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Article 
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Abstract: Fault detection in PV arrays and inverters is critical for ensuring maximum efficiency and 

performance. Artificial intelligence (AI) learning can be used to quickly identify issues, resulting in a 

sustainable environment with reduced downtime and maintenance costs. As the use of solar energy systems 

continues to grow, the need for reliable and efficient fault detection and diagnosis techniques becomes more 

critical. This paper presents a novel approach for fault detection in photovoltaic (PV) arrays and inverters, 

combining AI techniques. It integrates Elman Neural Network (ENN), Boosted Tree Algorithms (BTA), Multi-

layer Perceptron (MLP), and Gaussian Processes Regression (GPR) for enhanced accuracy and reliability in 

fault diagnosis. It leverages their strengths for accuracy and reliability of fault diagnosis. Feature engineering-

based sensitivity analysis was utilized for feature extraction, the fault detection and diagnosis were assessed 

using several statistical criteria including PBAIS, MAE, NSE, RMSE, and MAPE. Two intelligent learning 

scenarios are carried out, the first scenario is done for PV array fault detection with DC power (DCP) as output. 

The second scenario is done for inverter fault detection with AC power (ACP) as the output. The proposed 

technique is capable of detecting faults in PV arrays and inverters, providing a reliable solution for enhancing 

the performance and reliability of solar energy systems. Real-world solar energy dataset is used to evaluate the 

proposed technique, with results compared to existing detection techniques and obtained results show that it 

outperforms existing fault detection techniques, achieving higher accuracy and better performance. The GPR-

M4 optimization justified reliably among all the models with MAPE=0.0393, and MAE=0.002 for inverter fault 

detection and MAPE=0.091, and MAE=0.000 for PV array fault detection.   

Keywords: Fault detection; sustainable development; Artificial intelligence; Elman Neural 

Network; Boosted Tree Algorithms; Multi-layer Perceptron; Gaussian Processes Regression 

 

1. Introduction 

Advancement in renewable energy technology has been on a rapid ascending trend in recent 

years. This has encouraged wide acceptance of the technology and thus, the subsequent boom in the 

installation of renewable energy-based power plants around the world especially in China, India, 

Europe and America. Solar photovoltaic (PV) is one of the leading renewable energy technologies on 

exponential rise. Due in part to the growing concern over oil depletion, environmental issues, fuel 

price dependence, and operational complexity associated with the production of fossil fuels, an 

increasing number of residential, commercial, and industrial consumers have adopted and are 

adopting solar PV as their source of power generation [1]. The National Renewable Energy Lab 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1642.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.1642.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

(NREL) reported that the PV capacity installed globally in 2021 was 172GWdc bringing the global 

cumulative capacity to 939GWdc [2]. NREL further stated that China, India and Germany significantly 

increased their PV installations by 106%, 51% and 22% respectively, in the first 9 months of 2022 [3]. 

This remarkable rise in the significance of solar PV in the global energy sector is also reflected in [2], 

where it is reported an increased annual global PV installations especially in the aforementioned 

countries was projected by analysts.  

However there are is a downside to the technology. Solar PV systems require ongoing 

maintenance in order to function efficiently over time because they have been known to lose 

efficiency and productivity if not properly and appropriately managed and maintained [1]. That is to 

say, in order for solar PV systems to operate properly over time, they need to undergo routine 

maintenance, which calls for the adoption of mechanisms to efficiently monitor and control these 

systems. Several operation and maintenance conventional methods which have helped to sustain 

efficient operation of PV systems have been introduced over the years. These methods however have 

not been able to totally prevent system failure and operation downtime which begs the need for more 

intelligent methods of fault detection and the subsequent adoption of AI-based methods. These 

techniques make use of machine learning to develop models that can quickly find various issues, 

track the overall health of PV systems, and assist maintenance engineers in hastening system recovery 

[4]. 

There are so many available literatures that have carried out experiments and researches on the 

use of AI in fault detection and diagnosis for PV systems. In [5], a straightforward and efficient 

monitoring technique for PV systems is given. It is based on parametric models and the double 

exponential smoothing scheme. In order to find minor deviations, the simplicity and adaptability of 

empirical models are combined with the sensitivity of a double exponential smoothing method. By 

analyzing the resulting residuals, the double exponential smoothing approach detects flaws, and its 

sensitivity is increased by creating a nonparametric detection threshold using kernel density 

estimation. Partial shading, inverter disconnections, PV string faults, soiling on PV arrays, and short 

circuits in PV modules are just a few of the defects that can be found utilizing the suggested method. 

The research's findings, demonstrated that the suggested method can be used to monitor PV system 

operating parameters in real-time but may not be suitable for spotting abnormalities at various scales 

because it was designed for one scale, namely the time scale. By implementing grid partition (GP) 

and subtractive clustering (SC) algorithms utilizing research data, the approach suggested in [6] 

trains the adaptive neuro-fuzzy inference system (ANFIS) model for a reliable PV defect detection 

and classification system. Afterwards, in order to identify PV system problems, the trained models 

ANFIS GP and ANFIS SC were used. The resulting data were compared using statistical analysis. It 

was discovered that in terms of precisely identifying fault states, the ANFIS SC technique 

outperformed the ANFIS GP technique. The proposed method may not be appropriate for the 

identification of faults in various PV systems where the environmental factors are beyond the 

specified model range, according to the authors, who also emphasized that the method solely 

considers electrical defects. Using thermographic pictures, a fault detection technique is provided in 

[7] that categorizes various PV module anomalies. A multi-scale convolutional neural network 

(CNN) with three branches is used in the technique, which is based on the transfer learning approach. 

