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Abstract: Fault detection in PV arrays and inverters is critical for ensuring maximum efficiency and
performance. Artificial intelligence (AI) learning can be used to quickly identify issues, resulting in a
sustainable environment with reduced downtime and maintenance costs. As the use of solar energy systems
continues to grow, the need for reliable and efficient fault detection and diagnosis techniques becomes more
critical. This paper presents a novel approach for fault detection in photovoltaic (PV) arrays and inverters,
combining Al techniques. It integrates Elman Neural Network (ENN), Boosted Tree Algorithms (BTA), Multi-
layer Perceptron (MLP), and Gaussian Processes Regression (GPR) for enhanced accuracy and reliability in
fault diagnosis. It leverages their strengths for accuracy and reliability of fault diagnosis. Feature engineering-
based sensitivity analysis was utilized for feature extraction, the fault detection and diagnosis were assessed
using several statistical criteria including PBAIS, MAE, NSE, RMSE, and MAPE. Two intelligent learning
scenarios are carried out, the first scenario is done for PV array fault detection with DC power (DCP) as output.
The second scenario is done for inverter fault detection with AC power (ACP) as the output. The proposed
technique is capable of detecting faults in PV arrays and inverters, providing a reliable solution for enhancing
the performance and reliability of solar energy systems. Real-world solar energy dataset is used to evaluate the
proposed technique, with results compared to existing detection techniques and obtained results show that it
outperforms existing fault detection techniques, achieving higher accuracy and better performance. The GPR-
M4 optimization justified reliably among all the models with MAPE=0.0393, and MAE=0.002 for inverter fault
detection and MAPE=0.091, and MAE=0.000 for PV array fault detection.

Keywords: Fault detection; sustainable development; Artificial intelligence; Elman Neural
Network; Boosted Tree Algorithms; Multi-layer Perceptron; Gaussian Processes Regression

1. Introduction

Advancement in renewable energy technology has been on a rapid ascending trend in recent
years. This has encouraged wide acceptance of the technology and thus, the subsequent boom in the
installation of renewable energy-based power plants around the world especially in China, India,
Europe and America. Solar photovoltaic (PV) is one of the leading renewable energy technologies on
exponential rise. Due in part to the growing concern over oil depletion, environmental issues, fuel
price dependence, and operational complexity associated with the production of fossil fuels, an
increasing number of residential, commercial, and industrial consumers have adopted and are
adopting solar PV as their source of power generation [1]. The National Renewable Energy Lab
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(NREL) reported that the PV capacity installed globally in 2021 was 172GWa. bringing the global
cumulative capacity to 939GWac [2]. NREL further stated that China, India and Germany significantly
increased their PV installations by 106%, 51% and 22% respectively, in the first 9 months of 2022 [3].
This remarkable rise in the significance of solar PV in the global energy sector is also reflected in [2],
where it is reported an increased annual global PV installations especially in the aforementioned
countries was projected by analysts.

However there are is a downside to the technology. Solar PV systems require ongoing
maintenance in order to function efficiently over time because they have been known to lose
efficiency and productivity if not properly and appropriately managed and maintained [1]. That is to
say, in order for solar PV systems to operate properly over time, they need to undergo routine
maintenance, which calls for the adoption of mechanisms to efficiently monitor and control these
systems. Several operation and maintenance conventional methods which have helped to sustain
efficient operation of PV systems have been introduced over the years. These methods however have
not been able to totally prevent system failure and operation downtime which begs the need for more
intelligent methods of fault detection and the subsequent adoption of Al-based methods. These
techniques make use of machine learning to develop models that can quickly find various issues,
track the overall health of PV systems, and assist maintenance engineers in hastening system recovery
[4].

There are so many available literatures that have carried out experiments and researches on the
use of Al in fault detection and diagnosis for PV systems. In [5], a straightforward and efficient
monitoring technique for PV systems is given. It is based on parametric models and the double
exponential smoothing scheme. In order to find minor deviations, the simplicity and adaptability of
empirical models are combined with the sensitivity of a double exponential smoothing method. By
analyzing the resulting residuals, the double exponential smoothing approach detects flaws, and its
sensitivity is increased by creating a nonparametric detection threshold using kernel density
estimation. Partial shading, inverter disconnections, PV string faults, soiling on PV arrays, and short
circuits in PV modules are just a few of the defects that can be found utilizing the suggested method.
The research's findings, demonstrated that the suggested method can be used to monitor PV system
operating parameters in real-time but may not be suitable for spotting abnormalities at various scales
because it was designed for one scale, namely the time scale. By implementing grid partition (GP)
and subtractive clustering (SC) algorithms utilizing research data, the approach suggested in [6]
trains the adaptive neuro-fuzzy inference system (ANFIS) model for a reliable PV defect detection
and classification system. Afterwards, in order to identify PV system problems, the trained models
ANFIS GP and ANFIS SC were used. The resulting data were compared using statistical analysis. It
was discovered that in terms of precisely identifying fault states, the ANFIS SC technique
outperformed the ANFIS GP technique. The proposed method may not be appropriate for the
identification of faults in various PV systems where the environmental factors are beyond the
specified model range, according to the authors, who also emphasized that the method solely
considers electrical defects. Using thermographic pictures, a fault detection technique is provided in
[7] that categorizes various PV module anomalies. A multi-scale convolutional neural network
(CNN) with three branches is used in the technique, which is based on the transfer learning approach.
The transferred network's pre-trained information is used in the convolutional branches, which also
have multi-scale kernels with levels of visual perception, to enhance the network's capacity for
representation. By combining an oversampling strategy with an offline augmentation method, the
study was able to improve network performance while overcoming the unbalanced class distribution
of the raw data.

