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Abstract: The theory of fractional calculus extends the order of classical integer calculus from integer to non-
integer. As a new engineering application tool, it has made many important research achievements in many
fields, including image processing. This paper mainly studies the application of fractional calculus theory in
image enhancement and denoising, including the basic theory of fractional calculus and its amplitude
frequency characteristics, the application of fractional differential operator in image enhancement, and the
application of fractional integral operator in image denoising. The experimental results show that the fractional
calculus theory has more special advantages in image enhancement and denoising. Compared with the existing
integer order image enhancement operators, the fractional differential operator can more effectively enhance
the "weak edge" and "strong texture" details of the image. The fractional order integral image denoising
operator can not only improve the signal-to-noise ratio of the image compared to traditional denoising
methods, but also better preserve detailed information such as edges and textures of the image.

Keywords: fractional order differential operator; fractional order integral operator; image
enhancement; image denoising

1. Introduction

The fractional calculus theory has been born for about three hundred years, but in this long
period of time, the fractional calculus theory is only the analysis and derivation of pure mathematical
theory by mathematicians, and engineering technicians are unfamiliar with it[1][2]. It was not until
Mandelbrot first proposed the fractal theory [3-5] and described Riemann-Liouville fractional
calculus as Brownian motion in fractal media that fractional calculus was first applied to the field of
engineering technology. Therefore, fractional calculus theory, as a mathematical description method
for analyzing complex systems, gradually developed into a modeling tool for engineering
technology. In recent decades, many scholars at home and abroad have found that fractional calculus
operators have memory and nonlocality, which is very suitable for describing materials with memory
and genetic properties in the real world. Therefore, fractional calculus theory has been increasingly
applied in basic science and engineering and other fields, and its practical value has also been initially
reflected [6]. In recent ten years, many scholars at home and abroad have found that fractional
calculus has a broad application prospect in the field of signal analysis and processing. They have
applied the theory of fractional calculus to traditional memristor elements and proposed different
types of fractional impedance in natural realization forms [7-9]. In recent years, scholars at home and
abroad have tried to integrate fractional calculus theory with classical swarm intelligence algorithm,
and proposed fractional neural network algorithm and fractional ant colony algorithm based on
Fractional Steepest Descent Approach. These new algorithms have achieved good application results
[10-14]. The application of fractional calculus theory in image processing originates from Pu Yifei and
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other researchers who found that fractional differentiation has such characteristics as "nonlocality"
and "Weak derivative". They tentatively applied fractional calculus theory to digital image
underlying processing and achieved good simulation results, and proposed six basic fractional
differential operator for digital image processing, The application of fractional calculus theory in
image processing is gradually emerging [15] [16].Meriem Hacini built a bi-directional fractional-order
derivative mask for image processing applications[17]. It has been applied in edge detection and de-
noising problems using real and synthetic images by the proposed method used the gradient
computation properties. Xuefeng Zhang proposed image enhancement method based on rough set
and fractional order differentiator [18]. In the image enhancement process, 2D Fourier transform is
employed to turn gray levels into a gradient, then an adaptive fractional order differential operator
based on entropy is proposed to enhance the information of images. Meng-Meng Li proposed a novel
active contour method for noisy image segmentation using adaptive fractional order differentiation
[19], and the fractional differentiation with an adaptively defined order is incorporated into the fitting
term to deal with noise during the evolution of curves. Since then many scholars have proposed many
new image processing methods based on fractional calculus theory and partial differential equations
[20-22]. Jian Bai proposed a new variational model for image denoising and decomposition using the
fractional-order bounded variation space to capture cartoon patterns [23]. Through the combination
of fractional calculus theory and partial differential equation theory, A. Abirami studied the variable-
order fractional diffusion model for medical image denoising using the Caputo finite difference
scheme for the proposed problem [24]. Based on the PU operator theory, many scholars have
expanded and improved it, and proposed a new classical image processing model incorporating
fractional calculus theory [25-29], including image enhancement methods based on fractional
Contrast Limited Adaptive Histogram Equalization, image denoising methods based on fractional
order NLM, and image denoising methods based on fractional order BM3D.

This paper is mainly about the application of fractional calculus theory in digital image
processing. The remaining structure of this article is as follows. Section 2 introduces mathematical
and physical knowledge of fractional calculus theory. Section 3 introduces the construction of
fractional order differential operator and the simulation contrast experiment in image enhancement.
Section 4 proposes the construction of fractional order integral operators and simulation experiments
in image denoising. Finally, the conclusions are given in Sectioné..

