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Abstract: Electroencephalography (EEG) is essential for tracking brain activity and identifying 

seizure effects. However, epileptic behaviour can only be detected after a specialist has carefully 

analysed all EEG recordings along with a proper history of the patient. A skilled physician is 

required for the right epilepsy diagnosis and therapy. But most of the time, patients visit the 

clinician in the interictal stage with no proper history documented. Therefore, it was essential to the 

automatic prediction of stages of seizure. K nearest neighbours (KNN) and random forest (RF) 

models using raw EEG signals, preictal, ictal, postictal, and interictal stages were identified in this 

study. The possibility of these characteristics is explored by examining how well time-domain 

signals work in the prediction of epileptic stages using intracranial EEG datasets from Freiburg 

Hospital (FH), Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT), and 

Temple University Hospital (TUHEEG). To test the viability of this approach, two different types of 

simulations were carried out on three binary classifications (interictal vs. preictal, interictal vs. ictal, 

preictal vs. postictal, and interictal vs. postictal), and one four-class problem (interictal vs. preictal 

vs. ictal vs. postictal) was performed for each model. The average accuracy when using time-domain 

signals in the FH database was 90.5% and 75.0%; CHB-MIT was 92.87% and 75.9%; and TUHEEG 

was 94.46% and 76.8%, respectively, for the KNN and RF models. 

Keywords: EEG; Epilepsy; FH; seizure stages; RF; KNN; CHB-MIT; TUHEEG 

 

1. Introduction 

A brain disorder called epilepsy is characterised by recurrent seizures brought on by erratically 

discharged electrical currents in the brain. Epilepsy is a chronic condition brought on by excessive 

electrical discharge in the brain, which results in unconsciousness and other uncontrollable 

behavioural changes [1,2]. Three-fourths of the 80% of epileptic patients in low- and middle-income 

countries experience either a treatment gap or a lack of anti-seizure medications. Because of this, 

epileptic events can happen at any time and with any frequency, which makes diagnosis and 

treatment challenging. Pre-ictal, ictal, post-ictal, and inter-ictal are the four stages of a seizure. Pre-

ictal is just before the occurrence of an epileptic seizure; Ictal is the onset period; post-ictal is just after 

the onset up to 10 minutes; and inter-ictal is after around 10 minutes of onset and lasts till the next 

occurrence of a seizure. Figure 1 depicts all four stages of seizure. The pre-ictal stage usually involves 

dizziness, headache, and nausea and is followed by the stage of intense electrical activity in the brain 

called the ictal region. Then comes the post-ictal region, where the patient returns to baseline 

conditions along with symptoms like disorientation, drowsiness, and headache. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
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Figure 1. KNN Model for three class system. 

The advent of machine learning and their increasing popularity in healthcare applications make 

it possible to classify majorly a) seizure-free and b) different types of seizures, but it’s done in the ictal 

period, and having a high-frequency EEG signal with spikes makes classification a little simpler. A 

good amount of research work is available in the Ictal stage but not in the pre-Ictal and Inter-Ictal 

stages, and very little focus is placed on the detection of seizure types in different stages. 

Here, different studies present in the literature based on stage detection like ictal, pre-ictal, 

interictal, post-ictal, sleep stage, and mental state have been focused. In [3,4], the epileptic episode in 

EEG signals was detected automatically using a least squares support vector machine classifier with 

a radial basis function kernel. Here, normal stage, ictal stage, and inter-ictal stage are distinguished 

from the recorded EEG signal. The authors have indicated a wide scope for this method if the 

investigations can be done with real-time data and a large dataset collected via a multi-centre clinical 

trial. Whereas autonomously generalised retrospective and patient-specific hybrid models have been 

carried out in [5–7]. These studies used Convolutional Neural Networks(CNN) and long short-term 

memory(LSTM) as classifier. To better categorise ictal, interictal, and preictal segments for each 

patient and make it suitable for real-time, the model automatically creates customizable 

characteristics. This work demonstrates that the accuracy of seizure detection can be greatly increased 

by combining CNNs and LSTMs, incorporating spatial and temporal context, and time-frequency 

domain information. On the other side, unlike most of the existing works focusing on seizure data or 

a single-variate method, this paper introduces a multi-variate method to characterise sensor-level 

brain functional connectivity from interictal EEG data to identify patients with generalised epilepsy. 

