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Abstract: A class of controlled plants, whose dynamics is governed by a vector system of ordinary

differential equations with a partially known right-hand side, is considered. The state variables and

their velocities are assumed to be measurable. The aim is to design a controller which minimizes a loss

function under certain constraints which arguments is the current state of the controlled plant. The

designed control action is admitted to be a function of the current sub-gradient only, which supposed

to be measurable on-line. The control design is based on ASG (Average Sub-Gradient method) —

version of Integral Sliding Mode (ISM) concept, aimed to minimize on average a given convex (not

obligatory strongly convex) cost function of the current state under a set of given constraints. An

optimization type algorithm is developed and analyzed using ideas of SDM technique. The main

results consist in proving the reachability of the "desired regime" (nonstationary analogue of sliding

surface) from the beginning of the process and obtaining an explicit upper bound for the averaged

loss function decrement, that is, the averaged in time functional convergence is proven and the rate

of such convergence is estimated.

Keywords: robust control; trajectory tracking; convex constrained optimization; subgradient descent

method; sliding mode

MSC: 93B12; 93B51; 93B52; 93D09; 93D21

1. Introduction

1.1. Brief survey

Constrained optimization is the process of optimizing an objective function with respect to some

variables in the presence of constraints on those variables. The objective function is either a cost

function or energy function, which is to be minimized, or a reward function or utility function, which is

to be maximized. Constraints can be either hard constraints, which set conditions for the variables that

are required to be satisfied, or soft constraints, which have some variable values that are penalized in

the objective function if, and based on the extent that, the conditions on the variables are not satisfied

(see, for example [3], [4], [18], [13], [17] and [22]).

All control strategies in the most publications, treated as Static Optimization Methods (SOM), in

continuous-time may be represented in the following form

F(xt) →
t→∞

F∗ := min
x∈Xadm ⊆Rn

F(x), (1)
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where F : Rn → R is a convex (not obligatory strongly convex) mapping, Xadm is the admissible convex

set of arguments and the process xt is generated by the simple ordinary differential equation (ODE)

ẋt = ut, x0 is fixed, t ≥ 0, (2)

with any initial conditions x0 ∈ R
n. The relation (2) is referred hereafter to as a static plant. All known

procedures of SOM differ only in designing of control action ut (or an optimization algorithm) as

a function of the current state xt (Markov’s strategy) or more profound available history, namely,

ut = u(t, xτ |τ∈[0,t]).

Here we will consider more general, and hence, more complex situation when the process xt is

generated by the dynamic plant

ẍt = f (t, xt, ẋt) + ut,

x0, ẋ0 are fixed, t ≥ 0, xt, ut ∈ R
n,

}

(3)

where the vector function f in the right-hand side is supposed to be unknown but belonging to

some class C of nonlinearities. This problem is more closed to the, so-called, Extremum Seeking

Problem [14], [12], [1], [23], where the nonlinear dynamics includes the first order derivatives only.

So, in [24], several optimization schemes are considered and there is shown that under appropriate

conditions these schemes achieve extremum point from an arbitrarily large domain of initial conditions

if the parameters in the controller are appropriately adjusted. This approach was applied in [15]

for two levels plant’s economic optimization. Many advanced process control systems use some

form of model predictive control approach [5], [26]. The paper [20] describes a new algorithm for

extremum seeking using stochastic on-line gradient estimation. The paper [7] deals with the problem

of constrained optimization in dynamic linear time-invariant (LTI) systems characterized by a control

vector dimension less than that of the system state vector. The finite-time convergence to a vicinity of

order ε of the optimal equilibrium point is proved. In [8] a variable structure convex programming

based control for a class of linear uncertain systems with accessible state is presented.

In this paper we consider a class of controlled plants with dynamics governed by a vector

system of the second order ordinary differential equations (ODE) with unknown right-hand side. All

mechanical Lagrange models belong to this class. The state variables and their velocities are assumed

to be measurable. We design a controller minimizing a loss function subjected to a set of constraints to

the state of the controlled plant. The designed control action is admitted to be a function of the current

sub-gradients of loss function and constraints only, which also supposed to be measurable on-line.

