
Article

Not peer-reviewed version

Multi-Objective Meta-Heuristic

Dynamic Load Balancing and

Resource Allocation Approach in

Cloud Computing Using Harris

Hawk Optimization Algorithm

(MDLB-HHO)

Paulraj Dasan , Sethukarasi Thirumaaran , Vigilson Prem Monickaraj

*

 , Neelakandan Subramani

Posted Date: 25 July 2023

doi: 10.20944/preprints202307.1612.v1

Keywords: load balancing; job scheduling; cloud computing; harris hawk optimization

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2338515
https://sciprofiles.com/profile/3065650
https://sciprofiles.com/profile/1917694

Article

Multi-Objective Meta-Heuristic Dynamic Load

Balancing and Resource Allocation Approach in

Cloud Computing Using Harris Hawk Optimization

Algorithm (MDLB-HHO)

Paulraj Dasan 1, Sethukarasi Thirumaaran 1, Vigilson Prem Monickaraj 2,*

and Neelakandan Subramani 1

1 Department of Computer Science and Engineering, R.M.K. Engineering College, Chennai, 601206, India;

kingrajpaul@gmail.com, tsk.cse@rmkec.ac.in, snksnk17@gmail.com
2 Department of Computer Science and Engineering, R.M.K. College of Engineering and Technology,

Chennai, 601206, India; vigiprem@gmail.com

* Correspondance: vigiprem@gmail.com

Abstract: The ultimate aim of dynamic load balancing in cloud computing systems is to maximise

the efficiency with which resources are utilised and workloads are distributed. Given that load

balancing is a multi-objective process and that response time is a priority, the Harris hawk

optimisation (HHO) algorithm was developed as a unique solution for dynamic load balancing.

Based on burden distribution and resource utilisation, the HHO algorithm is responsible for

dynamically assigning workloads to virtual machines (VMs). Through iterative interactions and

position updates, the hawks investigate the solution space, determine the optimal method for

dividing the work, and adapt to the ever-changing conditions of the workload. The HHO algorithm

has been demonstrated to be effective and efficient in the management of dynamic load balancing

via a series of experimental evaluations and comparisons with other load-balancing approaches.

These discoveries have led to quicker response times and more efficient resource utilisation.

Utilising the collaborative search behaviour of hawks, this technique provides a solution that is both

practicable and effective for addressing load balancing concerns in dynamic scenarios.

Keywords: load balancing; job scheduling; cloud computing; harris hawk optimization

1. Introduction

Cloud computing is a paradigm-shifting technology that gives users access to the resources of

computer systems in a scalable and on-demand manner. Load balancing and efficient resource

allocation become more important as the number of cloud-based services and applications grows.

These are two of the most important factors in optimising performance and making the most of the

resources that are available. Techniques for load balancing allow for the dynamic distribution of tasks

over several virtual machines, which in turn improves response times and resource utilisation. In the

past, load balancing solutions concentrated on either minimising the amount of time needed for

reactions or increasing the amount of resources that were employed. On the other hand, when it

comes to cloud computing in the real world, load balancing is a multi-objective problem that

necessitates making compromises between competing goals. For instance, optimising resource

utilisation may result in longer reaction times, whilst lowering response times may lead to a more

efficient use of available resources. Because of this, there is a requirement for load balancing strategies

that are capable of properly dealing with the multi-objective character of the problem.

By modelling natural occurrences and biological processes, meta-heuristic algorithms have

shown exceptional success in finding solutions to difficult optimisation challenges. The HHO (Harris

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.1612.v1
http://creativecommons.org/licenses/by/4.0/

 2

hawk optimisation) algorithm is one of such type of algorithms. It gets its name from the cooperative

hunting behaviour of Harris's hawks. Due to HHO's capacity to find a balance between exploration

and exploitation, it has shown great potential in a variety of optimisation domains, which makes it a

good candidate for addressing the multi-objective load balancing and resource allocation problem in

cloud computing. HHO has shown tremendous potential in numerous optimisation domains.

Using the HHO algorithm, this work proposes a unique solution for multi-objective dynamic

load balancing and resource allocation in cloud computing. Our objective is to achieve an effective

and well-balanced distribution of activities and resources inside cloud settings by simultaneously

optimising a number of objectives, such as reaction time, resource utilisation, energy efficiency, and

cost. We provide a comprehensive and effective solution by incorporating the multi-objective aspect

of the problem into the HHO algorithm.

The HHO algorithm is utilised by the proposed approach in order to dynamically distribute jobs

across the available virtual machines (VMs) and assign resources in accordance with the workload

and resource utilisation [1]. The approach takes advantage of the hierarchical split of hawks into

several functions, such as exploratory hawks, sentinel hawks, and possessive hawks, in order to

evaluate the cooperative behaviour that is seen in Harris's hawks while they are hunting. These

responsibilities make it possible for the hawks to investigate the solution space, keep an eye on the

quality of the proposed solutions, and work towards the most effective decisions about load

balancing and resource distribution.

In order to determine how effectively the proposed approach performs, we conduct quite a lot

of experiments and make comparisons with several load balancing and resource allocation

approaches that are existing in cloud computing. In order to evaluate the performance, we examine

important performance parameters such as reaction time, resource utilisation, energy usage, and cost.

The findings point to the superiority of a multi-objective meta-heuristic dynamic load balancing and

resource allocation strategy that makes use of the HHO algorithm. This technique demonstrates its

capacity to accomplish better trade-offs between conflicting objectives and increase overall system

performance.

The remainder of the paper is organised as follows: Section 2 provides a comprehensive

literature review on cloud computing load balancing, resource allocation, and meta-heuristic

algorithms. Section 3 presents the methodology, including problem formulation, HHO algorithm

details, and multi-objective optimisation integration. Section 4 describes the experimental setup,

presents the results, and provides a comprehensive analysis. Section 5 concludes by summarising the

findings, discussing the contributions of this research, and outlining prospective directions for

further improvement and research in multi-objective dynamic load balancing and resource allocation

using the HHO algorithm in cloud computing.

2. Literature Review

In cloud computing systems, load balancing and resource allocation are essential components

because they have the potential to enhance system performance, boost resource utilisation, and

guarantee that resources are distributed fairly among users. Techniques for load balancing and

resource allocation in cloud computing systems that are inspired by natural events or biological

behaviours show a lot of promise. These algorithms are called meta-heuristic algorithms. The Harris

hawk optimisation (HHO) method, which takes its name from the hunting strategy of Harris hawks,

has been shown to be effective in the resolution of a variety of optimisation issues. However, its

application in the process of load balancing and resource allocation in cloud computing is yet

substantially unexplored.