A total of nine connectivity features based on five different measures in time, frequency, and time-

frequency domains have been tested. The solution has been validated by the K-Nearest Neighbour 

algorithm, classifying an epilepsy group (EG) vs. a healthy control (HC), and subsequently, with 

another cohort of patients characterised by non-epileptic attacks (NEAD), a psychogenic type of 

disorder was tried out [8,9]. 

Entropy-based methods [10,11] are widely used for the automated detection of seizures from 

EEG signals due to the nonlinear and chaotic nature of these signals. Two recently introduced entropy 

features, multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy 

(RCMDE), are used for the detection of seizures. The ability of MDE and RCMDE to discriminate the 

normal EEGs of healthy subjects from the interictal (in between seizures) and ictal (during seizures) 

EEGs of epilepsy patients Two more parameters are investigated, namely, the number of classes c 

and embedding dimension m of MDE and RCMDE that provide the best performance for seizure 

detection. For this purpose, the MDE and RCMDE values are estimated from normal, interictal, and 

ictal EEG signals, and significant features are fed to a support vector machine (SVM) classifier. Where 

the sleep stage classification from single-channel EEG was tried using the statistical features in the 

time domain, the structural graph similarity and the K-means were combined to identify six sleep 

stages. This method extracts features efficiently without pre-processing the signal [12–14]. In [15–17], 

the feasibility of a passive brain-computer interface that uses electroencephalography to monitor 

changes in mental state on a single-trial basis and the frontal and central electrodes for fatigue 
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detection, posterior alpha band and frontal beta band activity for frustration detection, and posterior 

alpha band activity for attention detection for feature extraction is discussed. Where classification 

against low levels of supervised training using time-frequency subbands until the sixth level using 

the dual-tree complex wavelet transform method is carried out in [18]. The feature extraction uses 

energy, standard deviation, root-mean-square, Shannon entropy, mean values, and maximum peaks, 

and these feature sets are passed through a general regression neural network (GRNN) for 

classification with a K-fold cross validation scheme under varying train-to-test ratios. 

Most of such analysis is carried out with non-invasive EEG signal recording during clinical 

intervention. However, the information of patients who underwent invasive VEM was 

retrospectively examined [19–21]. It included at least one EIS and one SHS that happened during 

VEM, and the area of the brain where the EIS were evoked was removed. According to the 

classification used by Engel and the International League Against Epilepsy (ILAE), seizure outcome 

was assessed at three follow-up (FU) visits after surgery—one at one year, one at two years, and one 

at the last FU that was still possible. 

In order to distinguish between a patient's three stages of "normal," "pre-ictal," and "ictal," 

Acharya et al. [22–24] used an ensemble of seven distinct classifiers, including the Fuzzy Surgeon 

Classifier (FSC), SVM, KNN, Probabilistic Neural Network, GMM, decision tree, and Nave Bayes. 

Overall precision is 98.1%. Using the processed data containing seven features, including entropy, 

RMS, skewness, and variance, [25,26] also employed various classifiers, including a logistic classifier, 

an uncorrelated normal density-based classifier (UDC), a polynomial classifier, a KNN, a PARZEN, 

a SVM, and a decision tree. They stated that the patient was being diagnosed with a "generalised 

seizure," which refers to a seizure that affects the entire brain without prior knowledge of the seizure 

focal spots. Optimal sample allocation methodology, a statistical sampling strategy, was proposed by 

Mursalin et al. [27], and they developed a feature selection algorithm to reduce the features. The 

combination of four classifiers—SVM, KNN, NB, Logistic Model Trees (LMT), and Random Forest—

was used for the analysis. 

Four classifiers, including SVM, KNN, random forest, and Adaboost, were utilised by Rand and 

Sriram [28] on a high-dimensional dataset created from 28 features. Their findings demonstrate that 

the SVM outperforms the cubic kernel. Using the dataset generated by 10-time and frequency 

characteristics, [28] employed SVM and random forests. A random forest classifier performs better 

than an SVM-based detector. Using four machine learning classifiers, including ANN, KNN, SVM, 

and random forest, on two well-known datasets—Freiburg and CHB-MIT—[29] classified the three 

distinct seizure states of "pre-ictal," "ictal," and "inter-ictal" seizures with 100% accuracy. For 

identifying the EEG signals, [30,31] suggested an automated approach employing iterative filtering 

and random forests. The classification accuracy of this work was 99.5% for the A against E subsets on 

the BONN dataset (A-E), 96% for the D versus E subsets, and 98.4% for the ABCD versus E classes of 

EEG signals. KNN is used to distinguish between the "seizure" and "non-seizure" classes, and random 

forest is used to explore the significant channels, according to [32]. Here, the dimension reduction 

issue is also helped by the random forest. The key advantage of choosing appropriate channels is that 

it enables the provision of pertinent information from the selected channels and lowers the 

computational cost of a classifier as well. Nevertheless, the authors omitted crucial details from 

channel selection, such as locating the seizure's position on the brain's scalp. The fundamental 

criticism in [30–32] is that a large number of features causes the attribute size of the dataset to grow, 

which negatively affects accuracy and calculation time. 

