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Abstract: The study of photonic crystals has emerged as an attractive area of research in nanoscience
in the last years. In this work we study the properties of a two-dimensional photonic crystal composed
of dielectric rods. The unit cell of the system is composed of six rods organized on the sites of a Cg
triangular lattice. We induce a topological phase by introducing an angular perturbation ¢ in the
pristine system. The topology of the system is then determined by using the so-called k.p perturbed
model. Our results show that the system presents a topological and a trivial phases, depending
on the sign of the angular perturbation ¢. The topological character of the system is probed by
evaluating the electromagnetic energy density and analyzing its distribution in the real space, in
particular on the maximal Wyckoff points. We also find two edge modes at the interface between
the trivial and topological photonic crystals, which present a pseudospin topological behavior. By
applying the Bulk-Edge correspondence, we study the pseudospin edge modes and conclude that
they are robust against defects, disorder and reflection. Moreover, the localization of the edge modes
leads to the confinement of light and the interface behaves as a waveguide for the propagation of
electromagnetic waves. Finally, we show that the two edge modes present energy flux propagating in
opposite directions, which is the photonic analogue of the quantum spin Hall effect.

Keywords: topological photonic crystal; edge states; Cs symmetry group; electromagnetic density
energy

1. Introduction

Photonic crystals (PCs) are systems whose electromagnetic features periodically modulate in the
real space [1]. In particular, two-dimensional (2D) photonic crystals can present topological behavior
by introducing a perturbation in the Hamiltonian of the system in order to obtain a non-zero Chern
number [2,3]. 2D topological photonic crystals are currently in the scientific limelight not only for
possessing tremendous technological potential but also for having opened several avenues of basic
science exploration [4-11]. It is known that when the photonic crystal is in a nontrivial topological
phase interesting phenomena can emerge. We can highlight photonic analogies of the quantum Hall
effect [12,13], higher-order topological photonic crystals [14-16], and the quantum valley Hall effect
[17-20].

It is known from the literature that phononic crystals in a triangular lattice, with Cg point
symmetry group, present a doubly degenerate Dirac cone at the I' point of the Brillouin zone. Moreover,
the degenerate bands present p— and d— waves orbitals in the band structure of the transverse
magnetic (TM) polarization [21,22]. However, if a perturbation is introduced in the crystal the double
degenerescence is broken and a complete topological bandgap is opened in the band structure [23]. In
addition, the edge-bulk correspondence guarantees that edge states will emerge inside the bandgap
and they will be protected by the topology [24,25]. Then, the topological protection ensures that the
edge states are localized and they are robust against defects, disorder and reflection [26,27].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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In this work we investigate the propagation of electromagnetic waves, band structure and
topological features of a two-dimensional topological photonic crystal composed of six dielectric
cusped-oval-shaped (COS) rods. We induce a bandgap in the system by introducing a perturbation in
the rods’ orientation angle, lifting the double degeneracy at the I' point of the Brillouin zone. In the
following, we will show that two edge modes emerge in the induced bandgap. This paper is organized
as follows. In section 2 we introduce our system and explore its features. In section 3 we introduce the
perturbation and study the topological behavior associated with positive and negative perturbations.
In section 4 we study the emergence of edge states around the interface between the topological and
trivial photonic crystals. The robustness of the edge states is addressed in section 5. Finally, in section
6 we give concluding remarks about this work.

2. The Photonic System

Consider a triangular lattice with six dielectric rods (¢ = 13) per site surrounded by air. The unit
cell is composed of dielectric COS rods, with a = 1um, as we can see in Figure 1. The COS rods are
built taking into account two cylindrical rods of radius r = 0.17a, which are shifted by a distance
d = £a/15. Then, we consider the intersection area between the shifted cylindrical rods. Finally, the
COS rods are placed in their locations which are distant R = a/3 from the unit cell’s center (see Figure
1), in order to obtain a 2D system with Cg symmetry point group.

a,

Figure 1. Schematic illustration of the unit cell of the unperturbed PC composed of six COS Si rods
surrounded by air. Here ay = a/ V3, R = a/3 is the distance from the center of the unit cell to the
center of the rods, r = 0.17a is the radius of the original cylindrical rods, and d = a/15 is the shift of
the original rods.

Each individual COS rod in the unit cell can be rotated around its respective center by the
orientation angle ®;, as illustrated in Figure 1. The rods present an anisotropic angular orientation
which can vary spatially. Therefore, we may expect that an angular perturbation will lead the system
to undergoes topological phase transitions from trivial to nontrivial domain [28]. A perturbation ¢ is
introduced in the orientation angle ®;, so that we can write the orientation angle of the i-th COS rod as

@i:(Zi—l)%+¢o+¢. 1)

Here, i = 1,2, .., 6 is the rod index, ¢y is the initial unperturbed angle and ¢ is the angular perturbation
introduced in our system. We remark that, because of the symmetry, the perturbation ¢ has a period
7t, which means that the ¢ and ¢ + 77 induce the same topological behavior in the system. Here we
assume ¢y = 7t/4 (see Figure 2(a)).

