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Abstract: The ultimate aim of dynamic load balancing in cloud computing systems is to maximise 

the efficiency with which resources are utilised and workloads are distributed. Given that load 

balancing is a multi-objective process and that response time is a priority, the Harris hawk 

optimisation (HHO) algorithm was developed as a unique solution for dynamic load balancing. 

Based on burden distribution and resource utilisation, the HHO algorithm is responsible for 

dynamically assigning workloads to virtual machines (VMs). Through iterative interactions and 

position updates, the hawks investigate the solution space, determine the optimal method for 

dividing the work, and adapt to the ever-changing conditions of the workload. The HHO algorithm 

has been demonstrated to be effective and efficient in the management of dynamic load balancing 

via a series of experimental evaluations and comparisons with other load-balancing approaches. 

These discoveries have led to quicker response times and more efficient resource utilisation. 

Utilising the collaborative search behaviour of hawks, this technique provides a solution that is both 

practicable and effective for addressing load balancing concerns in dynamic scenarios. 

Keywords: load balancing; job scheduling; cloud computing; harris hawk optimization 

 

1. Introduction 

Cloud computing is a paradigm-shifting technology that gives users access to the resources of 

computer systems in a scalable and on-demand manner. Load balancing and efficient resource 

allocation become more important as the number of cloud-based services and applications grows. 

These are two of the most important factors in optimising performance and making the most of the 

resources that are available. Techniques for load balancing allow for the dynamic distribution of tasks 

over several virtual machines, which in turn improves response times and resource utilisation. In the 

past, load balancing solutions concentrated on either minimising the amount of time needed for 

reactions or increasing the amount of resources that were employed. On the other hand, when it 

comes to cloud computing in the real world, load balancing is a multi-objective problem that 

necessitates making compromises between competing goals. For instance, optimising resource 

utilisation may result in longer reaction times, whilst lowering response times may lead to a more 

efficient use of available resources. Because of this, there is a requirement for load balancing strategies 

that are capable of properly dealing with the multi-objective character of the problem. 

By modelling natural occurrences and biological processes, meta-heuristic algorithms have 

shown exceptional success in finding solutions to difficult optimisation challenges. The HHO (Harris 
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hawk optimisation) algorithm is one of such type of algorithms. It gets its name from the cooperative 

hunting behaviour of Harris's hawks. Due to HHO's capacity to find a balance between exploration 

and exploitation, it has shown great potential in a variety of optimisation domains, which makes it a 

good candidate for addressing the multi-objective load balancing and resource allocation problem in 

cloud computing. HHO has shown tremendous potential in numerous optimisation domains. 

Using the HHO algorithm, this work proposes a unique solution for multi-objective dynamic 

load balancing and resource allocation in cloud computing. Our objective is to achieve an effective 

and well-balanced distribution of activities and resources inside cloud settings by simultaneously 

optimising a number of objectives, such as reaction time, resource utilisation, energy efficiency, and 

cost. We provide a comprehensive and effective solution by incorporating the multi-objective aspect 

of the problem into the HHO algorithm. 

The HHO algorithm is utilised by the proposed approach in order to dynamically distribute jobs 

across the available virtual machines (VMs) and assign resources in accordance with the workload 

and resource utilisation [1]. The approach takes advantage of the hierarchical split of hawks into 

several functions, such as exploratory hawks, sentinel hawks, and possessive hawks, in order to 

evaluate the cooperative behaviour that is seen in Harris's hawks while they are hunting. These 

responsibilities make it possible for the hawks to investigate the solution space, keep an eye on the 

quality of the proposed solutions, and work towards the most effective decisions about load 

balancing and resource distribution. 

In order to determine how effectively the proposed approach performs, we conduct quite a lot 

of experiments and make comparisons with several load balancing and resource allocation 

approaches that are existing in cloud computing. In order to evaluate the performance, we examine 

important performance parameters such as reaction time, resource utilisation, energy usage, and cost. 

The findings point to the superiority of a multi-objective meta-heuristic dynamic load balancing and 

resource allocation strategy that makes use of the HHO algorithm. This technique demonstrates its 

capacity to accomplish better trade-offs between conflicting objectives and increase overall system 

performance. 

The remainder of the paper is organised as follows: Section 2 provides a comprehensive 

literature review on cloud computing load balancing, resource allocation, and meta-heuristic 

algorithms. Section 3 presents the methodology, including problem formulation, HHO algorithm 

details, and multi-objective optimisation integration. Section 4 describes the experimental setup, 

presents the results, and provides a comprehensive analysis. Section 5 concludes by summarising the 

findings, discussing the contributions of this research, and outlining prospective directions for 

further improvement and research in multi-objective dynamic load balancing and resource allocation 

using the HHO algorithm in cloud computing. 

2. Literature Review 

In cloud computing systems, load balancing and resource allocation are essential components 

because they have the potential to enhance system performance, boost resource utilisation, and 

guarantee that resources are distributed fairly among users. Techniques for load balancing and 

resource allocation in cloud computing systems that are inspired by natural events or biological 

behaviours show a lot of promise. These algorithms are called meta-heuristic algorithms. The Harris 

hawk optimisation (HHO) method, which takes its name from the hunting strategy of Harris hawks, 

has been shown to be effective in the resolution of a variety of optimisation issues. However, its 

application in the process of load balancing and resource allocation in cloud computing is yet 

substantially unexplored. 

