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Abstract: Cellular senescence is characterized by permanent proliferation and migration arrest, senescence-
associated secretory phenotype (SASP), and oxidative stress. Senescent vascular smooth muscle cells (VSMCs)
contribute to cardiovascular diseases and atherosclerotic plaques instability. To establish and characterize a
model of replicative senescence (RS), human aortic VSMCs were serially passaged to represent different stages
of RS such as young proliferating cells and old/senescent non-proliferating cells. More than 50% of old cells
stained positive for the senescence-associated $-galactosidase compared to 20% of young cells. Old cells have
a slower proliferation rate, a migratory activity reduced by 50%, but increased levels of TP53 and of cell cycle
inhibitors p21/p16 expression, and accumulate in the G1 phase. Old cells showed a flattened appearance and
enlarged and regular nuclei, and downregulation of the expression of LMNB1 and HMGBI. Old cells showed
also an increased expression of SASP molecules (IL1B, IL6, IL8 and MMP3). Moreover, among a set of 12
manually selected long non-coding RNAs (IncRNAs), we detected significant upregulation of PURPL and
NEAT1. We observed also increased levels of RRAD mRNA. The detection of novel molecular markers of
senescence, such as RRAD, PURPL, and NEAT1, could be helpful for future studies on potential anti-aging
factors.
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1. Introduction

The proportion of the world’s population aged 60 years, or more, is expected to double in the
next four decades, and the WHO estimates that 1 in 6 people, or 2.1 billion, will be over age 60 by
2030 [1]. Ageing plays a previously unrecognized significant role in the pathophysiology of human
body [2]: it is associated with a progressive degeneration of the tissues negatively impacting on the
structure and function of vital organs and it is among the most important known risk factors for
chronic diseases (such as atherosclerosis or neurodegeneration). Aging includes several diverse
mechanisms such as oxidative stress, genomic instability, progenitor cell exhaustion or dysfunction,
telomeric and epigenetic changes, altered nutrient sensing, mitochondrial dysfunction, chronic low-
grade inflammation, altered protein homeostasis, fibrosis, microbiome dysregulation and cellular
senescence [3]. Senescence of various cell types, including endothelial cells, vascular smooth muscle
cells (VSMCs), macrophages and T cells, has been implicated in the pathogenesis of degenerative
diseases such as atherosclerosis. VSMCs, as basic component of the vascular wall and the sole cell
type in the arterial medial layer, play critical roles in vascular physiological functions [4,5], are the
major source of atherosclerotic plaque cells and contribute to plaque development and progression

[6].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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At the cellular level, senescent cells may form throughout the entire lifespan accumulating and
secreting different factors that may cause deleterious effects on surrounding tissues [1]. Cellular
senescence is an irreversible loss of proliferation potential [7]. Growth arrest results from silencing of
proliferation-promoting genes upon activation of the tumor suppressor gene p53 and the cyclin-
dependent kinase inhibitor (cdki) p21 and it is then stabilized by activation of the cdki p16 and
hypophosphorylation of the retinoblastoma protein [7]. Cellular senescence can also be induced by
various stimuli such as oncogene activation (oncogene-induced senescence) or DNA damaging
agents and oxidative stress, called ‘stress-induced premature senescence’ [8].

Besides permanent growth arrest, senescent cells display morphological and functional changes,
including flattened and hypertrophic morphology, nuclear enlargement and expression of the
‘senescence-associated [3>-galactosidase’ (SA-p-gal), a pH-sensitive enzyme whose activity reflects an
increased lysosomal mass [5]. Senescent cells stimulate reactive oxygen species (ROS) production
thus enforcing the inhibition of cell proliferation [9]. Moreover, they also show a ‘senescence-
associated secretory phenotype’ (SASP), with the production proapoptotic and pro-fibrotic factors
[10] and the secretion of pro-inflammatory cytokines (e.g., IL6 and CXCLS (IL8)), chemokines (e.g.,
CCL2) and proteases (e.g., matrix metalloproteases (MMPs)) thus contributing to tissue inflammation
[5,11].

