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Article 

Timing and Performance Metrics for TWR-K70F120M 
Device 

George K. Adam 

CSLab Computer Systems Laboratory, Department of Digital Systems, University of Thessaly, 41500 Larisa, 
Greece; gadam@uth.gr; Tel.: +30-2410-684-596 

Abstract: Currently Single Board Computers (SBCs) are sufficiently powerful to run Real-Time Operating 
Systems (RTOSs) and applications with real-time attributes and requirements. SBCs serve as a foundation in 
Industrial Internet of Things (IIoT). The NXP Semiconductors produces a series of SBCs based on ARM-
processors for a variety of industrial applications. The continuous increase in real-time data generated by IoT 
devices adds further research issues about the efficiency of such systems and applications. The purpose of this 
research was to investigate the timing performance of an NXP TWR-K70F120M device with μClinux OS on 
running concurrently tasks with real-time features and constraints. A custom-built multithreaded application 
with specific compute-intensive sorting and matrix operations was developed and applied to obtain 
measurements in specific timing metrics, including task’s execution time, threads waiting time, and response 
time, under different threads variations. The performance of this device was additionally benchmarked and 
validated against favorite platforms, a Raspberry Pi4 and BeagleBone AI SBCs. The experimental results 
showed that this device stands well both in terms of timing and efficiency metrics. Execution times were quite 
lower than the others, by approximately 56% in the case of two threads, and by 29% in the case of thirty-two 
threads configurations. 

Keywords: single board computers; embedded systems; real-time; multithreading; performance 
metrics; time measurements; benchmarking; μClinux; TWR-K70F120M 

 

1. Introduction 

Single Board Computers (SBCs) facilitate the Internet of Things (IoT) and can enable Fog and 
Edge compute applications to run efficiently on IoT computing and data generating nodes (e.g., 
sensors). In IoT architectures there is a tendency for the computational power to be pushed out closer 
to the edge, on smart devices such as SBCs. The volume of data generated from IoT devices, sensors 
and other equipment are forcing enterprises and manufacturers to design and develop SBCs with 
sufficient computing power for real-time analytics, and for applications with real-time attributes and 
requirements [1,2]. Single board computers are usually cost-effective and versatile commercial off-
the-shelf (COTS) computer platforms, which offer significantly reduced time to implementation and 
efficient solutions in many sectors, including the Industrial IoT (IIoT) applications (e.g. Texas 
Instruments BeagleBone Black, NXP i.MX 8 series-based boards, Raspberry Pi Compute Module 4, 
etc.). ARM-based microcontrollers are commonly deployed in many SBCs, mobile phones, and 
different types of embedded devices and industrial applications. This is because they offer high 
performance and power efficiency at a reasonable price/performance ratio, and have low-power 
requirements [3]. 

An important feature of such devices in industrial solutions is the requirement for real-time 
capabilities. That is the capability to support real-time timing constraints (e.g., a deterministic 
response, minimized latencies, and bounded execution times). A real-time application must complete 
real-time tasks within a deterministic deadline. For example, the time elapsed from the appearance 
of an event to the actual system response often must be within a strict time range. Such timing 
requirements are quite important in industrial production and IIoT [4,5]. 

Single board computers deploy Operating Systems (OS) which make use of the minimum of the 
resources available by the embedded microcontroller, and usually with a small memory footprint. 
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Real-Time Operating Systems (RTOS) are quite common in such devices and embedded systems 
applications [6,7]. Real-time kernels can be used for developing applications that perform multiple 
tasks (threads) simultaneously in a deterministic way. Certainly, real-time applications can be created 
without an RTOS, however, timing issues can be solved more efficiently with an RTOS. 

The low-cost and power consumption of SBCs, their adaptability as well as their stability in 
availability by key market manufacturers such as Texas Instruments, Inc., Advantech Co., Digi 
International, Inc., NXP Semiconductors, Raspberry Pi Foundation, have enabled such products to 
be deployed into several cases where processing requirements are met by small and smart embedded 
devices [8,9]. The continuous increase in applications of SBCs has led also to the development of more 
powerful peripherals being included on such boards. 

The need for SBCs that support real-time applications running multiple functions at guaranteed 
times, particularly in industry, will continue to rise. As a market research report by KBV Research 
foresees: the global Single Board Computer market size is expected to reach $3.8 billion by 2026, rising 
at a market growth of 7.2% CAGR (Compound Annual Growth Rate) during the forecast period [10]. 
In industrial automation this market growth is expected to be much higher than all other competitive 
sectors e.g., aerospace and defense, healthcare, and consumer electronics. 

Therefore, their overall performance will continue to be assessed and taken into consideration 
according to each specific application and its requirements. In this direction, this research assessed 
the real-time computing capabilities and timing performance of a specific SBC, in particular the NXP 
TWR-K70F120M board [11]. This was motivated primarily by the interest of a machinery 
manufacturing company which has already procured some of these devices, and is looking to deploy 
them further on its machines’ production [12]. One of the near future company’s intentions is to 
deploy this board in a variety of control applications in the construction and production of automated 
machines for concrete products. This research investigated the capability of the NXP TWR-K70F120M 
board, running a μClinux distribution [13], to support applications with real-time constraints, and its 
overall performance in terms of timing metrics, such as task’s execution time, waiting time and 
response time. 