The control is designed based on SDM (Subgradient Descent Method) - version [21], [19] of Integral

Sliding Mode (ISM) concept [25], [9] aimed to minimize "on average" a given convex (not obligatory

strongly convex) cost function of the current state under a set of given constraints. An optimization

type algorithm is developed and analyzed using ideas of SDM technique [3]. We prove the reachability

of the "desired regime" (nonstationary analogue of sliding surface) [9] from the beginning of the process

and obtaining an explicit upper bound for the cost function decrement, that is, the convergence is proven

and the rate of convergence is estimated as O(t−1). This paper generalizes the approach, suggested in

[11] for unconstrained dynamic optimization, to the constraint optimization problem realized by an

uncertain second order dynamic plant.

1.2. Main contributions

• Robust Tracking problem is reformulated as a Constrained Optimization realized by a dynamic

plant with unknown (but bounded) right-hand side.
• The cost as well as the constraints are admitted to be convex but not obligatory strictly or strongly

convex.
• Mirror Descent Method (MDM) and ASG – Version of Sliding Mode Control are suggested and

realized.
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• The convergence of the obtained trajectories of controlled uncertain plant to the corresponding

admissible zone closed the minimal point is realized.

2. Uncertain plant description and admitted dynamic zone

2.1. Dynamic model

The second order dynamic model (3) can be represented in the following extended format

(

ẋ1,t

ẋ2,t

)

=

(

x2,t

f (t, x1,t, x2,t)

)

+

(

0n×n

In×n

)

ut,

x1,t0
= x̊1 ∈ R

n, x2,t0
= x̊2 ∈ R

n, ut ∈ R
n.







(4)

Here the extended state variables x1,t = xt, x2,t = ẋt are the current coordinates and their velocities at

time t ≥ 0. Function f (t, x1,t, x2,t) is partially continuous in all arguments and admits to be unknown

but bounded as

‖ f (t, x1, x2)‖ ≤ kx (x1, x2) := c0 + c1 ‖x1‖+ c2 ‖x2‖ (5)

with final positive constants c0, c1, and c2. Hereafter the symbol ‖·‖ means the Euclidean norm.

2.2. Reference trajectory, tracking error dynamics, and admissible zone

The aim of the controller (which will be exactly formulated below) is to realize the tracking of the

state xt for the given reference trajectory {x∗t }t≥0. Define the tracking error δ1,t as

δ1,t := x1,t − x∗1,t, δ2,t = δ̇1,t = x2,t − x∗2,t, (6)

where x∗1,t is the continuously differentiable trajectory to be tracked satisfying

ẋ∗1,t = x∗2,t = ϕ
(
t, x∗1,t

)
, t ≥ 0, x∗1,0 is known. (7)

In view of that, the error tracking dynamics can be represented as follows

(

δ̇1,t

δ̇2,t

)

=

(

δ2,t

fδ (t, δ1,t, δ2,t)

)

+

(

0n×n

In×n

)

ut,

fδ (t, δ1,t, δ2,t) := f
(

t, δ1,t + x∗1,t, δ2,t + x∗2,t

)

− ẋ∗2,t.







(8)

Let us require that the dynamics of δ1,t should be realized after time t0 ≥ 0 within a bounded admissible

zone Dadm.

Let the loss function F : Rn → R be a convex. For example, the following two functions belong to

the considered class of the convex loss functions to be optimized:

1) F (δ1) =
n

∑
i=1

|δ1,i| ,

2) F ( δ1)=
n

∑
i=1

| δ1,i|+ε , |z|+ε :=







z − ε if z ≥ ε

−z − ε if z ≤ −ε

0 if |z| < ε

.







