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Article

Kernel Geometric Mean Metric Learning

Zixin Feng , Teligeng Yun, Yu Zhou *, Ruirui Zheng, Jianjun He

Dalian Minzu University

* Correspondence: yuzhou829@sina.com

Abstract: This paper propose a kernel geometric mean metric learning (KGMML) algorithm. The

basic idea is to obtain the closed-form solution of the geometric mean metric learning (GMML)

algorithm in the high-dimensional feature space determined by the kernel function. Then, the

solution is generalized as a form of kernel matrix by using the integral representation of the weighted

geometric mean and the Woodbury matrix in this new feature space. Experimental results on 15

datasets show that the proposed algorithm can effectively improve the accuracy of the GMML

algorithm and other metric algorithms.

Keywords: metric learning; kernel methods; weighted geometric mean

1. Introduction

Analyzing the modeling process of machine learning algorithms, it is clear that the construction

of a learning algorithm requires a similarity metric between sample pairs given. It is well known

that the distance measure is one of the most commonly used measures to describe the similarity

between samples. At present various distance metrics have been proposed such as Euclidean distance

and Mahalanobis distance. However, these distance metric expressions are fixed, i.e., there are

non-adjustable parameters, which result in different effectiveness of dealing with various problems.

Thus, an effective distance metric is proposed by constructing learning from training samples. From

the definition of the distance metric, it follows that any binary function d
(

xi, xj

)

defined in the feature

space is called a distance function, provided that the four conditions of symmetry, self-similarity,

non-negativity, and trigonometric inequality are satisfied simultaneously. Thus any binary function

dM

(

xi, xj

)

=
(

xi − xj

)T
M
(

xi − xj

)

, (1)

is a distance function determined by any symmetric positive definite (SPD) matrix M, where xi, xj

are two samples from the training set X , and usually M is called a metric matrix. The purpose of

metric learning is to use training samples to learn a metric matrix M such that the resulting distance

function dM

(

xi, xj

)

can improve the performance of the learning algorithm or satisfy some application

requirements. Thus, metric learning has wide applications in many fields, such as pattern recognition

[1,2], data mining [3–5], information security [6,7], bioinformatics [8,9], and medical diagnosis [10–12].

Because of the wide application space, metric learning techniques have received a lot of attention

and many excellent algorithms have been proposed methods. Xing [13] first proposed a metric learning

algorithm. The main idea of the algorithm is to learn a metric matrix so that the distance between

similar pairs of samples is small and the distance between dissimilar pairs of samples is large. The

algorithm can make the distribution of similar pairs of samples in the new metric space more compact

more compact in the new metric space, while the distribution of dissimilar pairs is more discrete. The

proposal of this algorithm marked the real development of metric learning, and many subsequent

research works were inspired by this algorithm. Davis [14] proposed an information theoretic metric

learning algorithm. The basic idea of the algorithm is to assume the existence of an a priori metric

matrix M0, while ensuring that the distance between similar pairs of samples is less than a threshold

and the distance between dissimilar pairs of samples is greater than a threshold. Minimize the relative

entropy between the multivariate Gaussian distributions corresponding to M and M0. Wang [15]

proposed an information geometry metric learning algorithm. The basic idea of the algorithm is to
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use the category labeling information of the training samples to construct a kernel matrix that can

reflect the desired distance between samples. Construct an actual kernel matrix describing the realistic

distance relationship between the samples using the eigenvectors of the samples as well as the metric

matrix M. The metric matrix M is then solved by minimizing the distance between these two kernel

matrices. Weinberger [16] proposed a metric learning algorithm based on maximum margin. The basic

idea is to define an interval function between similar samples of each sample and other classes of

samples. The metric matrix is then solved by minimizing the distance between similar pairs of samples

and maximizing the defined interval.

Geometric mean metric learning algorithm was proposed by Pourya [17] in 2016. The essence

of most metric learning algorithms is to minimize the distance between similar pairs of samples

rather than maximize the distance between similar pairs of samples, therefore the sign of the term

corresponding to the dissimilar pair of samples in the objective function is usually negative, while the

strategy of the geometric mean metric learning model is to use the inverse matrix of the metric matrix

M to represent the distance between dissimilar pairs of samples. The advantage of this approach is

that the sign of the item corresponding to the dissimilar pair of samples in the objective function will

become positive, which reduces the difficulty of solving the model. Its objective function is as follows:

min
M>0

∑
(xi ,xj)∈D+

dM

(

xi, xj

)

+ ∑
(xi ,xj)∈D−

dM−1

(

xi, xj

)

,
(2)

where the similar pair sample set D+ and the dissimilar pair sample set D− can be expressed as:.