One of the contributions provided by this research were the performance measurements, carried 
out by the use of a custom-built multithreaded application with real-time attributes, developed for 
this purpose. In addition, a benchmark was applied that ran additional performance tests based on 
cryptography algorithms. As it is indicated in the next section of related research, to the best of our 
knowledge such information on timing performance metrics for this board are not available. 
Furthermore, beyond the assessment of the TWR-K70F120M platform with a benchmark and a 
specific multithreaded application, the same methodology and application assessment software was 
implemented and tested on other two popular single board computers, a BeagleBone AI and a 
Raspberry Pi4 Model B, with Linux OS support. The results were compared to those obtained by the 
NXP TWR-K70F120M board, and conclusions were drawn upon its performance. 

This paper is structured as follows: Section 2 describes previous related work. Section 3 presents 
the methodology applied, the system’s hardware and software infrastructure, and the performance 
metrics acquired in measurements. Section 4 presents the experimental framework used as the 
testbed, the results obtained on performance measurements of the NXP TWR-K70F120M board, and 
the comparative results with other SBC devices. Section 5 provides a brief discussion about the ideas 
in the paper and the research outcomes, and Section 6 provides concluding remarks. 

2. Related Work 

The last years, in several application sectors there is a tendency towards the use of more versatile, 
flexible, and low-cost devices based on ARM processors, provided by many vendors, such as the 
Nvidia Jetson Nano, the NXP SBC-S32V234, the BeagleBone AI-64 and the Raspberry Pi Compute 
Module 4 single board computers [14–16]. 

Real-time operating systems have also been employed in order to provide support to system 
applications running multiple tasks (threads) with real-time constraints, particularly in embedded 
systems [17–19]. For example, open-source real-time operating systems, such as μClinux and μC/OS-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 July 2023                   doi:10.20944/preprints202307.1587.v1

https://doi.org/10.20944/preprints202307.1587.v1


 3 

 

III [20], which target microcontrollers without Memory Management Unit (MMU) support. A 
number of works make use of μClinux to create applications on microcontrollers [21,22]. 

The performance of real-time systems and multithreaded applications is analyzed and 
benchmarked with many different approaches. The techniques and tools used depend on the aspects 
of performance that are targeted for measurement and evaluation, most commonly schedulability 
and timing issues in real-time systems [23]. In general, there is considerable work on performance 
assessment of single board computers, however, there has not been much work on the NXP TWR-
K70F120M platform. 

This NXP TWR-K70F120M board can be found in several applications [24–26]. However, the 
works that implement performance assessment of this board, either with standard benchmarks or 
with specific software developed for such purposes, are very limited. An interesting research work 
is the work on performance analysis of an embedded system by Luigi Vicari [27]. This work presented 
debugging and tracing with the Lauterbach μTrace device in Trace32 environment of a μClinux 
signal processing application running on the TWR-K70F120M development board. However, the 
focus is on the performance analysis of the execution of two different FIR (Finite Impulse Response) 
filter implementations (with different complexities), and an FFT (Fast Fourier Transform) algorithm 
(with different number of points for which is computed the transform). 

An interesting benchmark was applied, provided by wolfSSL Inc. [28], which examines the 
performance of the TWR-K70F120M platform using its in-house application wolfSSL package. This 
package includes a wolfCrypt benchmark application. Because the underlying cryptography is a very 
performance-critical aspect of SSL/TLS, this benchmark application runs performance tests on 
wolfCrypt’s algorithms. The performance of the TWR-K70F120M platform was determined under 
the MQX RTOS and using the fastmath library and CodeWarrior 10.2 IDE. In our research work, 
beyond our performance measurements and assessment of the TWR-K70F120M platform on running 
multithreaded applications with real-time constraints, we have additionally applied this wolfCrypt 
benchmark for comparison purposes. In our case, the implementation of this benchmark was under 
μClinux (kernel v2.6.33) and the fastmath library, and the use of CodeWarrior 11.1 IDE for the 
application build [29]. 

3. Materials and Methods 

3.1. Tower System Architecture 

The tower system under investigation is based on the NXP’s (ex Freescale) TWR-K70F120M 
board, which includes a Kinetis K70 family (MK70FN1M0VMJ12) microcontroller (MCU) having a 
32-bit Arm Cortex-M4 core processor, and running an embedded version of Linux (μClinux). 

The tower system platform consists of the main controller module (TWR-K70F120M), primary 
and secondary side elevators and a serial module (TWR-SER) (see Figure 1). The TWR-K70F120M 
controller module, beyond the Kinetis MCU, on-board includes 1GB DDR2 SDRAM memory, 2GB 
NAND Flash memory, various user controllable, LEDS, push buttons, switches, touch pads, a 
potentiometer, etc.. The Kinetis MK70FN1M0VMJ12 microcontroller includes a 32-bit Arm Cortex-
M4 core with DSP instructions running at 120MHz, 1MB of program Flash, 128KB SRAM, 16-bit ADC, 
12-bit DAC, various circuits for peripherals communication, and operates at a low voltage input 
range (1.7V-3.6V). The ARM Cortex-M4 does not support simultaneous multithreading (SMT). 