This literature review focuses on meta-heuristic methods, such as genetic algorithms, particle

swarm optimisation, ant colony optimisation, and simulated annealing, for load balancing and

resource allocation within the context of cloud computing. It examines their advantages and

disadvantages, as well as their load balancing and resource distribution applications. D. A. Shafiq

and coworkers provide a load-balancing mechanism for data centres to ensure consistent application

performance in cloud computing. In order to accomplish load balancing in the data centres, the load-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 3

balancing algorithm that they proposed makes use of a multi-objective optimisation strategy. The

efficiency of the algorithm is further confirmed using sensitivity analysis, which evaluates the

influence that changing parameters has on the performance of the algorithm. The authors offer their

perspectives on the resilience of the algorithm as well as its capacity to adjust to a variety of different

workload circumstances. A unique technique that handles the issues of load distribution and resource

allocation is presented in this study as a contribution to the field of load balancing in cloud

computing. It provides helpful insights as well as practical consequences for creating load-balancing

algorithms that are efficient in cloud-based contexts.

The paper [4] analyses the significance of load balancing in cloud computing and draws

attention to the restrictions imposed by the currently available load balancing solutions when it

comes to the management of load distribution in big-data cloud systems. The authors propose a

unique load balancing strategy that they term the Central-Regional Architecture Based Load

Balancing Technique (CRLBT). This strategy is intended to help address the problem. Combining a

specified throughput maximisation technique with Throughput Maximised-Particle Swarm

Optimisation (TM-PSO) and Throughput Maximised-Firefly optimisation (TM-Firefly) algorithms

gives CRLBT a distinct advantage over typical central, distributive, and hierarchical cloud systems.

In addition, CRLBT distinguishes itself from these cloud designs by combining these algorithms. The

results of the experiments demonstrate considerable improvements in response time, task rejection

ratio, CPU utilisation rate, and network throughput, which confirms the efficiency of the suggested

technique in providing superior load balancing within the context of big-data cloud systems.

The paper [5] proposes a method, DEER, for load balancing in fog computing environments,

taking into account the increasing significance of fog computing in managing the information flow

in large and complex networks for the Internet of Things (IoT). The objective is to increase overall

efficiency while decreasing energy consumption, carbon emissions, and energy costs.

The most important components of the DEER strategy are the Tasks Manager, Resource

Information Provider, Resource Scheduler, Resource Load Manager, Resource Power Manager, and

Resource Engine. Tasks are submitted via Tasks Manager, and Cloud Data Centres register resource

information. The Resource Engine is responsible for allocating work, while the Resource Scheduler

organises available resources based on their utilisation. While Resource Power Manager is

responsible for monitoring power consumption, Resource Load and Power Manager monitors the

current status of the resources. This method optimises both energy consumption and computing

costs, thereby enhancing performance and reducing environmental impact in fog-like scenarios.

This study addresses the problems of work distribution and resource allocation in fog

computing by providing a layer fit algorithm and a Modified Harris-Hawks Optimisation (MHHO)

strategy. Both of these are discussed in the paper. The proposed solutions cut expenses, make the

most efficient use of resources, and distribute the load evenly across cloud and fog levels. The Internet

of Things (IoT) enables smart devices to generate large amounts of data and computing labour, which

makes it difficult to distribute duties in an effective manner. By preventing oversaturation, degraded

service, and resource failures, the layer-fitting algorithm ensures that duties are fairly distributed

between layers based on the relative importance of those layers.

In addition, a Modified Harris-Hawks Optimisation (MHHO) meta-heuristic approach is

presented for assigning the best available resource within a layer to a task. The goals are to decrease

Makespan time, task execution cost, and power consumption while increasing resource utilisation in

both layers. The proposed layer fit algorithm and MHHO are compared to traditional optimisation

algorithms such as Harris-Hawks Optimisation (HHO), Ant Colony Optimisation (ACO), Particle

Swarm Optimisation (PSO), and the Firefly Algorithm (FA) using the iFogSim simulation toolkit.

According to a study by Edward et.al [7], the load balancing objective in cloud computing is

essential owing to the complexity that is produced by enormous amounts of data as well as the

potential degradation of the entire system in the event that a defect occurs in a connected virtual

machine (VM). The research suggests a unique strategy for resource allocation among virtual

machines that is based on transfer learning using Fruitfly. This is done in order to overcome the issues

that have been presented. When the virtual machines are first established, they are loaded with a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 4

variety of user duties; then, in order to balance the load, the weight is dispersed equitably among all

linked VMs. Priority is used to determine the order in which tasks are completed, and resources are

allocated in accordance with that order. According to this research paper's findings, the Fruitfly-

based transfer learning approach appears to be a potentially useful option for load balancing in cloud

computing. It solves the problems that are involved with sharing resources and scheduling tasks,

which ultimately leads to improved overall performance and enhanced cloud services.

For the purpose of implementing dynamic resource allocation in cloud computing,

Praveenchandar and Tamilarasi [8] suggest a new load-balancing approach that they name PBMM.

By putting an emphasis on the dynamic allocation and scheduling of resources, this algorithm

overcomes difficulties with load balancing, which in turn promotes stability and profitability. It

considers factors such as the size of the undertaking and the value of each customer's bid. The paper

[9] employs resource tables and task tables to optimise waiting time and minimise average waiting

time and response time for special users. The objective is to maximise profits while improving load-

balancing stability, especially by increasing the number of special users. The simulation results

demonstrate that the proposed load balancing method accomplishes its goals effectively. It ensures

optimum profit by optimising resource allocation and scheduling, and it enhances load balancing

stability through increased participation of special users. By taking into account task size, bidding

value, and utilising resource and task tables, the proposed algorithm improves stability, reduces

waiting periods, and boosts profitability. The findings contribute to the advancement of load

balancing techniques in cloud computing environments by emphasising their importance in

maintaining service quality and optimising resource utilisation.

A comprehensive answer to the difficulties of limited physical memory, resource

underutilization, and ASP profitability in MEC environments. Y. Sun and others have proposed a

method [10]. Utilising the Lyapunov optimisation framework and genetic algorithms, the proposed

ASP profit-aware solution provides an efficient method for optimising resource allocation,

minimising latency, and ensuring long-term profitability. This issue is formulated as a stochastic

optimisation problem with ASP profit constraints over the long term. To address this issue, the

authors employ the Lyapunov optimisation framework to convert it into a problem involving the

optimisation of a specific time slot. Then, they employ genetic algorithms (GA) to create an online

heuristic algorithm that approximates near-optimal strategies for each time period. Chetan Kumar et

al. [11] propose a method for reducing system latency and increasing ASP profitability. Utilising the

edge network's available resources efficiently and minimising latency over time by simultaneously

optimising application loading, assignment allocation, and compute resource allocation. It also

attracts a greater number of ASVs by enabling them to attain their desired profitability.