(9)

2.3. Basic assumptions

A1 The current states (xt, ẋt) of the plant (4) are supposed to be measurable (available) on-line for all

t ≥ 0.
A2 The function f (t, xt, ẋt), satisfying (5), is piecewise continuous in all arguments and admits to be

unknown.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1641.v1

https://doi.org/10.20944/preprints202307.1641.v1


4 of 10

A3 The current state (x∗t , ẋ∗t ) of the reference trajectory are also supposed to be available on-line for

any t ≥ 0.
A4 Here we assume that sub-gradient1 of the loss function F(δ1,t) is available on-line for a current

time t ≥ 0,
and the set of minimizers δ∗1 of F(·) on the set Dadm includes the origin δ∗1 = 0, that is,

0 ∈ Arg min
δ1∈Dadm

F(δ1).

A5 The admissible set Dadm is non empty convex compact, i.e., Dadm 6= ∅.

3. Desired dynamics

3.1. Mirror descent method in continuous time

Let us apply mirror descent approach, using the Legendre-Fenchel transformation [16] as follows.

For any ζ ∈ R
n define

U∗ (ζ) = max
z∈Dadm

{ζ⊺z − U (z)} , U (z) =
1

2
‖z‖2 , (10)

so that (see, for instance, [2], [10])

∇U∗ (ζ) = arg max
δ1∈Dadm

{ζ⊺δ1 − U (δ1)} . (11)

Define the dynamics for the vector-function ζt ∈ R
n as

ζ̇t = −a(δ1,t), a(δ1,t) ∈ ∂F(δ1,t), ζt0 = 0,

(t + θ) δ̇1,t + δ1,t = ∇U∗ (ζt − η) , t ≥ t0 ≥ 0, η ∈ R
n.







(12)

Remark 1. The second differential equation in (12) can be inegrated as follows

(t + θ) δ1,t − (t0 + θ) δ1,t0
=

t∫

τ=t0

∇U∗ (ζτ − η) dτ,

δ1,t = λtδ1,t0
+ (1 − λt)

[

1

t − t0

t∫

τ=t0

∇U∗ (ζτ − η) dτ

]

∈ Dadm, λt :=
t0 + θ

t + θ
.

Therefore, δ1,t ∈ Dadm for all t ≥ t0 because of convexity and due to (10)–(11).

3.2. Why the dynamics δ1,t be desired

The following theorem explains why the dynamics δ1,t may be considered as a desired one.

Theorem 1. Under Assumptions A1-A5 on the trajectories δ1,t, generated by (12), for all t ≥ t0 ≥ 0 the

following propertry holds

F(δ1,t) ≤ F(δ∗1 (η)) +
t0 + θ

t + θ

[
F(δ1,t0

)− F(δ∗1 (η))
]

, (13)

1 Recall that a vector a(x) ∈ R
n, satisfying the inequality F(x + y) ≥ F(x) + a⊺(x)y for all y ∈ R

n, is called the sub-gradient of
the function F(x) at the point x ∈ R

n and is denoted by a(x) ∈ ∂F(x) which is the set of all sub-gradients of F at the point x.
If F(x) is differentiable at a point x, then a(x) = ∇F(x). In the minimal point x∗ we have 0 ∈ ∂F(x∗).
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where

δ∗1 (η) = arg min
δ1∈Dadm

{−η⊺δ1 + U (δ1)} . (14)

Proof. Defining µt := t + θ, δ∗1 := δ∗1 (η), we have from (12)

d

dt

[
U∗ (ζt − η)− (ζt − η)⊺ δ∗1

]
= ζ̇⊺t

(
∇U∗ (ζt − η)− δ∗1

)
=

−a⊺(δ1,t)
[
µt δ̇1,t + δ1,t − δ∗1

]
= −a⊺(δ1,t) (δ1,t − δ∗1)− µta

⊺(δ1,t)δ̇1,t.