The suggested method was used in the experiment to identify a variety of fault kinds, and the
study came to the conclusion that it performs better than other deep learning methods and studies
now available and provides higher classification accuracy and robustness in PV panel defects.
Thermographic images are used in yet another technique described in [8] to identify flaws in PV
systems. Here, deep convolutional neural networks (DCNNs) and infrared thermographic images
are used together to detect and diagnose faults. The method involves first creating a binary classifier
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to identify faults in PV modules, then creating a multiclass classifier to determine what kind of flaws
are there. The study takes into account four typical PV module faults: short-circuiting, partial shading
effects, dust deposition on PV module surfaces, and bypass diode failure. The proposed DCNN-
based classifiers have been first optimized, then embedded into a low-cost microprocessor (Rasberry
Pi 4), and the models are compared with three main TF-Lite optimization strategies, including simple
conversion, dynamic range quantization, and float 16 quantization. The study came to the conclusion
that the proposed technique can operate in real-time and can diagnose and detect anomalies with a
level of accuracy that is acceptable based on the experimental findings that were obtained.
Additionally, the technique is set up to send email and SMS using a GSM module to operators
informing them of the status of the PV array. The authors of Study [9], which also presents a
thermographic image-based method, noted that it is crucial to quickly and affordably maintain the
proper functioning of PV systems without interrupting regular operations by identifying PV module
overheating through thermographic non-destructive testing. The paper then suggested a technique
for convolutional neural networks that was created using open-source libraries to automatically
classify thermographic images. To lower image noise, a number of preprocessing techniques were
tested, including grey-scaling, thresholding discrete wavelet transform, normalizing and
homogenizing pixels, normalizing and homogenizing pixels, Sobel Feldman and box blur filtering,
and thresholding discrete wavelet transform. Without following any set protocols, these techniques
enable the classification of thermographic images of varying quality that are taken using various
pieces of equipment. The performance of neural networks was evaluated using the suggested method
through a number of experiments using various parameters and overfitting mitigation techniques. In
order to assess network performance and the amount of time needed to complete the thermographic
inspection, images obtained by unmanned aerial vehicles and ground-based operators were
compared. The foundation of the proposed method is a tool built on convolutional neural networks
that enables rapid and accurate failure detection in PV panels.

According to the authors, the proposed methodology provides an alternative and a reliable tool
that enhances the resolution of picture classification for issues involving remote failure detection and
can be applied in any field of science. Study [10] provides a summary of IoT and Al applications for
PV systems. The most cutting-edge algorithms, including machine and deep learning, are also
discussed in the paper, along with their implementation costs, accuracy, complexity, software
appropriateness, and viability for real-time applications. For PV facilities located in remote locations
with expensive and difficult accessibility for maintenance, the integration of Al and IoT approaches
for defect detection and diagnosis into basic hardware such as inexpensive chips, may be
economically and technically possible. These strategies were also provided together with challenging
problems, advice, and trends. In [11], a study examining the use of ANN in various areas of partially
shaded PV systems is provided. It provided an overview of and covered the use of ANNs in MPPT,
fault detection, fault mitigation, system modeling, and performance enhancement of solar PV
systems exposed to partial shading. The study did not just examine the literature; it also showed how
the approaches may be enhanced and applied in real-world settings. The study described in [12]
assesses various ML and ensemble learning (EL) algorithms for fault diagnosis of PV arrays,
including previously untested methods for faults with numerous faults and faults with comparable
I-V curves. The study created a novel method to accurately identify and classify defects based on this
evaluation. According to the authors' findings, the results are positive. The study went further to
demonstrate when ML & EL methods ought to be applied in practice and provided some
recommendations, difficulties, and potential future directions in this area. By suggesting an early
degradation detection that affects glass, EVA, wiring, etc., the work described in [13] aims to lower
operation costs of PV modules. In the suggested approach, automated self-evaluation of PV panels is
created, and degradation models are integrated as software into a microcontroller that uses instantly
measured parameters. In the study, it is also discussed the deterioration phenomena of each PV
module's component. Modeling each recognized degradation using P-V characteristics is the basis
for the Observing Degradation System (ODS) program, which is then presented. A checklist is then
created for successful testing. Study [14] presents an ensemble-based deep neural network (DNN)
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model for the autonomous detection of visual faults on various PV modules, including glass
breakage, burn marks, snail trails, discoloration, and delamination. This method for detecting
degradation faults is similar to the one described earlier. A RGB camera placed on an unmanned
aerial vehicle is used in the procedure to capture the image dataset (UAV). Images are preprocessed
by removing spatial and frequency domain characteristics from them, such as discrete wavelet
transform, texture grey level co-occurrence matrix, rapid Fourier transform, and different grey level
approach. Following that, the edited photos are input. To identify any visual defects on the PV
modules, the proposed ensemble-based DNN model uses DNN. In order to assess the performance
of the suggested model, the classification accuracy, receiver operating characteristic curve, and
confusion matrix are utilized. The results revealed that the proposed model, coupled with random
forest classifier, achieved a high classification accuracy.