The TWR-K70F120M board is powered up by connecting it to a host PC (running either 
Windows or Linux) through a mini-USB connector on the TWR-K70F120M board. For programming 
purposes, a serial interface is established to the host PC by plugging an RS-232 cable to the serial 
connector on the TWR-SER board. On the host PC side, the serial link provides a serial console device 
to the TWR-K70F120M. The software installed on the board is configured for a terminal (e.g. putty) 
with the following COM-port settings: 115200 8N1. On the Linux host, the serial console is available 
using a /dev/ttySn device. Network connectivity to the board, is provided by plugging a standard 
Ethernet cable into the TWR-SER 10/100 Ethernet connector. The board is pre-configured with an IP 
address of 192.168.0.2. 
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Figure 1. The Tower System. 

3.2. Tower System Software Infrustructure 

Linux is an open-source OS that can be installed on a variety of different types of architectures. 
A version of μClinux (kernel v2.6.33) intended for microcontrollers without MMUs is loaded into the 
external Flash (2GB) on the TWR-K70F120M board, to support the execution of the measurements 
software. This version supports POSIX Threads. This library supports real-time and preemptive 
scheduling. Pthread functions are used to set the threads real-time execution features including 
scheduling policy, CPU affinity, and timing. 

On a power-on, the default configuration copies the Linux image from the external Flash to RAM 
and jumps to the Linux kernel entry point in RAM, to allow booting Linux. The Tower System 
provides a complete platform for developing and testing purposes. The CodeWarrior software was 
used for the development of the measurements multithreaded application. The application was 
loaded (with Kinetis Flash Programmer) into the Kinetis MK70FN1M0VMJ12 32-bit Arm Cortex-M4 
microcontroller’s internal Flash (1MB program Flash). The application uses the embedded SRAM 
(128KB) of the microcontroller as a storage for the data used in computations (sorting and matrix 
operations). The system application development flow is shown in Figure 2. 
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Figure 2. System application development flow. 

3.3. Methodology 

A primary goal of this research was to investigate some of the important performance metrics 
regarding timing constraints, such as task’s execution time, waiting time, and response time (latency), 
of NXP TWR-K70F120M SBC, running a version of μClinux for embedded microcontrollers without 
MMUs. 

For this purpose, a specific measurement application was developed and implemented as 
multithreaded software module. The design methodology was based on a dynamic and iterative 
multiple threads generation approach, by using POSIX Threads (an API defined by the standard IEEE 
POSIX.1c). Pthreads is preferred for the development of the multithreaded measurements software, 
than an API such as OpenMP, in order to have better low-level control. This measurement software 
enabled the estimation of certain performance metrics under real-time tasks (threads) concurrent 
execution, on μClinux kernel. 

3.3.1. Multithreaded Application 

The multithreaded design was based upon an algorithm which generates iteratively multiple 
processes (jobs) and threads (tasks), which ran concurrently in the same core. Thus, the Cortex-M4 
core was shared by at least two software threads supported by a single hardware thread. The 
processes generated perform two types of computations: sorting and matrix operations. Each process 
generates multiple pairs of threads assigned to run concurrently on a single core. Therefore, on every 
execution run, initially two software threads, and later multiples of twos are instantiated. 
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On the “sorting” process, each thread executes a computational intensive workload (function) 
that is either a selection sort or the quicksort algorithm. Selection sort is a simple sorting algorithm 
that divides the data array into a subarray of already sorted elements and a subarray of remaining 
elements to be sorted. The sorted array is finally populated based on an iteration procedure, upon 
which the smallest element from the unsorted subarray is placed at the end of the sorted array. 
Quicksort is a relatively more complex algorithm. It uses a divide-and-conquer strategy to divide the 
array into two subarrays. The sorted array is produced upon a procedure that reorders the array by 
moving all the elements less than a specific value (pivot) to its left and all the elements greater than 
it to its right. 

On the “matrix” process, each thread performs either matrix addition or matrix multiplication 
operations. The multiplication of matrices is one of the basic computations used as a benchmark due 
to its very compute-intensive nature. For testing purposes, the threads generated are multiples of 2, 
4, 8, 16 and 32 software threads. 

Threads belonging to the same process share all the memory of the process and its resources. 
Therefore, the threads within each process share common data for their respective computation 
available in shared SRAM memory. Different data blocks are allocated for each process in the on-chip 
SRAM to support the execution of multiple threads which perform different operations. For sorting 
operations, data arrays of 32-bit integers of size 102 to 106 elements were allocated for each sorting 
thread in the on-chip shared memory to support the concurrent execution. Sorted data output was 
written out in the same memory space. For matrix operations, data sets were based on 512, 1024, 2048, 
4096, 8192 arrays of short integers. A schematic view of application’s structure is shown in Figure 3. 

 

Figure 3. Multithreaded application structure. 