Cellular senescence program initiation and sustainment are based on transcriptional and post-
transcriptional, as well as epigenetic, changes involving not only proteins but also different types of
RNAs, including long non-coding RNAs (IncRNAs) [12-15]. LncRNAs are a wide and heterogeneous
class of RNA molecules longer than 200 nucleotides with a fundamental role in the control of gene
expression through different mechanisms [14,15] and known to be involved in key biological
processes [16,17]. More specifically concerning aging, several IncRNAs have been shown to be
involved in different hallmarks of senescence, among which cell cycle arrest, apoptosis, telomere
stability and inflammation [18]. Despite mounting evidence linking IncRNAs to senescence, only a
few of them have been associated to the formation of senescent VSMCs so far [19,20].

Currently, there are no unanimously agreed senescence markers in human VSMCs. Our aim was
to characterize a cellular model of replicative senescence in human VSMCs by means of multi-
biomarkers approaches, performing an in-deep cellular morphological analysis and evaluating the
expression of manually selected senescence-associated genes and IncRNAs. Our investigation led to
the discovery of newly associated senescence biomarkers such as PURPL, NEAT1 and RRAD.

2. Materials and Methods

Cell cultures

Human aortic vascular smooth muscle cells (VSMCs) (PCS-100-012, ATCC, Manassas, USA)
were cultured in ATCC Vascular Cell Basal Medium (PCS-100-030, ATCC; 500 ml added with 500 pl
ascorbic acid, 500 ul rh EGF, 500 pl rh insulin and rh FGF-b, 25 ml glutamine), 5% fetal bovine serum
(FBS, ATCC Vascular Smooth Muscle Growth Kit), and 5 ml Penicillin-Streptomycin 100X
(Euroclone, Milan, Italy). In our experiments, VSMCs were used at the 5-7th passage as young
(proliferating cells) and at 15-17th as old (non-proliferating cells) to represent different stages of
replicative senescence. Cultures were maintained at 37°C in a 5% CO:z incubator.

Senescence-Associated B-Galactosidase Staining

Young and old VSMCs were plated in 24-well plates at a density of 2x10*cells/well. After 3 days
the activity of senescence-associated-f-galactosidase (SA-3-gal) was evaluated by staining VSMCs
with the Senescence Cells Histochemical Staining Kit (CS0030, Sigma-Aldrich), following
manufacturer’s instructions [11].

Cell proliferation

VSMCs were seeded in 24-well plates at a density of 3 x10* cells/well. After 24 h, medium was
removed, and cells were incubated for 72 h with medium containing 0.4% FBS to synchronize cells at
GO phase of the cell cycle. After 72 h, control dishes were counted with a Coulter Counter (Beckman
Coulter, Life Scientific, Milan, Italy) and this was considered the “basal” number of cells at TO.
Subsequently, medium was removed and replaced with 10% of FBS for 24, 48, and 96 h. Cells number
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was measured and compared to the zero time-point. Results were also used to calculate the doubling
time [21].

Cell migration

VSMCs were seeded in 24-well plates and, after reaching 80-90% confluence, were detached and
resuspended in 0,4% serum medium and placed on a membrane with 8 um pores for 6 h. The number
of migrated cells was counted in five randomly chosen areas of the membranes at 10X magnification
[22].

Cell cycle measurement

The cell cycle was determined after seeding VSMCs in 12-well plates and reaching 80-90%
confluence. Then cells were washed with PBS, trypsinized, and fixed with ice-cold ethanol 66%. After
fixation, cells were subsequently collected and stained with a propidium iodide flow cytometry kit
(Abcam, ab139418). The cell-cycle phases were analyzed with a NovoCyte 3000 Flow Cytometer
using the NovoExpress software v.1.3.3.

Immufluorescence analysis and Nuclear/Cell Size Measurement

Young and senescent VSMCs were seeded on glass-coverslips in a 24-well plate. After 3 days in
culture, cells were fixed with 4% paraformaldehyde in 10 mM PBS for 30 minutes at room
temperature and then washed three times with 10 mM PBS. Cells were permeabilized at 4°C in PBS
containing 0.1% triton X-100 for 3 min and blocked with 5% BSA in PBS for 15 min. Then, cells were
incubated with the primary antibody anti-RRAD (Thermo-Fisher) in 0.2% BSA in PBS, overnight
(4°C) and then were incubated with Alexa Fluor 488-conjugated secondary antibody (Invitrogen) for
1h and washed with PBS. To evaluate nuclear and cell size changes, cells were incubated with
fluorescent phalloidin (Alexa Fluor 488 phalloidin, ThermoFisher Scientific, Waltham, USA) for 1
hour at room temperature and then washed with PBS. DNA was stained with DAPI solution
(Invitrogen, 1:1000 in PBS) for 10 min and slides were mounted with Fluoromount Acquous
Mounting Medium (Sigma-Aldrich). The immunofluorescence (IF) signals of RRAD were acquired
for each experimental group with an epi-fluorescence microscope by Nikon (Nikon Eclipse Ti) using
a 100X objective, for nuclear and cell size changes images were acquired using a 20X fluorescence
objective (AXIOVERT 200 Fluorescent, Carl Zeiss). Nuclear or cell size measurements and nuclear
morphometric analysis were performed with the Image J software v.2.1.0 [23].