The transferred network's pre-trained information is used in the convolutional branches, which also 

have multi-scale kernels with levels of visual perception, to enhance the network's capacity for 

representation. By combining an oversampling strategy with an offline augmentation method, the 

study was able to improve network performance while overcoming the unbalanced class distribution 

of the raw data.  

The suggested method was used in the experiment to identify a variety of fault kinds, and the 

study came to the conclusion that it performs better than other deep learning methods and studies 

now available and provides higher classification accuracy and robustness in PV panel defects. 

Thermographic images are used in yet another technique described in [8] to identify flaws in PV 

systems. Here, deep convolutional neural networks (DCNNs) and infrared thermographic images 

are used together to detect and diagnose faults. The method involves first creating a binary classifier 
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to identify faults in PV modules, then creating a multiclass classifier to determine what kind of flaws 

are there. The study takes into account four typical PV module faults: short-circuiting, partial shading 

effects, dust deposition on PV module surfaces, and bypass diode failure. The proposed DCNN-

based classifiers have been first optimized, then embedded into a low-cost microprocessor (Rasberry 

Pi 4), and the models are compared with three main TF-Lite optimization strategies, including simple 

conversion, dynamic range quantization, and float 16 quantization. The study came to the conclusion 

that the proposed technique can operate in real-time and can diagnose and detect anomalies with a 

level of accuracy that is acceptable based on the experimental findings that were obtained. 

Additionally, the technique is set up to send email and SMS using a GSM module to operators 

informing them of the status of the PV array. The authors of Study [9], which also presents a 

thermographic image-based method, noted that it is crucial to quickly and affordably maintain the 

proper functioning of PV systems without interrupting regular operations by identifying PV module 

overheating through thermographic non-destructive testing. The paper then suggested a technique 

for convolutional neural networks that was created using open-source libraries to automatically 

classify thermographic images. To lower image noise, a number of preprocessing techniques were 

tested, including grey-scaling, thresholding discrete wavelet transform, normalizing and 

homogenizing pixels, normalizing and homogenizing pixels, Sobel Feldman and box blur filtering, 

and thresholding discrete wavelet transform. Without following any set protocols, these techniques 

enable the classification of thermographic images of varying quality that are taken using various 

pieces of equipment. The performance of neural networks was evaluated using the suggested method 

through a number of experiments using various parameters and overfitting mitigation techniques. In 

order to assess network performance and the amount of time needed to complete the thermographic 

inspection, images obtained by unmanned aerial vehicles and ground-based operators were 

compared. The foundation of the proposed method is a tool built on convolutional neural networks 

that enables rapid and accurate failure detection in PV panels.  

According to the authors, the proposed methodology provides an alternative and a reliable tool 

that enhances the resolution of picture classification for issues involving remote failure detection and 

can be applied in any field of science. Study [10] provides a summary of IoT and AI applications for 

PV systems. The most cutting-edge algorithms, including machine and deep learning, are also 

discussed in the paper, along with their implementation costs, accuracy, complexity, software 

appropriateness, and viability for real-time applications. For PV facilities located in remote locations 

with expensive and difficult accessibility for maintenance, the integration of AI and IoT approaches 

for defect detection and diagnosis into basic hardware such as inexpensive chips, may be 

economically and technically possible. These strategies were also provided together with challenging 

problems, advice, and trends. In [11], a study examining the use of ANN in various areas of partially 

shaded PV systems is provided. It provided an overview of and covered the use of ANNs in MPPT, 

fault detection, fault mitigation, system modeling, and performance enhancement of solar PV 

systems exposed to partial shading. The study did not just examine the literature; it also showed how 

the approaches may be enhanced and applied in real-world settings. The study described in [12] 

assesses various ML and ensemble learning (EL) algorithms for fault diagnosis of PV arrays, 

including previously untested methods for faults with numerous faults and faults with comparable 

I-V curves. The study created a novel method to accurately identify and classify defects based on this 

evaluation. According to the authors' findings, the results are positive. The study went further to 

demonstrate when ML & EL methods ought to be applied in practice and provided some 

recommendations, difficulties, and potential future directions in this area. By suggesting an early 

degradation detection that affects glass, EVA, wiring, etc., the work described in [13] aims to lower 

operation costs of PV modules. In the suggested approach, automated self-evaluation of PV panels is 

created, and degradation models are integrated as software into a microcontroller that uses instantly 

measured parameters. In the study, it is also discussed the deterioration phenomena of each PV 

module's component. Modeling each recognized degradation using P-V characteristics is the basis 

for the Observing Degradation System (ODS) program, which is then presented. A checklist is then 

created for successful testing. Study [14] presents an ensemble-based deep neural network (DNN) 
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model for the autonomous detection of visual faults on various PV modules, including glass 

breakage, burn marks, snail trails, discoloration, and delamination. This method for detecting 

degradation faults is similar to the one described earlier. A RGB camera placed on an unmanned 

aerial vehicle is used in the procedure to capture the image dataset (UAV). Images are preprocessed 

by removing spatial and frequency domain characteristics from them, such as discrete wavelet 

transform, texture grey level co-occurrence matrix, rapid Fourier transform, and different grey level 

approach. Following that, the edited photos are input. To identify any visual defects on the PV 

modules, the proposed ensemble-based DNN model uses DNN. In order to assess the performance 

of the suggested model, the classification accuracy, receiver operating characteristic curve, and 

confusion matrix are utilized. The results revealed that the proposed model, coupled with random 

forest classifier, achieved a high classification accuracy.  