{

D+ =
{(

xi, xj

)

| xi, xj are in the same class
}

,

D− =
{(

xi, xj

)

| xi, xj are in different class
}

.
(3)

Although GMML algorithm has some advantages, such as unconstrained convex objective

function, closed form solution and interpretability, and faster calculation speed [18], it is actually

a linear learning method and does not work well to address non-linear problems. Kernel methods

are key technology for addressing nonlinear problems, and therefore kernel algorithms [19–23] have

been proposed. The principle of the kernel method is that the original data transformed from the

input space into a higher dimensional feature space by a mapping function. This transformation

must be achieved to offer a reliable linear model in the feature space that corresponds to a nonlinear

solution in the original data space. Gaussian kernel functions were used to map the data in the feature

space. The closed form solution of the GMML algorithm is represented as a kernel matrix by using the

integral representation of the weighted geometric mean and the Woodbury matrix. Then the KGMML

algorithm is obtained. Thus the nonlinear problem can be handled effectively while retaining the

advantages of the GMML algorithm. We define the objective function as the following form:

min
MΦ>0

∑
(Φ(xi),Φ(xj))∈D+

Φ

dMΦ

(

Φ(xi), Φ(xj)
)

+ ∑
((Φ(xi)−Φ(xj))∈D−

Φ

dMΦ
−1

(

Φ(xi), Φ(xj)
)

,
(4)

where a mapping is Φ : Rm 7→ Hκ (Hilbert Space), i.e., x ∈ R
m → Φ(x) ∈ Hκ , MΦ is the metric matrix

in Hκ space, the set of similar pairs D+
Φ and the set of dissimilar pairs D−

Φ are

{

D+
Φ=

{(

Φ(xi), Φ(xj)
)

|Φ(xi), Φ(xj)are in the same class
}

,

D−
Φ=

{(

Φ(xi), Φ(xj)
)

|Φ(xi), Φ(xj)are in different class
}

.
(5)

The main innovation of the paper is to study kernel geometric mean metric learning algorithm

for nonlinear distance using a kernel function. The key idea is to construct kernel matrices based on

the distance metric for the given training data. Secondly, the accuracy of the proposed algorithm is

superior to GMML algorithm and other metric algorithms. The structure of this paper is organized as

follows: In Sect. 2, some lemmas of weighted geometric mean and Woodbury identity are formulated.
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Then, in Sect. 3, optimization problem and its solution were discuss, then extension to weighted

geometric mean is discussed. The steup of the experiment and the analysis of parameter sensitivity are

carried out in Sect. 4. Finally, our results are summarized in Sect. 5.

2. Preliminaries

In this section, three lemmas will be given in order to simplify the objective function (4) more

clearly.

Lemma 1. [24] For any t ∈ (0, 1), A is n × n positive definite and B is n × n Hermitian, the following

equation holds

A♯tB =
2 sin(πt)

π
A
∫ 1

−1
(1 − s)−t(1 + s)t−1

(

(1 − s)I + (1 + s)B−1 A
)−1

ds,

which is the integral representation of the A, B weighted geometric mean, where I is the identity matrix.

Lemma 2. [25] If A is a n × n invertible matrix corrected by UCV where U is n × k matrice, C is k × k

matrice, V is k × n matrice, then Woodbury identity is

(A + UCV)−1 = A−1 − A−1U
(

C−1 + VA−1U
)−1

VA−1.

Lemma 3. [24] For any t ∈ (0, 1), A is n × n positive definite and B is n × n Hermitian, the following

equation holds

A♯tB = A
(

B−1 A
)−t

.

3. Main Results

3.1. Optimization Problem and Its Solution

In the following, the objective function (4) can be simplified in view of Equation (1), one has

min
MΦ>0

∑
(Φ(xi),Φ(xj))∈D+

Φ

(

Φ(xi)− Φ(xj)
)T

MΦ

(

Φ(xi)− Φ(xj)
)

+ ∑
(Φ(xi),Φ(xj))∈D−

Φ

(

(Φ(xi)− Φ(xj)
)T

M
−1

Φ

(

(Φ(xi)− Φ(xj)
)

.
(6)

