Pre prints.org

Article Not peer-reviewed version

Advancing Pig Welfare
Assessment: Introducing the
SSPD-PER Method for Objective
and Reliable Pig Emotion
Recognition

Jung Hwan Kim, Savina Jassica Colaco , Alwin Poulose , Suresh Neethirajan *, Dong.Seog Han *

Posted Date: 21 July 2023
doi: 10.20944/preprints202307.1510.v1

Keywords: Pig emotion recognition (PER); convolution neural network (CNN); Xception; ResNet; deep neural
network; domestic livestock; pigs

E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of

Elﬁ-* Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/1438379
https://sciprofiles.com/profile/2858211
https://sciprofiles.com/profile/397331
https://sciprofiles.com/profile/88013
https://sciprofiles.com/profile/135045

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 July 2023 do0i:10.20944/preprints202307.1510.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Advancing Pig Welfare Assessment: Introducing the
SSPD-PER Method for Objective and Reliable Pig
Emotion Recognition

10 Suresh Neethirajan®

Jung Hwan Kim!®, Alwin Poulose2?(?, Savina Jassica Colaco
and Dong Seog Han 1*

1 School of Electronic and Electrical Engineering, Kyungpook National University, 80 Daehak-ro Buk-gu,

Daegu 41566, the Republic of Korea; jkim267@knu.ac.kr; savinacolaco@knu.ac.kr; dshan@knu.ac.kr

School of Data Science, Indian Institute of Science Education and Research, Thiruvananthapuram - 695551,
Kerala, India; alwinpoulosepalatty@iisertvm.ac.in

Farmworx Wageningen Institute, 6706, ]S Wageningen, the Netherlands; sneethir@gmail.com

* Correspondence: dshan@knu.ac.kr; Tel.: +82-53-950-6609

3

Abstract: The utilization of Pig Emotion Recognition (PER) driven by Artificial Intelligence (AI)
promises to mitigate labor costs and alleviate stress among domestic pigs, thereby minimizing the
need for consistent human intervention. Nevertheless, this research acknowledges the inherent
limitations within the raw PER datasets, which often include irrelevant porcine features, hence
impeding genuine progress in real-world evaluations. A significant proportion of PER datasets derive
from sequential pig imagery obtained from video recordings, and a common pitfall in these studies
is the unregulated shuffling of data. This lack of control can result in the overlap of data samples
between training and testing groups, thereby yielding skewed experimental evaluations. To address
these challenges, this paper introduces a novel solution in the form of the Semi-Shuffle-Pig Detector
(SSPD) for PER datasets, with the intent to facilitate a less biased experimental output. By applying
the SSPD, we can ensure that all testing data samples remain distinct from the training datasets,
and any superfluous information from raw images is systematically discarded. This optimized
method enhances the true performance of classification, providing unbiased experimental evaluations.
Notably, our approach has led to a remarkable improvement in the Isolation After Feeding (IAF)
metric by 20.2% and achieved higher accuracy in segregating IAF and Paired After Feeding (PAF)
classifications exceeding 92%. This methodology, thereby, ensures the preservation of pertinent data
within the PER system and eliminates potential biases in experimental evaluations. Consequently, it
elevates the accuracy and reliability of real-world PER applications, resulting in a tangible positive
impact on both pig welfare management and food safety standards.

Keywords: pig emotion recognition (PER); convolution neural network (CNN); Xception; ResNet;
deep neural network; domestic livestock; pigs

1. Introduction

Pork occupies a significant niche in the global diet, with countless swine bred annually as per
the United States Department of Agriculture (USDA). An omnipresent research topic in the meat
industry is pig welfare, which often comes with the onus of a considerable human workforce due
to the exhaustive nature of monitoring welfare conditions [1]. However, the prevalent demand for
enhanced pork productivity and quality underscores the need for a shift in traditional practices [2] [3].

Our paramount goal revolves around amplifying the accuracy of emotion recognition in pigs
- a pursuit carrying significant implications for animal welfare through early stress detection and
preventive measures. In response to this pressing need, the advent of the Pig Emotion Recognition
(PER) system, leveraging cutting-edge deep learning algorithms and neural networks, heralds a
transformative era in animal husbandry. The PER system serves as a viable and scalable alternative for
the farming industry, capable of detecting pig emotions without the need for human observers [4]. Its
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integration in livestock management could significantly reduce workforce expenses and time, while
outperforming human efficiency in terms of accuracy.

Breakthroughs in deep neural networks, such as Visual Geometry Group (VGG) [5], Inception
[6], ResNet [7], MobileNet [8], and Xception [9], have spurred dramatic advancements in sectors like
healthcare and traffic infrastructure [10] [11]. Now, these formidable convolution neural networks
(CNNs) are set to revolutionize automated agricultural machinery, overcoming the pitfalls of traditional
methods, such as laborious tasks and subjective judgments [12]. Prior research on facial emotion
recognition accentuates the essential role of substantial, well-preprocessed datasets for optimized
performance, even with the most advanced architectures [13] [15] [16].

However, the journey to a robust PER system requires a hefty investment of time and effort to
collate high-quality data samples. Collaboration between deep learning scientists and agricultural
research institutes often lies at the core of this data collection process. To sculpt a reliable and efficient
PER system, both an exhaustive dataset and a top-tier deep neural network are crucial. The acquisition
of a PER dataset is an indispensable first step, followed by its meticulous management for training
avant-garde neural networks, thus elevating the PER system’s performance and accuracy. Furthermore,
most datasets are extremely unbalanced. obtaining a balanced PER dataset is rare, and removing some
data samples from the major group of classification could waste the potential trainable data samples.