From the literature, it is noted that automatic seizure detection plays a vital role in epilepsy 

treatment. Many studies have explained the role of machines and deep learning models in seizure 

diagnostics. To protect epileptic patients from sudden falls or understand their condition, it is 

important to detect and predict the stage of a seizure. In the recent past, few studies focused on 

seizure stage prediction, but classification of all stages with raw EEG data was not considered for 

most of the experiments. 
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In this work, three datasets, namely FH, CHB-MIT, and TUHEEG, are used and classified into 

four stages using KNN and RF. The second section of this paper deals with the method. Sections 3 

and 4 explain the results and conclusion, respectively. 

2. Materials and Methods 

Machine learning algorithms can be trained to classify pre-ictal, ictal, post-ictal, and inter-ictal 

stages using various types of data, such as EEG recordings, clinical data, and other patient 

characteristics. In this research work, mainly EEG recordings of all four stages are used. 

2.1. Dataset 

In this section, the dataset used for stage prediction is discussed. 

2.1.1. Freiburg Hospital dataset 

One of the datasets utilised in this analysis was produced by the Epilepsy Centre at the 

University Hospital of Freiburg, Germany. This database includes intracranial EEG (iEEG) data 

obtained during invasive presurgical epilepsy monitoring from 21 individuals with medically 

intractable focal epilepsy. To record directly from focal areas and to achieve a high signal-to-noise 

ratio with fewer artefacts, intracranial grid, strip, and depth electrodes were used. The EEG data were 

recorded using a 16-bit analog-to-digital converter and a 128-channel Neurofile NT digitally recorded 

EEG system with a sampling rate of 256 Hz (patient 12's data were sampled at 511 Hz but 

downsampled to 256 Hz). The collection includes 87 seizure recordings from 21 patients who each 

experienced 2–5 seizures over the course of the investigation. Six contacts were chosen for each 

patient in this database following a visual evaluation of the iEEG data by skilled epileptologists: three 

contacts in close proximity to the epileptic centre (epileptogenic zone) and three contacts in distant 

areas involved in seizure spread and propagation. With 13 women and 8 males, the subjects' ages 

ranged from 10 to 50. Each of the three forms of seizures—simple partial (SP), complex partial (CP), 

and generalised tonic-clonic (GTC)—was experienced by at least two of the patients. Eight patients 

had the epileptic focus in the hippocampus; two patients had it in both the neocortical and 

hippocampus; and eleven patients had it there. The times of the seizures and epileptiform activities 

were documented by board-certified epileptologists at the Epilepsy Centre. 

2.1.2. Children's Hospital Boston-M Institute of Technology dataset 

An open-source EEG database from CHB-MIT was one of the datasets used in this investigation. 

Using scalp electrodes, recordings were made for 23 young people with epilepsy. 17 female 

participants in the study, whose ages ranged from 1.5 to 19 years, and 5 male participants, whose 

ages ranged from 3 to 22 years, participated. One child's age and biological preference were ignored. 

A week prior to data collection, all subjects were instructed to stop using any relevant medications. 

The dataset consists of 23 paediatric patients, 844 hours of continuous EEG recording, and 163 

convulsions. The majority of the scalp EEG data is recorded using 22 electrodes at a sampling rate of 

256 Hz. According to expert judgements, each seizure's start and end times are clearly marked, and 

each patient had a distinct number and length of seizures.Numerous segments were picked for these 

two open-source datasets in order to find preictal and interictal signals. From raw signals, experts 

can immediately determine the ictal state, which is when patients start having seizures. The interictal 

interval serves as a representation of the normal state in between two seizures. The shift from the 

interictal to the ictal periods is marked by the pre-ictal interval. In this study, raw recordings were 

divided into 1-s epochs using the moving-window method, and the CNN was then applied to each 

patient to analyse the differences. Predicting pre-ictal and inter-ictal stages is the fundamental goal 

of this effort.. 
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2.1.3. Temple University Hospital EEG Dataset 

In this case, the GNSZ seizure dataset is considered. Here, EEG recordings taken 100 seconds 

before the start time of onset for the pre-ictal period and 100 seconds after 10 minutes of the stop time 

of onset for the inter-ictal period are considered. In Table 1, the data collected for GNSZ seizure type 

from TUHEEG for Pre-ictal and Inter-ictal stages are presented. 