This literature review focuses on meta-heuristic methods, such as genetic algorithms, particle 

swarm optimisation, ant colony optimisation, and simulated annealing, for load balancing and 

resource allocation within the context of cloud computing. It examines their advantages and 

disadvantages, as well as their load balancing and resource distribution applications. D. A. Shafiq 

and coworkers provide a load-balancing mechanism for data centres to ensure consistent application 

performance in cloud computing. In order to accomplish load balancing in the data centres, the load-
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balancing algorithm that they proposed makes use of a multi-objective optimisation strategy. The 

efficiency of the algorithm is further confirmed using sensitivity analysis, which evaluates the 

influence that changing parameters has on the performance of the algorithm. The authors offer their 

perspectives on the resilience of the algorithm as well as its capacity to adjust to a variety of different 

workload circumstances. A unique technique that handles the issues of load distribution and resource 

allocation is presented in this study as a contribution to the field of load balancing in cloud 

computing. It provides helpful insights as well as practical consequences for creating load-balancing 

algorithms that are efficient in cloud-based contexts. 

The paper [4] analyses the significance of load balancing in cloud computing and draws 

attention to the restrictions imposed by the currently available load balancing solutions when it 

comes to the management of load distribution in big-data cloud systems. The authors propose a 

unique load balancing strategy that they term the Central-Regional Architecture Based Load 

Balancing Technique (CRLBT). This strategy is intended to help address the problem. Combining a 

specified throughput maximisation technique with Throughput Maximised-Particle Swarm 

Optimisation (TM-PSO) and Throughput Maximised-Firefly optimisation (TM-Firefly) algorithms 

gives CRLBT a distinct advantage over typical central, distributive, and hierarchical cloud systems. 

In addition, CRLBT distinguishes itself from these cloud designs by combining these algorithms. The 

results of the experiments demonstrate considerable improvements in response time, task rejection 

ratio, CPU utilisation rate, and network throughput, which confirms the efficiency of the suggested 

technique in providing superior load balancing within the context of big-data cloud systems. 

The paper [5] proposes a method, DEER, for load balancing in fog computing environments, 

taking into account the increasing significance of fog computing in managing the information flow 

in large and complex networks for the Internet of Things (IoT). The objective is to increase overall 

efficiency while decreasing energy consumption, carbon emissions, and energy costs. 

The most important components of the DEER strategy are the Tasks Manager, Resource 

Information Provider, Resource Scheduler, Resource Load Manager, Resource Power Manager, and 

Resource Engine. Tasks are submitted via Tasks Manager, and Cloud Data Centres register resource 

information. The Resource Engine is responsible for allocating work, while the Resource Scheduler 

organises available resources based on their utilisation. While Resource Power Manager is 

responsible for monitoring power consumption, Resource Load and Power Manager monitors the 

current status of the resources. This method optimises both energy consumption and computing 

costs, thereby enhancing performance and reducing environmental impact in fog-like scenarios. 

This study addresses the problems of work distribution and resource allocation in fog 

computing by providing a layer fit algorithm and a Modified Harris-Hawks Optimisation (MHHO) 

strategy. Both of these are discussed in the paper. The proposed solutions cut expenses, make the 

most efficient use of resources, and distribute the load evenly across cloud and fog levels. The Internet 

of Things (IoT) enables smart devices to generate large amounts of data and computing labour, which 

makes it difficult to distribute duties in an effective manner. By preventing oversaturation, degraded 

service, and resource failures, the layer-fitting algorithm ensures that duties are fairly distributed 

between layers based on the relative importance of those layers. 

In addition, a Modified Harris-Hawks Optimisation (MHHO) meta-heuristic approach is 

presented for assigning the best available resource within a layer to a task. The goals are to decrease 

Makespan time, task execution cost, and power consumption while increasing resource utilisation in 

both layers. The proposed layer fit algorithm and MHHO are compared to traditional optimisation 

algorithms such as Harris-Hawks Optimisation (HHO), Ant Colony Optimisation (ACO), Particle 

Swarm Optimisation (PSO), and the Firefly Algorithm (FA) using the iFogSim simulation toolkit. 

According to a study by Edward et.al [7], the load balancing objective in cloud computing is 

essential owing to the complexity that is produced by enormous amounts of data as well as the 

potential degradation of the entire system in the event that a defect occurs in a connected virtual 

machine (VM). The research suggests a unique strategy for resource allocation among virtual 

machines that is based on transfer learning using Fruitfly. This is done in order to overcome the issues 

that have been presented. When the virtual machines are first established, they are loaded with a 
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variety of user duties; then, in order to balance the load, the weight is dispersed equitably among all 

linked VMs. Priority is used to determine the order in which tasks are completed, and resources are 

allocated in accordance with that order. According to this research paper's findings, the Fruitfly-

based transfer learning approach appears to be a potentially useful option for load balancing in cloud 

computing. It solves the problems that are involved with sharing resources and scheduling tasks, 

which ultimately leads to improved overall performance and enhanced cloud services. 

For the purpose of implementing dynamic resource allocation in cloud computing, 

Praveenchandar and Tamilarasi [8] suggest a new load-balancing approach that they name PBMM. 

By putting an emphasis on the dynamic allocation and scheduling of resources, this algorithm 

overcomes difficulties with load balancing, which in turn promotes stability and profitability. It 

considers factors such as the size of the undertaking and the value of each customer's bid. The paper 

[9] employs resource tables and task tables to optimise waiting time and minimise average waiting 

time and response time for special users. The objective is to maximise profits while improving load-

balancing stability, especially by increasing the number of special users. The simulation results 

demonstrate that the proposed load balancing method accomplishes its goals effectively. It ensures 

optimum profit by optimising resource allocation and scheduling, and it enhances load balancing 

stability through increased participation of special users. By taking into account task size, bidding 

value, and utilising resource and task tables, the proposed algorithm improves stability, reduces 

waiting periods, and boosts profitability. The findings contribute to the advancement of load 

balancing techniques in cloud computing environments by emphasising their importance in 

maintaining service quality and optimising resource utilisation. 