Rewriting the Mahalanobis distance uses traces, Equation (4) can be turned into the following

optimization problem

min
MΦ>0

∑
(Φ(xi),Φ(xj))∈D+

Φ

tr
(

MΦ

(

Φ(xi)− Φ(xj)
) (

Φ(xi)− Φ(xj)
)T
)

+ ∑
(Φ(xi),Φ(xj))∈D−

Φ

tr
(

M
−1

Φ

(

Φ(xi)− Φ(xj)
) (

Φ(xi)− Φ(xj)
)T
)

= min
MΦ>0

tr(MΦSΦ) + tr
(

M
−1

Φ DΦ

)

△
= min

MΦ>0
h(MΦ),

(7)
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where SΦ , DΦ are SPD matrixes, and it is a realistic assumption in many situations [17]. Thus SΦ , DΦ

can be expressed as

SΦ = ∑
(Φ(xi),Φ(xj))∈D+

Φ

(

Φ(xi)− Φ(xj)
) (

Φ(xi)− Φ(xj)
)T

,

DΦ = ∑
(Φ(xi),Φ(xj))∈D−

Φ

(

Φ(xi)− Φ(xj)
) (

Φ(xi)− Φ(xj)
)T

.
(8)

Differentiating h(MΦ) with respect to MΦ yields

∇h (MΦ) = SΦ − M−1
Φ DΦ M−1

Φ . (9)

Then, ∇h(M) is set to 0, which implies that

MΦSΦ MΦ = DΦ, (10)

it is clear that the above equation is a Riccati equation. Since SΦ and DΦ are positive definite matrices,

Equation (4) has a unique positive solution which is the midpoint of the geodesic joining SΦ
−1 to DΦ

[26], that is

MΦ = SΦ
−1♯1/2DΦ = SΦ

−1/2
(

SΦ
1/2DΦSΦ

1/2
)1/2

SΦ
−1/2, (11)

where SΦ
−1♯1/2DΦ represents the geometric mean of SΦ

−1 and DΦ.

3.2. Extension to Weighted Geometric Mean

In order to incorporate the weighted geometric mean, it is necessary to take into account the

determination of weights for the objective function. When assigning linear weights for SΦ
−1 and

DΦ, only the metric matrix MΦ can be uniformly scaled by a constant factor. Consequently, it is

illogical to assign linear weights to the two components in Equation (2). Nevertheless, by employing

nonlinear weights derived from SPD manifold Riemannian geometry, the weights can be transformed

into trade-offs between the two terms. Thus, the Riemann distance δR is introduced, and the problem

of finding the minimum value of h(MΦ) is equivalent to solving the minimum value of the following

optimization problem

min
MΦ�0

δ
2
R

(

MΦ, SΦ
−1
)

+ δ
2
R (MΦ, DΦ) , (12)

where the Riemannian distance between SPD matrices X and Y is denoted by δ
2
R(X, Y) =

∥

∥

∥
log
(

Y−1/2XY−1/2
)∥

∥

∥

F
, and ‖.‖F is the Frobenius norm of a matrix. A linear parameter t ∈ [0, 1] is

introduced to trade off the relationship of the two terms in the formula

min
MΦ�0

(1 − t)δ2
R

(

MΦ, SΦ
−1
)

+ tδ2
R (MΦ, DΦ)

△
= min

MΦ>0
ht(MΦ). (13)

Because ht(MΦ) is still geodesically convex (see [17]), Equation (13) has a unique positive solution,

that is

MΦ = SΦ
−1♯tDΦ. (14)

For the convenience of subsequent calculations, the notations are defined as follow

PΦ = ∑
(Φ(xi),Φ(xj))∈D+

Φ

Φ (xi)− Φ
(

xj

)

,

QΦ = ∑
(Φ(xi),Φ(xj))∈D−

Φ

Φ (xi)− Φ
(

xj

)

.
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Theorem 1. The solution MΦ = SΦ
−1♯tDΦ of the objective function (4) can be rewritten as

MΦ = QΦ

(

KPQ
TKPQ

)t−1
QΦ

T,

where the kernel matrix KPQ = 〈PΦ · QΦ〉 = PT
ΦQΦ, and 〈·〉 is denoted inner product.

Proof. According to Lemma 1

MΦ = S−1
Φ ♯tDΦ

=
2sin(πt)

π
S−1

Φ

∫ 1

−1
(1 − s)−t(1 + s)t−1((1 − s)I + (1 + s)D−1

Φ S−1
Φ )−1ds

=
2sin(πt)

π

∫ 1

−1
(1 − s)−t(1 + s)t−1((1 − s)SΦ + (1 + s)D−1

Φ )−1ds.

