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Article
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Panagiotis Koutlemanis , Xenophon Zabulis * , Nikolaos Stivaktakis ,
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* Correspondence: zabulis@ics.forth.gr

Abstract: A close-range photogrammetric approach and its implementation using a CNC device
and a macro camera are proposed. A tailored image acquisition approach is proposed that is
implemented using this device. To increase reconstruction robustness and accuracy, the key point
features detected in the acquired images are tracked across multiple views from multiple viewpoints
at multiple distances. This approach reduces spurious correspondences and, as a result, the estimation
accuracy of calibration parameters is increased and reconstruction errors are reduced. Qualitative
and quantitative evaluation demonstrate the efficacy and accuracy of the proposed approach, which
exhibits micrometre resolution and low implementation cost.

Keywords: surface scanner; photogrammetry; close-range photogrammetry; feature tracks

1. Introduction

This work regards an approach to the measurement of the physical characteristics and features
of scanned surfaces. The primary goal is to accurately digitise the variations in elevation, shape, and
texture of surfaces in high detail, in the spatial scale micrometres. The secondary goal is to achieve
this digitisation in a cost-efficient manner and with simple technical means so that the result is widely
applicable. Motivation stems from the detailed digitisation of surfaces for a multitude of purposes,
such as the documentation of cultural heritage artefacts, the creation of realistic textures for digital
design, industrial production control, or the facilitation of research for the understanding of tactile
sensation.

Several approaches achieve accurate and reliable surface digitisation in large detail. Computed
tomography uses X-rays to provide volumetric scans of objects and their surfaces and has been used
for the digitisation of small objects [1]. Magnetic resonance tomography provides volumetric scans
and has been also used for small objects [2]. Laser scanning uses the time-of-flight principle to measure
distances and reconstruct surfaces but is not manoeuvrable or versatile. Structured light scanners
project light patterns onto surfaces, capture the deformed patterns using a camera and, from these
deformations, estimate surface structure.

Albeit highly accurate, tomographic methods exhibit severe costs and can be applied only in
specialised laboratories. Compared to laser scanning and structured light scanning, photogrammetry
can be marginally less accurate, but requires less specialized equipment. Photogrammetry relies on
standard cameras, which are more affordable and widely available and, thus, is a more cost-effective
solution. Moreover, photogrammetry captures the visual appearance of surfaces, producing
high-resolution and highly detailed textured models that accurately represent visual appearance.
Compared to laser and structured light methods, photogrammetry is passive, in that it does require
the projection of energy in the form of radiation (e.g., light, X-rays, etc.) upon the scanned surface.
This is important in light-sensitive materials, encountered in historical, archaeological, biological, and
cultural contexts.

This work employs the contactless, flatbed photogrammetric scanner from [3] which was
developed for the creation of 2D image mosaics of surfaces in the micrometre range. This scanner is
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comprised of off-the-shelf as well as printable components, which can be found in [3]. It costs less
than 1000 USD, offers 19754 ppi resolution and has a scanning area of 33 × 37 cm2. In this work, this
hardware is used to acquire 2.5D surface reconstructions.

We refer to the digitisation of surfaces as 2.5D digitisation. This is different from representing
surface structure using an elevation map. In 2.5D digitisation, the surface reconstruction is comprised
of a mesh of textured triangles, as in the 3D digitisation of objects.

2. Related work

The literature is first reviewed in terms of the applications where close-range photogrammetric
systems are employed, as well as the optics and illumination methods utilised for their implementation.
Thereafter, data acquisition quantities and reconstruction methods are reviewed. Last but not least,
photogrammetry creates reconstructions “up to scale”, that is, the resultant reconstruction is not in
metric units but in arbitrary ones. As the goals of this work include surface measurement, the ways
that the scale factor is estimated for close-range photogrammetric methods conclude this section.

2.1. Applications

Photogrammetry has been applied in a wide variety of contexts over the last three decades,
mainly referring to large-scale reconstruction targets in the range of hundreds to a few meters, such as
built and terrain structures captured from aerial views, indoor environments, and cultural heritage
objects. More recently, close-range photogrammetry has found applications in the high-resolution
reconstruction of structures of much smaller scale, of industrial [4–6], biological [7], archaeological [8,9],
anthropological [10], and cultural interest [11,12], in the range of millimetres (see [13] for a
comprehensive review of close-range photogrammetry applications).

2.2. Motorisation

When using a single camera, the motion of the camera relative to the subject is required to obtain
3D information. Motorisation of camera movement has been used in photogrammetric reconstruction.
The main strategies of motion are either circular around the target, using a turntable, or in a Cartesian
lattice of viewpoints [14]. Cartesian approaches exhibit the advantages of being unconstrained of
the turntable size, as well as that the camera can be moved arbitrarily close to the scanning target.
This work follows the latter approach so that it can scan wider surfaces and avoid the occurrence of
shadows and illumination artefacts. The most relevant scanning apparatus to this work is [15], which
uses a CNC to move the camera.