Devi et al. [12] proposed a security model based on deep learning to optimise job scheduling

while considering security factors into account. The study analyses it and compares it to other

conventional scheduling techniques to demonstrate its effectiveness. The research demonstrates the

capability of deep learning algorithms to address security issues during task scheduling and

emphasises the need for security in cloud computing. This paper contributes to the progress made in

cloud computing scheduling by presenting a security approach based on deep learning.

The findings highlight the significance of security concerns in cloud computing environments

and provide significant information on the performance of the proposed model compared to existing

scheduling techniques.

The paper by Abhikriti and Sunitha [13] examines the significance of scheduling algorithms in

cloud computing with regard to the optimisation of resources and the reduction of Makespan time.

Despite the fact that existing scheduling algorithms are primarily concerned with reducing Makespan

time, they frequently cause load imbalances and wasteful resource utilisation. This research presents

a unique Credit-Based Resource Aware Load Balancing Scheduling algorithm (CB-RALB-SA) as a

potential solution to the problems described above.

The CB-RALB-SA algorithm's objective is to achieve a balanced distribution of tasks according

to the capabilities of the resources available. It assigns weights to jobs using a credit-based scheduling

approach, and then maps those tasks to resources after taking into account the load those resources

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 5

are under and the processing power they possess. The FILL and SPILL functions of the Resource

Aware and Load (RAL) approach, which makes use of the Honey Bee Optimisation heuristic

algorithm, are used to carry out this mapping.

In [14], the difficulties of load balancing in cloud computing as well as the significance of locating

optimal solutions are explored. Swarm Intelligence (SI) is presented as a potential solution for load

balancing, and it is contrasted with several different algorithms, including genetic algorithm, ACO,

PSO, BAT, and GWO. The algorithms known as Particle Swarm Optimisation (PSO) and Grey Wolf

Optimisation (GWO) are the primary foci of this study's investigation.

Federated clouds have emerged as a combination of private and public clouds to facilitate secure

access to data from both categories of clouds. However, the procedure of authorization and

authentication in federated clouds can be complex.

A new algorithm called the Secured Storage and Retrieval Algorithm (ATDSRA) has been

suggested [15] with the intention of providing private and public users of cloud databases with the

ability to store and retrieve data in a secure mannerIn addition to the Triple-DES ciphering used for

encryption, it combines encrypted data using data merging and aggregation algorithms. In addition,

the CRT-based Dynamic Data Auditing Algorithm (CRTDDA) is presented for the purpose of

controlling access to federated cloud data and conducting audits of the data.

The ATDSRA algorithm and CRTDDA auditing scheme enhance the security of federated cloud-

stored data. The proposed model addresses the complex task of authorization and authentication in

cloud computing by providing secure storage, retrieval, and auditing capabilities, thereby enhancing

the overall security of federated cloud environments.

In order to solve the problem of load balancing, the authors of [16] propose a combined method

namely firefly and BAT. This strategy makes use of the advantages offered by both rapid convergence

and global optimisation. This strategy tries to improve both the effectiveness of the system and the

distribution of its resources. The findings of the research show that promising results can be achieved

in terms of globally optimised quick convergence and decreased total reaction time.

Saydul et al. [17] discuss the significance of task scheduling in cloud computing and how it

affects resource utilisation and service performance. It emphasises the need for efficient job

scheduling strategies to prevent resource waste and performance decline. Examining various task

scheduling techniques within the context of cloud and grid computing, the research identifies their

successes, challenges, and limitations. A taxonomy is proposed to classify and analyse these

techniques, with the goal of bridging the gaps between existing studies and offering a conceptual

framework for more efficient job scheduling in cloud computing.

A priority-based scheduling approach is proposed by Junaid et al. [18] as a method for achieving

equitable task scheduling in cloud computing environments. The method's goals are to make the

most efficient use of available resources and to boost overall performance. The study throws up

questions that could be investigated further in the future and could lead to more effective scheduling

tactics. Academicians, policymakers, and practitioners can all benefit from using the priority-based

scheduling technique to optimise cloud computing configurations. This is because the technique

leads to the creation of more efficient task scheduling strategies.

Ashawa et al. [19] research focuses on resource allocation in large-scale distributed computing

systems, specifically in the context of cloud computing. The goal is to maximise overall computing

efficiency or throughput by effectively allocating resources. Cloud computing is distinguished from

grid computing, and the challenges of allocating virtualized resources in a cloud computing

paradigm are acknowledged.

Using the LSTM (Long-Short Term Memory) algorithm, a dynamic resource allocation system is

implemented in this study. This system analyses application resource utilisation and determines the

optimal allocation of additional resources for each application. The LSTM model is trained and

evaluated in simulations that approximate real-time. In addition, the study discusses the

incorporation of dynamic routing algorithms designed for cloud data centre traffic. The proposed

resource allocation model [20] is compared to other load-balancing techniques and demonstrates

improved accuracy rates and decreased error percentages in the average request blockage probability

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 6

under heavy traffic loads. Compared to other models, the proposed method increases network

utilisation and decreases processing time and resource consumption. For load balancing in energy

clouds, it is suggested that future research investigate the implementation of various heuristics and

machine learning techniques, specifically the use of firefly algorithms.

Cloud computing provides a variety of services to consumers, but the increased demand also

increases the probability of errors. Several fault tolerance techniques have been devised in order to

mitigate the impact of errors. The paper [21] describes a multilevel fault tolerance system designed

to improve cloud environments' reliability and availability. The proposed system has two levels of

operation. In the first level, a reliability assessment algorithm is used to determine which virtual

devices are trustworthy. By evaluating the dependability of virtual machines, the system guarantees

that tasks are assigned to the most dependable resources, thereby minimising the possibility of errors.

By replicating data and distributing it among a number of physical or virtual devices, the replication

method ensures that the data will always be accessible at the second level. This technique ensures

that even if one copy becomes inaccessible or malfunctions, other replicas can still be accessed, hence

protecting the availability of data even if that one copy becomes unavailable or malfunctions. This

multilevel fault tolerance method improves fault tolerance in real-time cloud environments by

combining reliable virtual machine identification with data replication. The result is a reduction in

mistakes and an increase in the efficiency of cloud services.

Inattention to federated cloud environments Federated clouds, which combine private and

public clouds, present unique challenges for authorization, authentication, and secure data storage.

The absence of efficient algorithms and models to resolve these complexities and improve the overall

security of federated cloud environments represents a research gap.

Table 1. Comparison of Existing Methods.