Similarly, in [15], the authors described a fuzzy diagnostic algorithm that relies on the 

classification of electrical characteristics, the values of which are taken from experimental 

measurements of crystalline modules' I-V curves. By using the suggested method, flaws like uniform 

dust, partial shading, and potential induced degradation can be found. Also, a brand-new approach 

is suggested for the detection of aberrations in the measured I-V curve brought about by bypasses 

that are activated as a result of partial shading. This is based on quadratic and cubic polynomial 

regression, whose concavities are very sensitive to noisy data. An approach for identifying, 

diagnosing, and categorizing short-circuit and open-circuit string errors that is based on deep 

learning is provided [16]. There are four steps in the suggested technique. First, a PSIM-based 

simulation that seeks to accurately represent the functioning PV system using a heuristic 

optimization approach based on the Coyote Optimization Algorithm (COA) is used to input five 

unknown electrical characteristics of one diode model. The second phase involves creating a database 

with information on current, voltage, and power at MMP, module temperature, and solar irradiation 

for the PV system under both ideal and unsatisfactory working circumstances. In the third stage, new 

features from the old database are extracted using the unsupervised learning capabilities of the auto-

encoder, and in the final step, PV defect detection and classification are accomplished using 

supervised learning on the new database based on ANN construction. The obtained results show 

how well the suggested strategy works with the aforementioned fault kinds. Study [17] investigates 

the effects of various physical faults and cyberattacks in order to develop an intelligent fault/attacks 

detection and diagnosis system. They find that by being able to quickly identify and diagnose 

fault/attacks, local controllers and energy management systems can accommodate or lessen the 

negative effects of physical faults and cyberattacks in microgrids. The study then presented an 

intelligent hybrid diagnosis method for data online monitoring and diagnosing to reflect the real-

time state of PV system running at microgrid level. The proposed method is based on a fuzzy 

inference system, a power spectrum estimator, and an adaptive neuro-fuzzy inference system. A 

realistic microgrid benchmark model with a range of operating conditions and dynamic electrical 

loads in the presence of potential microgrid disturbances is used to show the high level of efficiency 

of the proposed method under various types of fault/attack scenarios. In [18], a fault detection and 

diagnosis (FDD) scheme design is presented that employs Wasserstein generative adversarial 

network (WGAN) and convolutional neural network for automatic fault feature extraction from raw 

electrical data of PV array, resulting in the creation of an effective FDD model with little data. A 

classifier, a generator, and a discriminator make up the three modules that make up the FDD model. 

In order to enhance the effectiveness of the CNN-based classifier, the discriminator and generator 

analyze sequential PV data in a two-dimensional manner to learn the distribution of PV data under 

different PV system operations. Then they are utilized to generate additional labelled data samples. 

According to the paper, the suggested FDD model could be trained with only a little amount of 

labeled data, and the effectiveness of the model was assessed using a lab grid-connected PV setup.  

A diagnosis of line-line and open-circuit faults using the suggested method was demonstrated 

by the results. An implementation of a fault detection strategy based on the identification of PV 

systems' neuro-fuzzy models is presented in the work in [19]. Modeling and identification of systems 

and the detection of operational states are the two stages of the technique. The derived neuro-fuzzy 
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model approximates, with only a few minor differences, the properties and behavior of a genuine 

system. The suggested model has a very high level of accuracy and could identify errors very quickly. 

Three shortcomings in machine learning-based defect detection techniques were listed in Study [20], 

which is what it seeks to fix. The inability of shallow network structures to effectively learn nonlinear 

characteristics of I-V curves is one of them. The others are that feature extraction relies on expert 

experience and lacks automation; artificial feature extraction readily ignores some potentially useful 

features; and feature extraction is not automated. As a result, the study suggested a methodology 

based on layered automated encoder and clustering algorithm that can automatically extract features 

and employ a limited amount of labeled data samples to mine data sample characteristics for defect 

diagnosis. Three steps make up the technique's execution. To enhance the effectiveness of the 

clustering approach, the effective features are first automatically retrieved from the I-V curves by the 

stacking encoder, and then the dimension of the features is decreased and visualized by the t-

distributed stochastic neighbor embedding. Eventually, the clustering method produces clustering 

centers and clusters, and the membership function is utilized to diagnose faults. Eventually, the 

clustering method produces clustering centers and clusters, and the membership function is utilized 

to diagnose faults. To address the issue of fault detection of PV modules using thermographic images, 

a Convolutional Neural Network (CNN) model and a fine-tuned model based on Visual Geometry 

Group (VGG-16) have been investigated in [21]. Binary classification and multiclass classification 

were employed to determine the type of fault in order to detect it. The database utilized in the study 

was made up of an unbalanced class distribution of thermographic images taken by infrared cameras 

of PV modules both in good and bad condition (such as bypass diode failure, partially covered PV 

module, shading effect, short-circuit and dust deposit on the PV surface). The fine-tuned model 

performs very well in experimental tests, but the small Deep Convolutional Neural Network (small-

DCNN) model performs somewhat less well.  

This study presents a novel method of fault detection in PV arrays and inverter faults by utilizing 

Elman Neural Network (ENN), Boosted Tree Algorithms (BTA), Multi-later Perceptron (MLP) and 

Gaussian Processes Regression (GPR) models to estimate the DC Power (DCP) and AC Power (ACP) 

of a PV system setup. Different models have different strengths and weaknesses, and what works 

well for one problem may not work as well for another. Therefore, it is important to experiment with 

different models and choose the one that is best suited for the particular task at hand [22]. As such, 

we develop several model combination based on the influencing factors (see Figure 2), existing 

claimed of dominancy in the literature [23–26]. Furthermore, it is important to evaluate the 

performance of the chosen model carefully, using appropriate metrics and validation techniques, to 

ensure that it is indeed performing well on the given problem. As such the study employs several 

performance criteria to assess the accuracy of the models. Prior to model development, data pre-

processing including normalization, model validation and stationarity analysis, is carried out. Also, 

both standalone and hybrid models will be compared using Nash–Sutcliffe efficiency (NSE), Pearson 

correlation coefficient (PCC), mean absolute percentage error (MAPE), mean absolute error (MAE), 

root mean square error (RMSE), and Percent bias (PBAIS) to understand the strength of each model 

combination. 