2.3. Optics

For objects in the millimetre and sub-millimetre range, zoom and microscopic, or “tube”,
lenses have been used [14,16,17], employing tedious calibration procedures and relatively inaccurate
results [18]. Instead, macro lenses are much more widely used in the photogrammetric reconstruction
of very small structures [19]. However, macro lenses exhibit a very limited depth of field. This
limitation makes photographs acquired with a macro lens to be partially out of focus. The depth of
field of macro lenses is usually so small that when imaging a planar surface its centre is focused but
the periphery of the image is blurred1. To compensate for this effect, focus stacking [20] is employed in
macro photography [21].

1 This is because surface points imaged in the periphery of the image are farther away from the camera than surface points
imaged at the image centre.
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2.4. Illumination

Illumination is necessary for photogrammetric methods so that the surfaces to be reconstructed
are visible to the camera sensor. Photogrammetry typically operates upon environmental illumination.
Ambient illumination is ideal for photogrammetric methods because it prevents the formation of
shadows, which confound the visual documentation of the reconstructed surfaces. Most works use
setups that insulate the target object from environmental illumination and use a specific light source in
conjunction with illumination diffusers, which prevent the formation of shadows. In closer relation to
this work, some systems use light sources that move along with the camera [22–24].

Purposefully designed illumination is used in photogrammetric methods to facilitate the
establishment of more stereo correspondences. This technique is known as “active illumination”,
“active photogrammetry”, or “structured light” [23,25,26]. Pertinent methods use active illumination
to support the reconstruction of the geometry of the reconstructed surface, by artificially creating
reference points on the surface which can be matched across images. The disadvantage is that the
projected light alters the visual appearance of the reconstructed surfaces. As such, this work does not
use active illumination as it strives to realistically capture the visual appearance of the target surfaces.

2.5. Data

The data acquired from the close-range photogrammetric methods vary depending on the
hardware and optical apparatus employed.

Works that report scanning areas fall in the range of ≈ [0.14, 158.7] cm2. Specifically, the maximum
area reported from these works is (approximately) as follows: 0.14 cm2 [16], 10 cm2 [25], 15 cm2 [23],
22.5 cm2 [9], 25 cm2 [27], 32 cm2 [15], 40 cm2 [22], 57.6 cm2 [28], 60 cm2 [8], 91.5 m2 [17], 93.4 cm2 [16],
and 158.7 cm2 [28]. Out of these works, only [16] reports the achieved resolution, which is 3745 p/mm2.

Works that report the number of images and pixels processed fall in the range of [9.6, 3590.0]
Mpix. The data load is calculated as the number of utilised images times the resolution of each
image. Specifically, the maximum number of pixels reported from these works is (approximately), in
Mpix, as follows: 16 × 0.6=9.6 [17], 7 × 10.1 = 70.7 [24], 12 × 10.1 = 121.2 [27], 30 × 24 = 720.0 [26],
72 × 12.3 = 885.6 [15], 40 × 36.3 = 1452.0 [9], 245 × 10.2 = 2, 499.0 [7], and 359 × 10 = 3590.0 [22].

2.6. Reconstruction

Several works use commercial photogrammetry software to reconstruct the imaged scene, with
the most popular being the Pix4D and AgiSoft suites. As discussed in Section 4.3, these software suites
provide less accurate results, as they are agnostic to the image acquisition strategy employed in this
work and do not utilise feature tracking.

Some of the reviewed works perform partial reconstructions which result in individual point
clouds and then merge them using point cloud registration methods. These methods are mainly based
on the ICP algorithm [29,30], either implemented by the authors or provided by software utilities,
such as CloudCompare and MeshLab. The disadvantages of merging partial reconstructions are the
error of the registration algorithm and the duplication of surface points that are reconstructed by more
than one view. These disadvantages impact the accuracy and efficacy of the reconstruction result,
respectively.

2.7. Scale

Several ways to generate metric reconstructions have been proposed. One way is to place markers
at known distances so that when they are reconstructed they yield estimates of the absolute scale.
However, this method is prone to the localisation accuracy of said markers. An improvement to this
approach comes from [24] which uses the ratio of the reconstructed objects over their actual size,
which is manually measured. In addition, it requires the careful selection of the reference points to
estimate the size of the object both in the real and the reconstructed objects and is, thus, prone to
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human error. This can be a difficult task for free-form artworks as they may not exhibit well-defined
reference points (i.e., as opposed to industrially manufactured objects). Therefore, the accuracy of this
approach is dependent on the accuracy of manual measurements and the measurement of the size of
the reconstruction which is also manual, as it is performed in a 3D viewer.