Due to the convexity property for F(δ1), we have

a⊺(δ1,t)(δ1,t) (δ1,t − δ∗1 ) ≥ F(δ1,t)− F(δ∗1 ),

and, in view of the relation

a⊺(δ1,t)δ̇1,t =
d

dt
F(δ1,t),

it follows
d

dt

[
U∗ (ζt − η)− (ζt − η)⊺ δ∗1

]
= ζ̇⊺t

(
∇U∗ (ζt − η)− δ∗1

)
=

−a⊺(δ1,t)
[
µt δ̇1,t + δ1,t − δ∗1

]
≤ −

[
F(δ1,t)− F(δ∗1 )

]
− µta

⊺(δ1,t)δ̇1,t,

or equivalently,
d

dt

[
U∗ (ζδ,t − ηδ)− (ζδ,t − ηδ)

⊺ δ∗1
]
≤

−
[
F(δ1,t)− F(δ∗1 )

]
− µt

d

dt
F(δ1,t).

After integration we get

t∫

τ=t0

[
F(δ1,τ)− F(δ∗1 )

]
dτ ≤

−
[
U∗ (ζτ − η)− (ζτ − η)⊺ δ∗1

]
|τ=t
τ=t0

−
t∫

τ=t0

µτ
d

dτ

[
F(δ1,τ)− F(δ∗1 )

]
dτ =

−
[
U∗ (ζt − η)− (ζt − η)⊺ δ∗1

]
+
[
U∗ (−η) + η⊺δ∗1

]

−µτ

[
F(δ1,τ)− F(δ∗1 )

]
|τ=t
τ=t0

+
t∫

τ=t0

[
F(δ1,τ)− F(δ∗1 )

]
dτ,

which implies

µt

[
F(δ1,t)− F(δ∗1 )

]
≤ −

[
U∗ (ζt − η)− (ζt − η)⊺ δ∗1

]
+

[
U∗ (−η) + η⊺δ∗1

]
+ µt0

[
F(δ1,t0

)− F(δ∗1 )
]

.

Using (10), we get

U∗ (ζt − η) ≥ (ζt − η)⊺ δ∗1 − U (δ∗1 ) ,

− [U∗ (ζt − η)− (ζt − η)⊺ δ∗1 ] ≤ U (δ∗1 ) =
1

2
‖δ∗1‖2 ,

and

µt

[
F(δ1,t)− F(δ∗1 )

]
≤ 1

2

∥
∥δ∗1
∥
∥2

+
[
U∗ (−η) + η⊺δ∗1

]
+

µt0

[
F(δ1,t0

)− F(δ∗1 )
]

.

Since by (10) and (11)

∇U∗ (−η) = arg max
δ1∈Dadm

{−η⊺δ1 − U (δ1)} , U (δ1) =
1

2
‖δ1‖2 ,
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and defining

δ∗1 (η) := arg max
δ1∈Dadm

{−η⊺δ1 − U (δ1)} = ∇U∗ (−η) , (15)

we get

U∗ (−η) + η⊺δ∗1 = −U (δ∗1 ) = −1

2
‖δ∗1‖2 .

Therefore, we get

µt

[
F(δ1,t)− F(δ∗1 )

]
≤

1

2

∥
∥δ∗1
∥
∥2 − 1

2

∥
∥δ∗1
∥
∥2

+ µt0

[
F(δ1,t0

)− F(δ∗1 )
]

.

F(δ1,t) ≤ F(δ∗1 (η)) +
µt0

µt

[
F(δ1,t0

)− F(δ∗1 (η))
]

.

Example 1. Assume that

Dadm := {δ1 ∈ R
n : ‖δ1‖ ≤ r} . (16)

To calculate δ∗1 , according (14), it is sufficient to note that the soltion of the problem

2η⊺δ1 + ‖δ1‖2 = ‖δ1 + η‖2 − ‖η‖2 → min
‖δ1‖≤r

,

is

δ∗1 (η) =







−η if ‖η‖ ≤ r

− η

‖η‖ r if ‖η‖ > r
.

4. Robust controller design

4.1. Auxilary sliding variable and its dynamics

Introduce a new auxilary variable (sliding variable)

st = (t + θ) δ2,t + δ1,t −∇U∗ (ζt − η) , t ≥ t0 ≥ 0.

