and
solvation ability. 5)(COOH) and Ad/AT values can, therefore, be determined accurately. The chemical
shifts of the carboxylic protons, d(COOH), in DMSO-ds solution (c = 20 mM) are very similar and
appear in a very narrow chemical shift range for all the FFAs (11.94-12.08 ppm) and are more
deshielded relative to those in CDCls (Table 1 and Figure 1). This shows that the centro-symmetric
cyclic dimers do not exist in DMSO-ds due to the strong hydrogen bond and solvation ability of the
DMSO molecules. In DHA, the flip-flop process between the classical intermolecular centro-
symmetric bonds through the carboxylic groups and an intermolecular hydrogen bond between the
carboxylic group of one molecule and the terminal double bond of the second molecule of DHA is
also eliminated in DMSO solution. Further confirmation was also obtained from the Ad/AT values in
DMSO-ds (-6.62 to -7.72 ppb K1) which are significantly smaller, in absolute terms, than those in
CDCls. This demonstrates that the effect of increasing the temperature results in significantly less
pronounced breaking of hydrogen bond interactions in DMSO-ds, relative to those in CDClssolution.

The great hydrogen bond and solvation ability of DMSO is clearly demonstrated from variable
temperature experiments of an equimolar mixture of caproleic acid and DMSO-ds. The chemical shift
of the carboxylic proton at 298 K (0 = 11.90 ppm) and its temperature coefficient (Ad/AT =-6.77 ppb
K1) clearly show the elimination of the centro-symmetric cyclic dimers through the carboxylic
groups.

1D transient NOE experiments were performed for the FFAs in DMSO-ds with concentration
c=20mM. Figure 4 shows NOE NMR spectra of OA and ALA using various tm values with selective
excitation of the terminal CHs- group. Even for the relatively short tm= 100 ms, there are NOEs with
the H2 and H3 protons which are antiphase with respect to the CHs- group. This is due to the
formation of low molecular weight hydrogen-bonded aggregates with . values within the extreme
narrowing condition (wotm << 1). By increasing tm an increase in the amplitude of the NOE
connectivities is observed which can be attributed to, through space, proximity of the CHs—group and
the CH-CH2>~COOH protons in the hydrogen bond species, rather than due to spin diffusion through
the chain of the CH bonds.

Similar results were obtained with EPA and DHA (Figure 5). Selective excitation of the terminal
CHs- group results in anti-phase NOE connectivities with H2, H3, even for the relatively short mixing
time tm = 100 ms. This demonstrates the proximity, through space, of the CHs- group and the CHo—
CH>-COOH protons in the low molecular weight hydrogen bond interdigitated aggregates, within
the extreme narrowing condition (wotm << 1).

1D transient NOE NMR spectra of caproleic acid (CA), using various tm values with selective
excitation of a-CHz protons, are shown in the Supplementary Figure S1(B). The magnitude of the
anti-phase NOEs, with the terminal CH(9)=CH2(10) protons, was found to be significantly less than
those observed between a-CH: and the terminal CHs- groups of OA, ALA, EPA and DHA. This can
be attributed to the minor formation of hydrogen bond interdigitated species.

do0i:10.20944/preprints202307.1662.v1
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Figure 4. 1D transient NOE NMR spectra of: (A) oleic acid (OA) and (B) a-linolenic acid (ALA),
concentration = 20 mM in DMSO-ds solution (number of scans=512, T=298K, Ta«q=4.09s, relaxation
delay=4s), using various tm values. The amplitude of the excited CHs- group (denoted with the
asterisk (*)), is reduced by a factor of 30, relative to the amplitude of the rest of the NOE signals.
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amplitude of the excited CHs- group (denoted with the asterisk (*)), is reduced by a factor of 30,
relative to the amplitude of the rest of the NOE signals.
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2.3. DFT Calculations in CHCIs — Comparison with the Liquid State