Another way is to include objects of known size in the reconstructed scene, such as 2D or 3D
markers of known size [22,24,27]. This method does not involve human interaction and is not related to
the structure of the reconstructed objects. The main disadvantage of this approach is the production of
these markers, as printing markers at this small scale is not achievable at this fine scale by off-the-shelf
2D or 3D printers.

Finally, a way to estimate the scale factor is based solely on the reprojection error of the
correspondences of a stereo pair [31]. This approach is independent of the shape of the target object
and does not require human interaction. However, this approach is formulated for a stereo pair and
not for a single camera and, also, is highly dependent on the calibration accuracy of this pair.

2.8. This work

This work puts forward a photogrammetric approach that is powered by a motorised apparatus,
implemented by a modest computer and a conventional CNC device.

The photogrammetric approach is characterised by two novel characteristics. First, a tailored
image acquisition is implemented using said apparatus that acquired images of the target surface
at multiple distances. Second, key point features are tracked across multiple views from multiple
viewpoints and at multiple distances, instead of only being corresponded in neighbouring images.
These characteristics increase reconstruction robustness and accuracy.

The motorised apparatus has been proposed in [3] for the acquisition of 2D surface mosaics, in
micrometre scale. It is reused in this work, to obtain 2.5D surface digitisations. The Cartesian nature
of this apparatus facilitates the image acquisition process and enables more practical digitisation of
surfaces than a turntable. In addition, the ability to move the camera and source of illumination very
close to the target surface reduces illumination artefacts and shadows. Finally, the apparatus can be
easily assembled and the total cost of all its components, including the camera, sums below 1000 USD

(see [3]).

3. Method

The proposed approach combines two elements that increase its robustness against reconstruction
errors, due to spurious correspondences. The first element is the way of image acquisition. Specifically,
besides the necessary images required to cover the target surface at a close distance, additional images
are acquired at larger distances. These images are fewer and overview the same areas that are imaged at
closer distances. The second is the tracking of features across images. When combined, these elements
aid the reduction of spurious correspondences. As a result, the estimation accuracy of calibration
parameters is increased and reconstruction errors are reduced.

3.1. Data acquisition

Initially, the camera is calibrated to estimate its intrinsic parameters and its lens distortion. The
FoV of the camera is also estimated through this calibration.

Images are acquired in layers across the distance, or elevation, from the scanned surface. The
locations of image acquisition form a hypothetical square frustum above the scanned surface. In each
layer, camera locations form a hypothetical grid. Within each layer, the image acquisition locations are
set so that horizontally and vertically neighbouring images of that layer exhibit significant overlap;
the percentage of this overlap is denoted as τo. Across consecutive layers, image acquisition locations
are aligned so that the medial overlap across neighbouring images is maximised. The amount of
medial overlap is determined by the distance of consecutive layers. The purpose of wide overlap is the
maximisation of correspondences to increase the number of point correspondences in stereo pairs.
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Using the FoV estimate and the intended amount of lateral overlap, the camera locations are
pre-computed for each layer. Each layer doubles the elevation from its previous so that an image of
a higher layer medially overlaps with 4 images from a lower layer. Camera locations are saved in a
file, which is called the “scan plan”. These locations are then converted to scanner coordinates and a
corresponding segment of G-code2 is generated. This code is transmitted to the CNC and images are
acquired, using the software interface from [3]. The image filenames are associated with the camera
locations in the scan plan. To reduce scanning time and mechanical drift, each layer is scanned in
boustrophedon order.

The acquired images are not compensated for lens distortion at this stage. Due to the focused
stacking operation that is applied individually on each image, lens distortion is also individually
estimated at a later stage (see Section 3.3.2).

3.2. Feature detection and tracking

Key point features with content descriptions are detected in all images. In the implementation,
SIFT [32] features are employed, however, any other type of key point features can be used.

3.2.1. Image pairs

The pairs of neighbouring images, let I1 and Ij, within and across layers are found from the scan
plan. Correspondences are then established across laterally and medially neighbouring images, as
follows.

First, the cascade hashing method in [33] is employed to accelerate and robustify feature matching.
The hashing is guided from the content descriptors of the detected key points to consider only similar
key points in the matching task.