Table 1. Data collection from TUHEEG. 

Pre-Ictal 

Samples NE 

Ictal  

Samples NE 

Post-Ictal  

Samples NE 

Inter-Ictal 

Samples NE 

725600 51 733780 51 725600 51 737000 44 

2.2. Machine learning models 

In this section two machine learning models, namely KNN and RF is described in details. 

2.2.1. K Nearest Neighbor 

A non-parametric, instance-based machine learning technique called K-Nearest Neighbours 

(KNN) is used to solve classification and regression prediction problems. KNN is primarily employed 

for categorization and predictive models in industry, though. Because it uses all the data for training 

while classifying and lacks a dedicated training phase, this technique is also known as a lazy learning 

algorithm. KNN model perform equally good for binary class as well as multi class classification. It 

is also very popular in seizure detection from EEG signals[84]. The algorithm works by storing all 

available instances and classifying new instances based on a majority vote of their K nearest 

neighbors. Here, K is mostly square root of N, where N is the number of dimension. For each test 

instance, the distance between test instance and each row of training instance is calculated with any 

of the method namely: Minkowski, Euclidean or Manhattan. The formula used for calculating 

distance using Generalized Minkowski, Euclidean, and Manhattan is given by (1), (2) and (3) 

respectively. 

Dmi(x,y) =( ∑i=1N |xi – yi |p)1/p (1)

De(x,y) =( ∑i=1N (xi – yi)2)1/2 (2)

Dm(x,y) = ∑i=1N |xi – yi| (3)

where, N represents number of dimensions and p is an integer, Out of the three methods, distance 

calculation using Euclidean distance is commonly used. 

Here K, which determines the number of nearest neighbors to consider, has a significant impact 

on the performance of the KNN algorithm. A smaller value of K will result in a more complex and 

flexible decision boundary, but is also more susceptible to noise and outliers in the data. A larger 

value of K results in a smoother and less flexible decision boundary and is less susceptible to noise 

and outliers. In practice, the value of K is typically selected using cross-validation techniques to 

balance the trade-off between over fitting and under fitting. Let us consider a dataset size S x N, with 

S number of samples having C number of classes with N features in each class. 80% of randomly 

selected data with their respective class label is stored as train data and 20% is stored as test data in 

a separate folder. Each train and test data has N dimensional data. Euclidean distance (as shown in 

(2)) is used to calculate the distance between each test sample to all the train samples and a distance 

array with their corresponding classes i.e. 0.8S x 2 is generated. Where 1st column represents 

Euclidean distance and second column represents class. The table is sorted in ascending order based 

on distance value. The top K rows are selected. The test sample is predicted with the most frequently 

appeared class in top K rows.  

For an example, in Figure. 1, shows two classes i.e. red triangles (indicated seizure class) and 

blue squares (indicated non seizure class) and green dot represents test sample. The smallest circle 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1606.v1

https://doi.org/10.20944/preprints202307.1606.v1


 6 

 

represents K=3 as the diameter of the circle is chosen such that 3 nearest samples of the test sample 

are accommodated. The dotted circle is for K=5, where 5 nearest samples are fitted. Here, for K=1 the 

nearest sample is red triangle i.e. seizure class so if K=1 is considered then the test sample is classified 

as seizure class, even in case of K=3, two red triangle and one blue square is closest. Therefore, it is 

classified as seizure class. But in case of K=5, its seen that out of 5 nearest neighbors Three belongs to 

non seizure class and two belongs to seizure class. Accordingly, it is classified as non seizure class, 

indicating that the selection of K is crucial. 

One advantage of KNN is its simplicity and ease of implementation, making it a good choice for 

exploratory analyses or small-scale applications. Additionally, KNN can handle non-linear 

relationships between EEG signals and seizures, and it is less prone to over fitting compared to other 

machine learning algorithms. 