A comprehensive answer to the difficulties of limited physical memory, resource 

underutilization, and ASP profitability in MEC environments. Y. Sun and others have proposed a 

method [10]. Utilising the Lyapunov optimisation framework and genetic algorithms, the proposed 

ASP profit-aware solution provides an efficient method for optimising resource allocation, 

minimising latency, and ensuring long-term profitability. This issue is formulated as a stochastic 

optimisation problem with ASP profit constraints over the long term. To address this issue, the 

authors employ the Lyapunov optimisation framework to convert it into a problem involving the 

optimisation of a specific time slot. Then, they employ genetic algorithms (GA) to create an online 

heuristic algorithm that approximates near-optimal strategies for each time period. Chetan Kumar et 

al. [11] propose a method for reducing system latency and increasing ASP profitability. Utilising the 

edge network's available resources efficiently and minimising latency over time by simultaneously 

optimising application loading, assignment allocation, and compute resource allocation. It also 

attracts a greater number of ASVs by enabling them to attain their desired profitability. 

Devi et al. [12] proposed a security model based on deep learning to optimise job scheduling 

while considering security factors into account. The study analyses it and compares it to other 

conventional scheduling techniques to demonstrate its effectiveness. The research demonstrates the 

capability of deep learning algorithms to address security issues during task scheduling and 

emphasises the need for security in cloud computing. This paper contributes to the progress made in 

cloud computing scheduling by presenting a security approach based on deep learning. 

The findings highlight the significance of security concerns in cloud computing environments 

and provide significant information on the performance of the proposed model compared to existing 

scheduling techniques. 

The paper by Abhikriti and Sunitha [13] examines the significance of scheduling algorithms in 

cloud computing with regard to the optimisation of resources and the reduction of Makespan time. 

Despite the fact that existing scheduling algorithms are primarily concerned with reducing Makespan 

time, they frequently cause load imbalances and wasteful resource utilisation. This research presents 

a unique Credit-Based Resource Aware Load Balancing Scheduling algorithm (CB-RALB-SA) as a 

potential solution to the problems described above. 

The CB-RALB-SA algorithm's objective is to achieve a balanced distribution of tasks according 

to the capabilities of the resources available. It assigns weights to jobs using a credit-based scheduling 

approach, and then maps those tasks to resources after taking into account the load those resources 
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are under and the processing power they possess. The FILL and SPILL functions of the Resource 

Aware and Load (RAL) approach, which makes use of the Honey Bee Optimisation heuristic 

algorithm, are used to carry out this mapping. 

In [14], the difficulties of load balancing in cloud computing as well as the significance of locating 

optimal solutions are explored. Swarm Intelligence (SI) is presented as a potential solution for load 

balancing, and it is contrasted with several different algorithms, including genetic algorithm, ACO, 

PSO, BAT, and GWO. The algorithms known as Particle Swarm Optimisation (PSO) and Grey Wolf 

Optimisation (GWO) are the primary foci of this study's investigation. 

Federated clouds have emerged as a combination of private and public clouds to facilitate secure 

access to data from both categories of clouds. However, the procedure of authorization and 

authentication in federated clouds can be complex. 

A new algorithm called the Secured Storage and Retrieval Algorithm (ATDSRA) has been 

suggested [15] with the intention of providing private and public users of cloud databases with the 

ability to store and retrieve data in a secure mannerIn addition to the Triple-DES ciphering used for 

encryption, it combines encrypted data using data merging and aggregation algorithms. In addition, 

the CRT-based Dynamic Data Auditing Algorithm (CRTDDA) is presented for the purpose of 

controlling access to federated cloud data and conducting audits of the data. 

The ATDSRA algorithm and CRTDDA auditing scheme enhance the security of federated cloud-

stored data. The proposed model addresses the complex task of authorization and authentication in 

cloud computing by providing secure storage, retrieval, and auditing capabilities, thereby enhancing 

the overall security of federated cloud environments. 

In order to solve the problem of load balancing, the authors of [16] propose a combined method 

namely firefly and BAT. This strategy makes use of the advantages offered by both rapid convergence 

and global optimisation. This strategy tries to improve both the effectiveness of the system and the 

distribution of its resources. The findings of the research show that promising results can be achieved 

in terms of globally optimised quick convergence and decreased total reaction time. 

Saydul et al. [17] discuss the significance of task scheduling in cloud computing and how it 

affects resource utilisation and service performance. It emphasises the need for efficient job 

scheduling strategies to prevent resource waste and performance decline. Examining various task 

scheduling techniques within the context of cloud and grid computing, the research identifies their 

successes, challenges, and limitations. A taxonomy is proposed to classify and analyse these 

techniques, with the goal of bridging the gaps between existing studies and offering a conceptual 

framework for more efficient job scheduling in cloud computing. 

A priority-based scheduling approach is proposed by Junaid et al. [18] as a method for achieving 

equitable task scheduling in cloud computing environments. The method's goals are to make the 

most efficient use of available resources and to boost overall performance. The study throws up 

questions that could be investigated further in the future and could lead to more effective scheduling 

tactics. Academicians, policymakers, and practitioners can all benefit from using the priority-based 

scheduling technique to optimise cloud computing configurations. This is because the technique 

leads to the creation of more efficient task scheduling strategies. 

Ashawa et al. [19] research focuses on resource allocation in large-scale distributed computing 

systems, specifically in the context of cloud computing. The goal is to maximise overall computing 

efficiency or throughput by effectively allocating resources. Cloud computing is distinguished from 

grid computing, and the challenges of allocating virtualized resources in a cloud computing 

paradigm are acknowledged. 