Citation Technique Advantage Limitations

Ali Asghar Heidari

et al., 2019

Meta-heuristic

algorithms (e.g.,

HHO)

Effective optimization

capabilities, near-optimal

solutions

HHO

implementation in

cloud computing is

largely unexplored

K Vinoth Kumar &

A Rajesh, 2022

Multi-objective

optimization strategy

Load balancing method

for data centers, efficient

algorithm, adjustable to

different workload

circumstances

Limited discussion

on the algorithm's

resilience and

adaptability

Shafiq D A et al.,

2021

CRLBT strategy with

TM-PSO and TM-

Firefly

Improved response time,

task rejection ratio, CPU

utilization rate, and

network throughput

--

Oduwole O A et

al., 2022
DEER strategy

Increased efficacy,

reduced energy

consumption, decreased

environmental impact

Limited discussion

on the dynamic

nature of fog

environments

Rehman A U et al.,

2020

Layer fit algorithm

and MHHO strategy

Enhanced performance

metrics, reduced costs,

maximized resource

utilization, load

balancing in fog

computing

Comparison with

traditional

optimization

algorithms

Edward G, Geetha

B & Ramaraj E,

2023

Fruitfly-based transfer

learning

Improved load balancing,

resource sharing, and

task scheduling

Limited discussion

on the algorithm's

performance

compared to others

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 7

Praveenchandar &

Tamilarasi, 2022
PBMM algorithm

Dynamic resource

allocation, improved load

balancing stability and

profitability

--

Narwal A & Sunita

D, 2023

CB-RALB-SA

algorithm

Balanced distribution of

tasks, efficient load

balancing, honey bee

optimization

--

Al Reshan M.S. et

al., 2023

SI, PSO, and GWO

algorithms

Potential load balancing

solutions, comparison

with other algorithms

--

Sermakanu A.M.,

2020

ATDSRA and

CRTDDA algorithms

Secure storage and

retrieval, restricted data

access

Limited discussion

on the algorithm's

performance

compared to others

Saydul A.M. et al.,

2022

Task scheduling

techniques analysis

Efficiency of job

scheduling, resource

utilization, performance

improvements

Taxonomy proposed

for classification and

analysis of

scheduling

techniques

Ashawa M et al.,

2022

LSTM-based dynamic

resource allocation

Maximization of

computing efficiency,

improved resource

allocation

Limited discussion

on the comparison

with other allocation

techniques

Hariharan B, 2020
Resource allocation

model

Increased accuracy,

decreased error

percentages, improved

network utilization

Suggested further

research on

heuristics and

machine learning

techniques

2.1. Summary of the Literature review

The purpose of this literature review is to investigate the difficulties associated with load

balancing and resource allocation in cloud computing settings and to investigate the various

techniques that researchers have offered to address these concerns. In cloud computing, it places a

primary emphasis on the utilisation of meta-heuristic methods, such as the Harris hawk optimisation

(HHO) algorithm, for the purposes of load balancing and resource allocation.

Well-known meta-heuristic algorithms that are employed in cloud computing, such as genetic

algorithms, particle swarm optimisation, ant colony optimisation, and simulated annealing, are

investigated in one study. It examines their advantages and disadvantages, as well as the uses they

have in load balancing and resource distribution.

A method for load balancing in data centres that makes use of a multi-objective optimisation

strategy has been proposed in one study. In yet another piece of research, the issue of load

distribution in big-data cloud systems is investigated via the lens of the Central-Regional

Architecture Based Load Balancing Technique (CRLBT). In order to manage the flow of information

over complicated networks for the Internet of Things (IoT), a technique known as DEER has been

presented as a solution for load balancing in fog computing settings. This comes as the importance

of fog computing in this area continues to grow.

In addition to that, a paper provides a layer fit technique as well as a Modified Harris-Hawks

Optimisation (MHHO) strategy to solve the job distribution and resource allocation issues that are

inherent in fog computing. In this article, a novel load balancing algorithm known as PBMM and a

load balancing technique based on transfer learning utilising Fruitfly are discussed for the purpose

of dynamic resource allocation in cloud computing.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 8

The introduction of a deep learning-based security model and a Credit-Based Resource Aware

Load Balancing Scheduling algorithm brings to light the necessity of security in cloud computing

scheduling. Both of these innovations are designed to balance and distribute workloads. In addition

to this, the paper delves into the topic of swarm intelligence algorithms and suggests a Secured

Storage and Retrieval Algorithm (ATDSRA) for usage in federated cloud environments.

In addition, research on task scheduling, priority-based scheduling strategies, resource

allocation in distributed computing systems, dynamic resource allocation utilising the LSTM

algorithm, fault tolerance systems, and reliability assessment in cloud environments are all covered

in this review.

This literature review sheds light on the existing body of knowledge about load balancing and

resource allocation in cloud computing. Additionally, it draws attention to the potential of meta-

heuristic algorithms and other methodologies to effectively solve these difficulties.

2.2. Research Gap

The research gap in the literature necessitates further exploration and development of load

balancing and resource allocation techniques in cloud computing, taking into consideration specific

environments, security concerns, combined optimisation techniques, and dynamic resource

allocation strategies. In addition, there is a need for a comprehensive analysis, classification, and

evaluation of existing techniques in order to provide insight and direction for the development of

more effective solutions.

• Limited investigation of the use of the Harris hawk optimisation (HHO) algorithm in cloud

computing load balancing and resource allocation:

Although meta-heuristic algorithms, such as HHO, have demonstrated promise in solving

optimisation problems, their application in cloud computing load balancing and resource allocation

is primarily unexplored.

• Lack of comprehensive analysis and comparison of meta-heuristic algorithms:

Load balancing techniques tailored to specific cloud computing environments, such as fog computing

and big-data cloud systems, are required. Existing research frequently disregards the distinctive

characteristics and difficulties of these environments.

• Insufficient focus on load balancing strategies for specific cloud computing environments:

Although load balancing and resource allocation are essential for optimising system performance,

guaranteeing security in the scheduling process is equally crucial. In the context of task scheduling,

the incorporation of security factors, such as deep learning-based security models, requires further

investigation.

• Inadequate attention to security concerns in load balancing and resource allocation:

Equally as essential as load balancing and resource allocation for optimising system performance is

the security of the scheduling process. In the context of task scheduling, the incorporation of security

factors, such as deep learning-based security models, requires further investigation.

• Lack of emphasis on federated cloud environments:

Federated clouds, which combine private and public clouds, present unique authorization,

authentication, and secure data storage challenges. The absence of efficient algorithms and models to

resolve these complexities and improve the overall security of federated cloud environments

represents a research gap.

• Limited exploration of combined optimization techniques:

There is a need for research that investigates the effectiveness of combining various optimisation

techniques, such as the firefly and BAT algorithms, to improve load balancing and resource allocation

in cloud computing.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 9

• Incomplete understanding of the impact of scheduling on resource utilization and system

performance:

Task scheduling has a substantial impact on resource utilisation and overall system performance.

Further study is required to develop more effective scheduling techniques that maximise resource

utilisation and minimise Makespan time while taking load balancing and performance tradeoffs into

account.

• Inadequate investigation of dynamic resource allocation:

Dynamic resource allocation necessitates techniques that optimise computing efficiency, particularly

in large-scale distributed computing systems. Dynamic resource allocation models, such as LSTM-

based algorithms, and their integration with dynamic routing algorithms for cloud data centre traffic

require additional study.