Similarly, in [15], the authors described a fuzzy diagnostic algorithm that relies on the
classification of electrical characteristics, the values of which are taken from experimental
measurements of crystalline modules' I-V curves. By using the suggested method, flaws like uniform
dust, partial shading, and potential induced degradation can be found. Also, a brand-new approach
is suggested for the detection of aberrations in the measured I-V curve brought about by bypasses
that are activated as a result of partial shading. This is based on quadratic and cubic polynomial
regression, whose concavities are very sensitive to noisy data. An approach for identifying,
diagnosing, and categorizing short-circuit and open-circuit string errors that is based on deep
learning is provided [16]. There are four steps in the suggested technique. First, a PSIM-based
simulation that seeks to accurately represent the functioning PV system using a heuristic
optimization approach based on the Coyote Optimization Algorithm (COA) is used to input five
unknown electrical characteristics of one diode model. The second phase involves creating a database
with information on current, voltage, and power at MMP, module temperature, and solar irradiation
for the PV system under both ideal and unsatisfactory working circumstances. In the third stage, new
features from the old database are extracted using the unsupervised learning capabilities of the auto-
encoder, and in the final step, PV defect detection and classification are accomplished using
supervised learning on the new database based on ANN construction. The obtained results show
how well the suggested strategy works with the aforementioned fault kinds. Study [17] investigates
the effects of various physical faults and cyberattacks in order to develop an intelligent fault/attacks
detection and diagnosis system. They find that by being able to quickly identify and diagnose
fault/attacks, local controllers and energy management systems can accommodate or lessen the
negative effects of physical faults and cyberattacks in microgrids. The study then presented an
intelligent hybrid diagnosis method for data online monitoring and diagnosing to reflect the real-
time state of PV system running at microgrid level. The proposed method is based on a fuzzy
inference system, a power spectrum estimator, and an adaptive neuro-fuzzy inference system. A
realistic microgrid benchmark model with a range of operating conditions and dynamic electrical
loads in the presence of potential microgrid disturbances is used to show the high level of efficiency
of the proposed method under various types of fault/attack scenarios. In [18], a fault detection and
diagnosis (FDD) scheme design is presented that employs Wasserstein generative adversarial
network (WGAN) and convolutional neural network for automatic fault feature extraction from raw
electrical data of PV array, resulting in the creation of an effective FDD model with little data. A
classifier, a generator, and a discriminator make up the three modules that make up the FDD model.
In order to enhance the effectiveness of the CNN-based classifier, the discriminator and generator
analyze sequential PV data in a two-dimensional manner to learn the distribution of PV data under
different PV system operations. Then they are utilized to generate additional labelled data samples.
According to the paper, the suggested FDD model could be trained with only a little amount of
labeled data, and the effectiveness of the model was assessed using a lab grid-connected PV setup.

A diagnosis of line-line and open-circuit faults using the suggested method was demonstrated
by the results. An implementation of a fault detection strategy based on the identification of PV
systems' neuro-fuzzy models is presented in the work in [19]. Modeling and identification of systems
and the detection of operational states are the two stages of the technique. The derived neuro-fuzzy


https://doi.org/10.20944/preprints202307.1642.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1642.v1

model approximates, with only a few minor differences, the properties and behavior of a genuine
system. The suggested model has a very high level of accuracy and could identify errors very quickly.
Three shortcomings in machine learning-based defect detection techniques were listed in Study [20],
which is what it seeks to fix. The inability of shallow network structures to effectively learn nonlinear
characteristics of I-V curves is one of them. The others are that feature extraction relies on expert
experience and lacks automation; artificial feature extraction readily ignores some potentially useful
features; and feature extraction is not automated. As a result, the study suggested a methodology
based on layered automated encoder and clustering algorithm that can automatically extract features
and employ a limited amount of labeled data samples to mine data sample characteristics for defect
diagnosis. Three steps make up the technique's execution. To enhance the effectiveness of the
clustering approach, the effective features are first automatically retrieved from the I-V curves by the
stacking encoder, and then the dimension of the features is decreased and visualized by the t-
distributed stochastic neighbor embedding. Eventually, the clustering method produces clustering
centers and clusters, and the membership function is utilized to diagnose faults. Eventually, the
clustering method produces clustering centers and clusters, and the membership function is utilized
to diagnose faults. To address the issue of fault detection of PV modules using thermographic images,
a Convolutional Neural Network (CNN) model and a fine-tuned model based on Visual Geometry
Group (VGG-16) have been investigated in [21]. Binary classification and multiclass classification
were employed to determine the type of fault in order to detect it. The database utilized in the study
was made up of an unbalanced class distribution of thermographic images taken by infrared cameras
of PV modules both in good and bad condition (such as bypass diode failure, partially covered PV
module, shading effect, short-circuit and dust deposit on the PV surface). The fine-tuned model
performs very well in experimental tests, but the small Deep Convolutional Neural Network (small-
DCNN) model performs somewhat less well.