Using the LSTM (Long-Short Term Memory) algorithm, a dynamic resource allocation system is 

implemented in this study. This system analyses application resource utilisation and determines the 

optimal allocation of additional resources for each application. The LSTM model is trained and 

evaluated in simulations that approximate real-time. In addition, the study discusses the 

incorporation of dynamic routing algorithms designed for cloud data centre traffic. The proposed 

resource allocation model [20] is compared to other load-balancing techniques and demonstrates 

improved accuracy rates and decreased error percentages in the average request blockage probability 
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under heavy traffic loads. Compared to other models, the proposed method increases network 

utilisation and decreases processing time and resource consumption. For load balancing in energy 

clouds, it is suggested that future research investigate the implementation of various heuristics and 

machine learning techniques, specifically the use of firefly algorithms. 

Cloud computing provides a variety of services to consumers, but the increased demand also 

increases the probability of errors. Several fault tolerance techniques have been devised in order to 

mitigate the impact of errors. The paper [21] describes a multilevel fault tolerance system designed 

to improve cloud environments' reliability and availability. The proposed system has two levels of 

operation. In the first level, a reliability assessment algorithm is used to determine which virtual 

devices are trustworthy. By evaluating the dependability of virtual machines, the system guarantees 

that tasks are assigned to the most dependable resources, thereby minimising the possibility of errors. 

By replicating data and distributing it among a number of physical or virtual devices, the replication 

method ensures that the data will always be accessible at the second level. This technique ensures 

that even if one copy becomes inaccessible or malfunctions, other replicas can still be accessed, hence 

protecting the availability of data even if that one copy becomes unavailable or malfunctions. This 

multilevel fault tolerance method improves fault tolerance in real-time cloud environments by 

combining reliable virtual machine identification with data replication. The result is a reduction in 

mistakes and an increase in the efficiency of cloud services. 

Inattention to federated cloud environments Federated clouds, which combine private and 

public clouds, present unique challenges for authorization, authentication, and secure data storage. 

The absence of efficient algorithms and models to resolve these complexities and improve the overall 

security of federated cloud environments represents a research gap. 

Table 1. Comparison of Existing Methods. 

Citation Technique Advantage Limitations 

Ali Asghar Heidari 

et al., 2019 

Meta-heuristic 

algorithms (e.g., 

HHO) 

Effective optimization 

capabilities, near-optimal 

solutions 

HHO 

implementation in 

cloud computing is 

largely unexplored 

K Vinoth Kumar & 

A Rajesh, 2022 

Multi-objective 

optimization strategy 

Load balancing method 

for data centers, efficient 

algorithm, adjustable to 

different workload 

circumstances 

Limited discussion 

on the algorithm's 

resilience and 

adaptability 

Shafiq D A et al., 

2021 

CRLBT strategy with 

TM-PSO and TM-

Firefly 

Improved response time, 

task rejection ratio, CPU 

utilization rate, and 

network throughput 

-- 

Oduwole O A et 

al., 2022 
DEER strategy 

Increased efficacy, 

reduced energy 

consumption, decreased 

environmental impact 

Limited discussion 

on the dynamic 

nature of fog 

environments 

Rehman A U et al., 

2020 

Layer fit algorithm 

and MHHO strategy 

Enhanced performance 

metrics, reduced costs, 

maximized resource 

utilization, load 

balancing in fog 

computing 

Comparison with 

traditional 

optimization 

algorithms 

Edward G, Geetha 

B & Ramaraj E, 

2023 

Fruitfly-based transfer 

learning 

Improved load balancing, 

resource sharing, and 

task scheduling 

Limited discussion 

on the algorithm's 

performance 

compared to others 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1


 7 

 

Praveenchandar & 

Tamilarasi, 2022 
PBMM algorithm 

Dynamic resource 

allocation, improved load 

balancing stability and 

profitability 

-- 

Narwal A & Sunita 

D, 2023 

CB-RALB-SA 

algorithm 

Balanced distribution of 

tasks, efficient load 

balancing, honey bee 

optimization 

-- 

Al Reshan M.S. et 

al., 2023 

SI, PSO, and GWO 

algorithms 

Potential load balancing 

solutions, comparison 

with other algorithms 

-- 

Sermakanu A.M., 

2020 

ATDSRA and 

CRTDDA algorithms 

Secure storage and 

retrieval, restricted data 

access 

Limited discussion 

on the algorithm's 

performance 

compared to others 

Saydul A.M. et al., 

2022 

Task scheduling 

techniques analysis 

Efficiency of job 

scheduling, resource 

utilization, performance 

improvements 

Taxonomy proposed 

for classification and 

analysis of 

scheduling 

techniques 

Ashawa M et al., 

2022 

LSTM-based dynamic 

resource allocation 

Maximization of 

computing efficiency, 

improved resource 

allocation 

Limited discussion 

on the comparison 

with other allocation 

techniques 

Hariharan B, 2020 
Resource allocation 

model 

Increased accuracy, 

decreased error 

percentages, improved 

network utilization 

Suggested further 

research on 

heuristics and 

machine learning 

techniques 

2.1. Summary of the Literature review 

The purpose of this literature review is to investigate the difficulties associated with load 

balancing and resource allocation in cloud computing settings and to investigate the various 

techniques that researchers have offered to address these concerns. In cloud computing, it places a 

primary emphasis on the utilisation of meta-heuristic methods, such as the Harris hawk optimisation 

(HHO) algorithm, for the purposes of load balancing and resource allocation. 

Well-known meta-heuristic algorithms that are employed in cloud computing, such as genetic 

algorithms, particle swarm optimisation, ant colony optimisation, and simulated annealing, are 

investigated in one study. It examines their advantages and disadvantages, as well as the uses they 

have in load balancing and resource distribution. 