2.2.2. Random Forest 

RF is one of the most frequently used supervised machine learning technique for classification 

and regression problems. In case of classification, majority votes from the DTs are considered, and 

average value in case of regression. The ability to handle data sets with continuous variables, as in 

regression, and categorical variables, as in classification, is one of its most crucial qualities. RF is a 

robust algorithm that can handle noisy and high-dimensional data. However, it is also prone to over 

fitting if the trees are grown too deep. To mitigate this issue, techniques such as pruning or limiting 

the maximum depth of the trees are used. Additionally, RF can be computationally expensive if the 

number of trees is large, techniques requires like parallel processing or bagging to be used to speed 

up the computation. It is a type of ensemble algorithm, builds multiple DTs and aggregating their 

results to make a final prediction as depicted in Figure .2. Ensemble uses two types of techniques, 

they are bagging and boosting. RF uses bagging type, which is also known as Bootstrap Aggregation 

method. A random sample or random subset is selected via bagging from the complete data set. As 

a result, each model is created using the samples (Bootstrap Samples) that the Original Data gave, 

with a replacement process known as row sampling. Bootstrap refers to this stage of row sampling 

with replacement. Currently, each model is trained separately, producing results. After merging the 

outputs of all the models, the final decision is made based on a majority vote. Aggregation is the 

process of aggregating all the results and producing a result based on a majority vote. In Figure 2, It 

is observed that bootstrap 1, 2 and N has randomly considered samples from original data, therefore 

the samples are not unique. The DT models trained independently using bootstrapped samples. 

Based on the decision by majority trees, class is allotted to the sample under test. 

 

Figure 2. Bagging method for random forest. 
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In DT model, there are three nodes. They are a) root node, which is feature based and from where 

samples start dividing, b) decision node which are the nodes after splitting a root node, and c) leaf 

node are the last nodes where further splitting not possible. To select a feature for root node to split 

further, it is to know purity of the split. The purity of sub split is each leaf node has possibility of one 

class not multiple classes. To select the feature to take as root node the impurity of the dataset is 

calculated using Gini index as shown in (4) for multi classes and Gini index shown in (5) for binary 

class data. 

Gini Index = 1 - ∑i=1N (Pi)2 for N classes  (4)

= 1- [ (P+)2 + (P-)2 ] for binary class (5)

where, P+ and P- is probability of positive or negative class, and Pi is probability of ith class. 

The algorithm finds the Gini index of all the possible splits and root node feature is selected 

which gives lowest Gini index. Lowest Gini index indicates low impurity. Apart from Gini index, 

“Entropy” also used to measure the impurity of the split. (6) represents the mathematical formula of 

Entropy.  

E(S) = - ( P (+) log P (+) ) – (P (-)log P (-)) (6)

where S represents sample.  

Gini index is computationally efficient and fast compare to Entropy and commonly used for 

impurity calculation and selection of feature for each root node in DT. To enhance the prediction 

power or to speed up prediction process, two ways hyper parameters are used in RF. Prediction 

power is increased using selection of proper number of DTs known as n_estimators, maximum 

attributes considered for splitting a node known as max_features, selection of minimum number of 

leafs and maximum number of leaf node in DT i.e. mini_sample_leaf and max_leaf_nodes. To 

increase the speed of the prediction, the number of processor allowed to use is pre fixed, randomness 

of the samples are controlled and one third of the samples are not used during training, but used for 

evaluate the model performance. This one third samples are termed as out of bag (OOB) samples.  

3. Results 

In this experimentation, three binary class classification and one four class classification is 

considered for three datasets, i.e. FH, CHB-MIT and TUHEEG. 

3.1. Result obtained for Feiburg Hospital Dataset 

Table 3 describes the performance of CNN model in the FH database.  

Table 3. Seizure prediction results using FH iEEG dataset. 

Models    KNN   RF  

Patients 

No. of 

seizure

s 

No. of 

Hours 

Acc(%) 

Pre-ictal 

Vs Inter-

ictal 

Acc(%) 

Ictal Vs 

Inter-ictal 

Acc(%) 

Post-ictal 

Vs Inter-

ictal 

Acc(%) 

Pre-ictal 

Vs Inter-

ictal 

Acc(%) 

Ictal Vs 

Inter-ictal 

Acc(%) 