This study presents a novel method of fault detection in PV arrays and inverter faults by utilizing
Elman Neural Network (ENN), Boosted Tree Algorithms (BTA), Multi-later Perceptron (MLP) and
Gaussian Processes Regression (GPR) models to estimate the DC Power (DCP) and AC Power (ACP)
of a PV system setup. Different models have different strengths and weaknesses, and what works
well for one problem may not work as well for another. Therefore, it is important to experiment with
different models and choose the one that is best suited for the particular task at hand [22]. As such,
we develop several model combination based on the influencing factors (see Figure 2), existing
claimed of dominancy in the literature [23-26]. Furthermore, it is important to evaluate the
performance of the chosen model carefully, using appropriate metrics and validation techniques, to
ensure that it is indeed performing well on the given problem. As such the study employs several
performance criteria to assess the accuracy of the models. Prior to model development, data pre-
processing including normalization, model validation and stationarity analysis, is carried out. Also,
both standalone and hybrid models will be compared using Nash—Sutcliffe efficiency (NSE), Pearson
correlation coefficient (PCC), mean absolute percentage error (MAPE), mean absolute error (MAE),
root mean square error (RMSE), and Percent bias (PBAIS) to understand the strength of each model
combination.

2. Components Methodology

2.1. DC Power

Solar panels use PV technology to turn sunlight into DCP. It is a kind of electricity that only goes
in one direction. Only Batteries and DC loads are powered by DCP. To power AC loads, DCP must
first be converted to ACP using an inverter. Majority of electrical appliances and equipment in houses
and buildings operate on ACP.

2.2. AC Power

In order to power appliances, lighting, and other electrical loads in homes and businesses, AC
electricity is typically employed. ACP is a type of electrical current that has a sinusoidal waveform
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and goes back and forth. Inverters are used to convert DC electricity produced by solar panels into
ACP, which may subsequently be utilized to power AC loads.

2.3. Daily Yield

The amount of electricity produced by a solar panel system in a single day is referred to as daily
yield. It is commonly expressed in kilowatt-hours (kWh) and is influenced by things like the size of
the solar panel system, how effective the panels are, and how much sunlight is available during the
day. A solar panel system's daily yield can be used to predict how much energy it will produce over
time and to assess its financial return on investment.

2.4. Ambient Temperature

The term "ambient temperature" describes the temperature of the environment or the air around
you. When it comes to solar energy, the ambient temperature can have an impact on how well solar
panels work because hotter temperatures can reduce panel output and efficiency. When building and
installing solar panel systems, it's crucial to take the ambient temperature into account as solar panels
perform better at lower temperatures.

2.5. Module Temperature

The temperature of the solar panels itself is referred to as the module temperature. Solar panels
may get fairly hot as they collect sunlight, which may have an impact on how well they work. The
output and efficiency of panels may decline as module temperatures rise. Solar panels are frequently
mounted with a space between the panel and the mounting surface to allow for air circulation in
order to minimize overheating.

2.6. Solar Radiation

The energy that the sun emits and that reaches the earth is referred to as solar radiation. It
consists of infrared (IR), ultraviolet (UV), and visible light (light). Solar panels use sun radiation as
its energy source in order to produce electricity. Solar radiation received by solar modules vary based
on its location, the time of day, the season, and the weather. The energy output of a solar panel system
is calculated using the intensity of solar radiation, which is commonly expressed in terms of watts
per square meter (W/m?).

3. Proposed Intelligent Methods

According to the “no free lunch" theorem, there is no single model that is universally better than
all other models for every type of problem. In other words, there is no one-size-fits-all model that can
provide optimal results across all possible scenarios [27]. In this work we proposed several Al
learning based on three different scenarios (cropland, pasture, and cropland and pasture) to estimate
the DCP and ACP based on solar panel and inverter, respectively. For this purpose, ENN, BTA,
MLP and GPR models are utilized. The proposed modeling schematics is presented in Figure 1. It is
essential to consider the specific characteristics of the problem at hand, such as the nature of the data,
the size of the dataset, and the goals of the analysis. Different models have different strengths and
weaknesses, and what works well for one problem may not work as well for another. Therefore, it is
important to experiment with different models and choose the one that is best suited for the particular
task at hand [22]. As such we developed several model combinations based on the influencing factors
(see Figure 2), existing claimed of dominancy in the literature [23]-[26] as follows:

M; = ®(DY + AT + MT)

Solar Panel (DCP) = {Mz = ®(DY + AT + MT + SR + TY) M
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_ M, = (DY + AT + MT)
Inverter (ACP) = M; = ®(DY + AT + MT + SR + TY) ®

M, = ®(RDY + AT + MT + SR + TY + DCP)

Where, DCP is DC Power, ACP is AC Power, DY is Daily Yield, AT is Ambient Temperature,
MT is Module Temperature, and SR is Solar Radiation.

Furthermore, it is important to evaluate the performance of the chosen model carefully, using
appropriate metrics and validation techniques, to ensure that it is indeed performing well on the
given problem. As such this study employed several performance criteria to assess the accuracy of
the models. Prior to model development, several pre-processing including normalization (Eq. 3),
model validation and stationarity analysis, were carried out. In this study, both the standalone and
hybrid models were compared using NSE (Nash-Sutcliffe efficiency), PCC (Pearson correlation
coefficient), MAPE (mean absolute percentage error), MAE (mean absolute error), RMSE (root mean
square error), and PBAIS to understand the strength of each model combination.

=0.05 + (095 (———) 3
y < XmaxtXmin ( )
Where y denotes normalized data, x is the actual data, X is the mean of the measured data, Xmax

denotes the maximum value of the measured data, and Xmin denotes the minimum value.
T )= Y()?