A method for load balancing in data centres that makes use of a multi-objective optimisation 

strategy has been proposed in one study. In yet another piece of research, the issue of load 

distribution in big-data cloud systems is investigated via the lens of the Central-Regional 

Architecture Based Load Balancing Technique (CRLBT). In order to manage the flow of information 

over complicated networks for the Internet of Things (IoT), a technique known as DEER has been 

presented as a solution for load balancing in fog computing settings. This comes as the importance 

of fog computing in this area continues to grow. 

In addition to that, a paper provides a layer fit technique as well as a Modified Harris-Hawks 

Optimisation (MHHO) strategy to solve the job distribution and resource allocation issues that are 

inherent in fog computing. In this article, a novel load balancing algorithm known as PBMM and a 

load balancing technique based on transfer learning utilising Fruitfly are discussed for the purpose 

of dynamic resource allocation in cloud computing. 
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The introduction of a deep learning-based security model and a Credit-Based Resource Aware 

Load Balancing Scheduling algorithm brings to light the necessity of security in cloud computing 

scheduling. Both of these innovations are designed to balance and distribute workloads. In addition 

to this, the paper delves into the topic of swarm intelligence algorithms and suggests a Secured 

Storage and Retrieval Algorithm (ATDSRA) for usage in federated cloud environments. 

In addition, research on task scheduling, priority-based scheduling strategies, resource 

allocation in distributed computing systems, dynamic resource allocation utilising the LSTM 

algorithm, fault tolerance systems, and reliability assessment in cloud environments are all covered 

in this review. 

This literature review sheds light on the existing body of knowledge about load balancing and 

resource allocation in cloud computing. Additionally, it draws attention to the potential of meta-

heuristic algorithms and other methodologies to effectively solve these difficulties. 

2.2. Research Gap 

The research gap in the literature necessitates further exploration and development of load 

balancing and resource allocation techniques in cloud computing, taking into consideration specific 

environments, security concerns, combined optimisation techniques, and dynamic resource 

allocation strategies. In addition, there is a need for a comprehensive analysis, classification, and 

evaluation of existing techniques in order to provide insight and direction for the development of 

more effective solutions. 

• Limited investigation of the use of the Harris hawk optimisation (HHO) algorithm in cloud 

computing load balancing and resource allocation: 

Although meta-heuristic algorithms, such as HHO, have demonstrated promise in solving 

optimisation problems, their application in cloud computing load balancing and resource allocation 

is primarily unexplored. 

• Lack of comprehensive analysis and comparison of meta-heuristic algorithms: 

Load balancing techniques tailored to specific cloud computing environments, such as fog computing 

and big-data cloud systems, are required. Existing research frequently disregards the distinctive 

characteristics and difficulties of these environments. 

• Insufficient focus on load balancing strategies for specific cloud computing environments:  

Although load balancing and resource allocation are essential for optimising system performance, 

guaranteeing security in the scheduling process is equally crucial. In the context of task scheduling, 

the incorporation of security factors, such as deep learning-based security models, requires further 

investigation. 

• Inadequate attention to security concerns in load balancing and resource allocation: 

Equally as essential as load balancing and resource allocation for optimising system performance is 

the security of the scheduling process. In the context of task scheduling, the incorporation of security 

factors, such as deep learning-based security models, requires further investigation. 

• Lack of emphasis on federated cloud environments: 

Federated clouds, which combine private and public clouds, present unique authorization, 

authentication, and secure data storage challenges. The absence of efficient algorithms and models to 

resolve these complexities and improve the overall security of federated cloud environments 

represents a research gap. 

• Limited exploration of combined optimization techniques: 

There is a need for research that investigates the effectiveness of combining various optimisation 

techniques, such as the firefly and BAT algorithms, to improve load balancing and resource allocation 

in cloud computing. 
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• Incomplete understanding of the impact of scheduling on resource utilization and system 

performance: 

Task scheduling has a substantial impact on resource utilisation and overall system performance. 

Further study is required to develop more effective scheduling techniques that maximise resource 

utilisation and minimise Makespan time while taking load balancing and performance tradeoffs into 

account. 

• Inadequate investigation of dynamic resource allocation: 

Dynamic resource allocation necessitates techniques that optimise computing efficiency, particularly 

in large-scale distributed computing systems. Dynamic resource allocation models, such as LSTM-

based algorithms, and their integration with dynamic routing algorithms for cloud data centre traffic 

require additional study. 

3. Objectives and Problem Statement 

In the world of cloud computing, the issue of overloading manifests itself when jobs arrive in an 

unpredictable order. It is common for some resources to become significantly loaded as a result of 

the arbitrary utilisation of the CPU, while other resources continue to remain idle. In order to solve 

this problem, load balancing, which involves the allocation of work over a network according to the 

number of virtual machines (VMs) or central processing units (CPUs), has been put into use. The 

primary objective of cloud computing is to guarantee optimal resource utilisation, which will 

ultimately result in enhanced system performance and a reduction in response time. 

In addition, load balancing algorithms face obstacles such as the high cost of hardware and 

bottlenecks in the system. However, these approaches have overlooked the consideration of a 

resource's ability to accomplish tasks and the fulfilment of user requirements. As a result, resource 

utilisation has been further reduced, and cloud systems have been presented with challenges. In 

addition, even if these methods have improved superiority, they have not given sufficient scalability 

or response speed. Also, the substantial costs associated with hardware and system bottlenecks have 

surfaced as key concerns in the approaches of load balancing. An effective Multi-Objective Meta-

Heuristic Dynamic load balancing and optimisation method has been implemented in the cloud 

environment to handle load balancing concerns. This was done to help overcome the challenges that 

have been presented. 

