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Abstract: A class of controlled plants, whose dynamics is governed by a vector system of ordinary
differential equations with a partially known right-hand side, is considered. The state variables and
their velocities are assumed to be measurable. The aim is to design a controller which minimizes a loss
function under certain constraints which arguments is the current state of the controlled plant. The
designed control action is admitted to be a function of the current sub-gradient only, which supposed
to be measurable on-line. The control design is based on ASG (Average Sub-Gradient method) —
version of Integral Sliding Mode (ISM) concept, aimed to minimize on average a given convex (not
obligatory strongly convex) cost function of the current state under a set of given constraints. An
optimization type algorithm is developed and analyzed using ideas of SDM technique. The main
results consist in proving the reachability of the "desired regime" (nonstationary analogue of sliding
surface) from the beginning of the process and obtaining an explicit upper bound for the averaged
loss function decrement, that is, the averaged in time functional convergence is proven and the rate
of such convergence is estimated.

Keywords: robust control; trajectory tracking; convex constrained optimization; subgradient descent
method; sliding mode
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1. Introduction

1.1. Brief survey

Constrained optimization is the process of optimizing an objective function with respect to some
variables in the presence of constraints on those variables. The objective function is either a cost
function or energy function, which is to be minimized, or a reward function or utility function, which is
to be maximized. Constraints can be either hard constraints, which set conditions for the variables that
are required to be satisfied, or soft constraints, which have some variable values that are penalized in
the objective function if, and based on the extent that, the conditions on the variables are not satisfied
(see, for example [3], [4], [18], [13], [17] and [22]).

All control strategies in the most publications, treated as Static Optimization Methods (SOM), in
continuous-time may be represented in the following form

F(x;) — F*:= min F(x), 1)

t—o0 xeXﬂdm CRn®
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where F : R" — R is a convex (not obligatory strongly convex) mapping, X4, is the admissible convex
set of arguments and the process x; is generated by the simple ordinary differential equation (ODE)

Xy = ug, xg is fixed, t > 0, 2)

with any initial conditions xo € R"”. The relation (2) is referred hereafter to as a static plant. All known
procedures of SOM differ only in designing of control action u; (or an optimization algorithm) as
a function of the current state x; (Markov’s strategy) or more profound available history, namely,
up = u(t, Xt [cepor)-

Here we will consider more general, and hence, more complex situation when the process x; is
generated by the dynamic plant

®)

X = f (t, xe, X¢) + uy,

Xo, X are fixed, t > 0, x;,u; € R”, }
where the vector function f in the right-hand side is supposed to be unknown but belonging to
some class C of nonlinearities. This problem is more closed to the, so-called, Extremum Seeking
Problem [14], [12], [1], [23], where the nonlinear dynamics includes the first order derivatives only.
So, in [24], several optimization schemes are considered and there is shown that under appropriate
conditions these schemes achieve extremum point from an arbitrarily large domain of initial conditions
if the parameters in the controller are appropriately adjusted. This approach was applied in [15]
for two levels plant’s economic optimization. Many advanced process control systems use some
form of model predictive control approach [5], [26]. The paper [20] describes a new algorithm for
extremum seeking using stochastic on-line gradient estimation. The paper [7] deals with the problem
of constrained optimization in dynamic linear time-invariant (LTT) systems characterized by a control
vector dimension less than that of the system state vector. The finite-time convergence to a vicinity of
order ¢ of the optimal equilibrium point is proved. In [8] a variable structure convex programming
based control for a class of linear uncertain systems with accessible state is presented.

In this paper we consider a class of controlled plants with dynamics governed by a vector
system of the second order ordinary differential equations (ODE) with unknown right-hand side. All
mechanical Lagrange models belong to this class. The state variables and their velocities are assumed
to be measurable. We design a controller minimizing a loss function subjected to a set of constraints to
the state of the controlled plant. The designed control action is admitted to be a function of the current
sub-gradients of loss function and constraints only, which also supposed to be measurable on-line.
The control is designed based on SDM (Subgradient Descent Method) - version [21], [19] of Integral
Sliding Mode (ISM) concept [25], [9] aimed to minimize "on average" a given convex (not obligatory
strongly convex) cost function of the current state under a set of given constraints. An optimization
type algorithm is developed and analyzed using ideas of SDM technique [3]. We prove the reachability
of the "desired regime" (nonstationary analogue of sliding surface) [9] from the beginning of the process
and obtaining an explicit upper bound for the cost function decrement, that is, the convergence is proven
and the rate of convergence is estimated as O(t~!). This paper generalizes the approach, suggested in
[11] for unconstrained dynamic optimization, to the constraint optimization problem realized by an
uncertain second order dynamic plant.