2. Components Methodology 

2.1. DC Power 

Solar panels use PV technology to turn sunlight into DCP. It is a kind of electricity that only goes 

in one direction. Only Batteries and DC loads are powered by DCP. To power AC loads, DCP must 

first be converted to ACP using an inverter. Majority of electrical appliances and equipment in houses 

and buildings operate on ACP. 

2.2. AC Power 

In order to power appliances, lighting, and other electrical loads in homes and businesses, AC 

electricity is typically employed. ACP is a type of electrical current that has a sinusoidal waveform 
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and goes back and forth. Inverters are used to convert DC electricity produced by solar panels into 

ACP, which may subsequently be utilized to power AC loads. 

2.3. Daily Yield 

The amount of electricity produced by a solar panel system in a single day is referred to as daily 

yield. It is commonly expressed in kilowatt-hours (kWh) and is influenced by things like the size of 

the solar panel system, how effective the panels are, and how much sunlight is available during the 

day. A solar panel system's daily yield can be used to predict how much energy it will produce over 

time and to assess its financial return on investment. 

2.4. Ambient Temperature 

The term "ambient temperature" describes the temperature of the environment or the air around 

you. When it comes to solar energy, the ambient temperature can have an impact on how well solar 

panels work because hotter temperatures can reduce panel output and efficiency. When building and 

installing solar panel systems, it's crucial to take the ambient temperature into account as solar panels 

perform better at lower temperatures. 

2.5. Module Temperature 

The temperature of the solar panels itself is referred to as the module temperature. Solar panels 

may get fairly hot as they collect sunlight, which may have an impact on how well they work. The 

output and efficiency of panels may decline as module temperatures rise. Solar panels are frequently 

mounted with a space between the panel and the mounting surface to allow for air circulation in 

order to minimize overheating. 

2.6. Solar Radiation 

The energy that the sun emits and that reaches the earth is referred to as solar radiation. It 

consists of infrared (IR), ultraviolet (UV), and visible light (light). Solar panels use sun radiation as 

its energy source in order to produce electricity. Solar radiation received by solar modules vary based 

on its location, the time of day, the season, and the weather. The energy output of a solar panel system 

is calculated using the intensity of solar radiation, which is commonly expressed in terms of watts 

per square meter (W/m2). 

3. Proposed Intelligent Methods 

According to the “no free lunch" theorem, there is no single model that is universally better than 

all other models for every type of problem. In other words, there is no one-size-fits-all model that can 

provide optimal results across all possible scenarios [27]. In this work we proposed several AI 

learning based on three different scenarios (cropland, pasture, and cropland and pasture) to estimate 

the DCP and ACP based on solar panel and inverter, respectively.  For this purpose, ENN, BTA, 

MLP and GPR models are utilized. The proposed modeling schematics is presented in Figure 1. It is 

essential to consider the specific characteristics of the problem at hand, such as the nature of the data, 

the size of the dataset, and the goals of the analysis. Different models have different strengths and 

weaknesses, and what works well for one problem may not work as well for another. Therefore, it is 

important to experiment with different models and choose the one that is best suited for the particular 

task at hand [22]. As such we developed several model combinations based on the influencing factors 

(see Figure 2), existing claimed of dominancy in the literature [23]–[26] as follows: 

𝑆𝑜𝑙𝑎𝑟 𝑃𝑎𝑛𝑒𝑙 (𝐷𝐶𝑃)  = ൜ Mଵ = Φ(DY + AT + MT)Mଶ = Φ(DY + AT + MT + SR + TY)     (1) 
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𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟 (𝐴𝐶𝑃)  = ⎩⎨
⎧ 𝑀ଵ = 𝛷(𝐷𝐶𝑃)𝑀ଶ = 𝛷(𝐷𝑌 + 𝐴𝑇 + 𝑀𝑇)𝑀ଷ = 𝛷(𝐷𝑌 + 𝐴𝑇 + 𝑀𝑇 + 𝑆𝑅 + 𝑇𝑌)𝑀ସ = 𝛷(𝑅𝐷𝑌 + 𝐴𝑇 + 𝑀𝑇 + 𝑆𝑅 + 𝑇𝑌 + 𝐷𝐶𝑃)    (2) 

Where, DCP is DC Power, ACP is AC Power, DY is Daily Yield, AT is Ambient Temperature, 

MT is Module Temperature, and SR is Solar Radiation. 

Furthermore, it is important to evaluate the performance of the chosen model carefully, using 

appropriate metrics and validation techniques, to ensure that it is indeed performing well on the 

given problem. As such this study employed several performance criteria to assess the accuracy of 

the models. Prior to model development, several pre-processing including normalization (Eq. 3), 

model validation and stationarity analysis, were carried out. In this study, both the standalone and 

hybrid models were compared using NSE (Nash–Sutcliffe efficiency), PCC (Pearson correlation 

coefficient), MAPE (mean absolute percentage error), MAE (mean absolute error), RMSE (root mean 

square error), and PBAIS to understand the strength of each model combination. 𝒚 = 0.05 + ቆ0.95 ቀ ௫ି௫̅௫೘ೌೣା௫೘೔೙ቁቇ      (3) 