It is well known from the literature that triangular lattices with six “artificial atoms” have two 2D
irreducible representations in the C4 point symmetry group, which are associated with the symmetry
of the triangular lattice [29]. As a consequence, a doubly degenerate Dirac cone appears at the Brillouin
zone center [30]. The degenerate bands are pseudospin states which are related to px (py) and dyy
(d,2_,p) orbitals, corresponding to odd and even parity in the real space, respectively [21]. The
pseudospin states can be written as [28]
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1 .
pt+ = ﬁ(r’x +ipy) 2)
and
1 .
di = ﬁ(dx27y2 :l: ldxy) (3)

Considering the unperturbed photonic crystal (¢ = 0), we calculate the band structure for the
TM modes (E;, Hy, H, # 0) using the COMSOL Multiphysics software [31] which is based on the
finite element method (FEM). The band structure is shown in Figure 2(a). We can observe a doubly
degenerate Dirac cone, at the I point, between the second and fifth bands, which is a consequence of
the Cg symmetry group of the system.
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Figure 2. Results for the unperturbed photonic crystal. (a) Band structure for the TM modes with
e=13,a = 1uym,r = 0.17a,d = a/15, ¢9 = m/4, and ¢ = 0. A doubly degenerate Dirac point is
located at the T’ point with wa/(27t¢c) = 0.437. (b) Profile of E; at the Dirac point. We can see that the
orbitals are dipole modes (px and py), and quadrupole modes (dxy and d,2_2).

In Figure 2(b) we plot the electric field along the z direction (E;), at the Dirac point, with
wa/(2mc) = 0.437. We found four states that are related to dipole and quadrupole modes. More
specifically, px and p, orbitals are dipole modes, while d,, and d,>_,» orbitals are quadrupole modes.
In the next section we introduce a nonzero perturbation in order to lift the doubly degenerescence and
induce a complete photonic bandgap in the band structure.

3. Topological Phase Transition

In section 2 we have found a doubly degenerate Dirac cone at the I' point, as well as, orbitals
p-like and d-like which are associated to the degenerate bands. Let us now study the consequences of
considering a nonzero perturbation ¢ in the rods’ orientation angle. In order to illustrate the effects of
the angular perturbation, we evaluate wa/ (27tc) vs ¢ for the second, third, fourth, and fifth bands, as
we can see in Figure 3. We can observe that as | ¢ | increases from 0, the bandgap width monotonically
increases reaching its maximum at ¢ = —m/4 and ¢ = 71/4. On the contrary, as | ¢ | increases from
¢ = —m/4 and ¢ = 71/4, the bandgap width monotonically decreases until the doubly degenerate
Dirac cone is recovered at ¢ = —r/2 and ¢ = 71/2. This is a consequence, as mentioned before, that
the angular perturbation ¢ has a period 7.
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Figure 3. Effect of the angular perturbation ¢ on the TM band structure at the I' point. It is possible to
observe that the double degeneracy is lifted when we introduce a nonzero perturbation ¢ (see the main
text).

We next illustrate the opening of the bandgap in the band structure for two values of ¢, one
positive and other negative. Figure 4 shows the band structure corresponding to ¢ = —m/4 and
¢ = 1/4. The perturbation opens a gap between wa/(27t¢) = 0.432 and wa/(27tc) = 0.4408, for
the positive case, and between wa/(27tc) = 0.431 and wa/(27tc) = 0.4415, for the negative case,
corresponding to a gap—midgap ratio [1] of Aw/w;, = 0.0202 and Aw /w;, = 0.0241, respectively. One
can observe that a complete bandgap is opened for both cases. Note that once the bandgap is opened,
edge states can appear inside the gap as we will see later in this paper.
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Figure 4. Results for the perturbed photonic crystal. Band structure of the TM modes with ¢ = 13,
a=1um,R=a/3,r =0.17a,and d = a/15, for (a) the negative case (¢ = —7t/4) and (b) the positive
case (¢ = 71/4), respectively. The bandgap is highlighted by the yellow area.

In order to study the topological behavior close to the I' point, we can write an effective
Hamiltonian by using the k.p perturbed model from which we can obtain the Chern number [32-34]

Ct = :I:%[sign(B) + sign(M)]. 4)

Here B is the diagonal term of the effective Hamiltonian close to the I' point which is essentially
negative. Also, M = (wy; — wy)/2, where w; and w) are the eigenmodes of orbit d and orbit p,
respectively [35]. The eigenmode wy, is related to the double degenerate dipole states of p4, while wy
is related to the double degenerate quadrupole states of d- [32]. If wp < Wy then M > 0,hence C+ =0
and the photonic crystal is topologically trivial. However, if w, > w, then M < 0, hence Cy+ = +1
and the photonic crystal is in a topological phase. Therefore, the inversion of the bands between the
degenerate modes at the I' point leads to the topological phase transition [36].
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For this work we consider the inversion of the bands that occurs between ¢ = —7t/4and ¢ = /4
for the degenerate modes, as shown in Figure 5. We can observe that for the positive case the frequency
of the dipole modes is lower than the frequency of the quadrupole modes, while for the negative case
the frequency of the dipole modes is higher than the frequency of the quadrupole modes. Therefore,
for ¢ = m/4 we obtain C+ = 0, which corresponds to a trivial photonic crystal, and for the case
¢ = —mt/4 we obtain C4+ = =£1, which corresponds to a topological photonic crystal.

Max

Figure 5. Topological phase transition diagram. Profile of the electric field E, of the degenerate bands.
There is an inversion of the bands between ¢ = —71/4 and ¢ = /4. The left side represents the
topological case, and the right side represents the trivial case. The topological phase transition occurs
when ¢ = 0.

We can obtain important information about the topological behavior of the photonic bands from
the electromagnetic (EM) energy density distribution in the real space. The general idea is that the
EM energy density has peaks that are shifted towards the maximal localized Wyckoff points (WP) at
which the Wannier functions (WF) of the system are centered. This is a consequence of the relationship
between the Wilson-loop (WL) operator and the maximally-localized WE. The spectrum of the WL
operator is a useful method for characterizing the topological phases of physical systems. First, we
write the WL operator as a path-ordered exponential of the Barry fase which is defined by [37]

Wan (1) = Pe i Amn1)41, ®)

Here P is the path ordering operator, and A, is the Berry connection for m = n. Second, it is known
from the literature that there is a connection between the WL operator and the WFE. The WF, which are
defined as a Fourier transformation of the Bloch states, can be written as [38]

wir (1) /BZ e kR Z U}]('ll)jk(f)- (6)
j

Here U}]‘» denotes the mixing matrix, which represents the mixing of the Bloch modes in the reciprocal
space.