1.2. Main contributions

*  Robust Tracking problem is reformulated as a Constrained Optimization realized by a dynamic
plant with unknown (but bounded) right-hand side.

e The cost as well as the constraints are admitted to be convex but not obligatory strictly or strongly
convex.

¢ Mirror Descent Method (MDM) and ASG - Version of Sliding Mode Control are suggested and
realized.
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e The convergence of the obtained trajectories of controlled uncertain plant to the corresponding
admissible zone closed the minimal point is realized.

2. Uncertain plant description and admitted dynamic zone

2.1. Dynamic model

The second order dynamic model (3) can be represented in the following extended format

X X 0

i 1,t _ 2,t + nxn u,

X2,t f (tl xl,tl Xz,t) I?’l Xn (4:)
X1t = X1 € R", xp40 = Xp € R", uy € R".

Here the extended state variables xq ; = x¢, X+ = X are the current coordinates and their velocities at
time t > 0. Function f (¢, X3 ¢, xp¢) is partially continuous in all arguments and admits to be unknown
but bounded as

1f (8 x1,%2) || < kx (x1,%2) 1= co + c1 [[xa]| + c2 [ x| ®)

with final positive constants ¢y, c¢1, and ¢;. Hereafter the symbol ||-|| means the Euclidean norm.

2.2. Reference trajectory, tracking error dynamics, and admissible zone

The aim of the controller (which will be exactly formulated below) is to realize the tracking of the
state x; for the given reference trajectory {x; }. . Define the tracking error 6, ; as

rp = X1 —Xip, o4 =014 =Xp4 — X5, (6)
where x7 | is the continuously differentiable trajectory to be tracked satisfying
X[ =%, = ¢ (4X];), t >0, x], is known. (7)
In view of that, the error tracking dynamics can be represented as follows
6 5 0
( 5; > N ( fo(t, 5?;,52,0 ) i ( e > ut’ ®)
fo (b1, 824) 1= f (184X 0 020+ X5 ) = 54

Let us require that the dynamics of 41 ; should be realized after time ¢, > 0 within a bounded admissible
zone D4,

Let the loss function F : R” — R be a convex. For example, the following two functions belong to
the considered class of the convex loss functions to be optimized:

n
) F(6) = ‘21 01,1,
=
z—e if z>¢ )
|F={ —z—¢ if z< —e
0 if |z| <e

+
g/

n
2) F(61)= '21 | 61,i |z
i=

2.3. Basic assumptions

A1 The current states (x¢, X;) of the plant (4) are supposed to be measurable (available) on-line for all
t>0.

A2 The function f (¢, x;, X¢), satisfying (5), is piecewise continuous in all arguments and admits to be
unknown.
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A3 The current state (x}, x;) of the reference trajectory are also supposed to be available on-line for
any t > 0.
A4 Here we assume that sub-gradient! of the loss function F(J; ;) is available on-line for a current
timet > 0,
and the set of minimizers d; of F(-) on the set D4, includes the origin J; = 0, that s,

0e Argélrer%r; F(d1).

A5 The admissible set D,;,, is non empty convex compact, i.e., D4, # @.

3. Desired dynamics

3.1. Mirror descent method in continuous time

Let us apply mirror descent approach, using the Legendre-Fenchel transformation [16] as follows.
For any ¢ € R" define

U, (§) = max {T2-U(2)}, U() =], (10)

ZeDadm

so that (see, for instance, [2], [10])

VUL () = arg_max {{T6 — U (1)} a1

o€ adm

Define the dynamics for the vector-function {; € R" as

G = —a(01y), a(é1) € OF(014), Gty =0,
(12)
(t+9)51,t+51,t = VU, (gt—ﬂ), t>t >0, yeR"

Remark 1. The second differential equation in (12) can be inegrated as follows

t
(t4+0)01— (to+0)b14, = [ VUi ({x—1)dT,

T=ty

1 t
O = Abrpy + (1= Ap) —f J VU, (Gr—1)dt| € Dagp, At =

0 T:to

to+ 0
+0°

~

Therefore, 614 € Dygy, for all t > to because of convexity and due to (10)—(11).

3.2. Why the dynamics &1 ; be desired

The following theorem explains why the dynamics J; ; may be considered as a desired one.