2. Basic Theory of Fractional Calculus

In this section, we briefly introduce three contents. First, three basic definitions of fractional
calculus theory and their practical scenarios. Second, amplitude frequency characteristics of
fractional differential operator and fractional integral operator. At last, the amplitude frequency
characteristics of fractional calculus of common signals.

2.1. Fractional Calculus Theory

Different definitions of fractional calculus can be obtained by analyzing the problem from
different application angles. Up to now, there is still no unified time domain definition expression of
fractional calculus. Among the numerous definitions, there are mainly three classical definitions of
fractional calculus, which are Griimwald-Letnikov definition, Riemann-Liouville definition and
Capotu definition. They are respectively Equation (1), Equation (2), and Equation (3) [1] [2].

e  Griimwald-Letnikov of fractional calculus is defined as follows,

t—a

: , LT + j) .
“Df(x) = 1im A"y ———22 flx — jh) v 1

e  The definition of Riemann-Liouville for fractional order integration and Riemann Liouville for
fractional order differentiation are as follows,
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e  Caputo of fractional calculus is defined as follows,
m—1 £ (a)
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The three definitions of fractional calculus are closely related and can be transformed under
certain conditions. Both Riemann Liouville definition of fractional calculus and Caputo definition of
fractional calculus are improvements to Griimwald-Letnikov definition of fractional calculus.
Griimwald-Letnikov definition of fractional calculus can be converted into convolution operation
form in numerical implementation, so it is very suitable for application in signal processing. The
Riemann- Liouville definition of fractional calculus is mainly used to calculate the analytical solutions
of some relatively simple functions. The Caputo definition of fractional calculus is applicable to the
analysis of the initial boundary value problems of fractional differential equations, so it is very
suitable for application in the engineering field.

2.2. Amplitude Frequency Characteristics of Fractional Calculus Operators

2.2.1. Fractional order differential operator
Let the square integrable energy signal f(x) e F(R) , whose Fourier transform is

f(Aa)) = Lf(x)e’lmdx. The n-th derivative of the signal 7(x)is 7”(x)(n € Z* ), and according to

the properties of the Fourier transform, Equation (4) can be obtained.
FT A

D"1(x) 00" (@) = ((0)" - @) = d"(@) (@) 4
By extending the positive integer n to the positive real numberv (v € £ ), the fractional order

derivative of the signal #(x) can be obtained as (x) . According to the properties of fractional
order Fourier transform [30-32], Equation (5) can be obtained, where d" (@) can be further expanded
to obtain Equation (6).

A
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According to Equation (5) and Equation (6), the amplitude frequency characteristic curve of
fractional order differential operator of one-dimensional signal can be obtained, as shown in Figure
1 (a). It can be seen from direct observation that firstly fractional order differential operator has a
strengthening effect on medium and high frequency signals, and the amplitude of the strengthening
increases nonlinearly and sharply with the increase of frequency and differential order. Secondly,
fractional order differential orderv € [0, 1], in the very low frequency part (@ < 1) of the signal, the
fractional order differential operator improves the amplitude of the signal to a certain extent, and the
amplitude of the increase is slightly greater than that of the first and second order differential
operator. In the end, the fractional order differential order v e [0,1 , in the middle and high

frequency part (@ > 1 )of the signal, the fractional order differential operator improves the
amplitude of the signal to a certain extent, but the amplitude of the increase is also significantly less

do0i:10.20944/preprints202307.1395.v1
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than the first and second order differential operator. The above properties show that the fractional
order differential operator has the property of "Weak derivative", and the fractional order differential
operator not only strengthens the high frequency component of the signal, but also retains the very
low frequency component of the signal nonlinearly. In addition, by analyzing the physical meaning
of fractional calculus operator from the perspective of signal processing, it can be seen that fractional
differential operator can be understood as generalized amplitude and phase modulation. Its
amplitude changes exponentially with frequency in fractional order, and its phase is the generalized
Hilbert change of frequency [15].
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Figure 1. Amplitude frequency characteristic curve of fractional calculus operator. (a) fractional

differential; (b) fractional integral.

2.2.2. Fractional Order Integral Operator

Let the square integrable energy signal f(f)e L’(R) , whose Fourier transform is

f(aD=JR f()e™dt . When ve R, I=0" and v =-v can be assumed to obtain the Fourier
transform form of the fractional order integral operator based on the G-L definition, as shown in

Equation (7). Further expand the expression (7®)" to obtain Equation (8).