3. Objectives and Problem Statement

In the world of cloud computing, the issue of overloading manifests itself when jobs arrive in an

unpredictable order. It is common for some resources to become significantly loaded as a result of

the arbitrary utilisation of the CPU, while other resources continue to remain idle. In order to solve

this problem, load balancing, which involves the allocation of work over a network according to the

number of virtual machines (VMs) or central processing units (CPUs), has been put into use. The

primary objective of cloud computing is to guarantee optimal resource utilisation, which will

ultimately result in enhanced system performance and a reduction in response time.

In addition, load balancing algorithms face obstacles such as the high cost of hardware and

bottlenecks in the system. However, these approaches have overlooked the consideration of a

resource's ability to accomplish tasks and the fulfilment of user requirements. As a result, resource

utilisation has been further reduced, and cloud systems have been presented with challenges. In

addition, even if these methods have improved superiority, they have not given sufficient scalability

or response speed. Also, the substantial costs associated with hardware and system bottlenecks have

surfaced as key concerns in the approaches of load balancing. An effective Multi-Objective Meta-

Heuristic Dynamic load balancing and optimisation method has been implemented in the cloud

environment to handle load balancing concerns. This was done to help overcome the challenges that

have been presented.

4. Model Development

In cloud computing, the process of load balancing and scheduling is handled by a N number of

virtual machines (VMs).

1

N

i

i

VM Vm
=

=

(1)

In order to ensure that the workload is distributed fairly and equitably across all of the servers,

each VM has been given a specific server, hence there are M servers as well and

1

M

s

s

S S
=

=

(2)

each Virtual Machine has its own independent collection of resources. Memory, central

processing unit, disc space, and bandwidth are all included in the resources.

{ }

{ }

{ }

1

2

1,1 1,2 1,

2,1 2,

,1 ,2 ,

, ,...

, 2,...

, ,...
n

vm j

vm j

vm n n n j

R R R R

R R R R

R R R R

=

=

=

(3)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 10

Let us assume that there are many numbers of jobs in the queue which needs the resources.

{ }1 2, ,..., nJ J J J=

(4)

These jobs are loaded into the cloud server by many cloud users, say U. Where

{ }1 2, ,..., nU U U U=

(5)

The virtual machines (VMs) are assigned jobs with the intention of achieving an optimal load

distribution. The architecture is made up of limited number of servers, one of which is designated to

be the central server and is in charge of receiving requests from virtual machines (VMs). Each server

is able to process requests, which brings the VMs up to par with the most powerful server. The goal

is to design a better scheduler that can assign jobs to virtual machines (VMs) in a way that ensures

load balancing across all of them. To accomplish the objective of optimising resource utilisation, user

characteristics such as request size, number of CPU requests, and number of requests sent per time

interval will be employed. To combine virtual machines (VMs) for cloud load balancing, you'll need

hosts with a certain fitness value and their own resources. The primary objective is to develop a

superior scheduler capable of distributing work to virtual machines (VMs) in accordance with

available resources.

In the scope of this study, load balancing is optimised in terms of reaction time, cost, and

resource utilisation. The objectives are to decrease reaction time, cut costs, increase resource

utilisation, and increase overall utilisation. Load balancing consists of numerous components. The

objective of extensive research and concentrated efforts to reduce reaction times, expenses, and

resource consumption is to enhance efficiency and effectiveness. The output can be increased through

more efficient distribution and allocation of resources. Utilising all of a system's available resources

to their maximum capacity helps eliminate bottlenecks and inefficiencies. To determine the amount

of resources utilised, use equation (6).

1

100

,

resources

resources

resources

used
utilization

total

R
R

overall utilization

R total

R

R
R

R

OU
R

R

Where OU Overall Utilization of the resources

−

=

 
= × 
 

 
=  

 
=



(5)

By enhancing resource utilisation, we can maximise the system's capabilities and eliminate any

potential bottlenecks or inefficiencies. To calculate resource usage, use the accompanying equation

(6).

J J Transmission

exe Completion Arrival delay

T T T

exe start arrival

T

response exe exe

T T T T

J J J

T T J

= − +

= −

= +

(6)

When evaluating these various objectives, we discover that cost, resource utilisation, and

response time are interrelated. To attain the goal of a well-balanced and highly effective load

balancing system, extensive optimisation and fine-tuning are required. The following algorithm 1

computes the cost of a single work by considering the time required to initiate the task, the time

required to conclude the project, and the required resources.

It determines the execution time by first subtracting the start time from the end time and then

dividing the difference by two. The cost is then determined by multiplying the duration of execution

by the quantity of resources utilised throughout the activity.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 11

Algorithm 1: Calculate the Cost

1

Cos ()
: Cos 0, C 0, 0

Cos ()

Cos
Cos

()

Total current

J J

exe Completion start

J

exe usage

n
J T

arrival

i

J

arrival

Function t

Init t T

Function tCalculation

T T T

t T R

return t

Function JobScheduling

S J

repeat for all jobs in the queue

if T

=

= = =

= −

= ×

=

>



()

()cos 1

cos

() / /

,

C Cos

Re C

C

C J

arrival

T C

start

T

Completion

J
j T T

t start Completion
j

Total t

J

current Completion

Total

T then

T T

J T

J Exe J Execute the job and get the time

J R J J

Total t J

T T

turn

=

=

=

=

= +

= +

=



5. Meta-Heuristic Harris Hawk Algorithm

The Harris Hawk Optimisation Algorithm (HHO) is a problem-solving optimisation algorithm

that was inspired by nature and is used in cloud computing to address resource allocation issues. It

was modelled after the Harris hawk's strategy of working together while hunting, which boosts their

overall efficiency. The HHO algorithm's primary objective is to improve overall system performance

by optimising resource utilisation across a variety of roles and responsibilities. It requires multiple

steps to effectively distribute resources while simultaneously cutting expenses and improving

efficiency.

5.1. Initialization

The initialization phase of the Harris Hawk Optimisation (HHO) algorithm is the first stage in

the optimisation process. During this stage, viable solutions are set up, and initialization parameters

for subsequent iterations are determined.

The size of the population, designated by the letter PN, and a random method of resource distribution

is devised for each person in the population, from one to N, in order to distribute the resources. In

order to accomplish this, random values need to be assigned to the allocation parameters, which can

include things like the number of virtual machines (VMs), CPU cores, memory, disc space, and so on.

Each solution illustrates a feasible method for allocating resources to perform various cloud

computing activities and is shown in Algorithm 2.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 12

Algorithm 2: Population Initialization

()

()
: , ,
0

1
/ /

()

/ /Generate a random number that falls somewhere between the upper and lower bounds.
,

/ /Inclu

N L U

N

i

j L U

Function PopulationInitialization

Init P B B

P

for i to N

Create newIndividual

I New I

for each j

I Rand B B

=

=

=

=

de the individual on the list of individuals that collectively make up the population.