4. Model Development 

In cloud computing, the process of load balancing and scheduling is handled by a N number of 

virtual machines (VMs). 

1

N

i

i

VM Vm
=

=
 

(1)

In order to ensure that the workload is distributed fairly and equitably across all of the servers, 

each VM has been given a specific server, hence there are M servers as well and  

1

M

s

s

S S
=

=
 

(2)

each Virtual Machine has its own independent collection of resources. Memory, central 

processing unit, disc space, and bandwidth are all included in the resources. 

{ }

{ }

{ }

1

2

1,1 1,2 1,

2,1 2,

,1 ,2 ,

, ,...

, 2,...

, ,...
n

vm j

vm j

vm n n n j

R R R R

R R R R

R R R R

=

=

=
 

(3)
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Let us assume that there are many numbers of jobs in the queue which needs the resources. 

{ }1 2, ,..., nJ J J J=
 

(4)

These jobs are loaded into the cloud server by many cloud users, say U. Where 

{ }1 2, ,..., nU U U U=
 

(5)

The virtual machines (VMs) are assigned jobs with the intention of achieving an optimal load 

distribution. The architecture is made up of limited number of servers, one of which is designated to 

be the central server and is in charge of receiving requests from virtual machines (VMs). Each server 

is able to process requests, which brings the VMs up to par with the most powerful server. The goal 

is to design a better scheduler that can assign jobs to virtual machines (VMs) in a way that ensures 

load balancing across all of them. To accomplish the objective of optimising resource utilisation, user 

characteristics such as request size, number of CPU requests, and number of requests sent per time 

interval will be employed. To combine virtual machines (VMs) for cloud load balancing, you'll need 

hosts with a certain fitness value and their own resources. The primary objective is to develop a 

superior scheduler capable of distributing work to virtual machines (VMs) in accordance with 

available resources. 

In the scope of this study, load balancing is optimised in terms of reaction time, cost, and 

resource utilisation. The objectives are to decrease reaction time, cut costs, increase resource 

utilisation, and increase overall utilisation. Load balancing consists of numerous components. The 

objective of extensive research and concentrated efforts to reduce reaction times, expenses, and 

resource consumption is to enhance efficiency and effectiveness. The output can be increased through 

more efficient distribution and allocation of resources. Utilising all of a system's available resources 

to their maximum capacity helps eliminate bottlenecks and inefficiencies. To determine the amount 

of resources utilised, use equation (6). 

1

100

,

resources

resources

resources

used
utilization

total

R
R

overall utilization

R total

R

R
R

R

OU
R

R

Where OU Overall Utilization of the resources

−

=

 
= × 
 

 
=  

 
=



 

(5)

By enhancing resource utilisation, we can maximise the system's capabilities and eliminate any 

potential bottlenecks or inefficiencies. To calculate resource usage, use the accompanying equation 

(6). 

J J Transmission

exe Completion Arrival delay

T T T

exe start arrival

T

response exe exe

T T T T

J J J

T T J

= − +

= −

= +
 

(6)

When evaluating these various objectives, we discover that cost, resource utilisation, and 

response time are interrelated. To attain the goal of a well-balanced and highly effective load 

balancing system, extensive optimisation and fine-tuning are required. The following algorithm 1 

computes the cost of a single work by considering the time required to initiate the task, the time 

required to conclude the project, and the required resources. 

It determines the execution time by first subtracting the start time from the end time and then 

dividing the difference by two. The cost is then determined by multiplying the duration of execution 

by the quantity of resources utilised throughout the activity. 
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Algorithm 1: Calculate the Cost 
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5. Meta-Heuristic Harris Hawk Algorithm 

The Harris Hawk Optimisation Algorithm (HHO) is a problem-solving optimisation algorithm 

that was inspired by nature and is used in cloud computing to address resource allocation issues. It 

was modelled after the Harris hawk's strategy of working together while hunting, which boosts their 

overall efficiency. The HHO algorithm's primary objective is to improve overall system performance 

by optimising resource utilisation across a variety of roles and responsibilities. It requires multiple 

steps to effectively distribute resources while simultaneously cutting expenses and improving 

efficiency. 

5.1. Initialization 

The initialization phase of the Harris Hawk Optimisation (HHO) algorithm is the first stage in 

the optimisation process. During this stage, viable solutions are set up, and initialization parameters 

for subsequent iterations are determined. 

The size of the population, designated by the letter PN, and a random method of resource distribution 

is devised for each person in the population, from one to N, in order to distribute the resources. In 

order to accomplish this, random values need to be assigned to the allocation parameters, which can 

include things like the number of virtual machines (VMs), CPU cores, memory, disc space, and so on. 

Each solution illustrates a feasible method for allocating resources to perform various cloud 

computing activities and is shown in Algorithm 2. 
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Algorithm 2: Population Initialization 
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5.2. Fitness Evaluation 

Evaluate how well each solution in the population fits to the requirements. When discussing 

cloud computing, fitness is typically discussed in relation to measures such as response time, 

throughput, energy consumption, or cost. The fitness function provides a quantitative assessment of 

the quality of a resource allocation strategy that is founded on these metrics. Algorithm 3 is used to 

calculate the fitness value. 

Algorithm 3: Fitness Evaluation 

1

()
/ /

/ /Manage the distribution of resources and execute the tasks that are assigned.