RNA isolation and retrotranscription

Total RNA was extracted from VSMCs using the Direct-zol™ RNA MiniPrep Plus kit (Zymo
Research, Irvine, USA). The concentration and purity of RNA were measured using the Nanodrop
1000 spectrophotometer (ThermoFisher Scientific). All RNA samples had an A260/280 value of 1.8-
2.1. The quality of RNA was also evaluated using the Tape Station 2200 instrument (Agilent). All the
samples had a RIN value = 9. One ug of total RNA was treated with the RQ1 RNase-Free Dnase
(M6101, Promega) and then cDNA was synthetized in 20 pl reactions using the High-Capacity cDNA
Reverse Transcription Kit (4368814, Applied Biosystems), according to manufacturer’s instructions.
Alternatively, the RNA samples were retrotranscribed using the iScript gDNA Clear cDNA Synthesis
kit (1725035, BIO RAD, Berkley, USA).

Selection of genes and IncRNAs associated with senescence

A panel of 24 transcripts, including protein-coding genes and IncRNAs, were manually selected
from literature according to their association with senescence and by querying specific online
resources such as The Human Ageing Genomic Resources (HAGR)
[https://genomics.senescence.info/CellAge (v3 (23/04/2023)], Reactome [https://reactome.org/
(v.84,29/03/2023)] and Human Protein Atlas [HPAhttps://www.proteinatlas.org/, v.23]. A set of 12
protein—coding genes was selected as involved in different functions such as cell cycle, DNA damage
and SASP, as well as novel biomarkers (Suppl Table 1). For IncRNAs, we focused on a list of 12
IncRNAs (Table 1) involved in several pathways and in the expression and secretion of SASP
components.

do0i:10.20944/preprints202307.1589.v1
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Table 1. List of IncRNAs selected for this study and their published role in senescence.

IncRNA IncRNA name

Expression in cellular
senescence

Function/Mechanism Referen
of action ces

symbol

CDKN2B-
AS1

CDKNZ2B antisense RNA 1

H19 imprinted maternally

H19 .
expressed transcript

HOX transcript antisense

HOTAIR RNA

GAS5 growth arrest specific 5

metastasis associated lung

MALAT1 . .
adenocarcinoma transcript 1

MEG3 maternally expressed 3

MIR31HG MIR31 host gene

NEAT1 nuclear paraspeckle
assembly transcript 1
L p53 upregulated regulator of

PURP
v p53 levels

SBLC Senebloc

Up/Down

Up/Down

Down

Up

Up

Up

Down

Suppresses the
expression of
CDKN2A/p16 and
CDKN2B/p15 by [18]
recruiting the
repressive Polycomb
complexes
Inhibits p53, CDKN1C,
IL6/STAT3/p21
pathway (anti-
senescence function).  [18]
Derepresses [3-catenin
(pro-senescence
function).
Activates NF-«xB/IL6
and p53/p21 pathways (18]
through DNA damage
response.
Sponges miR-223
which inhibits the anti- [20]
senescence NAMPT
enzyme.
Controls cell cycle
progression by
regulating p53 activity [24]
and the expression of
B-MYB transcription
factor.
Enhances p53
transcription and
reduces p53
degradation. Promotes [18,25]
p53 binding to target
promoters.
Activates the
expression and 26]
secretion of SASP
components.
Facilitates the
expression of IL8. (271
Negatively controls
p53 levels by
interfering with p53-
MYBBP1A complex.
Promotes p53
degradation. Mediates
epigenetic silencing of  [30]
p21 through regulation
HDACS.