When we take into account the maximally-localized WF, the mixing matrix takes values to
minimize the delocalization of the wave function according to the eigenvalue of the WL operator
[39]. The sum of the phases of the operator’s eigenvalues provides a straight line in the Brillouin
zone that corresponds to the expectation value of the projected position operator calculated over the
maximally-localized WF [40]. For trivial systems, the WL spectrum does not present winds and the
Chern number is zero. Moreover, the maximally-localized Wannier functions are exponentially localized
in specific points of the real space. On the other hand, for topological systems the WL eigenvalues
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present winds and the maximally-localized WFs are not exponentially localized, but polynomially
localized in the real space between consecutive unit cells [38]. Therefore, we can identify different
topological phases by looking for the positions of the maxima of the WF in the real space.

As mentioned before, the peaks of the EM energy density are shifted towards the maximal
localized WP at which the WF are centered. Therefore, the EM density energy can be a useful tool
to probe the topological features of the system. We can obtain the EM energy density from the local
density of states for a set of connected bands A and considering the TM polarization as [38]

6
n = — dke E 2, 7
AT = g Ly, elo) [ B @)
Here S is the area of the unit cell in the real space and Ey, (r) is the electric field of the n-th band. It
is possible to find the total EM energy density by summing all sets of bands, i.e., n(r) = Y5 na(r).

Moreover, the total energy density is written in terms of the electromagnetic field WEF, i.e., E, (r) [41]:

nn) = 2V Y Vel [ P ®)
A neA R
Since the WFs are linked to the WL, Eq. 8 allows us to indirectly identify the topological behavior
by calculating the EM density, and study its maximal localization in the real space, without directly
evaluating the WL [38].

For the photonic crystal considered in this work, we evaluate the EM energy density distribution
for the positive and negative perturbation cases (¢ = 71/4 and ¢ = — /4, respectively), as we can see
in Figure 6. From Eq. 7 we can notice that the energy density depends on the permeability parameter
¢(r), which assume the values ¢(r) = 1 and ¢(r) = ¢ for the background and rods, respectively. The
difference between these two values of permeability makes the intensity of the EM density in the rods
much higher than in the background. Thus, evaluating this quantity in the entire unit cell does not
result in trustful data for the EM density energy localization in the background. In order to circumvent
this problem, we separately evaluate the energy density for the rods and for the background. For the
latter case, we consider ¢ — 1 for the rods.
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Figure 6. Energy density distribution for TM modes with ¢ = 13,2 = 1um, R = a/3,r = 0.17a, and
d = a/15 for the (a) negative case (¢ = —/4), and (b) positive case (¢ = rr/4). The positions of the
maximal WP 1a, 2b and 3¢ are also illustrated.

Since the topological behavior of a bandgap can be defined as the sum of the topological behavior
of the bands below that bandgap [8], we can focus on the set of bands below the bandgap at the I' point
(see Figure 4). Figure 6 shows the EM energy density distribution in the unit cell and the maximal WP.
In particular, results in the literature show that topological phases tend to present the associated EM
energy density around the 3c WP in the edge of the unit cell [38]. From Figure 6(a) we conclude that
the first band does not contribute to the topological features of the bandgap since it has a homogeneous
energy distribution. Therefore, we can focus on the other bands below the bandgap, i.e., the second
and third bands (see Figure 4(a)). As expected, we see that the maximal EM energy density in the rods
is located in the regions around the 3c WP at the edge of the unit cell. The same behavior is observed
for the background, but with the maximum EM energy density located right on the 3c WP. Therefore,
we can infer that the negative perturbation leads our system to a nontrivial topological phase. On
the other hand, in Figure 6(b) all the bands below the bandgap, i.e., the first, second and third bands
(see Figure 4(b)) contribute to the topological features. We can observe that the maximum EM energy
density is localized inside the rods but far from the maximal WP. Focusing on the background, we
notice that the maximum is located between the rods, in the middle of the distance between the 1a WP
and the edge of the unit cell. Thus, for the positive case, the perturbation leads the system to a trivial
topological phase.

Let us quantify the localization illustrated in Figure 6. In order to do so, we set two lines: (i) one
along the direction (aj + a) and (ii) another along the direction (a; — ap). Next, we evaluate the EM
energy density along those lines as shown in Figure 7. Figure 7(a) and (c) show the energy density
na/ max[np| along the (a; — az) and (a; + ap) directions, respectively, for ¢ = —7/4. On the other
hand, Figure 7(b) and (d) show the energy density n, / max[n,] along the (a; — ap) and (a; + ap)
directions, respectively, for ¢ = 77/4.
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Figure 7. 1,/ max[na] for TM modes with ¢ = 13, a = 1um, R = a/3,r = 0.17a, and d = a/15 for
(a) ¢ = —mt/4 along the direction (a; — ap), (b) ¢ = 71/4 along the direction (a; — ay), (c) ¢ = —71/4
along the direction (a; + ap), (d) ¢ = 77/4 along the direction (a; + ay). The gray areas denote the
rods.

Analyzing Figure 7, we observe that bands 2 and 3, for the negative case, have the maximal EM
energy density at the 3¢ WPs (red-solid line in Figure 7(a) and (c)), corresponding to polynomially
localized WEF. On the other hand, for the positive case, bands 1, 2, and 3 have the maximal EM energy
density located in the region either between 12 and 2b WPs or between 1a and 3c WPs (red-solid line
in Figure 7(b) and (d)), corresponding to exponentially localized WE. We can infer that the results about
localization of the EM energy density reinforce our conclusion about the topological behavior for the
negative perturbation case and the trivial behavior for the positive perturbation case. It is important to
highlight that the results illustrated in Figure 7 are in complete agreement with the previous results
obtained from the k.p perturbed model, which we used to evaluate the Chern number.