Where y denotes normalized data, x is the actual data, 𝑥̅ is the mean of the measured data, xmax 

denotes the maximum value of the measured data, and xmin denotes the minimum value. 𝑵𝑺𝑬 = 𝟏 − ∑ (𝒀 (𝒑)ି 𝒀(𝒐))𝟐𝑵𝒊స𝟏∑ (𝒀 (𝒑)ି 𝒀(𝒐))𝟐𝑵𝒊స𝟏        (4) 
𝑷𝑪𝑪 = ∑ ൣ𝒀(𝒐),𝒊ି𝒀(𝒑)൧ൣ𝒀෡(𝒐),𝒊ି𝒀෩(𝒑)൧𝑵𝒊స𝟏ට∑ ൣ𝑸𝒀 (𝒐),𝒊ି𝒀(𝒑)൧𝟐ൣ𝒀෡(𝒐),𝒊ି𝒀෩(𝒑)൧𝟐𝑵𝒊స𝟏       (5) 

𝑹𝑴𝑺𝑬 = ට𝟏𝑵 ∑ (𝒀 (𝒑) − 𝒀(𝒐))𝟐𝑵𝒊ୀ𝟏       (6) 

 𝑴𝑨𝑬 = ∑ ห𝒀(𝒑)ି𝒀(𝒐)ห𝑵𝒊స𝟏 𝑵         (7) 

𝑴𝑨𝑷𝑬 = 𝟏𝟎𝟎𝒏 ∑ ฬ𝒀(𝒐)ି𝒀(𝒑)𝒀(𝒐) ฬ𝑵𝒊ୀ𝟏        (8) 
𝑷𝑩𝑰𝑨𝑺 = ∑ (𝒀(𝒐)ି𝒀(𝒑)𝑵𝒊స𝟏 )∑ 𝒀(𝒑))𝑵𝒊స𝟏          (9)           

Whereby; 𝑌 (௣) , 𝑌(௢), 𝑌௢  are considered as the TP loss rate predicted, 𝑌(௢)observed and 𝑌௢ 

average values respectively. 
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Figure 1. Proposed modelling scheme. 

3.1. Elman Neural Network (ENN) 

As recurrent computational learning, ENN is a type of machine learning technique that uses 

feedback connections to retain information about previous inputs. It comprises of different three 

layers as presented in Figure 2a similar to traditional neural network with the hidden layer having 

additional connections to itself from the previous time step [28]. This allows the network to capture 

sequential information and make predictions based on past inputs. The network is trained using 

backpropagation through time, where the error is propagated through the network and the weights 

are updated accordingly [29]. The ENN has been used in numerous purposes, both in science and 

engineering problems [30,31]. 

3.2. Boosted Tree Algorithms (BTA) 

BTA are machine learning techniques that combine multiple decision trees to create a powerful 

predictive model (Figure 2b). The term "boosting" refers to the process of iteratively improving the 

performance of the model by focusing on the misclassified instances in each iteration. Boosted trees 

can be applied to both supervised and unsupervised learning problems [32]. The most popular 

boosted tree algorithms are Gradient Boosted Trees (GBTs) and Extreme Gradient Boosting 

(XGBoost). These algorithms work by sequentially adding trees to the model, with each subsequent 

tree trying to correct the errors made by the previous ones. The projection is obtained by aggregating 

the predictions of all the trees [33]. GBTs and XGBoost have several hyperparameters that can be 

tuned to optimize performance, including the learning rate, number of trees, tree depth, and 

regularization. These algorithms have been successfully applied in various domains, including 
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finance, e-commerce, and healthcare. They are known for their high accuracy and interpretability, as 

they provide information on the importance of each feature in the prediction [32,34]. 

3.3. Multi-later Perceptron (MLP) 

As another version of ANN, MLP model consists of multiple layers of interconnected perceptron 

units. MLP plays the role of FFNN in terms of information processing through the three layers (input, 

hidden, and outputs) [35] (Figure 2c). Each layer contains one or more nodes (perceptrons) that 

receive input from the previous layer and produce an output that is transmitted to the next layer [36]. 

The perceptrons in the hidden layers use activation functions to transform the inputs, allowing the 

network to learn complex mapping in the data. The MLP is trained using a supervised learning 

approach called backpropagation, hence works based on the principle of reducing the error between 

the estimated and observed data [37]. 

3.4. Gaussian Processes Regression (GPR) 

GPR model has been used to solve different problems related to regression analysis in both 

science and engineering [38]. It uses Bayesian inference to make predictions and estimate 

uncertainties in the predictions. In contrast to other regression models, GPs do not make assumptions 

about the underlying function that generates the data, making them more flexible and suitable for 

modeling complex, nonlinear relationships. The core idea behind GPR is to assume that the function 

values at any set of input points are jointly Gaussian distributed [39]. A GP is defined by a mean 

function and a covariance function, also called the kernel function. The mean function specifies the 

expected value of the function at any input point, while the kernel function captures the similarity 

between different input points [40], [41]. 
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Figure 2. Schematic diagram of (a) ENN (b) BTA (c) MLP used in modelling process. 

4. Application of Results and Discussion 

In this section the modelling results for two different scenarios were discussed based on solar 

panel (DCP) and inverter (ACP) modelling. It is worth to note that the use of AI models to simulate 

and optimize the performance of solar photovoltaic power plants is a novel approach that allows for 

better prediction and control of energy production, leading to increased efficiency and cost-

effectiveness.  

4.1. Preliminary Results 

According to [42], to understand the model performance or on the other hand, the model to 

perform at its best, it is essential to include all factors associated with the removal process of HMs in 

the input data optimization. This step will enhance the output and ensure that the model's results 

align as closely as possible with the experimental data. Descriptive statistics and raw data analysis 

are crucial in modeling because they provide a comprehensive understanding of the data's 

characteristics and patterns. Table 1 shows the input-output descriptive analysis. This information 

can guide the selection of appropriate modeling techniques, the validation of model assumptions, 

and the interpretation of model results, leading to more accurate and reliable predictions. The time 

series data used in this study can be visualized in Figure 3.  
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Table 1. Descriptive statistic for input-output variables. 