Second, to filter erroneous correspondences a symmetrical, or left-to-right check [34] is employed.
In other words, to establish a feature correspondence, we require that the same key point feature pair is
found both when features of Ii are matched against Ij and vice versa. Conventionally, to avoid doubling
the computational cost, when establishing matches in one direction key point similarities could be
recorded and utilized when scanning in the opposite order. Unfortunately, our GPU RAM is not
sufficient to record this information, for large targets. Thus, {Ii,Ij} and {Ij,Ii} are treated independently
and the doubling of computational cost is not avoided. If a GPU with larger memory would be
available the aforementioned method could be employed to halve the computational cost of this task.

Third, the fundamental matrix, F, is estimated from the available correspondences at this stage.
This estimate is obtained using RANSAC [35] to reject erroneous correspondences, or “outliers”.
The remaining, “inlier”, correspondences are used to estimate F, using least squares. The estimated
matrix is used to constrain the search for correspondences along a line rather than the entire image.
Correspondences are approved only if the reprojection error is below threshold τc. Otherwise, they are
discarded. In this way, a matrix F is computed for each of the image pairs.

Theoretically, F could be calculated for each image pair using the intrinsic parameters of the
camera and the relative poses of camera pairs from the scan plan instead of the aforementioned
procedure. In practice, however, we found that the small, mechanical inaccuracies of the CNC lead to
erroneous F estimates. The resulting error is large enough to cast the calculated F overly inaccurate for
outlier elimination and the above-mentioned task necessary.

3.2.2. Feature tracks

To increase robustness, features are tracked across images, as follows. Let a physical point in the
scene that was detected and corresponded in three images or, otherwise, two image pairs. The images

2 G-code, or RS-274, is a programming language for numerical control, standardised by ISO 6983.
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of these pairs can be laterally or medially neighbouring. These two correspondences associate the
same feature in the three images and comprise a “feature track”. We keep tracks comprised of three or
more features.

These tracks are used to further reject feature matches, using the fundamental matrices computed
for the image pairs of these matches. Using the epipolar constraint, the position of each feature in the
track is checked to determine its consistency with the fundamental matrix of every pair. This check is
implemented using the “chain” of fundamental matrices that are associated with the images in which
each feature is tracked. The check projects a feature from the first image of a track to the last image of
this track. If this projection occurs at a distance greater than τp then the track and all corresponding
feature matches are rejected.

Feature tracks are not constrained in laterally neighbouring images, but are also established
using correspondences across layers as well. This is central to achieving overall consistency in surface
reconstruction. The reason is that the spatial arrangement of features in images of greater distance
to the surface constrains the potential correspondences in images at closer distances. Through this
constraint, erroneous correspondences are reduced.

The memory requirements for the succeeding tasks depend on the number of tracked features
found. Depending on the number of input images the requirements for memory capacity may be large.
It is possible to reduce memory capacity requirements at this stage, by discarding some of the feature
tracks. If this is required, then it is recommended to discard the tracks with the fewest features. The
reason is that they carry less information and they are, typically, much larger in number.

3.3. Reconstruction

The surface of the object is reconstructed as a textured mesh of triangles. This mesh is comprised
of two lists. The first is a list of 3D, floating point locations that represent the mesh nodes. The second
is a list of integer triplets that contain indices to the first list and indicate the formation of triangles
through the represented nodes. A texture image accompanies the mesh, along with a third list of 2D
coordinates that represents the texture coordinates of each node; thus the third list has the same length
as the first one.

3.3.1. Initialisation

Using the feature tracks as a connectivity relation, a connected component labelling of the input
images is performed. After this operation, the largest connected component is selected. The rest of the
images, which belong to smaller components, are discarded. The discarded components correspond to
groups of images that are not linked, through fundamental matrices, to the rest. As such, they cannot
contribute to the main reconstruction. They are discarded to reduce memory capacity requirements.

The reconstruction method requires an image pair as the basis for the surface reconstruction.
This pair is selected to exhibit a wide baseline to reduce reconstruction uncertainty and error [36].
The reason is that a wider baseline results in more separation between the optical rays, allowing for
more accurate triangulation and reducing ambiguity in the 3D reconstruction. At the same time, the
reliability of this pair depends on the number of features/correspondences existing in this pair. Thus,
the initial pair is selected as the one that maximizes the product of the baseline with the number of
correspondences.

3.3.2. Sparse reconstruction

A sparse reconstruction is first performed, using the camera poses of the scan plan, as initial
estimates. The purpose of this reconstruction is to refine these poses from the images and the estimated
intrinsic camera parameters.

The OpenMVG [37] is utilised for this purpose and the resultant reconstruction is the camera
poses and a sparse point cloud. In this context, the Incremental Structure from Motion pipeline [38] is
followed.
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Finally, a bundle adjustment step, using [39], is performed, based on the scan plan. This final
step is adapted to optimise only the lens distortion parameters for each image. The reason is that the
intrinsic and extrinsic camera parameters have been already refined from the previous operation. Lens
distortion parameters are not defined in the previous step. The reason is that they change from image
to image due to the effect of the focused stacking operation that takes place on the camera hardware.