A thorough dataset analysis necessitates the elimination of superfluous video frames, background
pixels, and unrelated subjects to maximize neural network performance. It is vital to navigate the
challenges of sequential images, which may identically display due to limited animal mobility in
confined spaces. Random shuffling of the dataset between training and testing groups can be a
pitfall, leading to skewed experimental results and unreliable classification in real-world scenarios.
By addressing these insights and optimizing content for search engines, the potential impact of deep
neural networks on large-scale livestock management crystallizes, marking a shift towards more
efficient and reliable agricultural solutions [13].

Pig datasets obtained from animal experimental facilities, industrial pig farming facilities, and
academic research institutions often comprise unprocessed video clips with features irrelevant to pig
emotions. Moreover, these samples typically do not present the pig in an unoccupied space, given
their limited mobility. Our unique contribution lies in the strategic application of methods to a PER
dataset, particularly in the context of sequentially generated images from video clips. This partitioning
application is especially challenging due to the sequential data nature, but our semi-shuffle method
provides an effective antidote. Though shuffling sequential images and dividing them into training and
testing groups can adequately train and test the PER model, the pre-trained PER model might falter in
real-life scenarios due to shared training and testing dataset samples. This paper underscores the need
for a partition that the model has yet to encounter, better simulating real-world deployment scenarios.
The cross-validation is the method to resample the data samples for training or testing datasets [14]. It
is an applicable tool to check if the accuracy is misrepresenting in practical performance. However,
randomly shuffling the time-sequential captured images can still render almost perfect performance.
Some shuffled images share the training and testing data group and cause biased interpretation.

To mitigate this issue, we propose the Semi-Shuffling and Pig Detector (SSPD)-PER dataset,
intended to produce less biased experimental results. Our pioneering contributions to these
preprocessing techniques encompass:

¢  The SSPD-PER addresses sequentially generated images from video clips and prevents testing
sample sharing with the PER model during training, thereby enhancing objective evaluation.

e  The SSPD-PER discards a significant number of irrelevant pixels before training the Xception
model, allowing focus on the pig region in an image and training the PER model with only
pertinent information.

e  The Xception architecture, known for its lightweight design and competitive results, can be
trained with the SSPD-PER dataset, potentially outperforming existing simple-CNN architectures
[13].
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Implementing the SSPD-PER resulted in improved accuracy in the isolation-after-feeding class
and revealed the true fl-score, indicating the need for further dataset classification management.
Collectively, our proposed preprocessing techniques, coupled with the Xception architecture, pave the
path for a more accurate and reliable PER model in real-world applications.

The rest of the paper is organized as follows. Section 2 compares with other pig-related approaches.
Section 3 explains our proposed preprocessing techniques by semi-shuffling techniques and pig
detector before training the Xception architecture. Section 4 has the experimental results. Section 5
shows discussion. Finally, Section 6 summarizes our proposed methods.

2. Related Work

A notable body of research within the realm of pig welfare underscores the confluence of various
aspects such as pig weight, pig tag number identification, symptoms of stress, and social status. Such
contributions offer a vantage point into the wellbeing of pigs, serving as a cornerstone in improving
their living conditions. Critical engagement with these research findings propels the discourse on pig
welfare, enabling a better understanding of the emotional states of these animals, an underappreciated
yet pivotal area of study.

Recent work elucidates the nuanced interplay of social dynamics among pigs, spotlighting the
quintessential role of comprehending these interactions in gauging overall pig welfare [17]. Discomfort
and stress are immediate by-products of surgical procedures, notably the castration of male pigs,
demanding immediate attention for welfare improvement [18] [19]. With a pivot towards technology,
implantable telemetric devices have emerged as instrumental tools to monitor pig emotions by
tracking heart rate, blood pressure, and receptor variation [20]. The increasing attention animal
and agricultural scientists devote to understanding animal emotional expressions continues to gain
momentum. The research conducted by Lezama Garcia et al. [21] underscores the relationship between
facial expressions, combined poses, and the welfare of domestic animals such as pigs. Close inspection
of animal facial expressions and body poses can furnish invaluable insights into their emotional
states, thereby enhancing post-surgical treatment and food safety standards. Building on this premise,
innovative technologies like convolutional neural networks (CNNs) and machine learning algorithms
have been employed to detect pig curvature and estimate pig weight and emotional valence [22].
Additionally, advanced architectures such as the ResNet 50 neural network and CNN-LSTM have
been applied to detect and track pigs, measure the valence of emotional situations in pigs through
vocal frequency, and sequentially monitor and detect aggressive behaviors in pigs. [23] Neethirajan
[24] highlighted that postures of eyes, ears, and snout could help determine negative emotions in pigs
using YOLO architectures combined with RCNN. Briefer et al. [25] employed high and low frequencies
to identify negative and positive valence in pigs, using a ResNet 50 neural network, which includes
CNNs. Hansen et al. [26] showed that frontal images display the eyelid region, and heat maps provide
a deep convolutional neural network to determine if pig stress levels are increasing, thereby degrading
overall pig welfare.