NSE=1- 1 )= Y(o))? @

PCC = 2l i Yol 0.~ w)l )
J Z[0Y Y [P 00~V

RMSE = \/%Z?Ll(y(l’) = Y))? (6)

MAE = Zﬁ‘illy(;)—y(o)l 7

MAPE =231, |-0—® ®)
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1Y)
Whereby; Y 1), Y(O),To are considered as the TP loss rate predicted, ¥{,)observed and Y,
average values respectively.
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Figure 1. Proposed modelling scheme.

3.1. Elman Neural Network (ENN)

As recurrent computational learning, ENN is a type of machine learning technique that uses
feedback connections to retain information about previous inputs. It comprises of different three
layers as presented in Figure 2a similar to traditional neural network with the hidden layer having
additional connections to itself from the previous time step [28]. This allows the network to capture
sequential information and make predictions based on past inputs. The network is trained using
backpropagation through time, where the error is propagated through the network and the weights
are updated accordingly [29]. The ENN has been used in numerous purposes, both in science and
engineering problems [30,31].

3.2. Boosted Tree Algorithms (BTA)

BTA are machine learning techniques that combine multiple decision trees to create a powerful
predictive model (Figure 2b). The term "boosting" refers to the process of iteratively improving the
performance of the model by focusing on the misclassified instances in each iteration. Boosted trees
can be applied to both supervised and unsupervised learning problems [32]. The most popular
boosted tree algorithms are Gradient Boosted Trees (GBTs) and Extreme Gradient Boosting
(XGBoost). These algorithms work by sequentially adding trees to the model, with each subsequent
tree trying to correct the errors made by the previous ones. The projection is obtained by aggregating
the predictions of all the trees [33]. GBTs and XGBoost have several hyperparameters that can be
tuned to optimize performance, including the learning rate, number of trees, tree depth, and
regularization. These algorithms have been successfully applied in various domains, including
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finance, e-commerce, and healthcare. They are known for their high accuracy and interpretability, as
they provide information on the importance of each feature in the prediction [32,34].

3.3. Multi-later Perceptron (MLP)

As another version of ANN, MLP model consists of multiple layers of interconnected perceptron
units. MLP plays the role of FFNN in terms of information processing through the three layers (input,
hidden, and outputs) [35] (Figure 2c). Each layer contains one or more nodes (perceptrons) that
receive input from the previous layer and produce an output that is transmitted to the next layer [36].
The perceptrons in the hidden layers use activation functions to transform the inputs, allowing the
network to learn complex mapping in the data. The MLP is trained using a supervised learning
approach called backpropagation, hence works based on the principle of reducing the error between
the estimated and observed data [37].

3.4. Gaussian Processes Regression (GPR)

GPR model has been used to solve different problems related to regression analysis in both
science and engineering [38]. It uses Bayesian inference to make predictions and estimate
uncertainties in the predictions. In contrast to other regression models, GPs do not make assumptions
about the underlying function that generates the data, making them more flexible and suitable for
modeling complex, nonlinear relationships. The core idea behind GPR is to assume that the function
values at any set of input points are jointly Gaussian distributed [39]. A GP is defined by a mean
function and a covariance function, also called the kernel function. The mean function specifies the
expected value of the function at any input point, while the kernel function captures the similarity
between different input points [40], [41].
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Figure 2. Schematic diagram of (a) ENN (b) BTA (c) MLP used in modelling process.

4. Application of Results and Discussion

In this section the modelling results for two different scenarios were discussed based on solar
panel (DCP) and inverter (ACP) modelling. It is worth to note that the use of AI models to simulate
and optimize the performance of solar photovoltaic power plants is a novel approach that allows for

better prediction and control of energy production, leading to increased efficiency and cost-
effectiveness.

4.1. Preliminary Results

According to [42], to understand the model performance or on the other hand, the model to
perform at its best, it is essential to include all factors associated with the removal process of HMs in
the input data optimization. This step will enhance the output and ensure that the model's results
align as closely as possible with the experimental data. Descriptive statistics and raw data analysis
are crucial in modeling because they provide a comprehensive understanding of the data's
characteristics and patterns. Table 1 shows the input-output descriptive analysis. This information
can guide the selection of appropriate modeling techniques, the validation of model assumptions,
and the interpretation of model results, leading to more accurate and reliable predictions. The time
series data used in this study can be visualized in Figure 3.
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Table 1. Descriptive statistic for input-output variables.

Parameters Mean SD Kurtosis Skewness Minimum Maximum
DY 2401.47 2667.09 -1.20 0.64 0.00 7190.00
TY 7620392.92 451795.89 -1.05 -0.45 6870716.67 8460553.49
AT 28.42 3.75 -0.54 0.67 22.67 39.17
MT 34.65 13.71 -0.65 0.85 20.16 72.83
SR 0.26 0.34 -0.21 1.05 0.00 1.36
DCP 3775.04 4045.64 -1.20 0.52 0.00 13687.94
ACP 369.50 395.76 -1.21 0.52 0.00 1334.94