(15)

Substituting SΦ = PΦPT
Φ, DΦ = QΦQT

Φ into Equation (15), it is clearly that

MΦ =
2sin(πt)

π

∫ 1

−1
(1 − s)−t(1 + s)t−1((1 − s)PΦPT

Φ + (1 + s)(QΦQT
Φ)

−1)−1ds. (16)

For convenience in the following discussion, we introduce the notation

G :=

(

(1 − s) PΦPT
Φ + (1 + s)

(

QΦQT
Φ

)−1
)−1

.

From Lemma 2, it follows that

G = (A + UCV)−1 = A−1 − A−1U
(

C−1 + VA−1U
)−1

VA−1, (17)

where A := (1 + s)
(

QΦQT
Φ

)−1
, U := PΦ, C := (1 − s)I, V := PT

Φ. Then, taking it into Equation (16),

one has

MΦ =
2sin(πt)

π

∫ 1

−1
(1 − s)−t(1 + s)t−1[

QΦQT
Φ

1 + s
−

QΦQT
Φ

1 + s
· PΦ

(

I−1

1 − s
+ PT

Φ ·
QΦQT

Φ

1 + s
· PΦ

)−1

PT
Φ

QΦQT
Φ

1 + s
]ds.

=
2sin(πt)

π

∫ 1

−1
(1 − s)−t(1 + s)t−1[

QΦQT
Φ

1 + s
−

QΦ

1 + s
· KPQ

T

(

I−1

1 − s
+

KPQKPQ
T

1 + s

)−1
KPQQΦ

T

1 + s
]ds

=
2sin(πt)

π

∫ 1

−1
(1 − s)−t(1 + s)t−1QΦ[

I

1 + s
−

KPQ
T

1 + s

(

I−1

1 − s
+

KPQKPQ
T

1 + s

)−1
KPQ

1 + s
]QT

Φds,

(18)

where KPQ = PT
ΦQΦ, and set

G :=
I

1 + s
−

KPQ
T

1 + s

(

I−1

1 − s
+

KPQKPQ
T

1 + s

)−1
KPQ

1 + s
.

In view of Lemma 2

G = A−1 −A−1U
(

C−1 + VA−1U
)−1

VA−1 = (A+ UCV)−1, (19)
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where A := [(1 + s)I], U := KT
PQ, C := (1 − s)I, V := KPQ. Thus,

MΦ =
2sin(πt)

π

∫ 1

−1
(1 − s)−t(1 + s)t−1QΦ((1 + s)I + (1 − s)KPQ

TKPQ)
−1QT

Φds

=QΦ

2sin(πt)

π

∫ 1

−1
(1 − s)−t(1 + s)t−1

(

(1 + s)
(

KPQ
TKPQ

)−1(

KPQ
TKPQ

)

+ (1 − s)
(

KPQ
TKPQ

)

)−1

dsQT
Φ

=QΦ

(

KPQ
TKPQ

)−1 2sin(πt)

π

∫ 1

−1
(1 − s)−t(1 + s)t−1

(

(1 − s) I + (1 + s)
(

KPQ
TKPQ

)−1
)−1

dsQT
Φ

=QΦ

(

KPQ
TKPQ

)−1
I♯t(KPQ

TKPQ)Q
T
Φ.

(20)

From Lemma 3, it follows that

MΦ =QΦ

(

KPQ
TKPQ

)−1
(

(

KPQ
TKPQ

)−1
)−t

QT
Φ

=QΦ

(

KPQ
TKPQ

)t−1
QΦ

T.

(21)

From the definition of the kernel matrix yields

KiQ = 〈Φ (xi) · QΦ〉 ,

KjQ =
〈

Φ
(

xj

)

· QΦ

〉

.
(22)

Theorem 2. The distance dMΦ
(xi, xj) =

(

Φ (xi)− Φ
(

xj

))T
MΦ

(

Φ (xi)− Φ
(

xj

))

can be rewritten as

dMΦ
(xi, xj) = (KiQ − KjQ)

(

KPQ
TKPQ

)t−1
(KiQ

T − KjQ
T).

Proof. According to Theorem 1

dMΦ
(xi, xj) =

(

Φ (xi)− Φ
(

xj

))T
QΦ

(

KPQ
TKPQ

)t−1
QT

Φ

(

Φ (xi)− Φ
(

xj

))

=(KiQ − KjQ)
(

KPQ
TKPQ

)t−1
(KiQ

T − KjQ
T).