Hakansson et al. [27] utilized CNN-LSTM to sequentially monitor and detect aggressive pig
behaviors, such as biting, allowing farmers to intervene before the situation worsens. Imfeld-Mueller
et al. [28] measured the high vocal frequency to measure the valence of emotional situation for pigs.
Capuani et al. [29] and applied a CNN with a extreme randomized tree (ERT) classifier to discern
positive and negative emotions in swine vocalization through machine learning. Wang et al. [30]
employed a lightweight CNN-based model for early warning in sow oestrus sound monitoring. Ocepek
et al.[31] used the YOLOv4 model, while Xu et al. [32] applied ResNet 50 for pig face recognition.
Ocepek et al. also applied the Mask R-CNN to remove irrelevant segments from pig images. However,
the pre-trained mask R-CNN does not include the pig’s classification, and the authors only trained with
533 "pig-like" images and tested with 50 "pig-like" testing samples. Their approach is unreliable for
extracting the pig segmentation as Megadetector v3, which is trained with millions of trainable samples.
Removing all irrelevant pixels is the key to standardizing our PER dataset, as our trainable model
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primarily focuses on the relevant information. Removing the complete all extraneous information
may improve the accuracy further. However, our methods significantly reduce a massive portion of
extraneous pixels before entering the model’s training procedure. The extraneous pixels account for
more than 80% of an image. Without using the Megadetector, the huge portion of extraneous pixels
will cause the model mainly focus on extraneous information and misrepresent the performance in the
end. The small portion of the extraneous pixels will not affect the model performance significantly.

Concurrent advancements, such as the application of the YOLOv4 model and Mask R-CNN, have
revolutionized pig face recognition and image processing. Notwithstanding, the pre-trained Mask
R-CNN, when tested under certain conditions, failed to include pig classification, thereby rendering the
approach unreliable for extracting pig segmentation. Removing the remained extraneous information
completely may improve the accuracy further. However, our methods significantly reduce huge
portion of extraneous pixels before entering the model’s training process. Ahn et al. [33] exploited the
tiny YOLOv4 model to view pigs from a top-view camera. Low et al. [34] tested CNN-LSTM with a
ResNet50 back-boned model for full-body pig detection from a top-view camera. Colaco et al. [35] [36]
used the PER dataset containing thermal images, instead of colored or gray-scaled images, and trained
their proposed depth-wise separable designed architecture. These studies demonstrate the wide array
of techniques employed in pig emotion recognition, emphasizing the importance of understanding
and monitoring pig welfare.

By harnessing an array of techniques in pig emotion recognition, we witness the burgeoning
importance of understanding and monitoring pig welfare. In recent years, researchers have charted
impressive progress in improving pig welfare conditions. Central to these strides are in-depth studies
focusing on pig facial expressions, body poses, social relationships, and feeding intervals. Our
proposed recognition system seeks to continue this trend, aiming to improve pig welfare through
accurate recognition and monitoring of pig emotions. This endeavor draws on diverse methodologies
and architectures gleaned from the extant literature. Key among these considerations is the impact of
feeding intervals and the manipulation behavior of pen mates on pig behavior [17,21-25,27,31,35,36].
Restrictive feeding can lead to increased aggression in pigs, resulting in antagonistic social behavior
when interacting with other pigs. To develop solutions and animal welfare monitoring platforms that
address aggression and tail biting, it is essential to understand the impact of feeding intervals and
manipulation behavior of pen mates. Abnormal behavior in pigs may be attributed to the redirection
of the pig’s exploitative behavior, such as the ability to interact with pen mates when grouped or kept
in isolation.By comprehending the effects of feeding intervals and access to socializing conditions on
pig behavior, we propose four specific treatments: isolation after feeding (IAF), isolation before feeding
(IBF), paired after feeding (PAF), and paired before feeding (PBF). These treatments are designed to
spotlight how different feeding and socializing conditions shape pigs’ emotions and behavior. By
unraveling the intricacies of pig behavior under varied conditions, we aim to enable researchers and
farmers to cultivate optimal environments that uphold pig welfare and mitigate negative emotional
experiences. This pursuit underscores the importance of continued research and engagement with
innovative technologies in the sphere of pig welfare.

3. SSPD-PER System

From Figure 1, PER dataset contain a collection of images or video clips used for recognizing and
categorizing pig emotions. SSPD-PER consists of a video-to-frame converter, semi-shuffling split, pig
detector, and PER system for emotion classification. The video-to-frame converter converts all given
video clips into images, and the frame rate is 10 frames per 1 second. The semi-shuffle means shuffling
the training and validating groups, but the testing data group shall not be mixed with the training nor
validating data groups. The pig detector finds the pig in the image and removes irrelevant images.
The PER system contains a deep neural network that classifies the pig’s emotions after the training.
With these major component, the SSPD-PER generates the appropriate evaluation from all sequentially
captured images from video clip.
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Figure 1. Proposed PER approach.

3.1. PER Dataset

The video clips of the PER dataset was recorded in the Department of Animal Sciences,
Wageningen University and Research, Netherlands. The PER dataset is generated by recording
video clips of pigs in various environments and situations. These classifications can indirectly interpret
the pig’s emotions as the most positive and negative emotional states. To illustrate, IBF is considered
the most stressed emotion state, while PAF is the most positive emotion. Each classification is related
to pig emotion indirectly, as these labels are usually determined based on a combination of factors,
including pig behaviors, physiological markers, and sometimes environmental conditions. The PER
dataset is used to train machine learning models, as the Xception model, to recognize and classify pig
emotions based on visual input.