[28,29]
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Inhibits p16, p21 and
YH2AX expression.
SNHG12 small nucleolar RNA host i Regulates DNA . 31]
gene 12 damage response via
interaction with DNA-
PK kinase.
Growth arrestor
induced by p53 upon
DNA damage. Inhibits
the pro-proliferation
HOXBY transcription
factor

TUG1 taurine up regulated 1 Up [27]

Quantitative RT-PCR (qRT-PCR)

Quantitative RT-PCR was performed with the QuantStudio 5 thermocycler (Applied
Biosystems) in 384-wells plates using the GoTaq qPCR Master Mix (A6002, Promega). 10 ul PCR
reactions were prepared containing 2 ul of reverse transcriptase product and 0.2 pl of each primer
(10 uM) for specific genes (Suppl Table 2). The PCR mixtures were initially denatured at 95 °C for 2
min, followed by 40 cycles of 95 °C for 10 s and 60 °C for 1 m. The results were analyzed with the
QuantStudio Design & Analysis Software v1.5.2 (Applied Biosystems). The melting curve showed a
single product peak, indicating good product specificity. The calculation of gene expression levels
was based on the n AACt method using the geometric mean of the expression values of three
normalizer genes (CYCI, EIF4A2 and RPSA). Fold changes were calculated using 2-(AACt) and
comparing senescent versus young/proliferating cells.

Protein isolation, quantification, SDS page and Western Blot

For the preparation of total cell lysates, cells were washed with ice-cold PBS and lysed with lysis
buffer (NaCl 150 mM, TRIS 50 mM pH 7.6, NONIDET P-40 0.5% and protease inhibitors (Merck,
Milan, Italy)). Protein concentration was determined using a Pierce BCA Protein Assay Kit (Pierce,
Rockford, IL, USA) and 15 ug of samples was run on SDS-PAGE. The different proteins (PCNA,
LMNBI, p21, P53, RRAD, IL1b, IL6, MMP3) were detected using specific primary and secondary
antibodies as needed (Suppl Table 3, which contains also antibody dilutions). Quantification of
western blot bands was performed by densitometric analysis using the Image Studio Lite software v
3.1from Li-Cor Bioscience (Lincoln, NE, USA).

Statistical analysis and data visualization

Data are presented as the mean + SD of 3 experiments performed in triplicates and were
analyzed with GraphPad Prism 9 software. The analysis was performed with the unpaired Student’s
t-test with Welch correction or 2way ANOVA, followed by Sidak’s multiple comparisons test.
Statistical significance was set at p <0.05. The heatmap of fold change (FC) qRT-PCR data was created
by Morpheus online tool [https://software.broadinstitute.org/morpheus/].

3. Results

To establish our replicative senescence model, human VSMCs have been serially passaged.
Then, we analyzed two different groups of cells: VSMCs that have been serially passaged 5-7 times
(representing the “young” proliferating cells), and VSMCs that have been passaged 15-17 times
(representing the “old/senescent” non-proliferating cells). Then, the two groups of cells have been
deeply characterized as described below.

3.1. Senescent VSMCs show increased SA-[-gal activity

First, we evaluated the activity of SA-B-gal, which is a lysosomal hydrolytic enzyme up-
regulated in senescent cells [32]. As shown in Figure 1A and B, at least 50% of old cells are positive
for SA-B-gal staining (indicated by the blue color) compared to about 20% of young cells, indicating
an increased SA-B-gal activity in senescent VSMCs. We also evaluated the expression of the 3-gal


https://doi.org/10.20944/preprints202307.1589.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2023 do0i:10.20944/preprints202307.1589.v1

encoding gene GLB1 by qRT-PCR. GLB1 gene expression level in old cells is 50% higher compared to

young cells (Figure 1C).
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Figure 1. Senescence-associated -gal activity and GLBI expression in young and old human VSMCs.
Cells have been plated and the activity of SA-B-gal and GLBI expression have been evaluated. (A)
Representative images of SA-B-gal staining in young and senescent VSMCs, at two different
magnifications (5x and 10x). The histograms indicate the percentage of (B) SA-B-gal positive cells and
(C) GLB1 mRNA levels in young (black or grey) and old (blue or light blue) cells. Unpaired t test with
Welch’s correction: * p < 0.05 vs YOUNG.

3.2. Senescent VSMCs display altered cell and nuclei morphology

Senescence is normally accompanied by significant morphological changes at cell as well as at
nuclear levels [33,34]. As shown in Figure 2A, old/senescent cells become flat, enlarged and
vacuolized compared to young ones.