Post-ictal 

Vs Inter-

ictal 

PAT1 4 23.9 100 100 100 88.5 100 88.5 

PAT3 5 23.9 88.2 94.0 86.2 50.211 85.25 66.431 

PAT4 5 23.9 100 100 100 93.5 100 93.5 

PAT5 5 23.9 90.36 100 90.36 80.4 90.31 90.9 

PAT6 3 23.8 84.91 98.51 81.91 77.23 84.91 92.81 

PAT14 4 22.6 90.4 97.5 90.4 75.78 90.4 85.78 

PAT15 4 23.7 98.5 99.25 98.5 86.4 95.5 86.4 

PAT16 5 23.9 78.05 98.75 70.0 75.14 78.05 89.34 

PAT17 5 24 100 100 100 98.25 100 98.25 

PAT18 5 24.8 100 100 100 94.46 100 94.46 
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PAT19 4 24.3 95.5 100 95.5 85.25 95.5 85.25 

PAT20 5 24.8 96.89 100 98.89 79.0 95.84 89.72 

PAT21 5 23.9 100 100 100 98.25 100 98.25 

TOTAL 59 311.4 94.07 99.15 93.22 83.89 93.22 89.83 

Total 13 patients(PAT) results are noted and the average of all the patients for three binary 

classes i.e. preictal versus interictal, ictal versus interictal and postictal versus interictal are 79.7%, 

93.69%, and 83.85% respectively. Out of 13 patients, model shows satisfactory performance for nine 

patients, but patient numbers 5,14,19,20 shows 60%, 25%, 25% and 60% accuracy for preictal versus 

interictal classification. However, patient numbers 1, 3,6,15,18,21 shows 100% accuracy for all the 

three binary classification method. Table 3, Table 4 and Table 5 shows part wise accuracy for FH 

dataset and CHB-MIT dataset and two class classification accuracy for TUHEEG dataset respectively. 

3.2. Result obtained for CHB-MIT Dataset 

Table 4 describes the performance of CNN model in the CHB-MIT database. Total 13 

patients(PAT) results are noted and the average of all the patients for three binary classes i.e. preictal 

versus interictal, ictal versus interictal and postictal versus interictal are 84.4%, 93.01%, and 85.38% 

respectively. Out of 13 patients, model shows satisfactory performance for nine patients, but patient 

numbers 2,9,10,14 shows 33.33%, 50%, 66.67% and 60% accuracy for preictal versus interictal 

classification. However, patient numbers 1, 19,23 shows 100% accuracy for all the three binary 

classification method. 

Table 4. Seizure prediction results using CHB-MIT EEG dataset. 

Model    KNN   RF  

Patients 
No. of 

seizures 

No. of 

Hours 

Acc(%) 

Pre-ictal 

Vs Inter-

ictal 

Acc(%) 

ictal Vs 

Inter-ictal 

Acc(%) 

Post-ictal 

Vs Inter-

ictal 

Acc(%) 

Pre-ictal Vs 

Inter-ictal 

Acc(%) 

ictal Vs 

Inter-ictal 

Acc(%) 

Post-ictal 

Vs Inter-

ictal 

PAT1 7 17 100 100 100 90.5 100 88.5 

PAT2 3 22.9 88.5 82 64.81 44.21 67.841 46.21 

PAT3 6 21.9 100 100 98.5 95.5 98.7 93.5 

PAT5 5 13 90.56 95 86.63 80.4 88.63 80.4 

PAT9 4 12.3 84.99 86.44 80.23 70.23 80.23 72.23 

PAT10 6 11.1 90.4 91.5 80.78 75.78 81.78 75.78 

PAT13 5 14 98.5 93 89.4 86.4 90.4 86.4 

PAT14 5 5 79.55 97 90.14 70.14 93.14 70.14 

PAT18 6 23 100 100 98.46 98.46 98.46 98.25 

PAT19 3 24.9 100 100 100 94.25 100 94.46 

PAT20 5 20 99.5 100 100 85.249 100 85.25 

PAT21 4 20.9 96.89 100 99.25 79.25 99.25 79.0 

PAT23 5 3 100 100 100 98 100 98.25 

TOTAL 64 311.4 94.53 95.76 91.40 82.813 92.187 82.812 

3.3. Result obtained for TUHEEG Dataset 

Table 5 reports the performance of CNN model in the TUHEEG database. Total 18 patients 

informations are collected. The number of events collected for preictal, ictal, postictal, and interictal 

are 51,51, 51 and 44 respectively. The total number of events for each binary classification is shown 

in Table 5. It is noted that compare to preictal versus interictal and postictal versus interictal 

classification, ictal versus interictal shows the best performace in both the models. Here, KNN shows 

96.38% and RF shows 91.57%. The seizure affect during preictal and postictal stage is less compare to 

ictal stage. The accuracies in that classes are little low.  