The PER dataset consists of IAF, IBF, PAF, and PBF. The IAF has 153 video clips containing two
images, and the IBF has 59 clips. The PAF has 94 video clips, including one pig photo, and the PBF
includes 24 video clips. All the video clips display the pig’s behavior from 45 degrees of side and top
view. Each clip’s length ranges from 1 second to 8 minutes. The video’s resolution size varies from 620
pixels to 1,920 pixels. Neethirajan’s team previously labeled the 4 classifications. The isolation and pair
are visually distinguishable, but after and before feeding classifications are visually indistinguishable.
The total size of the video clips is 332 GB, while our computer hardware capacity is 1 TB.

The PER dataset from Figure 2 displays how the generated images from video clips are similar
to neighboring images. If an image is similar to a neighboring image, the structural similarity index
measure’s (SSIM) value displays a value more than 0.8, which is 80% similarity. But, when the two
images are different, the SSIM value displays as 0.1442, which is 14.42%. Figure 2 demonstrates how
general images are mostly similar to next images from video clips. Almost all neighboring images
are similar and will generate more than 80% of the SSIM’s value. The SSIM can remove neighboring
images when two images are similar to each other. However, our PER dataset has the nature of
sequential images, and SSIM removes a vast majority of trainable images. Besides, even after applying
the SSIM, the fully-shuffling method still mixes with groups of trainable and testing data samples,
and the model still generates biased experimental results. Therefore, semi-shuffling the PER dataset is
necessary to test with completely different testing images from training samples.
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SSIM: 1.0 SSIM: 0.1442 SSIM: 0.3426

Figure 2. SSIM algorithm evaluates the similarity of the neighboring pig’s images from PER dataset.

3.2. SSPD-PER: Semi-Shuffling System

Shuffling and splitting data samples between training and validating groups is commonly
conducted unless the obtained dataset is already divided into train and test groups. The shuffling
method randomly mixes the images before splitting them into training and testing data groups
depending on the split ratio percentage and initial random seed. As our initial data set does not
explicitly separate the training and testing datasets, we initially split them into a 90 to 10 ratio. The
split ratio of 90 to 10 potentially boosts the accuracy due to a lack of testing samples to evaluate.
Increasing up to 30% of the testing samples’ split ratio can have more testing samples and can assess
the generalization of the overall PER dataset to have a less biased evaluation. Thus, we split them into
70 to 30 percent to examine the pre-trained PER model’s robustness after generating experimental
results with the 90 to 10 percent ratio.

From Figure 3, the fully-shuffled technique means randomly mixing the data samples within the
training, validating, and testing datasets. However, sharing the training and validating data samples
with the testing data group can produce biased results. Since a pig often does not move in a pen, the
generated images are almost identical to neighboring pictures when the video clip is converted into
sequential photos. Some images from the testing dataset are almost identical to data samples from
training and validating data groups. Enabling fully-shuffling data samples in training, validating,
and testing datasets produce a biased experimental evaluation. The pre-trained PER model is already
familiar with testing images and performs well on them, a part of the training data samples. In contrast,
the model’s performance can be degraded with completely different data samples from the training
dataset.

To prevent sharing the testing data samples with the PER model, the semi-shuffling from Figure
4 initially does not mix with training and testing data groups but is only divided into training and
testing data groups. Then, the data samples from the training data group were split into training and
validation groups with random shuffling. Thus, the semi-shuffling method produces an unbiased
experimental result from testing, as the pre-trained PER model is unfamiliar with the images from the
testing dataset.
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3.3. SSPD-PER: Pig Detector

From Figure 5, the pig detector searches and locates pigs before removing the irrelevant pig pixels.
The pig detector is comprised of MegaDetector V3, an animal-detecting model trained with Caltech
camera traps (CCT) [37], SnapShot Serengeti [38], and Idaho camera traps [39]. MegaDetector [40] is
based on the structures of Inception-Resnet V2 and faster region-based convolutional neural network
(RCNN) architectures. Caltech camera traps have more than 243,100 images. SnapShot Serengeti has
more than 2.65 million, and Idaho camera traps have more than 1.5 million. Since these are large
datasets, their combined dataset can generate the reliability of the MegaDetector model.

However, from Figure 6, the initial pig detector only searches and display the bounding box
within the pig in an image rather than extracting a pig from an image. The outputs show red bounding
boxes within the pig and the percentage of animal confidence. While investigating the Megadetector
V3’s implementation, we see the tensor graph generated by loading the model from a local file path.
The default value of the threshold of the confidence percentage is 85%. Megadetector V3 only has an
animal classification. Thus, when the Megadetector V3 sees a pig in an image, it perceives the pig as
an animal.

The outputs of Megadetector V3 consist of classification, bounding box coordinates, and
confidence score. From Figure 7, instead of displaying bounding boxes, the percentage of confidence
percentages, and animal classification, we modify and implement the Megadetector V3 system after we
comprehend where the bounding box, confidence, and classification before displaying the bounding
box. Once the video frames enter our pig detector system, it calls the model to generate the tensor graph,
which contains the trained parameters of the pre-trained Megadetector V3 model. The Megadetector
V3 model produces bounding box coordinates, confidence scores, and tagged classifications. Then, it
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collects the group of box coordinates, scores of confidence, and classification based on the input image.
Finally, our pig detector practically crops and extracts pig parts in an image after locating pigs in a
snapshot. Therefore, we modified the original Megadetector V3 and exploited the outputs for our data
preprocessor as Figure 5.

IAF PAF

Pig Detector Pig Detector

IBF PBF

X

Pig Detector o~ Pig Detector

—

Figure 5. Megadetector V3 can mostly discard the unimportant background region after we modify
the original Megadetector V3 system.