4. Edge States

We have shown that the perturbation ¢ opens a complete bandgap at I' point and we can identify
two different phases, the topological phase for ¢ < 0 and a trivial phase for ¢ > 0. On the other hand,
it is known from the literature that the edge-bulk correspondence guarantees that if we build a slab
composed of two photonic crystals, with diferent topological invariants, i.e., Chern numbers, robust
edge modes localized around the interface between the photonic crystals emerge inside the bandgap
[34,42,43]. Those edge states are topologically protected and are robust against defects, disorder and
allow transmission without any reflection, with no signifcant energetic loss [26,44,45]. Thus, in order
to study the emergence of the edge states in our system, we built a supercell composed of 30 unit cells:
15 topological unit cells (¢ = —7/4) and 15 trivial unit cells (¢ = 77/4). Next, we project the calculated
band structure along the I' — M direction as we can see in Figure 8.
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Figure 8. (a) Projected band structure along the I' — M direction for TM modes of a supercell
composed of 15 topological unit cells (¢ = —7/4) and 15 expanded unit cells (¢ = 71/4) making a
horizontal interface. (b) - (c) E;, the phase of E, (the left panel), and the Poynting vector (the right
panel) for wa/(27tc) = 0.4349 (b) and for wa/(27tc) = 0.4383 (c) at ky = 0.015ky.

From Figure 8 it is easy to identify two edge modes inside the gap and we notice that they
emerge close to the I' point of the Brillouin zone. Those modes travel in opposite directions, and
the traveling direction is reversed if we make k — —k. In Figure 8(b) and Figure 8(c) we show the
profile of E,, the phase of E;, and the Poynting vector for wa/(27c) = 0.4349 and wa/ (27tc) = 0.4383,
respectively. We used k = k£ = 0.015ko% with ko = 471/ (1/3a). Both modes are well localized at the
interface and, by comparing wa/(27tc) = 0.4349 and wa/(27tc) = 0.4383, we see that the Poynting
vectors have different directions, which is a confirmation of the pseudospin behavior of the edge
states [18,46]. Moreover, focusing on the phase of the electric field E,, we can identify that the mode
with wa/(27c) = 0.4349 presents a clockwise polarization, while the mode with wa/(27tc) = 0.4383
presents an anticlockwise polarization, corresponding to a pseudospin-down and pseudospin-up,
respectively. Therefore, the pseudospin-up is associated with the interface state with group velocity
and energy flux from the left to the right, while the pseudospin-down is associated with the interface
state with group velocity and energy flux from the right to the left [46]. In the next section, we study
the robustness and localization of the edge modes in our photonic system.

5. Robustiness of the Edge States

The topological protection guarantees that the propagating modes, associated with the edge
states, have good robustness against defects, disorder and reflection at the interfaces [47—49]. So, in
order to verify the edge states robustness, we build a (35,20)a slab with a horizontal interface between
topological (¢ = —7/4) and trivial (¢ = 71/4) photonic crystals, respectively. We set a source of light
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on the left and a detector on the right, as shown in Figure 9(a). Then, we calculate the normalized
electric field defined as Ey = /| E; |, shown in Figure 9(b), for wa/(2mc) = 0.4353. Next, we
introduce small defects at the interface: (i) a small cavity removing a rod (Figure 9(c)), (ii) a bigger rod
of size dy = 0.3d (Figure 9(e)), (iii) a Ag rod (the yellow one in Figure 9(g)), and (iv) a disorder at the
interface changing one negative perturbed unit cell for one positive perturbed unit cell (Figure 9(i)).
We also introduce extensive defects: (i) a Z interface (Figure 10(a)), and an (ii) Omega (interface Figure
10(c)). The Normalized Electric Field Ey, corresponding to the defects mentioned above, is illustrated
in Figures 9(b), 9(d), 9(f), 9(h), 9(), 10(b) and 10(d), respectively. Besides the normalized electric field,
the figures also show the Poynting vector (red arrows) around the defects, and around two points of
the Z and Omega interfaces, as we can see in the zoom windows.

(8 (h)

() =

Figure 9. Left panels: schematic illustration of the interface between topological and trivial photonic
crystals, ¢ = —m/4 and ¢ = 711/4, respectively. The source of light is on the left (purple arrow) and
the detector of light is on the right (blue arrow). We build an (a) interface with no defect, (c) interface
with a small cavity, (e) interface with a bigger rod (dy = 0.3d), (g) interface with an Ag rod (the yellow
one), and (i) interface with a disorder. Right panels: distribution of the normalised electric field Ey and
Poynting vector (red arrows in the zoom area around the defects) for wa/(27tc) = 0.4353 for the (b)
interface with no defect, (d) interface with a small cavity, (f) interface with a bigger rod, (h) interface

(i)

with an Ag, and (j) interface with a disorder.
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(b)

() . c‘o'.’.ﬁ S (d)

Figure 10. Left panels: schematic illustration of the interface between topological and trivial photonic
crystals, ¢ = —7t/4 and ¢ = ¢/4 respectively. The source of light is on the left (purple arrow) and the
detector of light is on the right (blue arrow). We build a (a) Z interface and an (c) Omega interface.
Right panels: distribution of the normalised electric field Ey and Poynting vector (red arrows in the
zoom area around the defects) to wa/(27c) = 0.4353 to the (b) Z interface, (d) Omega interface.