The method is formulated in Algorithm 1.

Algorithm 1 Incremental Structure from Motion

Require: internal camera calibration (matrix K)
Require: pairwise geometry consistent point correspondences
Ensure: 3D point cloud
Ensure: camera poses

compute correspondence tracks t

compute connectivity graph G (1 node per view, 1 edge when enough matches)
pick an edge e in G with sufficient baseline (compare F and H)
robustly estimate essential matrix from images of e (AC-RANSAC)
triangulate t ∩ e, which provides an initial reconstruction
contract edge e

while G contains an edge do

pick edge e in G that maximizes track(e) ∩ {3D points}
robustly estimate pose (external orientation/resection) (AC-RANSAC)
triangulate new tracks
contract edge e

perform bundle adjustment (uses our initial estimation from scan plan)
end while

3.3.3. Dense reconstruction

A mesh of triangles is computed based on the input, sparse point cloud. The input is the images,
camera poses, and sparse reconstruction from Section 3.3.2.

The computation generates a depth map for each image. Using the depth maps of neighbouring
images dense point cloud is generated. Implementation is based on [40]. Following [41], a mesh
surface that best explains the dense point cloud is generated. Afterwards, this mesh is refined via the
variational method in [42].

Despite the high accuracy of the utilised methods, both the mesh and the camera poses are not
infallible, thereby containing some amount of error. These inaccuracies tend to be pronounced more in
the texture of the output mesh, particularly when a large number of images is utilised. To cope with
these inaccuracies in the generation of the output mesh, the approach in [43].

In the implementation, the OpenMVS [44] library is utilised.

3.4. Output

The resultant reconstruction is a textured mesh of triangles. This result is comprised of a data
structure that encodes the locations of these triangles in space.

The texture map is computed from the input images as follows. During this computation, a data
structure is generated. This data structure has the same dimensions as the texture map and stores one
integer per pixel. The value of each pixel encodes the id of the mesh triangle textured by that pixel.

In addition, two images are also computed from the above outputs, both using the Z-buffering
method [45]. The first is a depth map, that encodes the elevation of the area encoded in each pixel.
The second is an orthoimage, or otherwise a rectified image in which perspective distortions have
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been removed. Both images have a uniform scale and, thus, can be used as maps where the imaged
structures can be directly measured. These images are generated as follows.

When computing the depth map the id of the mesh triangle that appears on each pixel is stored
in an additional image that keeps this id for each pixel of the depth map. Moreover, for each depth
map pixel, a location inside the triangle mesh is computed, as the intersection of the perpendicular
line from that pixel with the mesh triangle. The barycentric coordinates of the intersection point inside
the triangle are then calculated. The triangle id is used to look up the corresponding triangle in the
texture map. The barycentric coordinates are used to find the point inside the texture map triangle. As
this point may not have integer coordinates, bilinear interpolation is utilised to acquire the final colour
value.

The result is stored in PLY format3, in two files. The first file contains the mesh representation and
uses the binary representation of the format to save disk space. The second file contains the texture, in
JPEG or PNG image file format.

4. Results

Materials and methods used for the implementation of the proposed approach are reported,
followed by experimental results. These results are qualitative and quantitative. Qualitative results
report the applicability of the proposed approach compared to conventional photogrammetric methods.
Quantitative results measure the computational performance and the accuracy of surface reconstruction.
All of the surface reconstructions shown in this section are provided as supplementary material to this
paper.

4.1. Materials and data

The same computer was used in all experiments. Its specifications were as follows: CPU x64
Intel i7 8-core 3 GHz, RAM 64 Gb, GPU Nvidia RTX 8 Gb RAM (RTX2060 SUPER), SSD 256 Gb, HDD
2 Tb. The critical parameter is CPU and GPU RAM as they determine the number of correspondences
that can be processed and, therefore, the area that can be reconstructed. The implementation of the
scanning device is described in detail in [3] along with information for its reproduction through a CNC
printer.

The visual sensor was an Olympus Tough TG-5, with a minimum focus distance of 2 mm, a depth
of focus of 1 cm, a revolution of 4000 × 3000 p, and a FoV of 16.07◦ × 12.09◦. The 1 cm depth of focus is
currently the limit of the surface elevation variability that the proposed system can digitise. To store
the data an 128 Gb SD card is utilised. The storage capacity of this card determines the maximum
number of images that the system can acquire.