Theorem 1. Under Assumptions A1-A5 on the trajectories 1, generated by (12), for all t > ty > 0 the
following propertry holds

to+6

F(or1) < FOOT (M) + 7

[F(61,9) — F(51 ()], (13)

1 Recall that a vector a(x) € R", satisfying the inequality F(x +y) > F(x) + aT(x)y for ally € R", is called the sub-gradient of
the function F(x) at the point x € R" and is denoted by a(x) € 9F (x) which is the set of all sub-gradients of F at the point x.
If F(x) is differentiable at a point x, then a(x) = VF(x). In the minimal point x* we have 0 € 0F (x*).
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where

6 () = arg g%n {=nTo1+U (1)} (14)

1 adm

Proof. Defining y; := t + 0, 6] := 4] (17), we have from (12)

d .
77 W (G =) = (G =m)To7] = & (VUL (G —m) = 8]) =
—aT(d1,0) [pedrs + 01 — 6] = —aT(d14) (S1 — 67) — peaT(81,4)01,

Due to the convexity property for F(4;), we have

aT(01,)(01) (01,0 = 07) = F(1) = E(67),

and, in view of the relation ;
T g — 2
aT(61,4)01,¢ th(51,t),
it follows p
I (U (Ze—n) = (Ge—m)T 6] =] (VU (G —n) —67) =
—aT(014) [ed1 + 61 — 67 < — [F(61,4) — F(67)] — pea(81,4)01 4,

or equivalently,

% (U (o = 15) — (Lo —16)T 0] <

— [F(61) — F(&)] — o FGn)

After integration we get

ft [F(61,0) — F(67)] dt <

(U @) = G5 152y — [ e [F(810) — F(67)] dr =

T:to

— UG =)= Ge—n)T 5f]t+ (U (=) +1757]

e [F(01) ~F@D] [, + [ [F(or0) ~F(p)] dr,
which implies
pe [F(Ou) = F(65)] < = [Ua (Gt —1) — (G — )T 5] +
(U (=) + 1767 ] + pey [F(d140) — F(67)] -

Using (10), we get
Ui (G =) = (e —m)T o7 —U(57),
(U @)~ @ )T S U) = 5 1517,
and
pe [F(6) — EGD] < 5 151+ (U (=) +767] +
sty [F(S1,50) — F(67)] -
Since by (10) and (11)

1
VU. (—y) =arg max {—yTo—U(G)}, U@)=5al,

‘Slepadm
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and defining
01 () = arg max {—nTo = U ()} = VU (=), (15)

adm
we get
* * 1 *

Us (=n) +77op = —U (1) = —5 (|91 [

Therefore, we get
Ut [F(él,t) - F(‘ﬁ)} <
LTI B TR .
oI S 055+ e [FG1a0) — )
F(611) < (37 () + 2 [F(81) = FT ()]
O
Example 1. Assume that
Dy := {01 € R" ¢ [|61]] <7} (16)

To calculate 63, according (14), it is sufficient to note that the soltion of the problem

2 2 2 .
27761+ [[61[” = flor + " = [l l]” = min ,
[

s | s
1= *m” if Al >r -

4. Robust controller design

4.1. Auxilary sliding variable and its dynamics

Introduce a new auxilary variable (sliding variable)
st = (t+0)0;+01, — VU (Gt —1), t >t >0.
Notice that the function s; is measurable on-line, and that the situation when
st =0 forallt >t (17)

corresponds exactly the desired regime (12), starting from the moment t. Then for V (s;) = 4 ||s; 1% in
view of (8) and the first equation in (12) we have

d . . d
EV (St) = StTSt = SI |:251,t + (t + 9) 52,1} — EVU* (gt — 17)] =

stT (2(52,t + (t+0) {f (t, O+ xi‘,t,(52,t + x&) - X;/t + ut] — VU, (Ce—n) @t) =

(t+0)STF (1,80 + 7,000+ 33,) +
2

. % 1
(t+0)s] [H_G‘sz,t — X+ up+ mvzll* (Gt —1) “(5l,t)} =

—k¢Sign(s¢)
(£+0) lsell || (£011 + 21020+ 33, ) | — (¢ + 0) kisTSign (s1) <

(t+6) | lIsell (co+er |61+ 74| +c2 (|02 +23]) — kesSign (st)