Nuclear changes have been well documented in senescent cells, which show prominent and at
times multiple nuclei, with severe chromatin condensation detected as large and fluorescent after
staining with DAPI [35]. To evaluate nuclear area and shape, cells have been stained with DAPI and
F-actin. As shown in Figure 2B and C, old cells show a statistically significant increase of cell and
nuclear area compared to young cells.

A nuclear morphometric analysis (NMA) was also performed using a FIJI plug-in [11,23]. This
approach allowed us to divide cells into various groups based on their nuclear morphometry. These
groups included: normal, irregular, small regular (apoptotic), small (mitotic), small irregular, large
regular (senescent), large irregular nuclei [11,23]. We observed a reduced percentage of normal nuclei
in old compared to young cells (88% vs 66%), as well as an increased percentage of large and regular
(senescent; 29% vs 8%) and irregular nuclei (5% vs 3%) (Figure 2D).
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Figure 2. Morphological and nuclear changes in old VSMCs compared to young cells. (A)
Representative pictures of cell morphology, and (B) F-Actin staining. (C) The graphs show the mean
+ SD of cell and nuclear area. Unpaired t test with Welch’s correction. ***p<0.001 vs YOUNG. (D)
Nuclear morphometric analysis of young and old VSMCs. 2way ANOVA followed by Sidak’s

multiple comparisons test; *** p <0.001 vs YOUNG.

3.3. Senescent VSMCs display reduced proliferation and cell cycle arrest

One feature of senescent cells is the reduced proliferative rate [7]. Therefore, we evaluated the
expression of the aging biomarker proliferating cell nuclear antigen (PCNA), which is involved in
DNA repair and whose expression is decreased in aged cells [36]. As shown in Figure 3A, old VSMCs
have a significantly reduced PCNA expression at both mRNA (60% reduction of mRNA levels,
p<0.001 vs young) and protein (65% reduction, p<0.05 vs young) levels. This led to a reduced cell
proliferation (Figure 3B) and an increased doubling time for old cells (42 vs 25 hours in young cells).
As expected, when we evaluated the cell cycle, we observed an accumulation of old VSMCs in G1
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phase (Figure 3C). In addition, old VSMCs have a reduced migratory potential (70% reduction, p<0.01
vs young cells, Figure 3D).
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Figure 3. Proliferative state of young and old VSMCs. (A) Expression levels of the proliferative marker
PCNA have been measured by q-RT-PCR and western blot. Unpaired t test with Welch’s correction.
Cell proliferation (B) and cell cycle (C) have been evaluated. 2way ANOVA. Cell migration (D) has
been assessed by Boyden chamber. Unpaired t test with Welch’s correction. * p<0.05; ** p<0.01; ** p
<0.001 vs YOUNG.

3.4. Senescent VSMCs express well-known senescence biomarkers

Next, we evaluated in young and old cells the expression of lamin B1 (LMNB1), a protein
component on nuclear lamina whose downregulation causes a detachment of chromatin domains
normally attached to the nuclear lamina leading to the redistribution of hetero-chromatin from the


https://doi.org/10.20944/preprints202307.1589.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 July 2023 do0i:10.20944/preprints202307.1589.v1

nuclear periphery into the interior. This may trigger senescence, as reported before [37,38]. Figure 4A
demonstrates that old VSMCs have a significantly reduced LMNB1 expression at both mRNA (65%
reduction, p<0.01 vs young) and protein (60% reduction, p<0.05 vs young) levels, indicating an altered
nuclear membrane in old cells.

During senescence, SASP-related chromatin folding and RNA homeostasis are coordinated by
the extracellular senescence factor high mobility group box 1 (HMGB1) [39]. As shown in Figure 4B,
HMGBI1 mRNA levels are significantly reduced in old VSMCs. We observed also an upregulation of
the expression of p53, whose activation regulates the expression of a large set of genes involved in
cell cycle arrest [40]. In fact, we observed a doubling of the expression of p53 protein, although the
mRNA levels were slightly reduced (Figure 4C, D). In line with this data, old-senescent cells showed
an increased expression of p16 and p21, two tumor suppressors that, by preventing retinoblastoma
phosphorylation, regulate cell cycle leading to cell growth arrest (Figures 4C, D).
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Figure 4. Expression of known senescence-associated biomarkers. The expression levels of LMNB1
(A), HMGBI (B), and the cell cycle inhibitors p16, p21 and p53 (C, D) have been analysed in young
and old VSMCs. Unpaired t test with Welch’s correction: * p<0.05; ** p<0.01; *** p < 0.001 vs YOUNG.