The table presents descriptive statistics for six parameters: DY, TY, AT, MT, SR, DCP, and ACP.
The Kurtosis column represents the peakness of the distribution, with a negative value indicating a
flatter distribution than a normal distribution, and a positive value indicating a more peaked
distribution. The Skewness column shows the degree of asymmetry in the distribution, with a
negative value indicating a left-skewed distribution, and a positive value indicating a right-skewed
distribution. The parameter TY has a Mean of 7,620,392.92 and an SD of 451,795.89, indicating that
the data has a relatively high degree of variability. The Kurtosis value of -1.05 suggests that the
distribution is relatively flat compared to a normal distribution. The Skewness value of -0.45 suggests
that the data is slightly left-skewed. Finally, the Minimum and Maximum values of 6,870,716.67 and
8,460,553.49, respectively, show the range of observed values for the parameter. Similarly, the
parameter with the lowest Kurtosis value is ACP with -1.21, while the parameter with the highest
Kurtosis value is SR with -0.21. The parameter with the highest range of values is DCP, with a range
of 13,687.94, while the parameter with the lowest range of values is SR, with a range of 1.36.
According to [43—47], the lowest skewness towards negatives values indicated the feasibility of Al
based learning in modelling the data accurately. The corro-plot as displayed in Figure 4 was used for
input combination in this study. It can be seen that the system is highly stochastic approach based on
the magnitude in Figure 4.
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Figure 3. Raw data for input-output variables.
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4.2. Results of Intelligent Leaning-Scenario 1

In this section, modelling of solar panel as scenario-I was discussed based on the DCP (kW)
parameter as output of the simulation. Table 2 represents the performance metrics of different models
during the calibration phase. The models are evaluated using various metrics such as NSE, PCC,
RMSE, MAPE, MAE, and PBIAS for both calibration and verification. From the results it can be
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observed that BTA-M1 and BTA-M2 show relatively good performance with NSE values of 0.914 and
0.921, respectively. They also have high PCC values of 0.967 and 0.97, indicating a strong linear
relationship between the observed and predicted values. However, they have relatively high MAPE
values of 35.267 and 33.745, indicating a higher average percentage difference between the predicted
and observed values. Similarly the new recurrent approach i.e. ENN-M1 and ENN-M2 exhibit even
better performance, with NSE values of 0.973 and 0.971, respectively, indicating a high degree of
agreement between the observed and predicted values. They also have high PCC values of 0.99 and
0.989, indicating a strong linear relationship between the observed and predicted values.
Additionally, ENN-M1 and ENN-M2 have low RMSE values of 0.045 and 0.047, respectively,
indicating a lower overall error compared to the other models.

However, they have a negative PBIAS value, indicating a tendency to under-predict the
observed values. GPR-M1 and GPR-M2 show perfect correlation (PCC value of 1) and no error (RMSE
value of 0), making them the best-performing models. However, GPR-M2 has a slightly higher MAE
value of 0.001 compared to GPR-M1, which has an MAE value of 0. Overall, the table provides a good
summary of the performance of different models during the calibration phase. It helps in evaluating
the accuracy of predictive models and selecting the best model based on the evaluation metrics.
Figure 5 shows the embedded scatter-based goodness of fit in the verification phase. The results of
this study were compared with the existing state-of the-art approach in order to balance the literature
as such [48] reported the accuracy of 95.27% and 98.8% before and after considering fuzzy logic
system for fault detection algorithm based on the analysis of the theoretical curves which describe
the behavior of an existing grid connected PV, and fuzzy logic system. The accuracy of our results
using GPR model is 100% which is peak and superior to their results. Another research was
conducted by [49] for investigation into their effectiveness in the diagnosis of various PV array issues.
With the implementation of LGBM, CatBoost, and XGBoost, respectively, average detection and
classification accuracy of 99.996% and 99.745% have been observed, showing that these algorithms
have produced promising results. This results was almost very close to our accuracy and justify our
100% results feasibility.

Table 2. The predicted results for solar panel modelling.

Calibration Phase
NSE PCC RMSE MAPE MAE PBIAS
BTA-M1 0.914 0.967 0.072 35.267 0.043 0.044
BTA-M2 0.921 0.970 0.070 33.745 0.041 0.044
ENN-M1 0.973 0.990 0.045 22.100 0.019 -58.588
ENN-M2 0.971 0.989 0.047 22.528 0.021 -69.997
GPR-M1 1.000 1.000 0.000 29.597 0.000 0.000
GPR-M2 1.000 1.000 0.002 29.711 0.001 0.000
Verification Phase
NSE PCC RMSE MAPE MAE PBIAS
BTA-M1 0.969 0.989 0.049 6.876 0.031 17460.222
BTA-M2 0.969 0.989 0.048 6.866 0.031 17140.021
ENN-M1 0.968 0.985 0.051 22.150 0.039 -58.638
ENN-M2 0.966 0.984 0.053 22.578 0.041 -70.047
GPR-M1 1.000 1.000 0.000 0.083 0.000 0.000

GPR-M2 1.000 1.000 0.000 0.091 0.000 0.000

do0i:10.20944/preprints202307.1642.v1
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Figure 5. Embedded scatter plot in the verification phase.