3.3.2. Multiple Processes and Threads Generation 

Multiple processes and threads were created repetitively. The repetitive functions 
(create_processes(), create_threads()) built a tree structure of multiple processes and concurrent 
threads, up to a certain quantity (np for processes and nth for threads). This tree structure is an 
aggregation of nodes consisted of processes and threads (see Figure 4). Each process contains a group 
of threads assigned to run concurrently, in synchronisation (pthread_join()). In the experiments, each 
process ran a variable number of threads, from a minimum two up to thirty-two threads. These 
multiples of threads resulted to a considerable contention for core resources simultaneously, an 
increase on thread switches, and threads delays on waiting for execution. 
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Figure 4. Processes and threads tree structure. 

The algorithm for the iterative generation of each process distributes and allocates equally the 
workloads to each thread for optimal computation. A synopsis of the multiple threads and processes 
generation is shown as pseudocode in Algorithm 1 and as a flow chart in Figure 5. 

Algorithm 1 Iterative multiple processes and threads creation 

Inputs: number of processes p [2:np], number of threads th [2:32] 
create_processes(p) { 
for number of processes np {  

set_process_attributes(); 
set_process_policy(RoundRobin, 99); 
create_threads(th); { 
for number of threads nth {  

pthread_create(&threads[nth--], NULL, threads_functions[nth--], NULL);  
pthread_join(threads[nth--], NULL); }}} 

threads_functions(nth); { 
set_threads_attributes(); 
if (th%2<>0) 
sort_ops(); } //sorting operations 
else  
matrix_ops(); } //matrix operations 
perform_measurements(); 
Outputs: measurements [execution time, threads waiting time, response latency] 
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Figure 5. Iterative multiple processes and threads creation. 

The threads were synchronized with mutexes. Therefore, data allocated in on-chip memory that 
support the execution of multiple threads were protected through software mutexes 
(pthread_mutex_lock(), pthread_mutex_unlock()). Mutexes guarantee exclusive access to the 
resources and facilitate threads synchronization. The threads attributes were configured to run with 
real-time execution features, including scheduling policy (SCHED_RR), CPU affinity (core 0), priority 
(99) and timing. Precise timing and reliable performance metrics require accurate timing source. The 
application software performed time performance measurements using the system call 
clock_gettime(), with the highest possible resolution, and the clock id set to CLOCK_MONOTONIC. 
The threads shared the same high priority which was set to 99. The SCHED_RR scheduling policy is 
preferred for real-time applications. Therefore, a Round Robin scheduler (SCHED_RR) was applied 
appropriately for threads real-time scheduling. The multithreaded application defined and 
implemented the threads scheduling policy and attributes. The source code in C of the experimental 
software module is available as an open-source project at GitHub [30]. The same application module 
and performance measurement methodology could be applied to other Linux-based systems and 
platforms. 
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3.4. Performance Metrics 

In Linux Operating Systems, a task is synonymous with a thread. In real-time applications, 
usually each task is scheduled as a thread, with real-time SCHED_FIFO or SCHED_RR policy and 
high priority. Time measurements are based upon the use of the system call clock_gettime() defined 
in POSIX timers header library implementation. This system call was invoked with the highest 
possible resolution, and with the clock id set to CLOCK_MONOTONIC. Each working thread during 
its execution recorded data for the performance metrics to be evaluated (including execution time, 
waiting time, response latency). 

3.4.1. Execution time 

For a real-time system a primary performance criteria under consideration is the amount of time 
it takes to complete a task, and consequently the system throughput. Therefore, the functions’ 
execution time performing the sorting and matrix operations must be measured, in order to examine 
the tower (TWR) unit and μClinux OS in terms of real-time computing capability. An average value 
of the total execution time (𝑡௘௫௘௖) for a given number of execution runs (n iterations) was estimated 
by the following equation 1: 

𝑡௘௫௘௖ = ∑𝑡௘௡ௗ − 𝑡௕௘௚௜௡𝑛 , (1)

where 𝑡௘௡ௗ  is the time it takes to finish the task’s execution, and 𝑡௕௘௚௜௡  is the initial time the 
execution is started. The above is illustrated in Figure 6. 

 

Figure 6. Task scheduling and running. 

3.4.2. Threads waiting time 

Each thread was assigned to run an independent task having its own memory stack and sharing 
process’s space and time. The time it takes for a thread to execute a single task is essential in 
performance measurements. The threads were running concurrently on a single core. Therefore, there 
were frequent periods where any of the threads within a process is just waiting (idle thread) for 
execution resources (see Figure 6). In consequence, the time a thread spends awaiting for a resource 
or an event, is an important metric. Usually the time the thread is awaiting exceeds the time the thread 
spends using the resource. Reducing wait times (for resources) is a common strategy for improving 
the overall performance of a system. Therefore, in order to evaluate the performance of the threads 
dynamic operation in multithreaded applications it is essential to measure their waiting time. A 
simple but effective way of identifying when a thread is active or idle (waiting), is to use a thread-
specific state variable, which is set when the thread exits the execution cycle, (e.g., waiting for a mutex 
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on a resource), and is unset respectively when it begins the execution again. In this way, a global time 
counter was used to count and add the total sum of the thread’s waiting time (twait) on the basis of the 
following equation 2: 𝑡௪௔௜௧ = ∑ 𝑡௪௜௠௜ୀଵ , (2)

where twi is the task’s individual waiting time intervals out of the total m. 