The maximum elevation of the CNC was 30 cm. This elevation determines the height of a
hypothetical square frustum. When the sensor is at that elevation level, it occurs at its top. The
doubling of the elevation for each layer is to create a medial overlap of ≈ 4. In this way, an image
at a higher layer oversees 4 images from a lower layer. The number of layers was 4, and they were
configured as noted in Table 1. In this table, E is the elevation, n is the total number of acquired
images, while nx and ny are the numbers of images acquired in the horizontal and vertical dimensions,
respectively. Moreover, sx and sy are the lengths of the steps that the camera is moved to acquire an
image in the horizontal and vertical dimensions, respectively. Finally, sp is the length of the side of the
square surface region that is imaged by an image pixel, at the specific layer.

In all experiments, illumination was produced by the sensor’s flash. The flash moves along with
the camera, as in [22–24] (see Section 2.4). In this work, a ring flash is employed which is a circular
illumination device that fits around the camera lens, creating a ring of light around the subject. Ring

3 Polygon File Format (PLY), or Stanford Triangle Format, is a format to store 3D data from scanners.
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flashes provide even and shadow-free illumination for close-up shots of small subjects and evenly
light the subject from all angles.

Table 1. Spatial arrangement of camera locations in a square frustum structure.

Layer E (mm) n (#) nx (#) ny (#) sx (mm) sx (mm) sp (µm)

1 160.0 50 5 10 4.51 3.38 11.296
2 80.0 551 19 29 2.25 1.69 5.648
3 40.0 3102 47 66 1.12 0.84 2.824
4 20.0 14420 103 140 0.56 0.42 1.412

Sensor brightness, contrast, and colour balance were set to automatic. The utilised sensor provides
images encoded in JPEG format. The average size of the image file is 2.4 Mb. Image acquisition
and image file retrieval details, as well as CNC control, are provided in [3]. Focused stacking was
implemented by the sensor hardware and firmware.

4.2. Reconstruction area and scale

In general, Cartesian camera motion is not restricted by the turntable configuration. That is,
given a large enough CNC an arbitrary area can be scanned. The limitation of this work regarding
the scanning area is the memory capacity of the utilised computer. Using the computational means
available (see Section 4.1) the maximum scanning area achieved is 5 × 5cm2, which is wider than the
approaches presented in Section 4.2 that present results in the range of ≈ 1 − 2 cm2. It is nevertheless
stressed that the proposed approach does not require stitching of partial results, which is a source of
additional error.

For the reconstruction of a 2 × 5 cm2 surface area, 3456 images were acquired whose dimension
was 4000× 3000 pix. These images occupied 7.98 Gb on the hard drive of the computer. In these images,
152.2 million key point features were detected. The computation took 6.95 hrs and the amounts of
RAM utilised were 41 Gb and 6.29 Gb for the CPU and the GPU, respectively. The result was comprised
of a mesh with 284558 nodes and 568076 triangles and a texture map of 16384 × 16384 pix.

In contrast to the methods cited in Section 2.7, this work bases the scale factor estimation on the
extrinsic parameters of the camera. Specifically, initial estimates of camera locations are obtained from
the scan plan. This accuracy is relatively high and based on the accurate motorisation of CNC devices.
Nevertheless, this accuracy is further refined by the bundle adjustment step of Section 3.3.2.

For the surface reconstructions, in all experiments, the following parameter values were utilised:
τo = 90%, τp = 50 pix, and τc = 25 pix.

4.3. Qualitative

The purpose of this qualitative experiment is twofold. First, to investigate the overall accuracy of
the proposed approach. Second, to test its applicability in challenging reconstruction targets in terms
of reconstruction appearance when challenging materials are digitised.

4.3.1. Accuracy

When performing photogrammetry with large numbers of images, i.e., hundreds or thousands,
camera localisation errors accumulate, resulting in reconstruction inaccuracies. In this work, this
problem is reduced due to the establishment of feature tracks, particularly, across multiple distances.
The underlying idea is that images at larger distances anchor the accumulation of error, while images
at closer distances are employed for the reconstruction of details. Images at intermediate distances
facilitate correspondence establishment across distances.

To illustrate this point, the following experiment uses the same images, as acquired by the
proposed method in two conditions. In the first condition, the proposed method is utilised. In the
second condition, the Pix4D photogrammetric suite was employed. Although the input images are the
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same, the conventional photogrammetric method employed in the second condition does not actively
search for feature tracks.

The reconstruction target a handcrafted engraving at the handle of a silver spoon, which occupies
an area of 45 × 25 mm2. In Figure 1, indicative original images and the obtained reconstructions are
shown. The first row of Figure 1 shows one image from each layer, pertinent to the first experimental
condition. In the second condition, the images were acquired from the distance shown in the rightmost
image of this row.