Parameters Mean SD Kurtosis Skewness Minimum Maximum 

DY 2401.47 2667.09 -1.20 0.64 0.00 7190.00 

TY 7620392.92 451795.89 -1.05 -0.45 6870716.67 8460553.49 

AT 28.42 3.75 -0.54 0.67 22.67 39.17 

MT 34.65 13.71 -0.65 0.85 20.16 72.83 

SR 0.26 0.34 -0.21 1.05 0.00 1.36 

DCP 3775.04 4045.64 -1.20 0.52 0.00 13687.94 

ACP 369.50 395.76 -1.21 0.52 0.00 1334.94 

The table presents descriptive statistics for six parameters: DY, TY, AT, MT, SR, DCP, and ACP. 

The Kurtosis column represents the peakness of the distribution, with a negative value indicating a 

flatter distribution than a normal distribution, and a positive value indicating a more peaked 

distribution. The Skewness column shows the degree of asymmetry in the distribution, with a 

negative value indicating a left-skewed distribution, and a positive value indicating a right-skewed 

distribution. The parameter TY has a Mean of 7,620,392.92 and an SD of 451,795.89, indicating that 

the data has a relatively high degree of variability. The Kurtosis value of -1.05 suggests that the 

distribution is relatively flat compared to a normal distribution. The Skewness value of -0.45 suggests 

that the data is slightly left-skewed. Finally, the Minimum and Maximum values of 6,870,716.67 and 

8,460,553.49, respectively, show the range of observed values for the parameter. Similarly, the 

parameter with the lowest Kurtosis value is ACP with -1.21, while the parameter with the highest 

Kurtosis value is SR with -0.21. The parameter with the highest range of values is DCP, with a range 

of 13,687.94, while the parameter with the lowest range of values is SR, with a range of 1.36. 

According to [43–47], the lowest skewness towards negatives values indicated the feasibility of AI 

based learning in modelling the data accurately. The corro-plot as displayed in Figure 4 was used for 

input combination in this study. It can be seen that the system is highly stochastic approach based on 

the magnitude in Figure 4. 

 

Figure 3. Raw data for input-output variables. 
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Figure 4. Raw data for input-output variables. 

4.2. Results of Intelligent Leaning-Scenario I 

In this section, modelling of solar panel as scenario-I was discussed based on the DCP (kW) 

parameter as output of the simulation. Table 2 represents the performance metrics of different models 

during the calibration phase. The models are evaluated using various metrics such as NSE, PCC, 

RMSE, MAPE, MAE, and PBIAS for both calibration and verification. From the results it can be 
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observed that BTA-M1 and BTA-M2 show relatively good performance with NSE values of 0.914 and 

0.921, respectively. They also have high PCC values of 0.967 and 0.97, indicating a strong linear 

relationship between the observed and predicted values. However, they have relatively high MAPE 

values of 35.267 and 33.745, indicating a higher average percentage difference between the predicted 

and observed values. Similarly the new recurrent approach i.e. ENN-M1 and ENN-M2 exhibit even 

better performance, with NSE values of 0.973 and 0.971, respectively, indicating a high degree of 

agreement between the observed and predicted values. They also have high PCC values of 0.99 and 

0.989, indicating a strong linear relationship between the observed and predicted values. 

Additionally, ENN-M1 and ENN-M2 have low RMSE values of 0.045 and 0.047, respectively, 

indicating a lower overall error compared to the other models.  

However, they have a negative PBIAS value, indicating a tendency to under-predict the 

observed values. GPR-M1 and GPR-M2 show perfect correlation (PCC value of 1) and no error (RMSE 

value of 0), making them the best-performing models. However, GPR-M2 has a slightly higher MAE 

value of 0.001 compared to GPR-M1, which has an MAE value of 0. Overall, the table provides a good 

summary of the performance of different models during the calibration phase. It helps in evaluating 

the accuracy of predictive models and selecting the best model based on the evaluation metrics. 

Figure 5 shows the embedded scatter-based goodness of fit in the verification phase. The results of 

this study were compared with the existing state-of the-art approach in order to balance the literature 

as such [48] reported the accuracy of 95.27% and 98.8% before and after considering fuzzy logic 

system for fault detection algorithm based on the analysis of the theoretical curves which describe 

the behavior of an existing grid connected PV, and fuzzy logic system. The accuracy of our results 

using GPR model is 100% which is peak and superior to their results. Another research was 

conducted by [49] for investigation into their effectiveness in the diagnosis of various PV array issues. 

With the implementation of LGBM, CatBoost, and XGBoost, respectively, average detection and 

classification accuracy of 99.996% and 99.745% have been observed, showing that these algorithms 

have produced promising results. This results was almost very close to our accuracy and justify our 

100% results feasibility. 

Table 2. The predicted results for solar panel modelling. 

   Calibration Phase   

 NSE PCC RMSE MAPE MAE PBIAS 

BTA-M1 0.914 0.967 0.072 35.267 0.043 0.044 

BTA-M2 0.921 0.970 0.070 33.745 0.041 0.044 

ENN-M1 0.973 0.990 0.045 22.100 0.019 -58.588 

ENN-M2 0.971 0.989 0.047 22.528 0.021 -69.997 

GPR-M1 1.000 1.000 0.000 29.597 0.000 0.000 

GPR-M2 1.000 1.000 0.002 29.711 0.001 0.000 

   Verification Phase   

 NSE PCC RMSE MAPE MAE PBIAS 

BTA-M1 0.969 0.989 0.049 6.876 0.031 17460.222 

BTA-M2 0.969 0.989 0.048 6.866 0.031 17140.021 

ENN-M1 0.968 0.985 0.051 22.150 0.039 -58.638 

ENN-M2 0.966 0.984 0.053 22.578 0.041 -70.047 

GPR-M1 1.000 1.000 0.000 0.083 0.000 0.000 

GPR-M2 1.000 1.000 0.000 0.091 0.000 0.000 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1642.v1

https://doi.org/10.20944/preprints202307.1642.v1


 14 

 

 

Figure 5. Embedded scatter plot in the verification phase. 