3.4.3. Response time 

Applications having timing constraints should respond as soon as possible meeting any 
specified deadlines, an important aspect of a real-time system. For hard real-time systems the 
deadlines must always be met and the response times to be guaranteed. Therefore, it is important to 
measure the response time (or latency) of a task’s running thread. A real-time task is characterized 
by its execution time, usually relevant to a deadline, and a maximum (worst-case) response latency 
as the upper bound. The worst-case response latency is a typical metric of the determinism of a real-
time task. A task’s response time or latency is defined as the overall time elapsed from the arrival of 
this task to the moment this task is switched to a running state, and receiving its first response. The 
overall response latency includes the interrupt latency that is the time it takes to appear upon the 
arrival of the task and its service time, and the task’s scheduling latency that is the time it takes for 
the scheduler to run the task (see Figure 6). An average value of the response latency (rl) for a number 
of runs (n iterations) was calculated using the following equation 3: 𝑟𝑙 = ∑ (௧೑ೝ೐ೞ೛ି௧ೌೝೝ)೔೙ ௡ , (3)

where 𝑡௔௥௥ is the task’s arrival time, 𝑡௙௥௘௦௣ is the task’s first response time, and n is the number of 
performed iterations. 

4. Results 

4.1. The Experimental Framework 

The reliability of the TWR-K70F120M platform (TWR) to run efficiently the multithreaded 
application was examined with experimental measurements. As it was stated earlier, this platform 
integrates a Kinetis MK70FN1M0VMJ12 microcontroller, which includes a 32-bit Arm Cortex-M4 
core with DSP instructions running at 120MHz. In addition, for comparison purposes, the same 
experimental measurements were executed on other two popular single board computers, a 
Raspberry Pi4 (RPi4) and a BeagleBone AI (BBAI) (see Figure 7). These low-cost, low-power, and 
stand-alone single-board computers are being extensively used for embedded applications. The 
Raspberry Pi4 board integrates a Broadcom BCM2711 SoC having an ARM Cortex-A72 4-core 
processor running at 1.5 GHz. The BeagleBone AI is built upon Texas Instruments Sitara AM5729 
SoC having a dual ARM Cortex-A15 processor running at 1 GHz. Neither of the processors support 
simultaneous multithreading (SMT). One of the goals of SMT is to keep the shared pipelines full 
where they would otherwise stall or have bubbles. The 32-bit ARM Cortex-M4 architecture is based 
on a 3-stage small and efficient pipeline that does not have considerable load-store latencies. The 
interrupt latency takes 12 cycles. The ARM Cortex-A15 and Cortex-A72 core architectures have a 15-
stages pipeline. All the above system platforms run Linux versions. The TWR runs μClinux (kernel 
v2.6.33) and the other two RPi4 and BBAI platforms run UBUNTU (kernel 4.14.74-v7+). 
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Figure 7. Experimental setup. 

4.2. Performance Measurements on TWR-K70F120M Platform 

A number of experiments were carried out to evaluate the performance of the tower architecture 
and verify its feasibility for running efficiently multithreaded applications with real-time features. 
The application module developed and used in the experimental runs scheduled the execution 
initially of two pairs of computational tasks concurrently on a single core, as pairs of two software 
threads, and later their multiples (2, 4, 8, 16 pairs). Thus, the core resources are shared by at least two 
threads running concurrently. This core architecture by default allows one-to-one threads to core 
mapping. This running scheme of having multiple threads assigned to run on the core with the same 
scheduling policy and priorities added substantially to the workload. 

Each process scheduled two tasks as software threads which ran concurrently and performed 
different computations. The computational tasks consist of sorting and matrix operations. The sorting 
algorithms (selection and quick sort) were executed on a single core with multiple threads 
configurations (two to thirty-two) and datasets of 32-bit integers of size 102 to 106 (100 to 1 M) 
elements. Similarly, were executed matrix operations (addition and multiplication) with data sets 
based on 512, 1024, 2048, 4096, 8192 arrays of short integers.  

The experiments were executed multiple times, approximately for a few thousands iterations, in 
order to obtain sufficient number of values for averages estimation. Table 1 presents the results 
obtained for the execution times for selection and quicksort algorithms for a variety of datasets and 
threads configurations. 

Table 1. Selection sort and quicksort execution times. 