Computational approaches have been proved very successful in elucidating structural and
spectroscopic experimental data of free fatty acids in the liquid state [27,28]. Moreover, this approach
can be used as a predictive tool in biotechnology for predesigned properties of functional free fatty
acid aggregates by tuning their interatomic interactions in organic materials [46]. Based on the state
of the FFA carboxylic proton, it can be determined if the FFA in the proper solution can be used as a
transport or catalytic medium [47]. The present computations were designed to investigate possible
inter- and intramolecular interactions that justify the experimental d(COOH) and 1D NOE NMR
results, presented above. Caproleic acid was investigated in the dimeric structure forming O-H--O=C
centro-symmetric hydrogen bonds (Figure 6a), in the cyclic trimeric (Figure 6b) and linear trimeric
(Figure 6c) structures in implicit solvation (IEFPCM-chloroform). In the centro-symmetric dimeric
structure (Figure 6a), the dihedral angle defined by the four oxygen atoms of the carboxylic groups
is only 0.8°, the (O)H-O(C) and O--O hydrogen bond distances are 1.66 and 2.65 A, respectively, and
the O-H--O bond angle is indicative of a nearly linear (178.0°) hydrogen bond interaction. These
values can be compared with the O--O distance of 2.67 A and deviation from planarity of 26.7° in the
single crystal X-ray structure of linolenic acid, a-linolenic acid and arachidonic acid [40]. The
experimental chemical shifts of caproleic acid (0 = 11.08 ppm at 298 K, Table 1) are rather
indistinguishable on the basis of the structures of Figure 6a,b (13.6 ppm and 12.9/11.2/10/7 ppm,
respectively, Table 2). In the linear aggregate structure Figure 6c, the presence of a carboxylic group
which does not participate in hydrogen bond interactions (12.2/11.2/6.8 ppm), results in an average
chemical shift of 10.4 ppm. A minor contribution of the structural model 6c, therefore, could account
for the deviation of the experimental data from the computational data of the structures 6a and 6b.
Moreover, the hydrophobic effect generated by the carbon chains in 6¢c, seems to play an antagonistic
role with respect to the cyclic structure 6b.

Computations were also performed with the tetrameric caproleic acid, in a parallel orientation
similar to the single crystal X-ray structures of free fatty acids [40] and in an antiparallel orientation,
in agreement with the experimental weak NOE data of the through-space proximity of the a-CHz and
the terminal CH(9)=CH2(10) olefinic protons. Similar methodology was used for the interpretation of
the NOEs observed in the liquid state for CA, OA, ALA, and EPA [28]. The calculated chemical shifts
of the carboxylic proton for the tetrameric CA, in the parallel configuration vary between 14.3 and
13.0 ppm while in the antiparallel configuration between 13.8 and 13.2 ppm. The chemical shift
difference of 1.3 ppm observed for the parallel arrangement can be attributed to the two interacting
cyclic hydrogen bonds.

Table 2. Calculated 5(COOH) chemical shifts of the free fatty acids under study in implicit solvation
(IEFPCM-chloroform).

FFA Intermolecular interaction (COOH)
(ppm)
CA dimer COO-H-0O=COH 13.6
CA cyclic trimer COO-H-0=COH 12.9/11.2/10.7
CA linear trimer COO-H-0O=COH 12.2/12.2
COOH (free) 6.8
CA tetramer parallel COO-H--0O=COH 14.3,14.0,13.7,13.0

CA tetramer antiparallel COO-H-0O=COH 13.8,13.8,13.8, 13.2

do0i:10.20944/preprints202307.1662.v1
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Figure 6. Optimized structures of caproleic acid: (a) dimeric structure forming OH--OC centro-
symmetric hydrogen bonds. (b) Cyclic trimeric structure and (c) linear trimeric structure in implicit

solvation (IEFPCM-chloroform).

2.4. DFT Calculations in DMSO

The DFT calculated 'H NMR chemical shifts of the carboxylic protons with a discrete solvation
molecule of DMSO were investigated in the case of a single molecule of CA, CA dimer with parallel
and antiparallel arrangements (Figure 7 and Table 3). The representative molecular system is a
caproleic acid molecule interacting with a DMSO molecule, explicitly present in the design, while the
DMSO solvent is present implicitly (Figure 7a). To this interacting pair, another one, identical to the
first, was added and oriented parallel and antiparallel to it (Figure 7b,c). These configurations were
chosen to explore possible interactions between DMSO and the proton of the carboxylic group or the
double bond of the caproleic acid and the proton of the carboxylic group. The results presented in
Table 3 indicate that the orientations of Figure 7 produce practically indistinguishable (COOH)
chemical shifts with values ranging from 13.4 to 14.2 ppm. In all cases very strong hydrogen bond
interactions of the carboxylic protons with the oxygen of the DMSO molecule were observed with
OH-O distances of 1.59 to 1.62 A and bond angles of 168.5° to 171.2¢. These hydrogen bond distances
are significantly shorter than those observed in the centro-symmetric hydrogen bond interactions