MegaDetector v3

Yoy —

Figure 6. MegaDetector V3 can locate and draw the bounding box on pig regions in an image. But this

Megadetector cannot discard the insignificant background region without the modification.

Image Resizer
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Frame: 1,2,3,...n Frame: 1 Output
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Classification s
a ! B
L ’
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Load the Pre-trained Megadetector V3

Inception-ResNet V2 + Fast-RCNN

Figure 7. The structural design of Megadetector V3 demonstrates how we modify the megadetector V3
to create our pig detector.
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3.4. SSPD-PER: PER Model

After the pig detector removes the most undesirable pixels from input images, the automated
recognition classifies IAF, IBF, PAF, and PBF from preprocessed pig images. Xception architecture [9],
which stands for extreme architecture, is a deep CNN architecture that was proposed by Francois
Chollet, the creator of Keras library, in 2017. Xception is based on the principles of the Inception
architecture. Still, it modifies the structure of the Inception modules based on the hypothesis
that cross-channel correlations and spatial correlation can be mapped entirely separately. This
idea is incorporated into Xception by using depthwise separable convolutions instead of standard
convolutions, which allows for a more efficient use of model parameters. In simpler terms, Xception
treats each channel in an input separately before mixing up outputs in the next layer, leading to more
efficient learning. Therefore, we apply Xception, as our proposed architecture, to classify the pig’s
emotions. From our previous research [13], the Xception architecture shows enhanced accuracy than
VGG [5], Inception [6], and MobileNet [8]. ResNet show improved accuracy than Xception architecture,
but the Xception architecture requires fewer parameters than ResNet [7]. Our loss function to train the
Xception’s classifications is cross-entropy loss [41], and it is widely used for categorizing emotions
from pig images. The cross-entropy loss function is expressed as

E(P,P) ==} P(x;)log{P(x;)} 1)

iel

where E(P, P) is the error distance, the P as probability of a true label, and the P as probability from
the PER model’s prediction. The desired output P is generally 0 or 1, while P is a real number ranging
between 0 and 1. 7 € I means that i is a subset of the entire classifications. Once the input x image of i
class enters the PER model, the model predicts the image and produces P. The summation will display
the overall error distance from different classifications based on the input’s true label P and predicted
label P.
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Figure 8. The confusion matrix results of different approaches with PER dataset. (a) Raw image based
approach 90:10. (b) Raw image based approach 70:30. (c) Raw image with expanded numbers of dataset
(Xception). (d) Raw image with expanded of semi-shuffled dataset (Xception). (e) Fully-shuffled raw
images with 256 pixels sized and 1 FPS. (f) Semi-shuffled raw images with 256 pixels sized and 1 FPS.
(g) Semi-shuffled pig detected images with 256 pixels sized and 1 FPS.
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4. Experimental Analysis

This experimental session describes how poorly managed data samples can perfectly perform
the test without representing practical evaluation. The performance may be different from raw and
preprocessed data samples. The range of resized images from video clips is from 48 x 48 pixels to
256 x 256 pixels per image. We initially trained and tested with a 48 x 48 sized images to reduce
computation from the massive PER dataset and observe the performance. We witness that the f1-score
reached 99% even though the data sample is too small to recognize the pig emotion. Then, we expanded
the size of an image as 224 x 224 pixels and increased the 10 frames per second to collect the pig
emotion images as we presume richer information than 48 x 48. Yet, the fl-score is 98% as it is less
accurate than experimental result with 48 x 48 pixels sized images.

4.1. Experimental Conditions

From our hardware specifications, we have intel® Core(TM) i5-10600K CPU @ 4.10GHz(12 CPUs),
4.1 GHz, and our RAM size is 32 GB. Our GPU specification is NVIDIA GeForce RTX 2070 Super.
We set the epoch as 150, and the batch size is 64 due to our hardware’s capacity limitation. The
optimization is Adam [42] with a learning rate of 1073, and the activation function uses as the rectified
linear unit (ReLU) [43]. The L2-regularization [44] is 1073, and the epsilon of the Adam optimizer is
10~7. The number of patience is 50 as the training session stops when validating loss does not show
any improvement 50 times.

Wang et al. [45] suggested f1-score to evaluate the highly unbalanced dataset distribution that
affects the conventional model’s classification test. Some model evaluations could be considered
crucial for even a small number of incorrect classifications. The equations describes as follows:

TP
Pe 2
TP 1 FP @
TP
R=TprFN ©)
P xR
h=2x%7% )

where P, TP, FP, R, FN, and F, are precision, true positive, false positive, recall, false negative, and
f1-score, respectively. The precision value is produced when the true positive is divided by the true
positive, which is added by the false positive. The recall comes from the true positive value divided by
the true positive added by the false negative.

Figure 8 displays the performance of the results after training the simple CNN or Xception
architectures. The numbers after the percentage number of each tile mean how the pre-trained
architecture correctly identifies testing samples. To illustrate, from Figure 8(a), when one of the tiles
displays 16277 /16422 after the percentage number, the pre-trained architecture correctly identified
16277 out of 16422 testing samples. The percentage shows how the PER pre-trained model can
accurately classify one single classification without mistakenly classifying the wrong pig emotions.
Table | summarizes experimental results from Figs. 8(a) to 8(g)