Besides, the verification result of DCP as displayed in Table 2 also indicated that BTA-M1 and
BTA-M2 exhibit excellent performance during the verification phase, with NSE values of 0.969 for
both models, indicating a high degree of agreement between the observed and predicted values. They
also have high PCC values of 0.989 for both models, indicating a strong linear relationship between
the observed and predicted values. Furthermore, BTA-M1 and BTA-M2 have low RMSE values of
0.049 and 0.048, respectively, indicating a lower overall error compared to other models. Moreover,
they have the lowest MAPE and MAE values, indicating a smaller percentage and average difference
between the predicted and observed values. The ENN-M1 and ENN-M2 exhibit relatively good
performance, with NSE values of 0.968 and 0.966, respectively, indicating a good agreement between
the observed and predicted values. They also have high PCC values of 0.985 and 0.984, indicating a
strong linear relationship between the observed and predicted values. However, they have relatively
high RMSE values of 0.051 and 0.053, respectively, indicating a higher overall error compared to BTA-
M1 and BTA-M2. In addition, they have a negative PBIAS value, indicating a tendency to
underpredict the observed values. This conclusion was in line with the work conducted in [50]
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suggests a method based on Decision Trees with Light Gradient Boosting algorithm (DT-LGB) to
analyze power data and predict faults for the maintenance of solar power plants. The results of this
work showed that the suggested model obtained MSE=8.74, RMSE=2 and R2 values of 0.9939 which
is 12.8%, 6.8%, and 11.08% improved than the existing method respectively.

4.3. Results of Intelligent Leaning-Scenario 11

This section analyses the second scenario Il based on inverter modelling ACP (kW) using several
soft computing approaches. Going at the results in Table 3, BTA-M1, BTA-M2, BTA-M3, BTA-M4,
GPR-M1, GPR-M2, GPR-M3, and GPR-M4 models have high NSE values (above 0.9), indicating that
they perform well in capturing the variation in the data. On the other hand, ENN-M1, ENN-M2, and
ENN-M3 models have lower NSE values, indicating that they do not capture the data variation as
well as the other models. The PCC values for most of the models are high (above 0.9), indicating that
they have a strong linear relationship with the observed data. However, the ENN-M2 model has a
relatively low PCC value of 0.939, indicating that its relationship with the observed data is not as
strong as the other models (see Figure 6). Similarly, the RMSE values for most of the models are
relatively low, indicating that the models have low prediction errors.

However, the ENN-M2 model has a higher RMSE value of 0.094, indicating that it has higher
prediction errors than the other models. The MAPE values for the BTA-M1, BTA-M2, and BTA-M3
models are high (above 30%), indicating that they have relatively high prediction errors. The ENN-
M1 and ENN-M2 models also have high MAPE values (above 40%). The MAE values for most of the
models are relatively low, indicating that they have low absolute prediction errors. However, the
ENN-M1 and ENN-M2 models have higher MAE values than the other models. The PBIAS values
for most of the models are close to zero, indicating that they have no significant bias in their
predictions. However, the ENN-M1 and ENN-M2 models have negative PBIAS values, indicating
that they tend to underpredict the observed data. Generally, the BTA-M1, BTA-M2, BTA-M3, BTA-
M4, GPR-M1, GPR-M2, GPR-M3, and GPR-M4 models perform well in the calibration phase, while
the ENN-M1, ENN-M2, and ENN-M3 models have relatively lower performance measures. This
results is in line with one reported by [51] to predict PV panel behaviors under realistic weather
conditions. R2, MSE, and MAPE values for the optimal ANN model of the proposed method were
0.971, 0.002 and 0.107, respectively. A comparative study among ANN and analytical models was
also carried out. Among the analytical models, the five-parameter model, with MAPE = 0.112, MSE =
0.0026 and R2 = 0.919, gave better prediction than the four-parameter model (with MAPE = 0.152,
MSE = 0.0052 and R2 = 0.905).

Table 3. The predicted results for inverter modelling.

Calibration Phase
NSE PCC RMSE MAPE MAE PBIAS
BTA-M1 0.997 1.000 0.014 27.247 0.008 0.040
BTA-M2 0.915 0.966 0.073 35.294 0.043 0.040
BTA-M3 0.921 0.969 0.070 34.136 0.041 0.040
BTA-M4 0.997 1.000 0.014 27.247 0.008 0.040

ENN-M1 0.970 0.988 0.046 43.989 0.043 -0.066
ENN-M2 0.860 0.939 0.094 43.518 0.063 -0.021
ENN-M3 0.880 0.945 0.090 36.625 0.059 -0.012
ENN-M4 1.000 1.000 0.001 28.886 0.001 -0.004
GPR-M1 1.000 1.000 0.001 29.721 0.001 -0.004
GPR-M2 1.000 1.000 0.001 29.731 0.001 -0.004
GPR-M3 1.000 1.000 0.002 29.820 0.001 -0.004
GPR-M4 1.000 1.000 0.001 29.733 0.001 -0.004

Verification Phase
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NSE PCC RMSE MAPE MAE PBIAS
BTA-M1 0.947 0.973 0.061 10.091 0.095 101.107
BTA-M2 0.995 0.997 0.088 6.069 0.018 801.107
BTA-M3 0.995 0.997 0.088 5.085 0.017 60.107
BTA-M4 0.997 0.998 0.020 4.291 0.013 30.107
ENN-M1 0.999 1.000 0.008 6.424 0.006 -57.560
ENN-M2 1.000 1.000 0.003 1.397 0.003 -49.126
ENN-M3 1.000 1.000 0.002 1.205 0.002 -42.401
ENN-M4 1.000 1.000 0.002 0.506 0.002 -42.302
GPR-M1 1.000 1.000 0.002 0.363 0.002 -2.542
GPR-M2 1.000 1.000 0.003 1.006 0.002 -173.542
GPR-M3 0.988 0.994 68.185 1.006 2.281 87.330
GPR-M4 1.000 1.000 0.002 0.393 0.002 -23.542
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Figure 6. Radar plot showing the goodness-of-fit for modelling ACP inverter.