The Ras Related glycolysis inhibitor and calcium channel regulator (RRAD) has been recently
shown to be a negative regulator of cellular senescence [41], and therefore it was included in our list
of protein-coding genes (Suppl Table 1). In our model, we observed a consistent and statistically
significant upregulation of RRAD mRNA levels (fold change>6 in old cells vs. young cells) in
senescent VSMCs (Figure 5A), although the analysis at the protein level did not show a similar
direction (Figure 5B). As reported in the Human Protein database (HPA), the screening of RRAD gene
expression levels in 44 human normal tissues (tissue atlas), as well as in 15 different cell types (single
cell atlas), indicates a specific expression in tissues and cells belonging to the musculoskeletal and
cardiovascular systems [https://www.proteinatlas.org/ENSG00000166592-RRAD]. Although RRAD
expression was reported in SMCs in the HPA database, its subcellular localization is not publicly
available. By means of immunofluorescence, we showed RRAD localization in cellular areas of the
plasma membrane, nucleoplasm, and Golgi apparatus (Figure S1) both in young cells and in
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old/senescent VSMC cells. Of note, the signal of RRAD was more dispersed and diffuse in the old
cells, possibly due to their altered cellular morphology.
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Figure 5. Expression of the new senescence-associated biomarker RRAD. The expression of RRAD
was analysed by qRT-PCR and western blot. Unpaired t test with Welch’s correction: * p<0.05; ** p <
0.01 vs YOUNG.

3.5. Senescent VSMCs exhibit a change in inflammatory biomarkers

Senescent cells exhibit significant changes in their secretome including the expression of a
variety of inflammatory proteins such as cytokines and interleukins [42], a phenomenon known as
SASP [43]. To have a more complete characterization of our RS model, we evaluated the gene
expression of different inflammatory markers that are typical of the SASP. The mRNA levels of IL15,
IL6, IL8 and MMP3 are significantly increased up to nine-fold in old cells (Figure 6A). A significant
increase of IL1f, IL6 and MMP3 protein levels is also displayed by senescent VSMCs (Figure 6B).
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Figure 6. Expression of SASP markers in young and old VSMCs. Expression of inflammatory markers
analysed at both mRNA (A) and protein (B) levels. Unpaired t test with Welch’s correction: * p<0.05;
** p<0.01; *** p <0.001 vs YOUNG.

3.6. LncRNAs PURPL and NEAT1T are markers of senescent VMSCs

To further expand the characterization of senescent VSMCs we also evaluated the expression of
a panel of IncRNAs. LncRNAs have recently drawn attention as important regulators of pathways
associated to senescence also displaying altered expression levels in various models of cellular
senescence [18]. Based on literature, we selected 12 IncRNAs involved in senescence (see Table 1 and
Materials and methods) and we measured their expression levels by gRT-PCR in old and young
VMSCs. Our quantitative analysis revealed a significant strong up-regulation of two IncRNAs,
namely P53-Upregulated Regulator of P53 Levels (PURPL; Fold Changes ranging from 3.2 to 22.5,
mean average = 15.21) and Nuclear Paraspeckle Assembly Transcript 1 (NEAT1; FC ranging from 1.7
to 7.9, mean average = 4.18), and a slight down-regulation of MEG3 and up-regulation of SBLC,
although not statistically significant, in senescent cells (Figure 7). For the remaining IncRNAs we
observed a more heterogeneous behavior in senescent VSMCs due also to their low expression levels.
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Figure 7. Heatmap of gene expression levels of selected 12 IncRNAs. The fold change values of young
cells and old cells are indicated in each dot of the heatmap (6 replicates for condition). Fold changes
were calculated using 2-(AACt) and comparing senescent versus young cells. Blue and red color grade
dots indicate levels of down-regulation and upregulation. Unpaired t-test with Welch’s correction: *
p<0.05; vs YOUNG. The heatmap was created with the Morpheus online tool
[https://software.broadinstitute.org/morpheus/].

4. Discussion

Our current study provides new insights into the molecular mechanism(s) that regulate aging
in human aortic VSMCs. We created a cellular model of replicative senescence by serially passing
human VSMCs. In our experimental conditions, the old/senescent VSMCs express many of the typical
senescence-associated markers already described in the literature. In this cellular model of VSMC
senescence, we also demonstrated the expression of novel senescence-associated markers such as
RRAD and the IncRNAs PURPL and NEATTI.