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 July 2023                   doi:10.20944/preprints202307.1606.v1

https://doi.org/10.20944/preprints202307.1606.v1


 9 

 

Table 5. Seizure prediction results using TUHEEG dataset using binary classes. 

Models  KNN   RF  

Binary classes 
Pre-ictal Vs 

Inter-ictal 

ictal Vs 

Inter-ictal 

Post-ictal Vs 

Inter-ictal 

Pre-ictal 

Vs Inter-

ictal 

ictal Vs 

Inter-ictal 

Post-ictal 

Vs Inter-

ictal 

Total events 95 95 95 95 95 95 

Acuuracy in % 91.43  96.385 93.66 88.17 91.57 86.315 

The mathematical formula for calculating accuracy, precision, sensitivity, F1 score, and each 

class accuracy is shown in (4), (5), (6), (7) and (8) respectively. 

Over all accuracy = (TP +TN)/ (TP+TN+FP+FN) (4)

Precision = TP/(TP+FP) (5)

Sensitivity = TP/(TP+FN) (6)

F1 score = TP/(TP+ 0.5 x(FN+FP)) (7)

Class accuracy= TP/(TP+FN) (8)

where TP is True Positive, TN is True Negative. 

The Table 6, Table 7 and Table 8 describes accuracy, precision, sensitivity and F1 score of binary 

seizure stage prediction using CNN model of three datasets for preictal versus interictal, ictal versus 

interictal, and postictal versus interictal respectively. Whereas, Table 9 represents the train and test 

accuracies of three datasets for four class classification i.e., preictal versus ictal versus postictal versus 

interictal. For this experimentation, train –test ratio is considered as 80:20. Out of train data, 10% is 

used for validation.  

Table 6. Performance of prediction of preictal versus interictal. 

Model   KNN   RF  

Dataset Matrics 
Acc(%) 

Pre-Ictal  

Acc(%) 

 Inter-

Ictal 

Acc(%) 

Mean 

Acc(%) 

Pre-Ictal  

Acc(%) 

 Inter-

Ictal 

Acc(%) 

Mean 

FH 

Accuracy 94.91 93.22  94.07 83.05 84.74 83.89 

Precision 93.33 94.83  94.08 84.48 83.33 83.91 

Sensitivity 94.91 93.22  94.07 83.05 84.74 83.89 

F1 Score 0.9412 0.9404 0.9407 0.837 0.8403 0.839 

CHB-

MIT 

Accuracy 92.18 96.87 94.53 78.12 87.5 82.813 

Precision 96.72 92.53 94.63 86.20 80.0 83.103 

Sensitivity 92.18 96.87 94.53 78.12 87.5 82.813 

F1 Score 0.944 0.9466 0.9453 0.8197 0.835 0.8277 

TUHEEG 

Accuracy 94.0 97.67 91.48 88.0 88.37 88.17 

Precision 97.91 93.33 95.62 89.79 86.36 88.17 

Sensitivity 94.0 97.67 91.48 88.0 88.37 88.17 

F1 Score 0.9592 0.9545 0.9569 0.889 0.874 0.881 
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Table 7. Performance of classification of each model for ictal vs interictal. 

Model   KNN   RF  

Dataset Matrics 
Acc(%) 

ictal  

Acc(%) 

 Inter-

ictal 

Acc(%) 

Mean 

Acc(%) 

ictal  

Acc(%) 

 Inter-

ictal 

Acc(%) 

Mean 

FH 

Accuracy 100.0 98.305  99.15 94.915 91.52  93.22 

Precision 98.33 100  99.167 91.80 94.73  93.27 

Sensitivity 100.0 98.305  99.15 94.915 91.52  93.22 

F1 Score 0.9916 0.9915 0.9915 0.933 0.931 0.932 

CHB-MIT 

Accuracy 94.44 96.87 95.76 90.625 93.75 92.187 

Precision 96.23 95.38 95.81 93.54 90.90 92.23 

Sensitivity 94.44 96.87 95.76 90.625 93.75 92.187 

F1 Score 0.9533 0.961 0.9573 0.9206 0.9231 0.9219 

TUHEEG 

Accuracy 97.436 95.45 96.385 92.31 90.91 91.57 

Precision 95.0 97.67 96.337 90.0 93.02 91.51 

Sensitivity 97.436 95.45 96.385 92.31 90.91 91.57 

F1 Score 0.962 0.9655 0.9638 0.9114 0.9195 0.9155 

Table 8. Performance of prediction of postictal vs interictal. 