/ /This allocates the available resources 

i N

n

i i

i
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=
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Exec I
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    

e
 

5.3. Leader selection 

During the leader selection phase of the Harris Hawk Optimisation (HHO) algorithm, the goal 

is to find the solutions within the population that have demonstrated the highest levels of 

performance, which are referred to as leaders. The leaders guide the search process and influence the 

exploration and exploitation of the solution space. The algorithm to select the leader is as shown in 

algorithm 4. 
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Algorithm 4: Leader Selection 
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The fitness value of each solution in the population is determined by the function as it iteratively 

processes its way through all of the solutions in the population. The result that achieves the greatest 

overall fitness is deemed to be the leader. 

5.4. Exploration 

In the Harris Hawk Algorithm’s (HHO) Exploration phase, a simulation of the hunting 

behaviour of Harris's Hawks is used to explore the search space and uncover potential solutions to 

an optimisation problem. During this stage, a population of hawks will be created, and both their 

placements and their fitness values will be assessed. 

Harris hawk's cooperative hunting behaviour as a model for exploring the space available for 

solutions is utilised in this phase. As part of this process, the positions of the solutions in the 

population will be updated in an effort to discover more effective solutions. In order to direct the 

process of exploration, local search, a global search, or a combination of the two may utilised and this 

process in explained in Algorithm 5. 

The first step of the Exploration phase is to generate the initial positions of the hawks inside the 

search space using a randomization algorithm. The fitness of each hawk is determined based on its 

location, which is a representation of how well it performs in terms of finding the optimal solution to 

the problem. The algorithm keeps track of a global best position and fitness, which are both initialised 

with the values of the hawk in the initial population that has the highest level of fitness. When a hawk 

makes a discovery throughout the exploration process that leads to a better location, this global best 

position is immediately updated. 

A hunting strategy is implemented for each individual hawk in the population so that they can 

investigate and potentially improve their position in each iteration of the model. In the course of the 

hunting strategy, four hawks at random are chosen from the population and given the designations 

H1, H2, H3, and H4. The hawk that is currently being considered is not one of these four. To determine 

how far apart hawks H1 and H2 are from one another, a distance metric, such as the Euclidean 

distance, is applied to the calculation. The direction vector is determined by determining the 

difference in position between H1 and the current hawk. This difference is the direction in which the 

hawk should move, and the location of the hawk is then updated to reflect this new information. 

After the Exploration phase of the algorithm has been completed, it will then return the global best 

position and fitness as the final result. These two values will reflect a probable optimal solution to 

the optimisation issue of the resource allocation in cloud computing. 
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Algorithm 5: Exploration 
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6. Results and Discussion 

6.1 Simulation and Results 

The results of the simulation were an extremely helpful resource when doing an analysis to 

evaluate the efficiency of the proposed method. In order to make this analysis easier, the powerful 

CloudSim simulation software was utilized. CloudSim 4.0 excels in the provision of modeling and 

simulation activities, in addition to providing cloud computing services and the ability to test 

applications. The simulation was carried out on a computer that featured an Intel Core i7 CPU, 12 

gigabytes of Random Access Memory (RAM) and the central processing unit (CPU) ran at a frequency 

of 2.80 gigahertz speed used Windows 10. 

The proposed work has been compared with four other similar studies, including HHO [22], 

MRFO [23], QMPSO [24], and MMHHO [25], and that the effectiveness of the MDLB-HHO technique 

has been evaluated. According to the findings, the suggested MDLB-HHO performed similarly to or 

even better than the other works in a number of different metrics, additionally, the proposed MDLB-

HHO maintained a comparable level of performance in some of the other metrics. 

The performance comparison of proposed and existing approaches in terms of energy utilization 

with varying numbers of tasks and virtual machines is shown in Figure 1 and Figure 2. 

 
Figure 1. Energy Utilization of different algorithms with variable number of tasks. 

In the same manner, the Makespan is an essential metric in cloud computing that calculates the 

overall amount of time necessary to finish a collection of activities or tasks in a cloud-based system. 

It is the amount of time that elapses between the beginning of the first task in a certain workload and 

the finish of the final task in that workload. When it comes to cloud computing, the major goal is to 

reduce the Makespan as much as possible because this factor directly affects the system's efficiency 

and performance. It is crucial to cut down on the Makespan since this results in speedier completion 

of activities, increased resource usage, and higher overall system productivity. Cloud service 

providers are able to optimize resource allocation, improve customer satisfaction, and achieve cost-

effectiveness when they reduce the Makespan as much as possible. Researchers in the field of cloud 

computing are constantly looking into novel scheduling algorithms, resource management 

approaches, and optimization tactics in order to maximize the maketime of cloud applications. Cloud 

computing platforms that have achieved a minimal Makespan are able to provide services that are 

both quicker and more dependable, hence enhancing the overall user experience and making the 

most efficient use of available resources. The Makespan of the proposed system for different number 

of tasks and VMs are shown in Figure 3 and Figure 4. 
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Figure 2. Energy Utilization of different algorithms with variable number of VMs. 

 
Figure 3. Makespan of different algorithms with variable number of tasks. 
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Figure 4. Makespan of different algorithms with variable number of VMs. 

6.2. Discussion 

Figure 1 shows the energy used by different algorithms for different tasks. Algorithms 

considered include MDLB-HHO (Proposed), MMHHO, HHO, MRFO, and QMPSO. After 500, 1000, 

1500, and 2000 tasks, each method is evaluated for energy use. The results show intriguing 

commonalities in energy utilization across algorithms and job counts. 

The MDLB-HHO (Proposed) method consumes more energy as workloads increase. 61.29 for 

500 jobs rises to 79.43 for 1000 tasks, 109.99 for 1500 tasks, and 146.72 for 2000 duties. This shows that 

effort increases energy consumption proportionally. The MMHHO algorithm uses more energy as 

tasks increase. This is an algorithm characteristic. After 500 increments, it hits 72.47, 110.91, and 147.18 

for 1000, 1500, and 2000 tasks. HHO uses slightly more energy than MDLB-HHO (Proposed) and 

MMHHO for all task numbers. For 500, 1000, 1500, and 2000 tasks, the numbers are 63.38, 80.54, 

118.55, and 155.69. 