From Figure 8(a), the simple CNN architecture is trained and tested with the unprocessed dataset
without cropping. We initially resized all the images into 48 x 48 pixels, as the original image size
is too huge to train with a vast-sized PER data set. We also wished to capture the small size of the
pig’s face in an image and inspect the result. The groups of training, validating, and testing datasets
are fully shuffled and commenced the training and testing with unprocessed pig photos. The split
ratio of training and testing was 90 to 10. As a result, the f1-score from Table I is 99.55%. From Figure
8(b), the simple CNN architecture is trained and tested with the unprocessed pig photos, and each
image is 48 x 48 pixels. The split ratio of training and testing is 70 to 30. All training, validating, and
testing data groups are fully mixed, and the fl-score from Table I is 99.5021%. From Figure 8(c), we
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increase the 10 frames per second to expand the number of samples in the PER dataset, and the size
of the input width and height of the image is expanded 224 pixels. We change from the simple CNN
architecture to Xception architecture to improve the accuracy further. The PER dataset mix all samples
within training, validating, and testing datasets so the Xception model can get familiar with the testing
samples similar to training data samples. The fl-score shows 98.45% of from Table I regardless of
expanding the size of PER dataset and choosing the best architecture.

We initially train and test with a 48 x 48 pixels sized images to reduce the unnecessary
computation due to the massive in the whole PER dataset. We witnessed that the f1-score reached
99% even though the data sample is too small to recognize the pig emotion. Then, we expanded the
size of image as 224 x 224 pixels and increased the 10 frames per second to collect the pig emotional
images. In spite of expanding the size of a image, the f1-score is 98% and reduced from our previous
experimental tests with 48 x 48 pixels sized images. The 224 x 224 pixels sized images has more rich
information than 48 x 48 pixels sized images and potentially improve the performance of the PER’s
performance.

Table I. The summary of experimental result from Figure 8.

The PER Dataset
Approach Accuracy (%) Precision (%) Recall (%) f1-Score (%) Real-time fidelity
Raw image based
approach 90:10 99.55 99.55 99.55 99.55 False
from Figure 8(a)
Raw image based
approach 70:30 99.53 99.51 99.50 99.50 False
from Figure 8(b)
Raw image with
expanded
numbers of 98.45 98.45 98.45 98.45 False
dataset (Xception)
from Figure 8(c)
Raw image with
expanded of
semi-shuffled 75.97 75.39 75.97 74.21 False
dataset (Xception)
from Figure 8(d)
Fully-shuffled
raw images with
256 pixels sized 97.83 97,84 97.83 97.83 False
and 1 FPS from
Figure 8(e)
Semi-shuffled raw
images with 256
pixels sized and 1 59.56 65.85 55.91 59.56 False
FPS from Figure
8(f)
Semi-shuffled pig
detected images
with 256 pixels 23.61 20.87 23.61 15.02 True
sized and 1 FPS
from Figure 8(g)

From Figure 8(d), after mixing the samples within training and validating datasets. On the other
hand, testing data was split but not randomly mixed with pig images from the training or validating
data group. We trained the Xception architecture with the semi-shuffled PER dataset. As a result,
the fl-score from Table I has been significantly reduced to 74.21%. Therefore, we discover that the
semi-shuffled PER dataset significantly affects the Xception architecture since the testing images are
completely different from training and validating dataset groups. From Figure 8(e), we increased the
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size of the image to 256 x 256 pixels but reduced the number of frames. We reduced the number of
frames to be captured so that the neighboring images become less identical. The f1-score is still over
97.83% from Figure 8(e) and Table I. From Figure 8(f), we disable sharing the data images from the
testing dataset, so the pre-trained Xception architecture cannot be familiar with the new data samples
from the testing dataset. After applying semi-shuffled on the PER dataset, the fl-score significantly
reduced to 59.56% from Table I.

From Figure 8(g), we apply semi-shuffle into the PER dataset and enable the pig detector before
training the Xception architecture. The fl-score from Table I shows the worst performance as 15.0215%.
Yet, our pre-trained Xception architecture has more correct samples than semi-shuffling without
enabling a pig detector. On the other hand, the IBF and PBF results showed unsatisfactory performance,
and the results from the PAF showed a minimal decrease. Some single pigs in images contain the
PAF or PBF, which causes the pre-trained model is being confused. The pig detector may not perform
perfectly, but it can refine the pig photos faster than manual preprocessing. Although the fl-score
degrades by 84.5%, we can unveil the true performance and generate unbiased experiment evaluations,
and the IAF shows 20.2% improvement from Figs. 8(f) and 8(g). From Figure 8(g), the IAF and PAF are
92.9% and 94.7% respectively. Thus, we can claim that the model can clearly distinguish the IAF and
PAF. The PAF and PBF have two pigs in an image, while IAF and IBF have only one pig in an image.
In other words, our model perceives either one or two pigs in an image and proceeds to be trained.
The classifications of before and after feeding can be improved with further research. The reason
for the low accuracy of Xception with IBF classification is that the after-feeding and before-feeding
classifications are hardly distinguishable with human eyes.

5. Discusssion

In our study, we found that sequential shuffling of training and testing data derived from video
clips may obstruct an accurate evaluation. Our experimental results elucidate the linkage between the
performance of emotion classification and the refinement process within our Semi-Shuffle Pig Detector
- Pig Emotion Recognition (SSPD-PER) system. While the classification of isolated and paired instances
becomes more discernible, the delineation between ’after’ and ‘before’ feeding remains nebulous
throughout our SSPD-PER system’s process. We recognize that the classification of Isolation After
Feeding (IAF), Isolation Before Feeding (IBF), Paired After Feeding (PAF), and Paired Before Feeding
(PBF) does not provide a direct measure of pig emotions. However, in the existing classifications, PAF
represents the most positive emotion, while IBF indicates the most negative. To advance real-time pig
welfare, further research into the reliability of pig feeding conditions is indispensable.