Similarly, the table provides a quick way to compare and evaluate the performance of different
models in verification phase, but it is important to consider the context and purpose of the models
before drawing conclusions based solely on the metrics presented. The numerical comparison of the
models based on these metrics indicated that NSE: The models with the highest NSE are ENN-M2,
ENN-M3, ENN-M4, GPR-M1, GPR-M2, and GPR-M4, all with a perfect score of 1. The model with
the lowest NSE is GPR-M3 with a score of 0.988. While the models with the highest PCC are ENN-
M2, ENN-M3, ENN-M4, GPR-M1, GPR-M2, and GPR-M4, all with a perfect score of 1. The model
with the lowest PCC is BTA-M1 with a score of 0.973. The model with the lowest RMSE is BTA-M4
with a score of 0.02. The model with the highest RMSE is GPR-M3 with a score of 68.185. According
to [52-54], MAPE values is good when it is below or equal to 10%. MAPE: The model with the lowest
MAPE is ENN-M4 with a score of 0.506%. The model with the highest MAPE is BTA-M1 with a score
of 10.091%. Similarly, the model with the lowest MAE is BTA-M4 with a score of 0.013. The model
with the highest MAE is BTA-M1 with a score of 0.095. To compare the accuracy again with recent
literature, [55] reported the use of ML to process big data by monitoring the behavior of PV. The
monitoring system was reported to have the capability of detecting PV system failure with an RMSE
of 0.66. The accuracy of the proposed model with respect to real-time data for clear days has an RMSE
error of 73.71 and an R-squared is calculated at 0.95. This accuracy is also in line with the current
study outcomes.

The numerical comparison was also discussed using PBAIS both in training and testing phase.
PBIAS: The models with the lowest PBIAS are GPR-M1 and GPR-M4 with a score of -2.542 and -
23.542, respectively. The model with the highest PBIAS is BTA-M2 with a score of 801.107. Based on
these metrics, ENN-M4 appears to be the best performing model, with perfect scores in NSE, PCC,
and relatively low scores in RMSE, MAPE, MAE, and PBIAS. BTA-M1, on the other hand, has
relatively high scores in RMSE, MAPE, MAE, and PBIAS, indicating lower performance than other
models. It is important to note that these metrics alone may not be sufficient to determine the best
model for a specific task, and other factors such as computational efficiency and interpretability
should also be considered [56-58]. Similarly, [6] presents an intelligent photovoltaic (PV) fault
detection system using Adaptive Neuro-Fuzzy Inference System (ANFIS) methodology. To
accomplish this objective, it is necessary to train the ANFIS model for an effective PV fault detection
and classification system by deploying Grid Partition (GP) and Subtractive Clustering (SC) strategies
using some research data. The values obtained from statistical analysis such as coefficient correlation
R, root mean squared error (RMSE), and coefficient of determination R2 were 0.9989, 0.0383, and
0.9978. These obtained results show that the ANFIS SC framework with cluster radius 0.6 can
remarkably diagnose the PV system faults with high accuracy. The overall accuracy of both the
scenarios can be presented in Figure 7, using the probability distribution function graph.
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Figure 7. Probability distribution function graph for DCP and ACP simulated approach.

5. Conclusions

In conclusion, this paper proposes a novel approach to fault detection and diagnosis in PV arrays
and inverters using a combination of Al techniques, including Elman Neural Network, Boosted Tree
Algorithms, Multi-layer Perceptron, and Gaussian Processes Regression. The proposed approach
integrates the strengths of each algorithm for enhanced accuracy and reliability in fault diagnosis,
with ENN utilized for feature extraction, and BTA, MLP, and GPR integrated for fault detection and
diagnosis. Two intelligent learning scenarios are carried out, one for the PV array fault detection with
DC power as output and the other for inverter fault detection with AC power as output. The proposed
technique demonstrates superior accuracy and reliability compared to existing fault detection
techniques. It is capable of detecting various types of faults in PV arrays and inverters, providing a
reliable solution for enhancing the performance and reliability of solar energy systems.

The results of the evaluation on a real-world solar energy dataset demonstrate that the proposed
approach outperforms existing fault detection techniques, achieving higher accuracy and better
performance. Moreover, the proposed technique can be extended to other renewable energy systems,
providing a basis for developing comprehensive fault detection and diagnosis frameworks. This
research represents a significant contribution to the field of solar energy systems and fault detection
and diagnosis. The proposed technique offers a promising solution for increasing the reliability and
efficiency of renewable energy systems, which are becoming increasingly important as the demand
for clean energy continues to grow. The proposed approach can help to reduce the cost of
maintenance and increase the lifespan of solar energy systems, leading to more efficient and
sustainable use of renewable energy resources. The research opens the door for further advancements
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in the field of fault detection and diagnosis in solar energy systems, with the potential for significant
impact in the development of more efficient and reliable renewable energy systems.
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