through the carboxylic groups with OH-O distances of 1.66 A.
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The results of comparing the complexation energy of the caproleic dimer in Figure 6a and the
caproleic acid-DMSO complex in Figure 7a are very informative. For the structure 6a, the
complexation energy is -21.2 kcal/mole, while it is -18.0 kcal/mole for the 7a. Given that the centro-
symmetric hydrogen bond is double while in the caproleic-DMSO complex, only one hydrogen bond
is formed, DMSO seems to be the most potent antagonist for this interaction.

Similar results were obtained with the a-linolenic acid. The OH--O hydrogen bond distance (1.64
A), the O-H--O bond angle (168.5°) and the COOH chemical shift (6 = 13.43 ppm) are indicative of a
very strong intermolecular hydrogen bond with a single solvation molecule of DMSO (Table 3 and
Supplementary Figure S2).

DFT-wB97X-D/aug-cc-pVDZ DFT-wB97X-D/6-311++G(2d,2p) DFT-wB97X-D/6-311++G(2d,2p)
Implicit Solvation (IEFPCM) Solvent: DMSO
a b c
N % S
:{ﬁ )\ 4 ¢ ))
3 T 42 «i\’\?lf)
} ,yi. ;‘ 5 % 7 44 ¥ 4‘ -‘\,\ |
ArTYYN, A 13 3 P |
§ & ,JJ «‘"‘. \. J.‘* _‘.)— ] ’ J\ |
2 —1 N, |

1.60 A <OH-0O=168.5° 1.59A <OH-0=171.2° 159 A <OH~-O = 170.9°
1.62 A <OH-0=169.5° 1.59 A <OH-0=171.2°

Figure 7. Optimized structures of caproleic acid (CA) with a discrete solvation molecule of DMSO on
the carboxylic group: single molecule of CA (a); dimeric structures of CA in parallel (b) and
antiparallel configuration (c).

Table 3. Calculated d(COOH) chemical shifts of the free fatty acids under study with a discrete
solvation molecule of DMSO.

Intermolecular interaction o(COOH)
FFA
(ppm)
CA COO-H-DMSO 13.6
CA dimer parallel COO-H-~ DMSO 14.3, 14.0, 13.7, 13.0
CA dimer antiparallel COO-H-- DMSO 13.8,13.8,13.8,13.2
ALA COO-H-- DMSO 13.43

3. Materials and Methods

3.1. Chemicals and Reagents

Caproleic acid, purity > 96%, oleic acid, purity > 99% (GC), and a-linolenic acid, purity > 99%,
were purchased from Sigma-Aldrich. EPA, purity > 99%, and DHA, purity > 99%, were purchased
from Larodan. Chloroform-d: and DMSO-ds, 99.8%, were obtained from Deutero. Molecular sieves
(3A) were obtained from Sigma-Aldrich and activation was achieved by heating at 200-230°C for 24
h and the use of high vacuum for 3 h.
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3.2. Variable Temperature and Concentration 'TH NMR Chemical Shifts and 1D 'H NMR Transient NOE

Variable temperature 'H NMR experiments were performed on a Bruker AVANCE NEO 500
spectrometer, controlled by the software TopSpin 3.2. The temperature was maintained and
measured with an accuracy of + 0.1°C. Chemical shifts were reported with respect to the solvent
residual signal (CDCls/DMSO-ds). Correction of temperature dependencies of the chemical shifts of
the solvents was not applied since they are very small [48,49], in absolute terms, falling well below
the anticipated range of AS/AT values of the carboxylic protons. Variable concentration (100 to 20
mM) 1D transient NOE experiments [50-52] were performed with the use of the pulse program
selnogp with pulse field gradients (PFG). The recovery delay was set to 200 us and the shaped pulse
to 50 ms [28]. NMR experiments were performed on freshly prepared solutions to avoid the formation
of significant amounts of primary and secondary oxidation products [53,54].