Concerning the practical applicability of our classifier, our primary goal is to enhance the precision
of emotion recognition in pigs. These advance holds substantial implications for animal welfare,
facilitating the identification and mitigation of stress and distress without time constraints. Moreover,
the pig husbandry industry requires production efficiency, also without time limitations. As global
pork demand increases, the conventional approach of hiring additional farmworkers may not suffice
to meet production goals. Hence, our research underscores the necessity of innovative solutions like
ours for sustainable and humane growth.

5.1. Enhancing Objectivity: The Role of Semi-Shuffling in Reducing Bias in Experimental Outcomes

The semi-shuffling technique is a method used in machine learning and statistics to reduce bias in
the results. The technique is particularly useful in situations where the data may have some inherent
order or structure that could potentially introduce bias into the analysis.

Data Shuffling: In a typical machine learning process, data is often shuffled before it’s split into
training and test sets. This is done to ensure that the model is not influenced by any potential order
in the data. For example, if you're working with a time series dataset and you don’t shuffle the data,
your model might simply learn to predict the future based on the past, which is not what you want if
you're trying to identify underlying patterns or relationships in the data.
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Semi-Shuffling: However, in some cases, completely shuffling the data might not be ideal. For
example, if you're working with time series data, completely shuffling the data would destroy the
temporal relationships in the data, which could be important for your analysis. This is where the
semi-shuffling technique comes in. Instead of completely shuffling the data, you only shuffle it within
certain windows or blocks. This allows you to maintain the overall structure of the data while still
introducing some randomness to reduce bias.

The semi-shuffling technique contributes to less biased results by ensuring that the model is not
overly influenced by any potential order or structure in the data. By introducing some randomness
into the data, the technique helps to ensure that the model is learning to identify true underlying
patterns or relationships, rather than simply memorizing the order of the data.

It's important to note that while the semi-shuffling technique can help to reduce bias, it’s not a
silver bullet. It’s just one tool in a larger toolbox of techniques for reducing bias in machine learning
and statistical analysis. Other techniques might include things like cross-validation, regularization,
and feature selection, among others.

5.2. SSPD-PER Method’s Promising Impact on Pig Well-being and the Challenges of its Real-world
Implementation

The SSPD-PER method is poised to significantly enhance pig welfare in real-world settings by
providing a more nuanced understanding of pig emotions. In leveraging deep learning technology, the
SSPD-PER can reliably detect and interpret pig emotions, thereby allowing for timely identification of
distress or discomfort in pigs. This ability not only aids in improving the animals” well-being but also
aids farmers in optimizing their livestock management practices, leading to increased productivity
and improved animal welfare standards.

Implementing the SSPD-PER method could serve as a revolutionary tool in early disease detection
and stress management, improving the pigs’ quality of life. An accurate understanding of animal
emotions could inform and influence farmers’ decisions regarding feeding times, living conditions,
and social interactions among the animals, thereby enabling more humane and considerate treatment.

However, several challenges may arise during the implementation of the SSPD-PER method
in field settings. Firstly, the quality of data inputs is paramount for the successful application of
this method. The video footage must be clear and free of environmental noise to ensure accurate
recognition of pig emotions. Achieving this quality consistently in diverse farm settings might prove
challenging due to varying lighting conditions, possible obstruction of camera view, or pig movements.

Secondly, the system’s effective integration into current farm management practices may be
another hurdle. Farmers and livestock managers would need training to understand the data generated
by the SSPD-PER method and apply it to their day-to-day decision-making. They may need to adapt
to new technology, which can take time and resources.

Lastly, there are technical considerations tied to the processing power required to run sophisticated
algorithms, the requirement of stable internet connectivity for cloud-based analysis, and the potential
for high initial setup costs. Addressing these challenges would be critical to making this advanced
technology widely accessible and effective in enhancing pig welfare across diverse farming operations.
Future research could focus on optimizing the SSPD-PER system for more seamless integration into
existing farming operations and making it more accessible for different scales of farming enterprises.

5.3. Deciphering Relevance: Criteria for Eliminating Extraneous Elements in Video Data Analysis

The criteria used for determining irrelevant video frames, extraneous background pixels, and
unrelated subjects in our study are based on multiple factors, primarily focused on the relevancy to
pig emotion recognition.

Irrelevant Video Frames: Frames were deemed irrelevant if they did not contain any information
useful for understanding pig emotions. For instance, frames where pigs are not visible, or their
emotional indicators, such as facial expressions or body postures, are obstructed or not discernible
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were classified as irrelevant. Similarly, frames where pigs are asleep or inactive might not contribute
much towards emotion recognition and thus could be categorized as irrelevant.

Extraneous Background Pixels: Pixels were deemed extraneous if they belonged to the background
or objects within the environment that do not contribute to pig emotion recognition. This includes
elements such as the pig pen structure, feeding apparatus, or any other non-pig related objects in
the frame. The goal here is to focus the machine learning algorithm’s attention on the pigs and their
emotions, minimizing noise or distraction from irrelevant elements in the environment.

Unrelated Subjects: Any object or entity within the frame that is not the pig whose emotions are
being monitored is considered an unrelated subject. This could include other animals, farm personnel,
or any moving or stationary object in the background that could potentially distract from or interfere
with the accurate recognition of pig emotions.