(23)

Equation (23) can be taken as the final result of kernel geometric mean metric learning algorithm.

The algorithm is summarized in Algorithm 1.

Algorithm 1 Kernel Geometric Mean Metric Learning Algorithm

Input: Training set S =
{

(xi, xj)|xi, xj ∈ X
}

.

Parameter: t: t ∈ [0, 1], the weight coefficient in Equation (14),

p: kernel parameters of Gaussian kernel function.

Output: dMΦ
the distance learned for KGMML,

Step1. According to Equation (5), construct D+
Φ and D−

Φ .

Step2. Compute kernel matrices KPQ , KiQ and KjQ according to Theorem 1 and Theorem 2.

Step3. Compute dMΦ
(xi, xj) = (KiQ − KjQ)

(

KPQ
TKPQ

)t−1
(KiQ

T − KjQ
T).
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4. Experiment

4.1. Experimental setup

To verify the effectiveness of algorithm 1, simulation experiments will be conducted on 15 UCI

[27] datasets, where the basic information is shown in Table 1.

Table 1. Characteristics of experimental datasets.

Data sets Of features Of instances Of classes

1 Pima 8 768 2
2 Vehicle 18 846 4
3 German 24 1000 2
4 Segment 18 2310 7
5 Usps 256 9298 10
6 Mnist 784 4000 10
7 Glasses 9 214 6
8 DNA 180 3186 2
9 Heart-Disease 13 270 2

10 Lymphgraphy 18 148 4
11 Liver-Disorders 6 345 2
12 Hages-Roth 4 160 3
13 Ionosphere 34 351 2
14 Spambase 57 4601 2
15 Balance-Scale 4 625 3

Next, some efficient algorithms are described for distance metric learning, and the proposed

method is compared with existing excellent classical algorithms. The specific introduction will be

given in Table 2. For the KGMML, the setting of t and p will be given in detail in the next subsection.

Table 2. Briefly describes the distance metric learning method used in this paper

Name Description

1 Euclidean The Euclidean distance metric [28].
2 DMLMJ Distance metric learning through maximization of the Jeffrey divergence [28].
3 LMNN Large margin nearest neighbor classification [16].
4 GB-LMNN Non-linear Transformations with Gradient Boosting [29].
5 GMML Geometric Mean Metric Learning [17].
6 Low-rank Low-rank geometric mean metric learning [30].
7 KGMML The kernelized version of GMML

4.2. Parameter Sensitivity Analysis

It can be seen from Algorithm1 that the values of t and p are specified before use. To determine

the impact of these two parameters on the KGMML algorithm, the experiments are conducted on

five datasets selected from 15 datasets. 5-fold cross-validation is used to choose the best t-value, and

the two-step method is used to test different t-values. The above approach is used to find the best

t-value, and its precision can be verified in Figures 1 and 2. Firstly, obtain the optimal t in the set

{0.1, 0.3, 0.5, 0.7, 0.9}, and the result is shown in Figure 1. Secondly, test 5 t-values using intervals with

a step size of 0.02. As shown in Figure 2, the variation of accuracy in the test interval with a step size

of 0.02 is not significant, so we chose the middle t-value of 0.05. When the p-value is 10, the precision

has an inflection point in Figure 3, and the precision is higher at the inflection point. Thus, the p- value

is chosen as 10. Vary t in the set {0.1, 0.3, 0.5, 0.7, 0.9}, and p is fixed.
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Figure 1. Vary t in the set {0.1, 0.3, 0.5, 0.7, 0.9}, and p is fixed.
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Figure 2. Vary t in the set {0.01, 0.03, 0.05, 0.07, 0.09}, and p is fixed
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Figure 3. Vary p in the set {0.01, 1, 10, 100, 1000}, and t is fixed

4.3. Experimental Results

The accuracy of each compared algorithm on 15 datasets is shown in Table 3, where the best result

on each dataset is shown in boldface. Compared with the other six algorithms, the highest accuracy

is achieved from KGMML algorithm on the 8 datasets. All experimental methods are implemented

on MATLABR2018b (64-bit), and the simulations are run on a laptop with an Intel Core i5 (2.5GHz)

processor.

Table 3. Error rate results are shown on UCI dataset, and the best result is shown in bold.