For the pristine interface case, as expected, the electric field and the Poynting vector are localized
around the interface, while the energy flux is from the left to the right (see Figure 9(b)). Furthermore,
comparing Figure 9(d) and Figure 9(b), we realize that there is no significant change in the electric
field around the cavity’s position, and the Poynting vector is not captured by the cavity but just travels
around it. Therefore, we can see in Figure 9(d) that the cavity created by removing a rod at the interface
does not cause significant changes in the electrical field distribution and Poynting vector. Figure 9(f)
corresponds to the bigger rod defect. Again, the presence of the defect does not cause changes in
the edge mode, i.e., the electrical field distribution and Poynting vector are not affected. Despite the
bigger rod, reflection does not occur and the energy flux is not affected by this defect at all. The electric
field and the Poynting vector for the Ag rod defect are illustrated in Figure 9(h). We could expect
major changes in this case because of the energy losses involved. However, as in the previous cases,
light does not experience significant changes. In fact, the energy losses are much smaller than the
transmittance, as we will see later. On the other hand, we can observe local changes in Figure 9(j). The
disorder at the interface creates a different path for light. In this case the energy flux locally changes
around the defect, but the global behavior does not change, i.e., the energy flux keeps flowing close to
the interface and with no significant reflections. As the mode is localized around the interface, both the
Poynting vector’s direction and electric field’s distribution deform to follow the new interface shape at
the position of the defect. Thus, we realize that the electric field survives and remains localized around
the interface despite any defect introduced in the interface. In addition, the Poynting vector just walks
around the defect or ignores it, and the flux of energy remains unchanged. Much more impressive
are the results for the extensive defects: the Z and Omega interfaces. For the Z interface case, the
interface has two corners in which light faces two changes of direction that could cause reflections,
but the Poynting vector and electric field just follow the interface’s contour and do not present any
reflection in the corners (see Figure 10(b)). The Omega interface case is a more complex extensive
defect. In fact, it has 6 corners which means that light faces six changes of direction! Despite the six
corners, once again the Poynting vector and electric field follow the Omega interface’s contour and
they do not present any reflection in the corners (see Figure 10(d)). Therefore, we can conclude that the
edge states are robust against defects, disorders and reflection. This is guaranteed by the topological
protection due to the Bulk-Edge correspondence. This behavior is agreement with previous works
which studied edge modes in topological valley photonic crystals [50,51] and topological pseudospin
photonic crystals [21,28,52,53].

In Figures 9 and 10 is provided a very good qualitative piece of information on the topological
protection and robustness of the edge modes. However, it is important to quantify the robustness of
the edge modes. The quantitative information is provided by the calculation of the transmittance of
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light along the system. Thus, the calculated transmittance through the slabs schematized in Figures
9 and 10 is plotted in Figure 11. We can observe in Figure 11 that transmittance changes very little
when we introduce small defects like a cavity, a bigger rod, an Ag rod, and a disorder. In fact, the
effect of the defects is indeed small, so that the transmittance remains around 1. It should be remarked
that for the Ag rod defect we would expect some losses because of the metallic character of the defect.
However, just minor changes occur in the transmittance which remains around 1. Let us discuss
now the extensive defects. For the Z interface case we can observe a peak around 0.9, which is a
10% reduction in the transmittance in relation to the pristine interface. Despite this reduction in
transmittance, the peak corresponding to the edge mode survives. A similar behavior is observed for
the case of the Omega interface. Therefore, we can conclude that the transmittance peaks survive for
the edge mode despite the small or extensive defects introduced in the interface. In short, our results
show that the robustness of the interface mode is guaranteed against small and extensive defects in
the interface, which means that light travels along the interface without changes in its energy flux,
without reflection, and with minimal energy losses. Similar results were found in the literature with
interface somehow modified: the peak can be reduced but the transmittance of light is at least > 0.8,
which means that most part of light can travel through the considered system without reflection or
absorption [11,54].

= With no defect
= = Cavity

0.8 Bigger Rod ([
Desorder [
8 =+ Ag Rod 3
c
S 0.6 Z Interface I
fr] Omega Interface Ix
S gl
+ 3
204 Vil
g el

o
N
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Figure 11. Transmittance for the cases without defect, with a small cavity, with a bigger rod, with a
disorder in the interface, with an Ag rod, with a Z interface, and an Omega interface. We can observe
that the transmittance is around 1.0 even for the configurations with defects.

Before concluding, after studying the robustness of the edge modes, let us take look at the
localization of the edge modes. In order to do so, we calculate Ey/ max[Ey]| point-by-point on a line
perpendicular to the interface (the blue line in Figures 12 and 13). Therefore in Figure 12 is shown the
intensity of Ex/ max[Ey] point-by-point along the line of the interface with no defect and with small
defects: the interface with a cavity, the interface with a bigger rod, the interface with a disorder, and the
interface with an Ag rod. The same is illustrated in Figure 13 for the extensive defects: the Z interface,
and the Omega interface. We consider in all cases wa/ (27tc) = 0.4353. From Figures 12(a)-12(e) we can
infer that the electric field is localized around the interface, regardless of the small defect considered,
i.e., the electric field is near zero in rods far from the interface for both cases: the topological and trivial
photonic crystals. This corresponds to a topological insulator behavior of our system because it does
not present fields in the bulk and the electric field is different from zero only around the interface
[46,50,55]. For the special cases of extensive defects, i.e., the Z and Omega interfaces, we set two
perpendicular lines: (i) one at the interface before the first change of orientation, and (ii) another at the
interface after the second change of orientation (see Figures 13(a) and 13(b)). As for the small defect
cases, the interface modes are well localized. Notice that the normalized electric field rapidly goes to
zero when the profile moves away from the interface for both, the Z and Omega interfaces. In short, in
all defect cases considered here, the localization of the modes allows the confinement of the light, and
the interface works as a waveguide for the propagation of electromagnetic waves. Finally, all those
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features described here make this system a good candidate for topological wave guides and open up

an opportunity for phototransport applications.
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Figure 12. Intensity of Ex/ max[En] vs y (wa/(27tc) = 0.4353) for (a) interface with no defect, (b)
interface with a small cavity, (c) interface with a bigger rod, (d) interface with an Ag rod, and (e)

interface with a disorder.
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Figure 13. Intensity of Ex/ max[En]| vs y (wa/(27tc) = 0.4353) for the (a) Z interface, and (b) Omega
interface.