Re
N N j

N

P P I

turn P

= +

5.2. Fitness Evaluation

Evaluate how well each solution in the population fits to the requirements. When discussing

cloud computing, fitness is typically discussed in relation to measures such as response time,

throughput, energy consumption, or cost. The fitness function provides a quantitative assessment of

the quality of a resource allocation strategy that is founded on these metrics. Algorithm 3 is used to

calculate the fitness value.

Algorithm 3: Fitness Evaluation

1

()
/ /

/ /Manage the distribution of resources and execute the tasks that are assigned.

/ /This allocates the available resources

i N

n

i i

i

Function FitnessEvaluation

for each I P for eachindividual in population

I R
=

∈

=

()

()

(such as virtual machines,

//CPU processors, memory, and disc space) based on the allocation
//parameters of the individual.

/ /

/ /

Task

i

c

utilization efficiency

V i V

Exec I

F T R R F fitness

F I F F Fitness Valu

= −

= =

    

e

5.3. Leader selection

During the leader selection phase of the Harris Hawk Optimisation (HHO) algorithm, the goal

is to find the solutions within the population that have demonstrated the highest levels of

performance, which are referred to as leaders. The leaders guide the search process and influence the

exploration and exploitation of the solution space. The algorithm to select the leader is as shown in

algorithm 4.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 13

Algorithm 4: Leader Selection

()

[]

()
: , / / ,

() / /
/ / sec

1 / / ()

N v

Size N

N Desc N

N

FunctionLeaderSelection

Input P F Population Fitness

P Len P PopulationLength

P S P Sort the populationinDe dingorderbased ontheir fitnessvalue

L P Select thebest top populationtoser

=

=

 = 
2

([]) []
[]

Re

Size

v v

v

veastheinitial leader

for i toi P

if F i F L

L F i

turnL

= ≤

>

=

The fitness value of each solution in the population is determined by the function as it iteratively

processes its way through all of the solutions in the population. The result that achieves the greatest

overall fitness is deemed to be the leader.

5.4. Exploration

In the Harris Hawk Algorithm’s (HHO) Exploration phase, a simulation of the hunting

behaviour of Harris's Hawks is used to explore the search space and uncover potential solutions to

an optimisation problem. During this stage, a population of hawks will be created, and both their

placements and their fitness values will be assessed.

Harris hawk's cooperative hunting behaviour as a model for exploring the space available for

solutions is utilised in this phase. As part of this process, the positions of the solutions in the

population will be updated in an effort to discover more effective solutions. In order to direct the

process of exploration, local search, a global search, or a combination of the two may utilised and this

process in explained in Algorithm 5.

The first step of the Exploration phase is to generate the initial positions of the hawks inside the

search space using a randomization algorithm. The fitness of each hawk is determined based on its

location, which is a representation of how well it performs in terms of finding the optimal solution to

the problem. The algorithm keeps track of a global best position and fitness, which are both initialised

with the values of the hawk in the initial population that has the highest level of fitness. When a hawk

makes a discovery throughout the exploration process that leads to a better location, this global best

position is immediately updated.

A hunting strategy is implemented for each individual hawk in the population so that they can

investigate and potentially improve their position in each iteration of the model. In the course of the

hunting strategy, four hawks at random are chosen from the population and given the designations

H1, H2, H3, and H4. The hawk that is currently being considered is not one of these four. To determine

how far apart hawks H1 and H2 are from one another, a distance metric, such as the Euclidean

distance, is applied to the calculation. The direction vector is determined by determining the

difference in position between H1 and the current hawk. This difference is the direction in which the

hawk should move, and the location of the hawk is then updated to reflect this new information.

After the Exploration phase of the algorithm has been completed, it will then return the global best

position and fitness as the final result. These two values will reflect a probable optimal solution to

the optimisation issue of the resource allocation in cloud computing.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 14

Algorithm 5: Exploration

min max

()
:
/ / .

, / /
, / /
[] / / '

[] / /

H

N

Max

u u

f f

pos

v

FunctionExploration

Initialize

P No of Hawksinthe population

I I MaximumIteration

P P Minimumand Maximumupdate factor values for eachindividuals

H Haw s positionarray

F FitnessValue Ar

()

/ /
/ /

, / /
() / / lg 2

, / /
() / / lg 3

f

direction

L U

j L B

op

ray

U UpdateFactor

D Directionof theHawk

B B Lower andUpper Boundaries

Call PopulationInitialization A orithm

I Rand U U RandomlyGeneratethe position

Call FitnessEvaluation A orithm

P

=

[]

[]

lim [] //Optimal Position of the Hawk in the initial population

lim [] / //Optimal Fitness Value of the Hawk in the initial population

1
Repeat Until

H H

timal pos N v
x N

H H

optimal v N v
x N

H P F

F F P F

I

δ

δ

→

→

  =   

  =   

=

()

[]

[] []()
()

1 2 3 4

1 2

1 2

max

1
/ /

Choose four Hawks (H,H ,H ,H)at random from

_ tan H H / / tan

[H] [H]

Max

Max

H

N

H H

N N

H H

euclidean N N

v v

I

Iu

f f

I I

for i toP

Adjust theHariss Hawk movement

P P i

D Euclidean Dis ce P P Dis cebetweentheHawks

if F F

U P e

 −



≤

=

∉

= −

>

= ×

[] []

[] []

[] []()

[]

min

1

/ /Set the position's boundaries inside the boundaries of the search space

lim , ,

[] / / / /Evaluate the

Max

I

Iu

f f

H H

direction optimal N

H H

N N direction

H H

N N L U

H

v v N

else

U P e

D P H P i

P i P i D

P i P i B B

F i F P i





 −
 
 = ×

= −

= +

=

 =  

()

[]

()

 fitness of the new position

[]

[]

1

Re ,

H

v optimal

H

optimal v

H H

optimal N

H H

optimal optimal

if F i F

F F i

P P i

I I

turn P F

>

=

=

= +

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 15

6. Results and Discussion

6.1 Simulation and Results

The results of the simulation were an extremely helpful resource when doing an analysis to

evaluate the efficiency of the proposed method. In order to make this analysis easier, the powerful

CloudSim simulation software was utilized. CloudSim 4.0 excels in the provision of modeling and

simulation activities, in addition to providing cloud computing services and the ability to test

applications. The simulation was carried out on a computer that featured an Intel Core i7 CPU, 12

gigabytes of Random Access Memory (RAM) and the central processing unit (CPU) ran at a frequency

of 2.80 gigahertz speed used Windows 10.