3.3. DFT Calculations of 'TH NMR Chemical Shifts and Complexation Energies

All geometries were optimized at the DFT-wB97X-D level of theory [55,56]. Three basis sets
were adopted (aug-cc-pVDZ, 6-311++G(2d,2p), and 6-31+G(d,p)) adjusted at the relative molecular
system size and computational cost. The selected functional is a range-separated functional, based on
modified Becke’s 97 functional with added dispersion corrections. It comprises 22% Hartree-Fock
exchange for the short range and 100% Hartree-Fock for the long range. A standard error function
with a default range separation parameter value of w = 0.2 was applied for the intermediate region.
Tight optimization criteria were employed (RMS force = 1¥10%), while subsequent frequency
calculations located no imaginary frequencies, confirming that the optimized structures are true
minima. The GIAO (Gauge-Independent Atomic Orbital) [57] was employed to calculate the NMR
spectrum. The counterpoise corrections included the basis set superposition error (BSSE) in the
complexation energy calculations [58]. The Polarizable Continuum Model (PCM) with the integral
equation formalism variant (IEFPCM) was employed for implicit solvation [59]. The computations
were run on the FASRC Odyssey cluster supported by the FAS Division of Science Research
Computing Group at Harvard University.

4. Conclusion

The combined use of variable temperature and concentration "H NMR chemical shifts of the
carboxylic protons, variable concentration transient 1D NOE experiments, and DFT calculations of
'H NMR chemical shifts are an effective approach to investigate a variety of low energy structures of
unsaturated and polyunsaturated FFAs in chloroform and DMSO solution. More specific:

(a) Caproleic acid, oleic acid, a-linolenic acid, and EPA, in various concentrations in chloroform
solution (c =100 to 20 mM), exist mainly in the form of hydrogen-bonded dimers through carboxylic
groups in an equilibrium of parallel and antiparallel interdigitated structures. The correlation times
for molecular tumbling are within the extreme narrowing condition for all FFAs, therefore, the
hydrogen-bonded aggregates are of low molecular weight. In DHA a structural model of an
intermolecular hydrogen bond through carboxylic groups and an intermolecular hydrogen bond
between the carboxylic group of one molecule and the terminal double bond of a second molecule is
shown to play a role, as in the case of the liquid state [28].

(b) In DMSO solution, at low concentration ¢ =20 mM, all the FFAs investigated show a strong
hydrogen bond interaction of a single discrete solvation molecule of DMSO with the carboxylic
group, without hydrogen bonded dimers through the carboxylic groups. 1D NOE experiments and
DEFT calculations show the presence of parallel and antiparallel interdigitated configurations of low
molecular weight within the extreme narrowing condition (wote << 1).

The present study shows the great conformational flexibility of mono- and polyunsaturated
FFAs in various solvents and the importance of the combined use of NMR and DFT studies
[18,19,27,28,60-63]. The significant conformational flexibility of FEAs was also considered to be the
main reason that their location in the binding site FA7 in the human serum albumin could not be
determined accurately [18,19,63] in the available X-ray structural data [64-66]. The structures of free
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fatty acids and their oxidation products [53,54], in various solvents with varying hydrogen bond and
solvation abilities, are currently under investigation with the combined use of NMR and DFT studies.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Figure S1: 1D transient NOE (500 MHz) NMR spectra of caproleic acid (CA), c=
20 mM in CDCls solution (A) and ¢ =20 mM in DMSO-ds solution (B) (number of scans=512, T=298K, Tacq=4.09s,
relaxation delay=4s) using various mixing times (tm). The excited a-CH2 group (denoted with the asterisk (*)), is
reduced by a factor of 30, relative to the amplitude of the NOE signals in the region up to 5.9 ppm. Figure S2:
Optimized structure of a-linolenic acid (ALA) with a discrete solvation molecule of DMSO on the carboxylic

group.
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