6. Conclusions

In this work we have proposed a two-dimensional photonic crystal composed of dielectric
cusped-oval-shaped rods (COS rods), in a triangular lattice with Cg point symmetry group, with the
unit cell composed of six COS rods. The band structure of the system was obtained through the
software COMSOL Multiphysics, which is based on the finite element method (FEM). Our results
show that, as we introduced an angular perturbation ¢ in the COS rods, a complete bandgap is opened
in the band structure of the system. We have studied the topological phases of the system. It was
found that for negative perturbations the photonic crystal is in a topological phase, while for positive
perturbations the photonic crystal is in a trivial phase. The topological phase transition occurs for
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¢ = 0. We have also shown that the electromagnetic (EM) density energy distribution in the system
can be used as a probe of the character of the band structure. This is because the EM density energy is
proportional to the modulus square of the Wannier functions (WF) which are centered at the (maximal)
localized Wyckoff positions (WP). Moreover, as a consequence of the perturbation, two edge states
emerge inside the bandgap, which are localized around the interface and are topologically protected.
Our results show that the edge modes are pseudospin modes traveling around the interface between
the topological (negative perturbation) and trivial (positive perturbation) photonic crystals. They
are topologically protected and robust against disorder and defects at the interface. For all defect
cases considered in this work the transmittance is mildly affected. Therefore, the system studied is an
excellent candidate for technological applications, once the flux of light can be controlled without any
significant energetic loss or reflection. These features made the photonic crystal here proposed a good
candidate to guide and confine light, with potential for phototransport applications.

Author Contributions: Conceptualization, D.B.-S., C.H.O.C., and C.G.B.; methodology, D.B.-S., CH.O.C., and
C.G.B.; software, D.B.-S., and C.H.O.C.; formal analyzis, D.B.-S., C.H.O.C., and C.G.B.; writing—original draft
preparation, D.B.-S.; supervision, CH.O.C., and C.G.B.; writing—review and editing, D.B.-S. and C.G.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Brazilian Research Agencies CNPq (Grant No. 309495/2021-0) and
FUNCAP (Grant No. BP5-0197-00145.01.03/23). D.B.-S. acknowledges financial support from Brazilian Agency
CAPES.

Data Availability Statement: The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Acknowledgments: We thank G.M. Viswanathan for a critical reading of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Joannopoulos, ].D.; Johnson, S.G.; Winn, ].N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light, 2nd
ed.; Princeton University Press: Princeton, NJ, USA, 2008; ISBN 978-0-691-12456-8.

2. Yang, Z.; Lustig, E.; Lumer, Y.; Segev, M. Photonic Floquet topological insulators in a fractal lattice. Light Sci.
Appl. 2020, 9, 128, d0i:10.1038 /s41377-020-00354-z.

3. Xie, B.-Y;; Wang, H.-F; Zhu, X.-Y.; Lu, M.-H.; Wang, Z.D.; Chen, Y.-F. Photonics meets topology. Opt. Express
2018, 26, 24531, doi:10.1364/OE.26.024531.

4. Raghu, S.; Haldane, ED.M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A
2008, 78, 033834, doi:10.1103 /PhysRevA.78.033834.

5. Liu, F; Deng, H.-Y.; Wakabayashi, K. Topological photonic crystals with zero Berry curvature. Phys. Rev. B
2018, 97, 035442, d0i:10.1103 /PhysRevB.97.035442.

6. Dong, ]-W.; Chen, X.-D.; Zhu, H.; Wang, Y.; Zhang, X. Valley photonic crystals for control of spin and
topology. Nat. Mater. 2017, 16, 298, doi:10.1038 /nmat4807.

7. Xie, B.-Y,; Wang, H.-F; Wang, H.-X.; Zhu, X.-Y,; Jiang, ].-H.; Lu, M.-H.; Chen, Y.-E. Second-order photonic
topological insulator with corner states.Phys. Rev. B 2018, 98, 205147, d0i:10.1103 /PhysRevB.98.205147.

8.  Wang, C.; Zhang, H.; Yuan, H.; Zhong, J.; Lu, C. Universal numerical calculation method for the Berry
curvature and Chern numbers of typical topological photonic crystals. Front. Optoelectron. 2020, 13, 73,
doi:10.1007 /s12200-019-0963-9.

9.  Wang, Y.;; Zhang, W.; Zhang, X. Tunable topological valley transport in two-dimensional photonic crystals.
New J. Phys. 2019, 21, 093020, d0i:10.1088/1367-2630/ab3ca3.

10. Wu, S; Jiang, B.; Liu, Y,; Jiang, ].-H. All-dielectric photonic crystal with unconventional higher-order topology.
Photonics Res. 2021, 9, 668, doi:10.1364 /PR].418689.

11. Wong, S.; Saba, M.; Hess, O.; Oh, S.S. Gapless unidirectional photonic transport using all-dielectric kagome
lattices. Phys. Rev. Res. 2020, 2, 012011(R), doi:10.1103/PhysRevResearch.2.012011.

12.  Mittal, S.; Orre, V.V,; Leykam, D.; Chong, Y.D.; Hafezi, M. Photonic Anomalous Quantum Hall Effect. Phys.
Rev. Lett. 2019, 123, 043201, d0i:10.1103 /PhysRevLett.123.043201.


https://doi.org/10.20944/preprints202307.1487.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 July 2023 doi:10.20944/preprints202307.1487.v1

150f 16

13. Jahani, D.; Ghatar, A.; Abaspour, L.; Jahani, T. Photonic Hall effect. ]. Appl. Phys. 2018, 124, 043104,
doi:10.1063/1.5039602.