Model   KNN   RF  

Dataset Matrics 
Acc(%) 

Post-ictal 

Acc(%) 

 Inter-

ictal 

Acc(%) 

Mean 

Acc(%) 

Post-ictal 

Acc(%) 

 Inter-

ictal 

Acc(%) 

Mean 

FH 

Accuracy 91.525 94.915 93.22 88.13 91.52 89.83 

Precision 94.73 91.803 93.27 91.23 88.52 89.88 

Sensitivity 91.525 94.915 93.22 88.13 91.52 89.83 

F1 Score 0.9310 0.933 0.9322 0.897 0.90 0.8983 

CHB-MIT 

Accuracy 90.63 92.18 91.40 84.37 81.25 82.813 

Precision 92.06 90.76 91.416 81.81 83.87 82.84 

Sensitivity 90.63 92.18 91.40 84.37 81.25 82.813 

F1 Score 0.913 0.9147 0.9141 0.831 0.825 0.8281 

TUHEEG 

Accuracy 94.12 93.18 93.68 88.23 84.09 86.315 

Precision 94.12 93.18 93.68 86.528 86.046 86.29 

Sensitivity 94.12 93.18 93.68 88.23 84.09 86.315 

F1 Score 0.9412 0.9318 0.9365 0.874 0.851 0.862 

Table 9. Seizure stage prediction results for preictal vs ictal vs postictal vs interictal. 

 KNN RF 

Dataset 
Acc(%) 

Train 

Acc(%) 

Test 

Acc(%) 

Train 

Acc(%) 

Test 

FH 93.5 90.5 79.0 75.0 

CHB-MIT 94.47 92.87 76.45 75.9 

TUHEEG 98.66 94.46 77.8 76.8 

4. Discussion 

In this work number of seizure events considered from FH and CHB-MIT are 59 and 64 

respectively. From each patient mentioned in Table 3 and Table 4, preictal, postictal, and interictal 

EEG signals are extracted. From TUHEEG dataset, 51 events considered for preictal, ictal and 

postictal and 44 events are considered for interictal stage. The total number of samples are shown in 

Table 1. Table 6, Table 7 and Table 8 shows accuracies of each stages for binary class classification i.e. 
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preictal vs interictal, ictal vs interictal and postictal vs interictal using KNN and RF models, where 

K=1 and 50 numbers of trees are used respectively. The tables also include precision, sensitivity and 

F1 score of each stages. It is observed that 1)KNN model performed better than RF and also 2) 

prediction of each stage in binary classification is quite satisfactory. In binary classification interictal 

versus other three stages are considered , keeping in mind , most of the patients consult clinician in 

interictal stage. So it’s very important to train models to predict interictal stages accurately. Whereas, 

Table 9 describes four class classification using KNN and RF model. This table includes train and test 

accuracy of all the three datasets using both the models. It is noted that the train and test accuracy is 

comparable for both the models, indicating that data is not over fitted. In four class classification 

TUHEEG dataset with KNN model shows comparatively the best result i.e. 94.46% accuracy. All the 

three datasets also shows accuracy quite comparable, which validates the reliability of the models.  

In future, RF can be modeled with different number of trees to increase the performance. Also 

other machine and deep learning models can be developed to predict stages and the best model can 

be adopted as diagnostic aid. Researchers also can experiment to find types of seizure in different 

stages.  

5. Conclusions 

Currently, a variety of conventional and cutting-edge technologies are generally used to assess 

epileptic activity in EEG recordings. A speedier diagnosis, ongoing monitoring, and a decrease in the 

overall cost of medical care are just a few benefits of automating this procedure. In this work, a very 

straightforward KNN and RF structures are used to avoiding the challenging feature extraction 

procedure. To verify the efficacy of the model, the Freiburg, CHB-MIT and TUHEEG datasets are 

examined. The average accuracy when using time-domain signals in the FH database was 90.5% and 

75.0%; CHB-MIT was 92.87% and 75.9%; and TUHEEG was 94.46% and 76.8%, respectively, for the 

KNN and RF models. All three datasets are trained and tested at an 80:20 ratio. Epileptic EEG signals 

from all three datasets—pre-Ictal, ictal, postictal, and inter-Ictal stages—have been extracted. The 

KNN and RF models are used to predict preictal, ictal, postictal, and interictal stages. 
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