Old VSMCs display an increased percentage of SA-B-gal expressing cells and a different
morphology, showing a flat and enlarged cell body and presence of vacuolization, a reduced
percentage of normal nuclei and a parallel increase of irregular, enlarged and senescent nuclei
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characterized by chromatin condensation. We also observed a significant reduction of the expression
of LMNBI, a dramatically reduced proliferation and growth rate, a longer doubling time and an
accumulation in the G1 phase of cell cycle. Moreover, the expression of the aging biomarker PCNA,
which is involved in cell proliferation and DNA repair, is decreased by up to 65% at both mRNA and
protein levels. In addition, we observed an increased expression of p53, a transcription factor that can
both upregulate or downregulate the expression of specific target genes by binding their promoter
region [40]. In addition, the cell cycle inhibitors p16 and p21 are stimulated by more than 200% and
400%, respectively, compared to young VSMCs.

Senescent cells exhibit significant changes in their secretome including the expression of a
variety of proteins such as cytokines, interleukins, chemokines, proteases, growth factors,
degradative enzymes like MMPs and insoluble proteins or extracellular matrix components [42].
During senescence, SASP-related chromatin folding, and RNA homeostasis is coordinated by the
extracellular senescence factor HMGBL1 [39], a transcription factor or transcription inducer that is
secreted or released by stressed cells and serves as an alarmin, cytokine or growth factor to activate
the immune response. Suppression of HMGB1 induces cell cycle arrest and senescence in association
with p21 upregulation [44]. In accordance with these observations, in our old VSMCs, HMGB1
expression is significantly reduced by 40%, and in parallel we observed strikingly increased levels of
both mRNAs and proteins of inflammatory markers such as IL1B, IL6, IL8 and MMP3.

Interestingly, we observed a significant upregulation of RRAD mRNA levels. To our knowledge,
this is the first report showing an increased expression of RRAD in senescent human VSMCs. RRAD
is predicted to be involved in small GTPase mediated signal transduction, it has been implicated in
some types of cancer [45] and is considered a biomarker of congestive heart failure [46,47]. RRAD
expression appears to be stimulated by oxidative stress [48], and it has been recently associated with
cellular senescence in human skin fibroblasts as a negative regulator [41]. It has been proposed that
increased levels of RRAD may serve as a negative feedback mechanism in the effort to reduce the
level of ROS thus countering cellular senescence [41]. In our replicative senescence model of VSMCs,
although the RRAD gene expression level was upregulated in old cells, western blot analysis showed
lower protein expression. The correlation between mRNAs and protein expression is affected by
multiple layers of regulation and therefore it is not surprising to observe contrasting results [49]. We
hypothesized that the increased gene expression of RRAD in old VMSCs is the response to the
oxidative stress induced in cellular senescence. To determine if the fate of the RRAD protein in old
cells is altered, the study of protein stability is needed. Intriguingly, the investigation of the
subcellular localization of RRAD in young and senescent VSMC cells by IF indicates a more dispersed
and diffuse distribution in old cells. A deep biochemical analysis of RRAD in our model of senescence
will be the objective of further investigations.