Notice that the function st is measurable on-line, and that the situation when

st = 0 for all t ≥ t0 (17)

corresponds exactly the desired regime (12), starting from the moment t0. Then for V (st) =
1
2 ‖st‖2 in

view of (8) and the first equation in (12) we have

d

dt
V (st) = s⊺t ṡt = s⊺t

[

2δ̇1,t + (t + θ) δ̇2,t −
d

dt
∇U∗ (ζt − η)

]

=

s⊺t

(

2δ2,t + (t + θ)
[

f
(

t, δ1,t + x∗1,t, δ2,t + x∗2,t

)

− ẋ∗2,t + ut

]

−∇2U∗ (ζt − η) ζ̇t

)

=

(t + θ) s⊺t f
(

t, δ1,t + x∗1,t, δ2,t + x∗2,t

)

+

(t + θ) s⊺t

[
2

t + θ
δ2,t − ẋ∗2,t + ut +

1

t + θ
∇2U∗ (ζt − η) a(δ1,t)

]

︸ ︷︷ ︸

−ktSign(st)

≤

(t + θ) ‖st‖
∥
∥
∥ f
(

t, δ1,t + x∗1,t, δ2,t + x∗2,t

)∥
∥
∥− (t + θ) kts

⊺

t Sign (st) ≤

(t + θ)






‖st‖

(
c0 + c1

∥
∥δ1,t + x∗1,t

∥
∥+ c2

∥
∥δ2,t + x∗2,t

∥
∥
)

︸ ︷︷ ︸

kx,t :=kx(δ1,t+x∗1,t ,δ2,t+x∗2,t)

− kts
⊺

t Sign (st)







.
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Here
Sign (st) = (sign (s1,t) , ..., sign (sn,t))

⊺ ,

sign (si,t)







= +1 if si,t > 0

= −1 if si,t < 0

∈ [−1,+1] if si,t = 0

.

4.2. Robust control structure

Since

s⊺t Sign (st) =
n

∑
i=1

|si,t| ≥ ‖st‖

and taking

kt = kx,t + ρ, ρ > 0,

we get
d

dt
V (st) ≤ (t + θ) ‖st‖ (kx,t − kt) = − (t + θ) ρ

√

2V (st),

which implies
dV (st)
√

V (st)
≤ − (t + θ)

√
2ρdt,

2
(√

V (st)−
√

V (st0)
)

≤ −
√

2

2
ρ
[

(t + θ)2 − (t0 + θ)2
]

,

0 ≤
√

V (st) ≤
√

V (st0)−
√

2

4
ρ
[

(t + θ)2 − (t0 + θ)2
]

.

This means that for all t ≥ treach, where

treach :=

{

t :
√

V (st0)−
√

2

4
ρ
[

(t + θ)2 − (t0 + θ)2
]

= 0

}

=

√

2

ρ
‖st0‖+ (t0 + θ)2 − θ.

Finally, the robust control is

ut = − 2

t + θ
δ2,t + ẋ∗2,t −

1

t + θ
∇2U∗ (ζt − η) a(δ1,t)− ktSign (st)

= ucomp,t + udisc,t,
(18)

where

ucomp,t := − 2

t + θ
δ2,t + ẋ∗2,t −

1

t + θ
∇2U∗ (ζt − η) a(δ1,t),

udisc,t := −ktSign (st) .

(19)

Remark 1. If we wish to get treach = t0 = 0, we need to complete the identity

s0 = θδ2,0 + δ1,0 −∇U∗ (−η)
(15)
= θδ2,0 + δ1,0 − δ∗1 (η) = 0. (20)

Since δ∗1 (η) ∈ Dadm, we may conclude that parameters θ > 0, η and initial conditions (δ1,0, δ2,0) should be

consistent in the sence that

θδ2,0 + δ1,0 ∈ Dadm.
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Remark 2. For the example, for Eucidean r-ball in R
n, being the admissible set Dadm, from (10)–(11) one has

∇U∗ (ζ) = arg max
δ1∈Dadm

{ζ⊺δ1 − U (δ1)} =







ζ if ‖ζ‖ ≤ r

r
ζ

‖ζ‖ if ‖ζ‖ > r
, (21)