14. Xie, B; Su, G.; Wang, H.-F,; Liu, E; Hu, L.; Yu, S.-Y.; Zhan, P; Lu, M.-H.; Wang, Z.; Chen, Y.-F. Higher-order
quantum spin Hall effect in a photonic crystal. Nat. Commun. 2020, 11, 3768, d0i:10.1038 /s41467-020-17593-8.

15. Chen, X.-D.; Deng, W.-M.; Shi, E-L.; Zhao, E-L.; Chen, M.; Dong, J.-W. Direct Observation of Corner
States in Second-Order Topological Photonic Crystal Slabs. Phys. Rev. Lett. 2019, 122, 233902,
doi:10.1103 /PhysRevLett.122.233902.

16. Zhang, L.; Yang, Y.; Lin, Z.-K.; Qin, P; Chen, Q.; Gao, F; Li, E; Jiang, ] -H.; Zhang, B.; Chen, H. Higher-Order
Topological States in Surface-Wave Photonic Crystals. Adv. Sci. 2020, 7, 1902724, doi:10.1002 /advs.201902724.

17.  Wu, Y;; Hu, X.; Gong, Q. Reconfigurable topological states in valley photonic crystals. Phys. Rev. Materials
2018, 2, 122201(R), doi:10.1103 /PhysRevMaterials.2.122201.

18. Chen, M.L.N,; Jiang, L.J.; Lan, Z; Sha, W.EI Coexistence of pseudospin- and valley-Hall-like
edge states in a photonic crystal with Cz, symmetry. Phys. Rev. Research 2020, 2, 043148,
doi:10.1103/PhysRevResearch.2.043148.

19. Kim, M,; Kim, Y.; Rho, J. Spin-valley locked topological edge states in a staggered chiral photonic crystal.
New J. Phys. 2020, 22, 113022, d0i:10.1088/1367-2630/abc8ae.

20. Bleu, O.; Solnyshkov, D.D.; Malpuech, G. Quantum valley Hall effect and perfect valley filter
based on photonic analogs of transitional metal dichalcogenides. Phys. Rev. B 2017, 95, 235431,
doi:10.1103 /PhysRevB.95.235431.

21. Wu, L-H.; Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev.
Lett. 2015, 114, 223901, d0i:10.1103 /PhysRevLett.114.223901.

22. Dai, H;; Liu, T, Jiao, J.; Xia, B.; Yu, D. Double Dirac cone in two-dimensional phononic crystals beyond
circular cells. J. Appl. Phys. 2017, 121, 135105, doi:10.1063/1.4979852.

23. Hajivandi, J.; Pakarzadeh, H.; Kurt, H. Intensity tuning of the edge states in the imperfect topological
waveguides based on the photonic crystals with the C3 point group symmetry. Opt. Quantum Electron. 2021,
53,102, d0i:10.1007 /s11082-021-02745-x.

24. Khanikaev, A.B.; Shvets, G. Two-dimensional topological photonics. Nat. Photonics 2017, 11, 763,
doi:10.1038/s41566-017-0048-5.

25.  Sauer, E.; Vasco, ].P.; Hughes, S. Theory of intrinsic propagation losses in topological edge states of planar
photonic crystals. Phys. Rev. Res. 2020, 2, 043109, doi:10.1103 /PhysRevResearch.2.043109.

26. Lu, L; Joannopoulos, J.D.; Solja¢i¢, M. Topological photonics. Nat.  Photonics 2014, 8, 821,
doi:10.1038 /nphoton.2014.248.

27.  Arregui, G.; Gomis-Bresco, ].; Sotomayor-Torres, C.M.; Garcia, P.D. Quantifying the robustness of topological
slow light. Phys. Rev. Lett. 2021, 126, 027403, doi:10.1103 /PhysRevLett.126.027403.

28. Huang, H.; Huo, S.; Chen, ]J. Reconfigurable topological phases in two-dimensional dielectric photonic
crystals. Crystals 2019, 9, 221, doi:10.3390/ cryst9040221.

29. Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A. Group theory: application to the physics of condensed matter,
1st ed.; Springer-Verlag: Berlin, Germany, 2007; ISBN 978-3-540-32897-1.

30. Yang, Y; Xu, Y.F; Xu, T.; Wang, H.-X,; Jiang, J.-H.; Hu, X.; Hang, Z.H. Visualization of a unidirectional
electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett.
2018, 120, 217401, doi:10.1103 /PhysRevLett.120.217401.

31. COMSOL multiphysics. Available online: www.comsol.com/products/multiphysics/ (accessed in 06 June
2023).

32. Fang, Y.; Wang, Z. Highly confined topological edge states from two simple triangular lattices with reversed
materials. Opt. Commun. 2021, 479, 126451, doi:10.1016/j.optcom.2020.126451.

33. Deng, W.-M.; Chen, X.-D.; Zhao, E-L.; Dong, J.-W. Transverse angular momentum in topological photonic
crystals. J. Opt. 2018, 20, 014006, doi:10.1088 /2040-8986 / aa9b06.

34. Smirnova, D.; Leykam, D.; Chong, Y., Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 2020, 7,
021306, d0i:10.1063/1.5142397.

35. Peng, Y; Yan, B,; Xie, J.; Liu, E; Li, H.; Ge, R.; Gao, F.; Liu, J. Variation of Topological Edge States of 2D
Honeycomb Lattice Photonic Crystals. Phys. Status Solidi RRL 2020, 14, 2000202, doi:10.1002/ pssr.202000202.