Besides, the verification result of DCP as displayed in Table 2 also indicated that BTA-M1 and 

BTA-M2 exhibit excellent performance during the verification phase, with NSE values of 0.969 for 

both models, indicating a high degree of agreement between the observed and predicted values. They 

also have high PCC values of 0.989 for both models, indicating a strong linear relationship between 

the observed and predicted values. Furthermore, BTA-M1 and BTA-M2 have low RMSE values of 

0.049 and 0.048, respectively, indicating a lower overall error compared to other models. Moreover, 

they have the lowest MAPE and MAE values, indicating a smaller percentage and average difference 

between the predicted and observed values. The ENN-M1 and ENN-M2 exhibit relatively good 

performance, with NSE values of 0.968 and 0.966, respectively, indicating a good agreement between 

the observed and predicted values. They also have high PCC values of 0.985 and 0.984, indicating a 

strong linear relationship between the observed and predicted values. However, they have relatively 

high RMSE values of 0.051 and 0.053, respectively, indicating a higher overall error compared to BTA-

M1 and BTA-M2. In addition, they have a negative PBIAS value, indicating a tendency to 

underpredict the observed values. This conclusion was in line with the work conducted in [50] 
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suggests a method based on Decision Trees with Light Gradient Boosting algorithm (DT-LGB) to 

analyze power data and predict faults for the maintenance of solar power plants. The results of this 

work showed that the suggested model obtained MSE=8.74, RMSE=2 and R2 values of 0.9939 which 

is 12.8%, 6.8%, and 11.08% improved than the existing method respectively. 

4.3. Results of Intelligent Leaning-Scenario II 

This section analyses the second scenario II based on inverter modelling ACP (kW) using several 

soft computing approaches. Going at the results in Table 3, BTA-M1, BTA-M2, BTA-M3, BTA-M4, 

GPR-M1, GPR-M2, GPR-M3, and GPR-M4 models have high NSE values (above 0.9), indicating that 

they perform well in capturing the variation in the data. On the other hand, ENN-M1, ENN-M2, and 

ENN-M3 models have lower NSE values, indicating that they do not capture the data variation as 

well as the other models. The PCC values for most of the models are high (above 0.9), indicating that 

they have a strong linear relationship with the observed data. However, the ENN-M2 model has a 

relatively low PCC value of 0.939, indicating that its relationship with the observed data is not as 

strong as the other models (see Figure 6). Similarly, the RMSE values for most of the models are 

relatively low, indicating that the models have low prediction errors.  

However, the ENN-M2 model has a higher RMSE value of 0.094, indicating that it has higher 

prediction errors than the other models. The MAPE values for the BTA-M1, BTA-M2, and BTA-M3 

models are high (above 30%), indicating that they have relatively high prediction errors. The ENN-

M1 and ENN-M2 models also have high MAPE values (above 40%). The MAE values for most of the 

models are relatively low, indicating that they have low absolute prediction errors. However, the 

ENN-M1 and ENN-M2 models have higher MAE values than the other models. The PBIAS values 

for most of the models are close to zero, indicating that they have no significant bias in their 

predictions. However, the ENN-M1 and ENN-M2 models have negative PBIAS values, indicating 

that they tend to underpredict the observed data. Generally, the BTA-M1, BTA-M2, BTA-M3, BTA-

M4, GPR-M1, GPR-M2, GPR-M3, and GPR-M4 models perform well in the calibration phase, while 

the ENN-M1, ENN-M2, and ENN-M3 models have relatively lower performance measures. This 

results is in line with one reported by [51] to predict PV panel behaviors under realistic weather 

conditions. R2, MSE, and MAPE values for the optimal ANN model of the proposed method were 

0.971, 0.002 and 0.107, respectively. A comparative study among ANN and analytical models was 

also carried out. Among the analytical models, the five-parameter model, with MAPE = 0.112, MSE = 

0.0026 and R2 = 0.919, gave better prediction than the four-parameter model (with MAPE = 0.152, 

MSE = 0.0052 and R2 = 0.905). 

Table 3. The predicted results for inverter modelling. 

   Calibration Phase   

 NSE PCC RMSE MAPE MAE PBIAS 

BTA-M1 0.997 1.000 0.014 27.247 0.008 0.040 

BTA-M2 0.915 0.966 0.073 35.294 0.043 0.040 

BTA-M3 0.921 0.969 0.070 34.136 0.041 0.040 

BTA-M4 0.997 1.000 0.014 27.247 0.008 0.040 

ENN-M1 0.970 0.988 0.046 43.989 0.043 -0.066 

ENN-M2 0.860 0.939 0.094 43.518 0.063 -0.021 

ENN-M3 0.880 0.945 0.090 36.625 0.059 -0.012 

ENN-M4 1.000 1.000 0.001 28.886 0.001 -0.004 

GPR-M1 1.000 1.000 0.001 29.721 0.001 -0.004 

GPR-M2 1.000 1.000 0.001 29.731 0.001 -0.004 

GPR-M3 1.000 1.000 0.002 29.820 0.001 -0.004 

GPR-M4 1.000 1.000 0.001 29.733 0.001 -0.004 

   Verification Phase   
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 NSE PCC RMSE MAPE MAE PBIAS 

BTA-M1 0.947 0.973 0.061 10.091 0.095 101.107 

BTA-M2 0.995 0.997 0.088 6.069 0.018 801.107 

BTA-M3 0.995 0.997 0.088 5.085 0.017 60.107 

BTA-M4 0.997 0.998 0.020 4.291 0.013 30.107 

ENN-M1 0.999 1.000 0.008 6.424 0.006 -57.560 

ENN-M2 1.000 1.000 0.003 1.397 0.003 -49.126 

ENN-M3 1.000 1.000 0.002 1.205 0.002 -42.401 

ENN-M4 1.000 1.000 0.002 0.506 0.002 -42.302 

GPR-M1 1.000 1.000 0.002 0.363 0.002 -2.542 

GPR-M2 1.000 1.000 0.003 1.006 0.002 -173.542 

GPR-M3 0.988 0.994 68.185 1.006 2.281 87.330 

GPR-M4 1.000 1.000 0.002 0.393 0.002 -23.542 
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Figure 6. Radar plot showing the goodness-of-fit for modelling ACP inverter. 