kg =k (01,457 1,02 445 )
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Here
Sign (s¢) = (sign (s1¢), ..., sign (snt))7,
= +1 if Si,f >0
sign (s; ) =-1 if s <0 .
S [_1, +1] if Sit = 0
4.2. Robust control structure
Since .
siSign (se) = ) Isiel > [lstll
i=1
and taking
kt = kx,t+Pr p > 0/
we get
d
SV () < (£0) st (s — ki) = — (140) py/2V (1),
which implies
v (St)
———= < — (t+0) V2pdt,
20 (\[ ) V20
2 2 2
2(VV 1) = V) < =0 [(t+0) = (o +0)°],
V2
0< V() < YV (s) = o [ (E40)* = (to +6)°] -
This means that for all t > t,,,.,, where
V2
treach = {t : ‘/V(Sto) — T‘O |:(i’+9)2 _ (to +9)2i| =0
2
= \/ Isto| + (o + 6)* — .
0
Finally, the robust control is
e 2 i, - — VUL (g - (814) — ksSi
Ut ==yt T T g « (G —1n)a(or ¢Sign (s¢) (18)
= Ucomp,t T Udisc,ts
where ) 1
ucomp,t = _méz't + x;’t — H_—QVZU* (@t - 77) a((sl,t)/
(19)
Ugise,r = —kiSign (st) -
Remark 1. If we wish to get t,pq0 = to = 0, we need to complete the identity
15 .
50 = 0620+ 610 — VU, (=) "2 0620+ 610 — 6% () = 0. 20)

Since 07 (1) € Dyay, we may conclude that parameters 0 > 0,1 and initial conditions (31, 02) should be
consistent in the sence that
002,0 + 01,0 € Dadm-
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Remark 2. For the example, for Eucidean r-ball in R", being the admissible set D,4,,, from (10)—(11) one has

o s 5 Gg if (Il <r |
U. = arg max —-u = . , 21
O oz, WamHOD =l s (
67 (n) = arg min {576 +U(61)} =
‘sIEDadm 22
N G TS R 22)
arg min § —nTo+ o |67 p =7 if (]| <
516 adm 2
From (19) it follows
0620+ 01,0 =1, Iyl <71, (23)
and
Lnxn if gl <r
(24)

v2U, Q) = r <In><n B 4l

el |C||2> if ¢l >r "

Notice, that U-function (11) is nondifferential in the points of r-sphere of ball, and it is continuous differential in
all other points of R". The formulas in (21), (24) are presented as their continuous versions on ball U.-function
(11) including the r-sphere.

4.3. Main result

We are ready to formulate the main result.

Theorem 1. Under Assumptions A1-Ab the robust control (18)-(19) with parameter 1, satisfying (20), provides
the property
6
F(ovr) < F(01 (1)) + 45 [F(610) = F(61 ()] (25)
forall t > 0 and any reqularizing parameter 6 > 0.

Proof. Since in view of the relation (20) of the parameter 7 and initial conditions 4y o, 51,0 the auxiliary
variable s; = 0 for all f > 0 starting from the beginning of the control process. Using the formula (13)
for ty = 0 we obtain (25). O

5. Discussion

Equations (15), (20) hold under 8 > 0, 5 € R" at the following cases:

1. Zero initial conditions 619 = 0, 69 = 0. Thus, § = 0 for arbitrary 0 > 0 (see, as an example, the 1st item
in loss function (9)).

2. Non-zero initial conditions 1, 020 are collinear oppositely directed vectors. Therefore, @ > Qand n = 0
exist (see, as an example, the 1st item in loss function (9)).

3. Equation (23) holds under non-zero vector n with a sufficiently small ||3|| < € and for 6 > 0 (see, as an
example, the 2nd item in loss function (9)).

6. Conclusion

- The constrained optimization problem is addressed in this study using a second-order differential
controlled plant with an unknown (but bounded) right side of the model.

- The desired dynamics in the tracking error variables is designed based on Mirror Descent
Method.

- The continuous-time convergence to the set of minimizing points is established, and the
associated rate of convergence has been analytically evaluated.

do0i:10.20944/preprints202307.1641.v1
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- The robust controller, containing both the continuous (compensating) Ucomp and the
discontinuous 4., is proposed the ASG-version of Integral Sliding Mode approach.

- The suggested controller, under the special realations of it parameters with the initial conditions,
is proved to provide the desired regime from the beginning of the control process.

- This method may has several applications in the development of robust control in mechanical
systems, including soft robotics and moving dynamic plants.
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