Among the set of 12 IncRNAs manually selected for being involved in senescence, we detected
by gRT-PCR a significant up-regulation of PURPL and NEATI in old (non-proliferating) cells
compared to the young (proliferative) ones. PURPL is known to be a p53 target, as its promoter
contains p53-response elements. In colorectal cancer cells, PURPL is transcriptionally activated by
P53 and, in return, it can decrease the levels of p53 and of its targets, such as p21. Mechanistically,
PURPL can negatively regulate p53 stability by inhibiting its interaction with the MYBBP1A protein,
that can bind and stabilize p53 [28]. This negative regulation of p53 by PURPL was also observed in
melanoma cells, where PURPL was shown to repress autophagic cell death by associating with
mTOR and modulating ULK1 phosphorylation [50]. On the contrary, in liver cancer cells, PURPL
expression is still activated by p53, but its negative effect on p53 levels is lost. Instead, upon p53
activation, loss of PURPL leads to downregulation of genes involved in mitosis, indicating a role of
PURPL in cell cycle progression and mitosis [51]. Up-regulation of PURPL was consistently observed
in several cellular models of replicative and induced senescence, including a model of ionizing
radiation-induced senescence of human aortic endothelial cells, which is the other major cell type
present in the aortic wall [29]. Our data confirm PURPL as a robust marker of senescence condition
also in human VMSCs.
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Moreover, the IncRNA NEAT1 was found significantly up-regulated in senescent VMSCs.
NEATI is also a p53 target and it is a core structural component of paraspeckles, nuclear bodies with
a key role in gene expression regulation through several mechanisms, including regulation of
transcription, regulation of translation and modulation of miRNA processing [52-55]. NEAT1 has
been also associated with diseases such as cancer, immune inflammation, and neurodegeneration
[56]. Several lines of evidence show that NEAT1 expression, as well as paraspeckle formation, is
induced by p53, and that NEAT1 is part of an autoregulatory negative feedback loop that attenuates
p53 activity [57-59]. NEATT is also able to inhibit p21 expression by guiding the epigenetic repressor
Enhancer of Zeste Homolog 2 (EZH2) to p21 promoter [60]. On the other hand, it was shown to
activate pro-inflammatory cytokine IL8 transcription [54]. Importantly, NEAT1 has a key role in
VSMCs switching from a contractile to a proliferative phenotype by epigenetically repressing the
expression of smooth muscle-specific genes [61]. In our work, increased levels of p53 and p21 were
observed in senescent VMSCs, as expected in a state of cell cycle arrest. In this context, we
hypothesize that PURPL and NEATI up-regulation may be part of a negative feedback response to
buffer excessive p53 and downstream targets levels and activity, and partly trying to restore
proliferative capacity. At the same time, NEAT1 may promote the SASP by increasing IL8 levels.

Senescence may exert both beneficial and negative effects after tissue injury depending on the
context. Although senescent cells may maintain a healthy physiology, senescence of various cell types
has been implicated in the pathogenesis of atherosclerosis including endothelial cells, VSMCs,
macrophages and T cells. The accumulation of senescent VSMCs contributes to aging as well as age-
related diseases of the cardiovascular system [62], and VSMCs were reported to be one of the key
pro-inflammatory senescent cell populations, and were found in unstable, rupture-prone
atherosclerotic plaques [63,64]. Like other aging cells, senescent VSMCs have a low ability of mitotic
division and show changes in cell signaling pathways and senescent markers, such as SA-f3-gal
activity, levels of p16, p38, p53, p21, and express the SASP [8]. Due to the loss of proliferative potential
of senescent cells, senescence can trigger plaque instability directly by reducing the VSMC content of
the fibrous cap and compromising its repair after rupture [5]. However, more recent evidence
suggests a more active role of VSMC senescence in promoting plaque destabilization by driving
plaque inflammation and matrix degradation and defective autophagy [5,65]. In this scenario, the
involvement of IncRNAs in atherosclerosis is clearly emerging, by regulating several key processes
such as cholesterol homeostasis, vascular inflammation, VSMC phenotypic switch and cell death,
among others [66,67]. As discussed above, upregulation of NEAT1 in senescent VSMCs may be a
fundamental contributor to plaque inflammation and destabilization by setting a ‘macrophage-like’
state with increased SASP levels.

5. Conclusions

Cell senescence could be targeted to prevent or delay the aging process and tissue dysfunction
extending lifespan [68,69]. Some biochemical agents with anti-senescence potential called ‘senolytics’,
compounds that selectively target and eliminate senescent cells by inducing apoptosis, have been
tested in the prevention/treatment of diseases [1]. However, we need better senescence-associated
targets, that may also include IncRNAs, to ameliorate our therapeutic approach. In our experimental
settings, we characterized the senescence state of human VSMC by means of multi-levels approaches
including fine morphological evaluations, together with the expression analysis of essential and
promising cell specific molecular markers of vascular senescence. It is a basic knowledge that cellular
senescence is the result of complex interplay of various biological and metabolic cell- and tissue-
specific processes, so our experimental characterization is still incomplete. The definition of the
functional role of PURPL, NEAT1, and RRAD in senescent human VSMCs, was beyond the scope of
the present investigation but future investigations are planned. However, we think that these newly
discovered senescent markers are promising molecular tools to be used in combination with
landmark senescence markers to better discriminate senescent VSMCs implicated in atherogenesis
and atherosclerosis complications and may help in designing new strategies for promoting healthy
vascular aging.
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vascular smooth muscle cells; Suppl Table 1: Bioformatic annotations of selected protein coding genes; Suppl
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used for Western blot experiments .
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