Threads Sort Alg 

Datasets (of 32-bit integers)    

102 103 104 105 106    

Execution Time (ms) avg mean ratio 

2 
Selection 0.25 0.45 1.52 2.56 5.90 2.136 

1.83 - 
Quick 0.18 0.30 1.09 1.79 4.30 1.532 

4 
Selection 0.22 0.37 1.27 2.12 5.25 1.846 

1.67 -9% 
Quick 0.17 0.31 1.10 1.67 4.20 1.490 

8 
Selection 0.20 0.29 1.10 1.98 4.97 1.708 

1.58 -14% 
Quick 0.18 0.32 1.12 1.56 4.11 1.458 

16 
Selection 0.17 0.25 1.02 1.88 4.56 1.576 

1.48 -19% 
Quick 0.17 0.29 1.01 1.45 3.97 1.378 

32 
Selection 0.16 0.23 0.97 1.82 4.48 1.532 

1.44 -22% 
Quick 0.15 0.25 1.00 1.43 3.87 1.340 
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The results show at first the differences in structure and complexity of each sorting algorithm. 
The quicksort is relatively more complex algorithm, however, it was faster than the selection sort. 
E.g., for a 1000 of iterations the selection sort requires O(n2) or about 1000000 operations where 
quicksort requires only about 10000. In all cases, the quicksort algorithm achieved lower execution 
times than selection sort. 

As it is depicted in Figure 8, the results indicate that regarding the execution time data sorting 
takes shorter time as the number of threads increased. The increase in the number of threads indeed 
resulted in lower execution times, but execution did not become substantially more efficient. The 
ratio of the execution time on a single core with thirty-two threads to that on two threads is lower by 
approximately 22%, in all cases of sorting operations. 

 
Figure 8. Sorting operations execution times. 

Table 2 presents the results for the execution times for matrix additions and multiplications for 
a variety of datasets and threads. 

Table 2. Matrix addition and multiplication execution times. 

Threads Matrix 

Matrices (size of short integers)    

512 1024 2048 4096 8192    

Execution Time (ms) avg mean ratio 

2 
Addition 0.02 0.04 0.09 0.20 0.32 0.134 

0.20 - 
Multiplication 0.05 0.09 0.21 0.29 0.67 0.262 

4 
Addition 0.02 0.03 0.07 0.20 0.31 0.126 

0.19 -2% 
Multiplication 0.04 0.11 0.22 0.29 0.65 0.262 

8 
Addition 0.04 0.05 0.06 0.21 0.34 0.140 

0.21 7% 
Multiplication 0.06 0.13 0.24 0.32 0.66 0.282 

16 
Addition 0.05 0.07 0.09 0.25 0.38 0.168 

0.24 20% 
Multiplication 0.08 0.15 0.26 0.35 0.69 0.306 

32 
Addition 0.07 0.10 0.11 0.29 0.44 0.202 

0.28 41% 
Multiplication 0.12 0.20 0.31 0.40 0.75 0.356 

The multiplication of matrices even with a few thousands of elements is a heavy loaded function. 
Such a workload can impact the execution of the threads running concurrently on the same core. 
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Regarding the core’s execution performance with multiple threads, the results produced are 
illustrated in Figure 9. As it is evident, there is a tendency of increase on execution times for all matrix 
operations, as the number of threads increased. This is quite evident in the case of thirty-two threads 
combination. The ratio of the execution time on a single core with thirty-two threads to that on two 
threads is higher by approximately 41%, in all cases of matrix operations. Although the computations’ 
workload was distributed equally across all the threads, however, the threads execution suffered 
from heavy contention for the same shared core resources by multiple threads. 

 

Figure 9. Matrix operations execution times. 

Table 3 presents the averages of execution times, threads waiting times and response times for 
both sorting and matrix operations. These are illustrated in Figure 10. 

Table 3. Average execution times, threads waiting times and response times. 

T
h
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a

d
s Average execution time (ms) Average threads waiting time 

(ms) 

Average response time (ms) 

Sorting 
ops 

Matrix 
ops 

mean ratio Sorting 
ops 

Matrix 
ops 

mean ratio Sorting 
ops 

Matrix 
ops 

mean ratio 

2 1.834 0.198 1.016 - 0.877 0.041 0.459 - 0.454 0.024 0.239 - 

4 1.668 0.194 0.931 -8% 0.686 0.052 0.369 -20% 0.470 0.015 0.243 1% 

8 1.583 0.211 0.897 -12% 0.824 0.046 0.435 -5% 0.512 0.023 0.268 12% 

16 1.477 0.237 0.857 -16% 0.765 0.060 0.413 -10% 0.531 0.010 0.271 13% 

32 1.436 0.279 0.858 -16% 0.785 0.072 0.429 -7% 0.560 0.022 0.291 22% 
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Figure 10. Sorting and matrix operations timing metrics. 

As the number of threads increases up to thirty-two the average execution time decreases up to 
16%, the average threads waiting time decreases up to 7%, while the average first response time 
increases up to 22% for all operations. The overall results show the minimum response time to be at 
an average value of 239 μs (case of two threads), and the maximum worst-case response (latency) to 
be at an average value of 291 μs (case of thirty-two threads). Therefore, a value of about 300 μs, as an 
upper bound, could be an acceptable safety margin for such applications in most real-time systems. 
These are illustrated in Figure 11. It is obvious that multiple pairs of threads, particularly in the case 
of thirty-two threads, led to further contention for execution resources, resulting in greater delays of 
the first response. 
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Figure 11. Ratio of execution, threads waiting and response times. 