MRFO energy consumption matches MDLB-HHO (Proposed), MMHHO, and HHO. 500, 1000, 

1500, and 2000 tasks provide 59.27, 76.64, 114.86, and 151.97. QMPSO uses more energy across all job 

counts than the other algorithms tested. For 500, 1000, 1500, and 2000 tasks, it consumes 76.54, 104, 

133.3, and 174.03 more energy than the other methods. Lowest to highest. These data show how 

algorithms consume energy at different work loads. MDLB-HHO (Proposed), MMHHO, HHO, and 

MRFO all use energy similarly. QMPSO uses more energy on average than the other algorithms. 

Understanding these energy usage variations can help choose an algorithm for a certain work based 

on performance and energy efficiency. 

Figure 2 shows the energy usage of algorithms over varying numbers of virtual machines (VMs). 

MDLB-HHO (Proposed), MMHHO, HHO, MRFO, and QMPSO algorithms are being evaluated. As 

VMs expand, energy usage increases. As VMs increase, energy usage rises across all algorithms. More 

virtual machines require more processing resources, which explains this tendency. The algorithms 

MDLB-HHO (Proposed) and MMHHO use energy similarly. Both techniques use more energy from 

100 to 300 VMs. MMHHO uses slightly more energy than MDLB-HHO (Proposed) for all VM 

amounts. MDLB-HHO (Proposed) and MMHHO use less energy than HHO for all VM amounts. 

HHO may take more computational resources and energy to execute tasks due to this discrepancy. 

MRFO and QMPSO algorithms use less energy than HHO. As VMs rise, both algorithms need more 

energy. MRFO uses slightly less energy than QMPSO. These findings emphasize the need for energy-
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efficient cloud virtual machine management methods. Energy efficiency minimizes operational 

expenses and carbon footprint. 

Figure 3 shows the Makespan for several methods at varying task counts. MDLB-HHO 

(Proposed), MMHHO, HHO, MRFO, and QMPSO algorithms are under consideration. 500-task 

increments increase to 2000 tasks. The MDLB-HHO (Proposed) and MMHHO algorithms have the 

lowest Makespan values across all task numbers. Both algorithms do tasks efficiently and effectively. 

Both techniques increase Makespan steadily as the number of tasks grows. HHO, however, produces 

slightly higher Makespan values than MDLB-HHO (Proposed) and MMHHO. Makespan also 

increases with job count. HHO performs well and completes jobs, however not as efficiently as the 

other algorithms. MRFO performs comparably to MDLB-HHO (Proposed) and MMHHO. It manages 

a variety of jobs more efficiently than HHO, with a lower makespan. Finally, the QMPSO algorithm 

has the longest makespan. As tasks increase, makespan increases, suggesting scalability issues. 

QMPSO still finishes tasks, although it takes longer. The MDLB-HHO (Proposed) and MMHHO 

algorithms consistently have the lowest makespan values across all task numbers. These algorithms 

excel at managing tasks in a time-sensitive context. The HHO and MRFO algorithms perform well, 

despite their slightly greater makespan values. Finally, the QMPSO algorithm yields reasonable 

results but has a longer makespan than the others, suggesting room for optimization. These results 

illuminate each algorithm's strengths and weaknesses, helping researchers and practitioners choose 

a task management algorithm that balances completion time and efficiency. 

Figure 4 shows makespan values for different VM counts. Data analysis yields many findings. 

At each VM count, MDLB-HHO (Proposed) and MMHHO have similar makespan values. This shows 

both strategies minimize makespan similarly. HHO has greater makespan values than MDLB-HHO 

(Proposed) and MMHHO, but it outperforms MRFO and QMPSO across all VM counts. HHO is 

effective, but not as well as MDLB-HHO (Proposed) and MMHHO. MRFO and QMPSO had the 

largest makespan values of the evaluated algorithms, regardless of VM count. Based on this dataset, 

MRFO and QMPSO may not be the best solutions for lowering makespan in parallel computing 

systems. All algorithms decrease makespan as VMs increase. Task distribution across more VMs 

improves load balancing and efficiency.MDLB-HHO (Proposed) and MMHHO algorithms minimize 

makespan better, according to data. 

7. Conclusion 

This paper introduced a multi-objective meta-heuristic dynamic load balancing and resource 

allocation technique in cloud computing utilizing the Harris hawk optimization (MDLB-HHO) 

algorithm. The proposed load balancing method reduces Makespan time and improves resource 

utilization. The load balancing challenge was formulated as a multi-objective optimization problem 

and solved using the MDLB-HHO algorithm to dynamically assign jobs to VMs based on workload 

distribution and resource utilization. The MDLB-HHO technique allowed the hawks to 

collaboratively search the solution space and discover the best task allocations through iterative 

interactions and position updates. The load balancing solution for dynamic cloud environments 

addresses numerous objectives and hawks' cooperative hunting behavior. The suggested cloud 

computing multi-objective optimization strategy incorporates cost, resource utilization, and 

Makespan time. Optimizing these criteria improves cloud computing system operation and resource 

utilization. This research concluded with an HHO algorithm-based multi-objective dynamic load 

balancing and resource allocation approach for cloud computing. The proposed method 

outperformed other methods in the experiments. Future research may include applying the MDLB-

HHO algorithm in specific cloud computing environments, addressing security concerns in load 

balancing and resource allocation, and integrating multiple optimization techniques to improve 

system performance. 
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