Similarly, the table provides a quick way to compare and evaluate the performance of different 

models in verification phase, but it is important to consider the context and purpose of the models 

before drawing conclusions based solely on the metrics presented. The numerical comparison of the 

models based on these metrics indicated that NSE: The models with the highest NSE are ENN-M2, 

ENN-M3, ENN-M4, GPR-M1, GPR-M2, and GPR-M4, all with a perfect score of 1. The model with 

the lowest NSE is GPR-M3 with a score of 0.988. While the models with the highest PCC are ENN-

M2, ENN-M3, ENN-M4, GPR-M1, GPR-M2, and GPR-M4, all with a perfect score of 1. The model 

with the lowest PCC is BTA-M1 with a score of 0.973. The model with the lowest RMSE is BTA-M4 

with a score of 0.02. The model with the highest RMSE is GPR-M3 with a score of 68.185. According 

to [52–54], MAPE values is good when it is below or equal to 10%. MAPE: The model with the lowest 

MAPE is ENN-M4 with a score of 0.506%. The model with the highest MAPE is BTA-M1 with a score 

of 10.091%. Similarly, the model with the lowest MAE is BTA-M4 with a score of 0.013. The model 

with the highest MAE is BTA-M1 with a score of 0.095. To compare the accuracy again with recent 

literature, [55] reported the use of ML to process big data by monitoring the behavior of PV. The 

monitoring system was reported to have the capability of detecting PV system failure with an RMSE 

of 0.66. The accuracy of the proposed model with respect to real-time data for clear days has an RMSE 

error of 73.71 and an R-squared is calculated at 0.95. This accuracy is also in line with the current 

study outcomes.  

The numerical comparison was also discussed using PBAIS both in training and testing phase. 

PBIAS: The models with the lowest PBIAS are GPR-M1 and GPR-M4 with a score of -2.542 and -

23.542, respectively. The model with the highest PBIAS is BTA-M2 with a score of 801.107. Based on 

these metrics, ENN-M4 appears to be the best performing model, with perfect scores in NSE, PCC, 

and relatively low scores in RMSE, MAPE, MAE, and PBIAS. BTA-M1, on the other hand, has 

relatively high scores in RMSE, MAPE, MAE, and PBIAS, indicating lower performance than other 

models. It is important to note that these metrics alone may not be sufficient to determine the best 

model for a specific task, and other factors such as computational efficiency and interpretability 

should also be considered [56–58]. Similarly, [6] presents an intelligent photovoltaic (PV) fault 

detection system using Adaptive Neuro-Fuzzy Inference System (ANFIS) methodology. To 

accomplish this objective, it is necessary to train the ANFIS model for an effective PV fault detection 

and classification system by deploying Grid Partition (GP) and Subtractive Clustering (SC) strategies 

using some research data. The values obtained from statistical analysis such as coefficient correlation 

R, root mean squared error (RMSE), and coefficient of determination R2 were 0.9989, 0.0383, and 

0.9978. These obtained results show that the ANFIS SC framework with cluster radius 0.6 can 

remarkably diagnose the PV system faults with high accuracy. The overall accuracy of both the 

scenarios can be presented in Figure 7, using the probability distribution function graph. 
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Figure 7. Probability distribution function graph for DCP and ACP simulated approach. 

5. Conclusions 

In conclusion, this paper proposes a novel approach to fault detection and diagnosis in PV arrays 

and inverters using a combination of AI techniques, including Elman Neural Network, Boosted Tree 

Algorithms, Multi-layer Perceptron, and Gaussian Processes Regression. The proposed approach 

integrates the strengths of each algorithm for enhanced accuracy and reliability in fault diagnosis, 

with ENN utilized for feature extraction, and BTA, MLP, and GPR integrated for fault detection and 

diagnosis. Two intelligent learning scenarios are carried out, one for the PV array fault detection with 

DC power as output and the other for inverter fault detection with AC power as output. The proposed 

technique demonstrates superior accuracy and reliability compared to existing fault detection 

techniques. It is capable of detecting various types of faults in PV arrays and inverters, providing a 

reliable solution for enhancing the performance and reliability of solar energy systems. 

The results of the evaluation on a real-world solar energy dataset demonstrate that the proposed 

approach outperforms existing fault detection techniques, achieving higher accuracy and better 

performance. Moreover, the proposed technique can be extended to other renewable energy systems, 

providing a basis for developing comprehensive fault detection and diagnosis frameworks. This 

research represents a significant contribution to the field of solar energy systems and fault detection 

and diagnosis. The proposed technique offers a promising solution for increasing the reliability and 

efficiency of renewable energy systems, which are becoming increasingly important as the demand 

for clean energy continues to grow. The proposed approach can help to reduce the cost of 

maintenance and increase the lifespan of solar energy systems, leading to more efficient and 

sustainable use of renewable energy resources. The research opens the door for further advancements 
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in the field of fault detection and diagnosis in solar energy systems, with the potential for significant 

impact in the development of more efficient and reliable renewable energy systems. 
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