The middle and bottom rows Figure 1 show reconstruction results, in the following way. The
left column shows the textured reconstruction and the rest only its geometrical structure. The second
from the left column shows the reconstruction frontally. The second from the right column shows the
reconstruction rotated by 30◦ and the right column by 90◦. The middle row shows the reconstruction
result for the first condition and the bottom row for the second.

Figure 1. Original images (top) and reconstructions of a silver, hand-carved spoon for two experimental
conditions (middle, bottom).
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It is observed that the proposed method yields more accurate structure reconstruction both locally
and globally. Local accuracy improvements are observed in the reconstruction of the hand-carved
spoon structure. In the first condition, these structures are more accurately reconstructed, while
the second condition exhibits higher noise levels than the proposed approach. Global accuracy
improvements are observed in the side views of the reconstructed surface, as in the second condition
the surface appears spuriously curved. Both improvements are attributed to the effect of feature tracks
and their contribution to better camera localisation, which leads to more accurate reconstruction.

4.3.2. Appearance

Stereo vision and photogrammetry are usually incapable of reconstructing shiny surfaces. The
reason is that such surfaces reflect different parts of the environment from each viewpoint and thereby
the “uniqueness constraint” [46] is not met, leading to reconstruction errors.

This phenomenon is evident in images from the top layers, in Figure 1, as well as in Figure 2 and
Figure 5 below. However, at very close distances, i.e., from the bottom layer, specular reflections are
suppressed. The reason is that the imaging sensor and the light source are so close that the specularities
occur outside the sensor’s FoV. Moreover, due to the ring configuration of the illumination source, the
presence of shadows is minimal.

In this work, the images from the lowest layer are used to texture the reconstructions because they
contain the largest number of pixels per unit area of the imaged surface. Due to the aforementioned
phenomenon, they are also devoid of shadows and illumination specularities. This is to our advantage
for two reasons. First, the reconstructed model can be re-lighted when used in a virtual 3D environment.
Second, its material type can be defined in graphical rendering. This way, illumination specularities
and shadows can be realistically simulated depending on the virtual viewpoint and the virtual source
of light.

4.4. Quantitative

To measure the accuracy of reconstruction targets of known size and structural features are
utilised. Such targets are coins, as well as metallic nuts and screws. The purpose of the experiment
was to measure their reconstructed dimensions and compare them with the true ones.

4.4.1. Coins

Circular coins were scanned. The scanned coins belong to the Euro currency. All eight coins
from this family were scanned. The true dimensions are known by the manufacturer and are public
knowledge. These dimensions, the measured dimensions and the percentage of measurement error
are reported in Table 2. Original images are shown in Figure 2 in the following order: top row first and,
in each row, the order is from left to right. The corresponding reconstructions are shown, in the same
order, in Figure 3.

Table 2. Coin dimensions (diameter × thickness), measured dimensions, and percentage measurement
errors (mm).

Currency Dimensions (mm) Measurement (mm) Error (%)

1c 16.25 × 1.67 17.03 × 1.60 4.83 × 4.11
2c 18.75 × 1.67 17.89 × 1.73 4.57 × 3.34
5c 21.25 × 1.67 21.76 × 1.69 2.40 × 1.27

10c 19.75 × 1.93 19.24 × 1.85 2.59 × 4.08
20c 22.25 × 2.14 21.59 × 2.06 2.97 × 3.72
50c 24.25 × 2.38 23.41 × 2.49 3.47 × 4.71
€1 23.25 × 2.33 22.14 × 2.29 4.79 × 1.68
€2 25.75 × 2.20 26.15 × 2.10 1.57 × 4.56
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Figure 2. Original images of circular coins. The top couple of rows shows an original image of the
target from the top layer. The bottom couple of rows shows an original image from the closest layer to
the target

Figure 3. Reconstructions of the circular coins shown in Figure 2. The top couple of rows shows the
textured reconstructions. The bottom couple of rows shows the untextured reconstructions from the
same viewpoints.
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Furthermore, to assess distortions in the reconstruction, we used the orthoimages images of
the coin reconstructions. Specifically, the depth map from a frontal view was computed using
Z-buffering [45]. Canny edge detection [47] was performed in that map, detecting depth discontinuities.
Circles were robustly detected using RANSAC to eliminate outlier edges. The inlier edges were used
to fit circles, using least squares. In Table 3, deviations of the detected edges from the fitted circle
are reported, as the mean distance (and standard deviation) of these edges from the fitted circle. In
Figure 4, shown are the employed depth edges superimposed on the orthoimages of the textured
reconstructions.

Table 3. Radius, mean circle fit error, and standard deviation, in pixels, for each measured coin.