δ∗1 (η) = arg min
δ1∈Dadm

{−η⊺δ1 + U (δ1)} =

arg min
δ1∈Dadm

{

−η⊺δ1 +
1

2
‖δ1‖2

}

= η if ‖η‖ ≤ r.
(22)

From (19) it follows

θδ2,0 + δ1,0 = η, ‖η‖ ≤ r, (23)

and

∇2U∗ (ζ) =







In×n if ‖ζ‖ ≤ r

r

‖ζ‖

(

In×n −
ζζT

‖ζ‖2

)

if ‖ζ‖ > r
. (24)

Notice, that U∗-function (11) is nondifferential in the points of r-sphere of ball, and it is continuous differential in

all other points of Rn. The formulas in (21), (24) are presented as their continuous versions on ball U∗-function

(11) including the r-sphere.

4.3. Main result

We are ready to formulate the main result.

Theorem 1. Under Assumptions A1-A5 the robust control (18)-(19) with parameter η, satisfying (20), provides

the property

F(δ1,t) ≤ F(δ∗1 (η)) +
θ

t + θ
[F(δ1,0)− F(δ∗1 (η))] (25)

for all t ≥ 0 and any regularizing parameter θ > 0.

Proof. Since in view of the relation (20) of the parameter η and initial conditions δ1,0, δ̇1,0 the auxiliary

variable st = 0 for all t ≥ 0 starting from the beginning of the control process. Using the formula (13)

for t0 = 0 we obtain (25).

5. Discussion

Equations (15), (20) hold under θ > 0, η ∈ R
n at the following cases:

1. Zero initial conditions δ1,0 = 0, δ2,0 = 0. Thus, η = 0 for arbitrary θ > 0 (see, as an example, the 1st item

in loss function (9)).
2. Non-zero initial conditions δ1,0, δ2,0 are collinear oppositely directed vectors. Therefore, θ > 0 and η = 0

exist (see, as an example, the 1st item in loss function (9)).
3. Equation (23) holds under non-zero vector η with a sufficiently small ‖η‖ ≤ ǫ and for θ > 0 (see, as an

example, the 2nd item in loss function (9)).

6. Conclusion

- The constrained optimization problem is addressed in this study using a second-order differential

controlled plant with an unknown (but bounded) right side of the model.

- The desired dynamics in the tracking error variables is designed based on Mirror Descent

Method.

- The continuous-time convergence to the set of minimizing points is established, and the

associated rate of convergence has been analytically evaluated.
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- The robust controller, containing both the continuous (compensating) ucomp and the

discontinuous udisc, is proposed the ASG-version of Integral Sliding Mode approach.

- The suggested controller, under the special realations of it parameters with the initial conditions,

is proved to provide the desired regime from the beginning of the control process.

- This method may has several applications in the development of robust control in mechanical

systems, including soft robotics and moving dynamic plants.
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The following abbreviations are used in this manuscript:
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SDM Subgradient Descent Method
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24. Tan, Y., Nešić, D. and Mareels, I., "On non-local stability properties of extremum seeking control", Automatica,

2006, 42(6), 889-903.

25. Utkin, V., Sliding Modes in Control Optimization, Springer Verlag, Berlin, 1992.

26. Chunlei, Z. and Ordóñez, R., "Robust and adaptive design of numerical optimization-based extremum seeking

control." Automatica 45.3 (2009): 634-646.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1641.v1

https://doi.org/10.20944/preprints202307.1641.v1

	Introduction
	Brief survey
	Main contributions

	Uncertain plant description and admitted dynamic zone
	Dynamic model
	Reference trajectory, tracking error dynamics, and admissible zone
	Basic assumptions

	Desired dynamics
	Mirror descent method in continuous time
	Why the dynamics 1,t be desired

	Robust controller design
	Auxilary sliding variable and its dynamics
	Robust control structure
	Main result

	Discussion
	Conclusion
	References