36. Li, Z,; Chan, H.-C.; Xiang, Y. Fragile topology based helical edge states in two-dimensional moon-shaped
photonic crystals. Phys. Rev. B 2020, 102, 245149, doi:10.1103 /PhysRevB.102.245149.


https://doi.org/10.20944/preprints202307.1487.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 July 2023 doi:10.20944/preprints202307.1487.v1

16 of 16

37. Alexandradinata, A.; Fang, C.; Gilbert, M.].; Bernevig, B.A. Spin-Orbit-Free Topological Insulators without
Time-Reversal Symmetry. Phys. Rev. Lett. 2014, 113, 116403, doi:10.1103/PhysRevLett.113.116403.

38. dePaz, M.B.; Herrera, M.A.].; Arroyo Huidobro, P.; Alaeian, H.; Vergniory, M.G.; Bradlyn, B.; Giedke, G.;
Garcia-Etxarri, A.; Bercioux, D. Energy density as a probe of band representations in photonic crystals. J.
Phys.: Condens. Matter 2022, 34, 314002, d0i:10.1088/1361-648X/ac73cf.

39. Marzari N.; Mostofi A.A,; Yates J.R.; Souza I.; Vanderbilt, D. Maximally localized Wannier functions: Theory
and applications. Rev. Mod. Phys. 2012, 84, 1419, d0i:10.1103 /RevModPhys.84.1419.

40. Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 1984, 392, 45,
doi:10.1098 /rspa.1984.0023.

41. Albert, ].P; Jouanin, C.; Cassagne, D.; Monge, D. Photonic crystal modelling using a tight-binding Wannier
function method. Opt. Quantum Electron. 2002, 34, 251, d0i:10.1023/A:1013393918768.

42. Parappurath, N.; Alpeggiani, F.; Kuipers, L.; Verhagen, E. Direct observation of topological edge
states in silicon photonic crystals: Spin, dispersion, and chiral routing. Sci. Adv. 2020, 6, eaaw4137,
doi:10.1126/sciadv.aaw4137.

43. Silveirinha, M.G. Bulk-edge correspondence for topological photonic continua. Phys. Rev. B. 2016, 94, 205105,
doi:10.1103 /PhysRevB.94.205105.

44. Ma,].; Li, X,; Fang, Y. Embedded topological edge states from reversed two-dimensional photonic crystals.
Physica E 2021, 127, 114517, doi:10.1016 /j.physe.2020.114517.

45. Yang, Y.,; Yamagami, Y., Yu, X, Pitchappa, P.; Webber, J.; Zhang, B.; Fujita, M.; Nagatsuma, T,
Singh, R. Terahertz topological photonics for on-chip communication. Nat. Photonics 2020, 14, 446,
10.1038/s41566-020-0618-9.

46. Ni, X,; Purtseladze, D.; Smirnova, D.A.; Slobozhanyuk, A.; Alt, A.; Khanikaev, A.B. Spin-and
valley-polarized one-way Klein tunneling in photonic topological insulators. Sci. Adv. 2018, 4, eaap8802,
doi:10.1126/sciadv.aap8802.

47. Arora, S.; Bauer, T.; Barczyk, R.; Verhagen, E.; Kuipers, L. Direct quantification of topological protection
in symmetry-protected photonic edge states at telecom wavelengths. Light Sci. Appl. 2021, 10, 9,
doi:10.1038/s41377-020-00458-6.

48. Huang, H.; Huo, S.; Chen, ]. Subwavelength elastic topological negative refraction in ternary locally resonant
phononic crystals. Int. . Mech. Sci. 2021, 198, 106391, doi:j.ijmecsci.2021.106391.

49. Chen, X.-D.; Shi, E-L.; Liu, H.; Lu, J.-C.; Deng, W.-M.; Dai, J.-Y.; Cheng, Q.; Dong, J.-W. Tunable
Electromagnetic Flow Control in Valley Photonic Crystal Waveguides. Phys. Rev. Applied 2018, 10, 044002,
doi:10.1103/PhysRevApplied.10.044002.

50. Chen, X.-D.; Zhao, E-L.; Chen, M.; Dong, J.-W. Valley-contrasting physics in all-dielectric photonic
crystals: Orbital angular momentum and topological propagation. Phys. Rev. B 2017, 96, 020202(R),
d0i:10.1103/PhysRevB.96.020202.

51. He, X.-T,; Liang, E.-T.; Yuan, J.-J.; Qiu, H.-Y.; Chen, X.-D.; Zhao, F.-L.; Dong, ].-W. A silicon-on-insulator slab
for topological valley transport. Nat. Commun. 2019, 10, 872, doi:10.1038/s41467-019-08881-z.

52. Borges-Silva, D.; Costa, C.H.; Bezerra, C.G. Topological phase transition and robust pseudospin interface
states induced by angular perturbation in 2D topological photonic crystals. Sci. Rep. 2023, 13, 850,
doi:10.1038 /s41598-023-27868-x.

53. Borges-Silva, D.; Costa, C.H.; Bezerra, C.G. Pseudospin topological behavior and topological edge states in a
two-dimensional photonic crystal composed of Si rods in a triangular lattice. Phys. Rev. B 2023, 107, 075406,
doi:10.1103 /PhysRevB.107.075406.

54. Gong, Y.; Wong, S.; Bennett, A.J].; Huffaker, D.L.; Oh, S.S. Topological insulator laser using valley-Hall
photonic crystals. ACS Photonics 2020, 7, 2089, doi:10.1021/acsphotonics.0c00521.

55. Mittal, S.; DeGottardi, W.; Hafezi, M. Topological photonic systems. Optics and Photonics News 2018, 29, 36,
doi:10.1364 /OPN.29.5.000036.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202307.1487.v1

	Introduction
	The Photonic System
	Topological Phase Transition
	Edge States
	Robustiness of the Edge States
	Conclusions
	References