Currency Radius (p) Error, std (p)

1c 224.58 0.49 (0.38)
2c 243.45 0.69 (0.41)
5c 232.66 0.48 (0.35)

10c 234.63 0.67 (0.41)
20c 238.50 0.66 (0.43)
50c 248.21 0.51 (0.37)
€1 231.52 0.71 (0.40)
€2 237.88 0.41 (0.33)

Figure 4. Orthoimages of textured reconstructions superimposed with the depth edges employed in
the assessment of reconstruction distortions.

4.4.2. Nuts and screws

Metallic nuts and screws were scanned in a second experiment for reconstruction accuracy.
Original images are shown in Figure 5 and their reconstructions are shown, in the same order, in
Figure 6. The ground truth dimensions of these items were measured using a calliper.
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Figure 5. Original images of metallic nuts and screws. The top couple of rows shows an original image
of the target from the top layer. The bottom couple of rows shows an original image from the closest
layer to the target

Figure 6. Reconstructions of the metallic nuts and screws shown in Figure 5. The top couple of rows
shows the textured reconstructions. The bottom couple of rows shows the untextured reconstructions
from the same viewpoints.
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In Table 4, we compare the measured dimensions of the nuts and screws with their ground truth
dimensions. The order of the measurement is the same as in Figure 5 and Figure 6. In this table, the first
column reads the ground truth dimensions of the targets. The second column reads the dimensions of
the target measured from the reconstruction. The third column reads the percentage error. For the six
first rows, the dimensions reported are the diameter of the target, its thickness, and its height, in that
order. The last two rows are different because they report screw measurements. In these rows, the first
dimension reads the “height” of the screw (its longest dimension) and the second dimension reads the
diameter of its “head”.

Table 4. Measurements of nut and screw diameter measurements, manufacturer dimensions, and
percentage measurement errors (mm).

# Dimensions (mm) Measurement (mm) Error (%)

1 16.80 × 7.70 × 8.50 17.29 × 7.52 × 8.65 2.89 × 2.36 × 1.77
2 17.80 × 1.50 × 6.50 18.15 × 1.53 × 6.61 1.97 × 2.08 × 1.75
3 12.80 × 6.30 × 7.00 12.63 × 6.54 × 7.19 1.36 × 3.73 × 2.70
4 9.80 × 4.80 × 5.20 10.15 × 4.97 × 5.30 3.59 × 3.54 × 1.84
5 7.80 × 4.80 × 4.20 7.95 × 4.64 × 4.08 1.94 × 3.43 × 2.83
6 6.90 × 3.00 × 3.40 7.18 × 2.89 × 3.25 4.08 × 3.65 × 4.37
7 24.50 × 9.80 25.00 × 10.13 2.03 × 3.33
8 13.00 × 10.00 12.70 × 9.52 2.27 × 4.76

5. Conclusions and future work

A surface reconstruction approach and its implementation are proposed in the form of a surface
scanning modality. The proposed approach employs image acquisition at multiple distances and
feature tracking to increase reconstruction accuracy. The resultant device and approach offer a generic
surface reconstruction modality that is robust to illumination specularities, is useful for several
applications, and is cost-efficient.

This work can be improved to relax the limitation imposed by the restricted depth of focus range
(1 cm in our case) of the optical sensor. By revisiting the focused stacking method of Section 4.1, it is
possible to acquire images at several distances and use the depth from focus visual cue [48] to coarsely
approximate the elevation map of the surface. This approximation can be then used to scan the surface
in a second pass, guiding the camera elevation appropriately so that the surface occurs within its depth
of focus.

Finally, as active illumination supports photogrammetry, we aim to characterise the illumination
types that are non-destructive for sensitive surfaces, per type of material. Although active illumination
alters colour appearance, it is planned to acquire two images per viewpoint. The first, using structure
light to facilitate photogrammetry. The second, from precisely the same viewpoint, would be to
accurately capture the colour appearance.
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Abbreviations

The following abbreviations are used in this manuscript:
AC-RANSAC A Contrario RANSAC
b byte
c cent
CNC Computer Numerical Control
CPU Central Processing Unit
€ Euro
FoV Field of View
G-code Geometric Code
GHz gigahertz
GPS Global Positioning System
GPU Graphics Processing Unit
HDD Hard Disk Drive
ICP Iterative closest point
JPEG Joint Photographic Experts Group
OpenMVG Open Multiple View Geometry
p point(s)
ppi points per inch
pix pixel(s)
PNG Portable Network Graphics
PLY Polygon File Format
RANSAC RANdom SAmple Consensus
RAM Random-Access Memory
SIFT Scale-Invariant Feature Transform
SD Secure Digital
SSD Solid-State Drive
USD United States Dollar
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