The criteria for determining irrelevance in each of these cases are defined based on the specific
task at hand, i.e., emotion recognition in pigs, and the unique attributes of the data, including the
specific conditions of the farm environment, the pigs’ behavior, and the quality and angle of the video
footage. These parameters can be fine-tuned and adapted as needed to suit different situations or
requirements.

5.4. Outshining Competition: Benchmarking the Xception Architecture’s Competitive Edge in Lightweight
Design

The Xception architecture, renowned for its lightweight design, has proven to be highly
competitive in various applications. By leveraging depth-wise separable convolutions, Xception
promotes efficiency and reduces computational complexity, enabling faster, more efficient training and
deployment even on less powerful hardware.

When compared to other architectures, Xception’s unique advantages come to the fore. For
example, traditional architectures like VGG and AlexNet, while powerful, are comparatively heavier,
requiring more computational resources and often leading to longer training times. On the other hand,
newer architectures like ResNet and Inception, while they do address some of these challenges, they
may not match the efficiency and compactness offered by Xception.

Furthermore, Xception’s design fundamentally differs from other models, allowing it to capture
more complex patterns. While most architectures use standard convolutions, Xception replaces
them with depth-wise separable convolutions, which allows it to capture spatial and channel-wise
information separately. This distinction enables Xception to model more complex interactions with
fewer parameters, enhancing its performance on a wide range of tasks.

However, it’s also important to mention that the choice of architecture depends on the specific
task and the available data. For tasks involving more complex data or demanding higher accuracy,
more powerful, albeit resource-intensive models like EfficientNet or Vision Transformer may be more
appropriate. Conversely, for tasks requiring real-time performance or deployment on edge devices,
lightweight models like MobileNet or Xception would be more suitable.

Looking ahead, future research could explore hybrid models that combine the strengths of various
architectures or investigate more efficient architectures using techniques like neural architecture search.
In the realm of animal emotion recognition, specifically, there is much potential for experimenting
with novel architectures that can capture temporal patterns in behavior, which is a crucial aspect of
emotion.

5.5. Translating Theory into Practice: Unveiling the Real-World Impact and Challenges of Novel Methods in
Pig Welfare Enhancement

This research is poised to fundamentally reshape the landscape of livestock welfare, specifically
regarding pigs, by employing the innovative Semi-Shuffling and Pig Detector (SSPD) method
within the Pig Emotion Recognition (PER) system. The practical implications are far-reaching and
multidimensional.
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Foremost, the enhanced accuracy in recognizing and interpreting pig emotions, enabled by the
SSPD-PER method, lays a solid foundation for improved pig welfare. By more accurately interpreting
pig emotions, farmers and animal welfare specialists will be able to better identify signs of distress,
pain, or discomfort in pigs. This early detection and intervention can prevent chronic stress and its
related health issues, leading to better physical health and quality of life for the animals.

In addition, by understanding the emotional states of pigs, we can create more harmonious living
environments that cater to their emotional and social needs, thus reducing the likelihood of aggressive
behavior and fostering healthier social dynamics. This not only improves the animals” overall welfare
but also potentially increases productivity within the industry, as stress and poor health can negatively
impact growth and reproduction.

Implementing the SSPD-PER method does, however, present potential challenges. One such
challenge is the need for substantial investment in technology, infrastructure, and training. As the
SSPD-PER method employs advanced machine learning algorithms and neural networks, it requires
both the hardware capable of running these systems and personnel with the necessary technical
knowledge to operate and maintain them.

Furthermore, as with any Al-based system, there may be ethical considerations and regulatory
requirements to be met. Transparency in how data is collected, stored, and utilized will be essential,
and safeguards should be in place to ensure privacy and ethical use of the technology.

Lastly, while the SSPD-PER system has shown promise in research settings, real-world
applications often present unforeseen challenges, such as environmental variations, diverse pig
behaviors, and operational difficulties in larger scale farms. Continuous refinement and optimization
of the SSPD-PER method will be crucial in navigating these potential issues and ensuring its successful
implementation in the field. While challenges are inherent in any new technology deployment, the
potential benefits to pig welfare, agricultural efficiency, and productivity offered by the SSPD-PER
method merit careful consideration and exploration.

6. Conclusion

In closing, our research underscores the substantial impact of incorporating semi-shuffles and
pig detection in enhancing the performance of pig emotion recognition (PER) systems, bringing the
true classification capabilities into sharp relief. A cornerstone in building a resilient PER system
hinge on the meticulous examination of each data sample by researchers specializing in pig behavior,
ensuring that pig images are devoid of extraneous content or inaccuracies in labeling. Utilizing
suboptimal strategies in handling the PER dataset can precipitate skewed outcomes, with falsely
ideal performances often deceiving researchers. Despite the observed dip in performance between
after-feeding and before-feeding conditions, our system showcased substantial advancements in
classifying Isolation After Feeding (IAF) and Paired After Feeding (PAF) categories. These insights
shed light on the arenas that necessitate further exploration and meticulous management.

Looking ahead, the adoption of these methodologies to other livestock species, such as cattle
and poultry, presents an intriguing avenue for future research. It may necessitate the tailoring of our
current techniques to account for unique behaviors and emotional cues specific to different animal
species. Furthermore, advancements in machine learning and artificial intelligence can be leveraged
to refine the PER system’s accuracy, offering potential areas of exploration in the broader field of
animal emotion recognition. The cardinal aim of our experimental findings is to unveil misrepresented
evaluations, thereby underscoring the indispensability of accurate preprocessing of pig related datasets.
In this way, we hope to facilitate a shift in understanding, from misconceptions to a more nuanced
view of the realities in animal emotion recognition research.
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