4.3. Comparative Performance Measurements 

An interesting question could be how the Raspberry Pi4 and BeagleBone AI SBCs behave upon 
the execution of such a software module. For comparison purposes, the same application module 
was imported and executed on these two single board computers. Although all the devices, including 
the tower system (TWR-K70F120M platform) have embedded microcontrollers which are based on 
ARM processors and run versions of Linux distributions, however, are quite different on architecture 
and other specifications. Therefore, it is hard to provide generic performance conclusions. The 
intention was to reconfirm that the results obtained with the TWR platform are equally acceptable 
and comparable, rather than providing a fair comparison, since the hardware architectures and OS 
kernel versions are quite different. 

The RPi4 and BBAI are a 4-core and 2-core devices respectively. Since none of these cores 
supports simultaneous multithreading, each core can only run one hardware thread at a time. 
However, each core can switch between several (software) threads of the running application. For 
this reason, in order to make the comparisons more fair and reliable, both the RPi4 and BBAI, a 4-
core and 2-core devices respectively, were forced to use only a single core, as the TWR is based upon 
a single core processor. That is the affinity was set only to a single core (core 0).  

Table 4 provides the results obtained running the application for sorting and matrix operations 
on those platforms, and Table 5 provides a summary of the average values for both operations. 

Table 4. Timing metrics results for sorting and matrix operations on different platforms. 

Platform Linux 
Kernel 

Threads Average execution time 
(ms) 

Average threads waiting 
time (ms) 

Average response time 
(ms) 

   Sorting ops Matrix 
ops 

Sorting ops Matrix 
ops 

Sorting ops Matrix 
ops 

TWR 2.6 
2 

1.834 0.198 0.877 0.041 0.454 0.024 
RPi4 4.14 3.12 0.23 1.3 0.8 0.9 0.008 
BBAI 4.14 2.79 0.2 0.9 0.7 0.5 0.007 
TWR 2.6 

4 
1.668 0.194 0.686 0.052 0.470 0.015 

RPi4 4.14 2.89 0.17 1.2 0.6 0.8 0.006 
BBAI 4.14 2.36 0.19 0.6 0.5 0.5 0.007 
TWR 2.6 

8 
1.583 0.237 0.824 0.046 0.512 0.023 

RPi4 4.14 2.5 0.14 1.2 0.7 0.7 0.005 
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BBAI 4.14 2.08 0.18 0.5 0.5 0.4 0.006 
TWR 2.6 

16 
1.477 0.237 0.765 0.060 0.531 0.010 

RPi4 4.14 2.39 0.12 1.1 0.6 0.6 0.004 
BBAI 4.14 1.98 0.16 0.3 0,4 0.5 0.006 
TWR 2.6 

32 
1.436 0.279 0.785 0.072 0.560 0.022 

RPi4 4.14 2.3 0.11 1.1 0.7 0.7 0.005 
BBAI 4.14 1.87 0.15 0.3 0.5 0.6 0.006 

Table 5. Summary of average values on timing metrics on different platforms. 

Platform Threads 

Average 
execution 
time (ms) 

Average 
threads 

waiting time 
(ms) 

Average 
response 
time (ms) 

TWR 
2 

1.016 0.459 0.239 
RPi4 1.675 1.050 0.454 
BBAI 1.495 0.800 0.254 
TWR 

4 
0.931 0.369 0.243 

RPi4 1.530 0.900 0.403 
BBAI 1.275 0.550 0.254 
TWR 

8 
0.897 0.435 0.268 

RPi4 1.320 0.950 0.353 
BBAI 1.130 0.500 0.203 
TWR 

16 
0.857 0.413 0.271 

RPi4 1.255 0.850 0.302 
BBAI 1.070 0.350 0.253 
TWR 

32 
0.858 0.429 0.291 

RPi4 1.205 0.900 0.353 
BBAI 1.010 0.400 0.303 

In general the results show that the TWR performs relatively well compared to the other 
platforms. The performance of the multithreaded application running at the TWR platform was 
comparable to that running at the RPi4 and BBAI, particularly in terms of execution times. The 
execution times in the TWR platform were quite lower than those on the other platforms, by 
approximately 56% in the case of two threads, and by 29% in the case of thirty-two threads. As 
illustrated in Figure 12, the TWR performed better as the number of threads remained small. This 
was expected to some extent due to the single core architecture, optimized to run more efficiently 
with smaller amount of threads. The threads waiting time and response time were also well 
comparable. The outcome is that overall, the TWR platform is indeed reliable in handling efficiently 
the execution of the multithreaded application. 
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Figure 12. Comparison of average values of timing metrics on different platforms. 

4.4. Benchmarking 

The wolfSSL Incorporation has investigated the performance of the TWR-K70F120M platform 
using its in-house application wolfSSL package. This package includes a wolfCrypt benchmark 
application. Because the underlying cryptography is a very performance-critical aspect of SSL/TLS, 
this benchmark application runs performance tests on wolfCrypt’s algorithms. The performance of 
the TWR-K70F120M platform was determined under the MQX RTOS and using the fastmath library 
and CodeWarrior 10.2 IDE. 