The proposed work has been compared with four other similar studies, including HHO [22],

MRFO [23], QMPSO [24], and MMHHO [25], and that the effectiveness of the MDLB-HHO technique

has been evaluated. According to the findings, the suggested MDLB-HHO performed similarly to or

even better than the other works in a number of different metrics, additionally, the proposed MDLB-

HHO maintained a comparable level of performance in some of the other metrics.

The performance comparison of proposed and existing approaches in terms of energy utilization

with varying numbers of tasks and virtual machines is shown in Figure 1 and Figure 2.

Figure 1. Energy Utilization of different algorithms with variable number of tasks.

In the same manner, the Makespan is an essential metric in cloud computing that calculates the

overall amount of time necessary to finish a collection of activities or tasks in a cloud-based system.

It is the amount of time that elapses between the beginning of the first task in a certain workload and

the finish of the final task in that workload. When it comes to cloud computing, the major goal is to

reduce the Makespan as much as possible because this factor directly affects the system's efficiency

and performance. It is crucial to cut down on the Makespan since this results in speedier completion

of activities, increased resource usage, and higher overall system productivity. Cloud service

providers are able to optimize resource allocation, improve customer satisfaction, and achieve cost-

effectiveness when they reduce the Makespan as much as possible. Researchers in the field of cloud

computing are constantly looking into novel scheduling algorithms, resource management

approaches, and optimization tactics in order to maximize the maketime of cloud applications. Cloud

computing platforms that have achieved a minimal Makespan are able to provide services that are

both quicker and more dependable, hence enhancing the overall user experience and making the

most efficient use of available resources. The Makespan of the proposed system for different number

of tasks and VMs are shown in Figure 3 and Figure 4.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 16

Figure 2. Energy Utilization of different algorithms with variable number of VMs.

Figure 3. Makespan of different algorithms with variable number of tasks.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 17

Figure 4. Makespan of different algorithms with variable number of VMs.

6.2. Discussion

Figure 1 shows the energy used by different algorithms for different tasks. Algorithms

considered include MDLB-HHO (Proposed), MMHHO, HHO, MRFO, and QMPSO. After 500, 1000,

1500, and 2000 tasks, each method is evaluated for energy use. The results show intriguing

commonalities in energy utilization across algorithms and job counts.

The MDLB-HHO (Proposed) method consumes more energy as workloads increase. 61.29 for

500 jobs rises to 79.43 for 1000 tasks, 109.99 for 1500 tasks, and 146.72 for 2000 duties. This shows that

effort increases energy consumption proportionally. The MMHHO algorithm uses more energy as

tasks increase. This is an algorithm characteristic. After 500 increments, it hits 72.47, 110.91, and 147.18

for 1000, 1500, and 2000 tasks. HHO uses slightly more energy than MDLB-HHO (Proposed) and

MMHHO for all task numbers. For 500, 1000, 1500, and 2000 tasks, the numbers are 63.38, 80.54,

118.55, and 155.69.

MRFO energy consumption matches MDLB-HHO (Proposed), MMHHO, and HHO. 500, 1000,

1500, and 2000 tasks provide 59.27, 76.64, 114.86, and 151.97. QMPSO uses more energy across all job

counts than the other algorithms tested. For 500, 1000, 1500, and 2000 tasks, it consumes 76.54, 104,

133.3, and 174.03 more energy than the other methods. Lowest to highest. These data show how

algorithms consume energy at different work loads. MDLB-HHO (Proposed), MMHHO, HHO, and

MRFO all use energy similarly. QMPSO uses more energy on average than the other algorithms.

Understanding these energy usage variations can help choose an algorithm for a certain work based

on performance and energy efficiency.

Figure 2 shows the energy usage of algorithms over varying numbers of virtual machines (VMs).

MDLB-HHO (Proposed), MMHHO, HHO, MRFO, and QMPSO algorithms are being evaluated. As

VMs expand, energy usage increases. As VMs increase, energy usage rises across all algorithms. More

virtual machines require more processing resources, which explains this tendency. The algorithms

MDLB-HHO (Proposed) and MMHHO use energy similarly. Both techniques use more energy from

100 to 300 VMs. MMHHO uses slightly more energy than MDLB-HHO (Proposed) for all VM

amounts. MDLB-HHO (Proposed) and MMHHO use less energy than HHO for all VM amounts.

HHO may take more computational resources and energy to execute tasks due to this discrepancy.

MRFO and QMPSO algorithms use less energy than HHO. As VMs rise, both algorithms need more

energy. MRFO uses slightly less energy than QMPSO. These findings emphasize the need for energy-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 18

efficient cloud virtual machine management methods. Energy efficiency minimizes operational

expenses and carbon footprint.

Figure 3 shows the Makespan for several methods at varying task counts. MDLB-HHO

(Proposed), MMHHO, HHO, MRFO, and QMPSO algorithms are under consideration. 500-task

increments increase to 2000 tasks. The MDLB-HHO (Proposed) and MMHHO algorithms have the

lowest Makespan values across all task numbers. Both algorithms do tasks efficiently and effectively.

Both techniques increase Makespan steadily as the number of tasks grows. HHO, however, produces

slightly higher Makespan values than MDLB-HHO (Proposed) and MMHHO. Makespan also

increases with job count. HHO performs well and completes jobs, however not as efficiently as the

other algorithms. MRFO performs comparably to MDLB-HHO (Proposed) and MMHHO. It manages

a variety of jobs more efficiently than HHO, with a lower makespan. Finally, the QMPSO algorithm

has the longest makespan. As tasks increase, makespan increases, suggesting scalability issues.

QMPSO still finishes tasks, although it takes longer. The MDLB-HHO (Proposed) and MMHHO

algorithms consistently have the lowest makespan values across all task numbers. These algorithms

excel at managing tasks in a time-sensitive context. The HHO and MRFO algorithms perform well,

despite their slightly greater makespan values. Finally, the QMPSO algorithm yields reasonable

results but has a longer makespan than the others, suggesting room for optimization. These results

illuminate each algorithm's strengths and weaknesses, helping researchers and practitioners choose

a task management algorithm that balances completion time and efficiency.

Figure 4 shows makespan values for different VM counts. Data analysis yields many findings.

At each VM count, MDLB-HHO (Proposed) and MMHHO have similar makespan values. This shows

both strategies minimize makespan similarly. HHO has greater makespan values than MDLB-HHO

(Proposed) and MMHHO, but it outperforms MRFO and QMPSO across all VM counts. HHO is

effective, but not as well as MDLB-HHO (Proposed) and MMHHO. MRFO and QMPSO had the

largest makespan values of the evaluated algorithms, regardless of VM count. Based on this dataset,

MRFO and QMPSO may not be the best solutions for lowering makespan in parallel computing

systems. All algorithms decrease makespan as VMs increase. Task distribution across more VMs

improves load balancing and efficiency.MDLB-HHO (Proposed) and MMHHO algorithms minimize

makespan better, according to data.