Data sets GMML DMLMJ LMNN GB-LMNN Educlidean Low-rank KGMML

1 Pima 27.66 30.18 33.82 37.14 27.27 29.58 25.17
2 Vehicle 22.09 25.75 46.53 41.24 33.53 41.32 21.21
3 German 27.41 24.79 30.50 29.32 31.53 26.96 24.40
4 Segment 4.13 3.64 5.19 4.55 6.93 5.59 3.22
5 Usps 3.72 2.88 33.11 10.60 10.55 4.08 2.82
6 Mnist 9.65 16.44 86.80 82.62 17.12 75.34 8.32
7 Glasses 36.96 33.08 30.20 23.30 30.23 33.64 32.47
8 DNA 23.65 21.75 22.32 22.84 27.63 26.24 23.05
9 Heart-Disease 20.82 19.73 31.52 18.51 33.33 22.52 18.97
10 Lymphography 56.88 73.62 70.76 60.21 75.13 57.57 53.75
11 Liver-Disorders 35.00 30.05 30.46 34.88 31.88 41.86 30.17
12 Hages-Roth 37.69 16.84 31.33 31.35 16.67 39.55 19.52
13 Ionosphere 15.34 11.27 5.71 4.29 1.43 17.26 11.54
14 Spambase 19.33 18.27 38.60 15.80 16.09 11.43 11.20
15 Balance-Scale 12.84 8.62 12.80 15.20 14.40 12.31 9.19

In order to show the performance advantages of the KGMML algorithm, a score statistic is

performed on the KGMML algorithm and other classic algorithms. The scoring process is as follows:

assuming that A is the result of using the KGMML algorithm on a certain data set, and B is the result

of uniting the KGMML algorithm on this data set (that is, using other algorithms). Firstly, comparative

analysis of A and B is performed by using a 5% significance level t test. In a statistical sense, if A > B ,

it is considered that the result A obtained by using the KGMML algorithm on this dataset wins the

result B using other algorithms. Thus, the statistical result of the score on this data set is recorded as

"1/0/0". If A < B , the score statistics result is recorded as "0/0/1". If A = B, it means that A and B

are the same in the statistical sense. Thus, it is considered that they are tied and recorded as "0/1/0". It

is evident that the notation "5/0/0" signifies that the outcomes achieved by the KGMML algorithm
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outperform those of other algorithms across five datasets. On each data set and the overall score, the

statistical results of the KGMML algorithm are listed in Table 4.

Table 4. The score statistics of the comparison between the results obtained by the KGMML algorithm

and other classical algorithms.

Datasets
KGMML

GMML DMLMJ LMNN GB-LMNN Educlidean Low-rank

Pima 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0
Vehicle 0/1/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0
German 1/0/0 0/1/0 1/0/0 1/0/0 1/0/0 1/0/0
Segment 1/0/0 0/1/0 1/0/0 1/0/0 1/0/0 1/0/0

Usps 1/0/0 0/1/0 1/0/0 1/0/0 1/0/0 1/0/0
Mnist 0/1/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0

Glasses 1/0/0 0/1/0 0/0/1 0/0/1 0/1/0 1/0/0
DNA 0/1/0 0/0/1 0/0/1 0/1/0 1/0/0 1/0/0

Heart-Disease 1/0/0 0/1/0 1/0/0 0/1/0 1/0/0 1/0/0
Lymphography 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0
Liver-Disorders 1/0/0 0/1/0 0/1/0 1/0/0 0/1/0 1/0/0

Hages-Roth 1/0/0 0/0/1 1/0/0 1/0/0 0/0/1 1/0/0
Ionosphere 1/0/0 0/1/0 0/0/1 0/0/1 0/0/1 1/0/0
Spambase 1/0/0 1/0/0 1/0/0 1/0/0 1/0/0 0/1/0

Balance 1/0/0 0/1/0 1/0/0 1/0/0 1/0/0 1/0/0

Total 12/3/0 5/8/2 11/1/3 9/2/2 11/2/2 14/1/0

5. Conclusions

Kernel geometric mean metric learning is proposed for nonlinear distance metric with the

introduction of a kernel function. Traditional metric learning approaches aim to learn a global linear

metric, which is not well-suited for nonlinear problems. The experimental results on the UCI dataset

show that the algorithm can effectively improve the accuracy of GMML algorithm, and the nonlinear

problems can be addressed by the proposed algorithm. In future work, the problem of the inaccurate

similarity pair will be tried to improve where it exists in the kernel geometric mean metric learning

algorithm. The partial labeling metric learning algorithm has been proposed in recent years, and a

partial labeling algorithm based on kernel geometric mean metric learning will be proposed in the

future.
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