In our research we applied the same benchmark, however under μClinux and using the fastmath 
library and CodeWarrior 11.1 IDE for the build. Typical results output shows the time it took to run 
each benchmark (duration in secs) and the throughput in MB/s. These are summarized in Table 6. As 
illustrated in Figure 13, the results obtained under μClinux are very close to those under MQX RTOS 
regarding the duration and throughput. This reconfirms the optimum performance of the TWR under 
μClinux OS. 

Table 6. wolfCrypt Benchmarking summary of results for the TWR-K70F120M. 

wolfCrypt 
Benchmark 

OS Duration 
(sec) 

Throughput 
(MB/s) 

AES 5120 kB 
MQX 9.059 0.55 

μClinux 10.120 0.49 

ARC4 5120 kB 
MQX 2.190 2.28 

μClinux 2.201 2.27 

DES 5120 kB 
MQX 18.453 0.27 

μClinux 19.897 0.25 

MD5 5120 kB 
MQX 1.396 3.58 

μClinux 1.411 3.54 

SHA 5120 kB 
MQX 3.635 1.38 

μClinux 3.712 1.35 

SHA-256 5120 kB 
MQX 9.145 0.55 

μClinux 9.356 0.53 
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Figure 13. wolfCrypt Benchmarking results for the TWR-K70F120M under MQX and μClinux. 

5. Discussion 

The experiments ran efficiently for a few thousands iterations on the NXP TWR-K70F120M 
board, for a variety of datasets and threads configurations with equally distributed computational 
workload. The resources of the single Cortex-M4 core were shared concurrently by multiple threads 
having the same real-time scheduling policy attributes and priorities. The computations consisting of 
sorting and matrix operations were sufficient as workload. In addition, the differences in structure 
and complexity of sorting algorithms, as well the intensive matrix operations have contributed 
towards a comprehensive view of the execution behavior of the device under investigation. 

The running scheme applied gradually increased the number of threads involved in execution 
of the tasks. This added substantially to the contention of the threads for the core’s shared execution 
resources. This impact became quite obvious in matrix operations, resulting to an increase in average 
execution times. The ratio of the execution time on a single core with thirty-two threads to that on 
two threads was higher by approximately 41%, in all cases of matrix operations. On the other hand, 
in sorting operations the increase in the number of threads indeed resulted in lower execution times, 
however execution did not become substantially more efficient. The ratio of the execution time on a 
single core with thirty-two threads to that on two threads was lower by approximately 22%, in all 
cases of sorting operations. 

As a general outcome, for both operations is that the average of execution time decreased, as the 
number of threads increased. In the case of thirty-two threads the average execution time decreased 
up to 16%, the average threads waiting time decreased up to 7%, while the average first response 
time increased up to 22% for all operations. Taking into consideration that the average execution time 
decreased up to 16%, the increase on the initial first response time by 22% shows that the threads 
gradually performed better despite the contention for shared execution resources, particularly at the 
first rounds of executions. 

Another important metric is the maximum worst-case response (latency). This was shown to be 
at an average value of 291 μs (case of thirty-two threads), and 239 μs (case of two threads). Therefore, 
a value of about 300 μs, as an upper bound, could be an acceptable safety margin for such applications 
in most real-time systems. 

The comparative results with RPi4 and BBAI showed that the TWR-K70F120M performed 
relatively well compared to these platforms, particularly in terms of execution times. Actually, the 
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execution times in the TWR were quite lower than the other devices, by approximately 56% in the 
case of two threads, and by 29% in the case of thirty-two threads. In general, the TWR performed 
better as the number of threads remained small. This was expected to some extent due to the TWR’s 
single core architecture, optimized to run more efficiently with smaller amount of threads. The 
threads waiting time and response time were also well comparable.  

The application of wolfCrypt benchmark on the TWR-K70F120M platform under μClinux, 
regarding its duration and throughput, has also reconfirmed the appropriate performance of the 
tower. Overall, the TWR platform is indeed reliable in handling efficiently the execution of 
applications with multiple threads and real-time features. 

6. Conclusions 

In this paper it was shown that the TWR-K70F120M platform is reliable in handling efficiently 
the execution of multithreaded applications with real-time attributes. This was documented 
primarily through experimental runs of a custom-built software application which generated and 
scheduled for execution multiple pairs of threads of equal workload, and with the same real-time 
policy. This application takes measurements on timing metrics, including task’s execution time, 
threads waiting time and first response time. As it was investigated, to the best of our knowledge 
such information on timing performance metrics for this board are not available in the literature. 

Comparative results on the other two favorite platforms, a Raspberry Pi4 and a BeagleBone AI, 
have also reconfirmed its efficient operation. Actually, the execution times in the TWR-K70F120M 
platform were quite lower than the others, by approximately 56% in the case of two threads, and by 
29% in the case of thirty-two threads. In addition, wolfCrypt benchmark under μClinux, regarding 
its duration and throughput, has also reconfirmed its appropriate performance. 

It is also important to state that the same application module and performance measurement 
methodology could be applied to other Linux-based systems and platforms. Research is already 
undertaken into the implementation of this device in the automation and control of machines for 
concrete products. The outcome of such real case studies will provide valuable feedback for further 
future research. 
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