7. Conclusion

This paper introduced a multi-objective meta-heuristic dynamic load balancing and resource

allocation technique in cloud computing utilizing the Harris hawk optimization (MDLB-HHO)

algorithm. The proposed load balancing method reduces Makespan time and improves resource

utilization. The load balancing challenge was formulated as a multi-objective optimization problem

and solved using the MDLB-HHO algorithm to dynamically assign jobs to VMs based on workload

distribution and resource utilization. The MDLB-HHO technique allowed the hawks to

collaboratively search the solution space and discover the best task allocations through iterative

interactions and position updates. The load balancing solution for dynamic cloud environments

addresses numerous objectives and hawks' cooperative hunting behavior. The suggested cloud

computing multi-objective optimization strategy incorporates cost, resource utilization, and

Makespan time. Optimizing these criteria improves cloud computing system operation and resource

utilization. This research concluded with an HHO algorithm-based multi-objective dynamic load

balancing and resource allocation approach for cloud computing. The proposed method

outperformed other methods in the experiments. Future research may include applying the MDLB-

HHO algorithm in specific cloud computing environments, addressing security concerns in load

balancing and resource allocation, and integrating multiple optimization techniques to improve

system performance.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 19

References

1. Ali Asghar Heidari; Seyedali Mirjalili; Hossam Faris; Ibrahim Aljarah; Majdi Mafarja and Huiling Chen.

Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems 2019, 97,

pp.849-872.

2. Author 1, A.B.; Author 2, C.D. Title of the article. Abbreviated Journal Name Year, Volume, page range

3. Kethineni Vinod Kumar and Rajesh, A. Multi-objective load balancing in cloud computing: A meta-

heuristic approach. Cybernetics and Systems 2022. DOI: 10.1080/01969722.2022.2145656.

4. Shafiq, D.A.; Jhanjhi, N.Z.; Abdullah, A. and Alzain, M.A. A load balancing algorithm for the data dentres

to optimize cloud computing applications. IEEE Access 2021, 9, pp.41731-41744.

5. Oduwole, O.A.; Akinboro, S.A.; Lala, O.G. and Olabiyisi, S.O. An enhanced load balancing technique for

big-data cloud computing environments. Transactions of the Royal Society of South Africa 2022, 77(3), pp.219-

236.

6. Rehman, A.U.; et al. Dynamic energy efficient resource allocation strategy for load balancing in fog

environment. IEEE Access 2020, 8, pp.199829-199839.

7. Yakubu, I.Z. and Murali, M. An efficient meta-heuristic resource allocation with load balancing in IoT-Fog-

cloud computing environment. Journal of Ambient Intelligence and Humanozed Computing 2023, 14, pp.2981–

2992.

8. Edward Gerald, B.; Geetha, P. and Ramaraj, E. A fruitfly-based optimal resource sharing and load

balancing for the better cloud services. Soft Computing 2023, 27, pp.6507–6520.

9. Praveenchandar, J. and Tamilarasi, A. An enhanced load balancing approach for dynamic resource

allocation in cloud environments. Wireless Personal Communication 2022, 122, pp.3757–3776.

10. Reshmy, A.K. Data mining of unstructured big data in cloud computing. International Journal of Business

Intelligence and Data Mining 2017, 13(1-3), pp.147-162.

11. Sun, Y.; Xie, X.; Wu, F.; Zhang, S.; Xu, S. and Wu, Y. Application loading and computing allocation for

collaborative edge computing. IEEE Access 2021, 9, pp.158481-158495.

12. Chetan Kumar; Sean Marston; Ravi Sen and Amar Narisetty. Greening the cloud: A load balancing

mechanism to optimize cloud computing networks. Journal of Management Information Systems 2022, 39(2),

pp.513-541.

13. Devi, K. and Muthusenthil, B. Deep learning-based security model for cloud based task scheduling. KSII

Transactions of Internet and Information Systems 2020, 14(9), pp.3663-3679.

14. Abhikriti Narwal and Sunita Dhingra. A novel approach for credit-based resource aware load balancing

algorithm (CB-RALB-SA) for scheduling jobs in cloud computing. Data and Knowledge Engineering 2023,

145, 102138.

15. Al Reshan, M.S.; et al. A fast converging and globally optimized approach for load balancing in cloud

computing. IEEE Access 2023, 11, pp.11390-11404.

16. Sermakani, A.M. Effective data storage and dynamic data auditing scheme for providing distributed

services in federated cloud. Journal of Circuits, Systems and Computers 2020, 29(16), 2050219.

17. Hariharan, B. A hybrid framework for job scheduling on cloud using firefly and BAT algorithm.

International Journal of Business Intelligence and Data Mining 2019, 15(4), pp.388-407.

18. Saydul Akbar Murad; Abu Jafar Md Muzahid; Zafril Rizal M Azmi; Md Imdadul Hoque; Md Kowsher. A

review on job scheduling technique in cloud computing and priority rule based intelligent framework.

Journal of King Saud University - Computer and Information Sciences 2022, 34(6), pp.2309-2331.

19. Junaid, M.; Sohail, A.; Ahmed, A.; Baz, A.; Khan, I.A. and Alhakami, H. A hybrid model for load

balancing in cloud using file type formatting. IEEE Access 2020, 8, pp.118135-118155.

20. Ashawa, M.; Douglas, O.; Osamor, J. et al. Improving cloud efficiency through optimized resource

allocation technique for load balancing using LSTM machine learning algorithm. Journal of Cloud Computing

: Advances, Systems and Applications 2022, 11(87).

21. Hariharan, B. WBAT Job scheduler: A multi-objective approach for job scheduling problem on cloud

computing. Journal of Circuits, Systems and Computers 2020, 29(6).

22. Devi, K. Multi level fault tolerance in cloud environment. Proceedings of the International Conference on

Intelligent Computing and Control Systems (2017)., June 15-16; Madurai, India, pp. 824-828.

23. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M. and Chen, H. Harris hawks optimization

Algorithm and applications. Future Generation Computer Systems 2019, 97, pp.849–872.

24. Zhao, W.; Zhang, Z.; Wang, L. Manta ray foraging optimization: An effective bio-inspired optimizer for

engineering applications. Engineering Applications of Artificial Intelligence 2020, 87, 103300.

25. Jena, U.K.; Das, P.K. and Kabat, M.R. Hybridization of meta-heuristic algorithm for load balancing in cloud

computing environment. Journal of King Saud University-Computer and Information Sciences 2020, 34(6,Part

A), pp.2332-2342.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

 20

26. Mohammad Haris and Swaleha Zubair. Mantaray modified multi-objective Harris hawk optimization

algorithm expedites optimal load balancing in cloud computing. Journal of King Saud University-Computer

and Information Sciences 2022, 34(10, Part B), pp.9696-9709.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 July 2023 doi:10.20944/preprints202307.1612.v1

https://doi.org/10.20944/preprints202307.1612.v1