I A o) @) = () - £le) = J'V'A<a)>- £lw) %)
].V’ (w) _ av’ (W) ) 61‘0’"<a))

A

o (w) = \co(_ HV‘A(a)) = — ;7[ sgn (@)

According to Equations (7) and (8), the amplitude frequency characteristic curve of the fractional
order integration operator for one-dimensional signals can be obtained, as shown in Figure 1 (b). By
direct observation, it can be seen that firstly fractional order integration operators have an attenuation
effect on both medium and high frequency signals, and they rapidly decay nonlinearly with
increasing frequency and integration order. Secondly, fractional order integration orderv € [0,1] , in
the frequency w<1 region of the signal, the fractional order integration operator improves the
amplitude of the signal to a certain extent, but the amplitude of the improvement is much smaller
than that of the first and second order integration operators. At last, fractional order integration order
v €[0,1] , in the frequency @ >1 region of the signal, the fractional order integration operator
weakens the amplitude of the signal to a certain extent, but the amplitude of the weakening is also
significantly smaller than that of the first and second order integration operators. The above
properties indicate that the fractional order integral operator not only weakens the high-frequency

(8)
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part of the signal, but also preserves the highest frequency part nonlinearly. The fractional order
integration operator not only weakens the low-frequency part of the signal, but also preserves the
lowest frequency part.

2.3. Fractional Order Calculus Processing and Analysis of Common Signals

Figure 2a—d show the amplitude frequency characteristic curve of fractional calculus after
processing square wave signal (Equation 9), triangular signal (Equation 10), sinusoidal signal (
sin(#)) and Gaussian signal (Equation 11) respectively. It can be seen from direct observation that
firstly when the order increases from 0 to 1, the fractional calculus result of the square wave signal
increases sharply at its sudden change, and the fractional calculus result of the triangular wave signal
gradually becomes a rectangular wave. Secondly, when the fractional derivative order V. = Lis used,
it represents the first derivative of the sine and Gaussian signals, which can be understood that the
direction of change of the signal at that point is the fastest. When the fractional order differential
order v € [0, 1] is reached, it indicates that the sine and Gaussian signals are fractional order
continuous interpolation between the value of the function itself and the direction of the fastest

change.

1 0<t<T

square(t) = ©)
-1 7 <t <£2T

Triangular(t) = Z 452 sin?| 2% cos(na)t) (10)

n=1 17T 2

1 -

gauss (t) = e’ (11)
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Figure 2. Fractional Calculus Amplitude Frequency Diagram of Common Signals. (a) Square Wave;
(b) Triangular Wave; (c) Sine Wave; (d) Gaussian Signal.

The above properties indicate that the integer order differential of the signal at stationary is zero,
while the fractional order differential at stationary is not zero. The integer order differential value of
the signal along the slope is constant, while the fractional order differential value of the signal along
the slope is variable, but exhibits nonlinear changes over time. The characteristics of fractional
calculus operator can make it retain some low-frequency weak texture information to a certain extent
while strengthening the details of image high-frequency edges and textures. Therefore, the image
processing method based on fractional calculus is better than the traditional image processing
method based on integer order, which is not only conducive to extracting the edge and texture of the
image, but also can retain the contour information of the image to a certain extent.

3. Research on the Application of Fractional Differential in Image Enhancement

In this section, we mainly introduce two contents, the characteristics of fractional differential
operator of image signals and the image enhancement experiment of fractional order. The
characteristic of fractional differential operator of image signal mainly analyzes the relationship
between the differential order of fractional differential operator and the high pass strength of two-
dimensional signal. The image enhancement experiment of fractional order differential operator
mainly proves the advantages of fractional order differential image enhancement algorithm
compared with integral order image enhancement operator after image processing.

3.1. Amplitude frequency characteristics of fractional order differential image enhancement operators

Let the fractional order v derivative of the two-dimensional energy function 1y >be £ (x, y) (
v € K. Because of the separability of the fractional Fourier transform, it can be considered that the

fractional order differential filter of the two-dimensional energy function (x5 ) s separable.
Therefore, the fractional order differential filter function of the two-dimensional energy function

£(%, ¥) can be obtained by expanding on the basis of Equation (5), as shown in Equation (12).
A VI VI
(Df)”(a)x, (Uy) — (lwxlvel7sgn(wx)) " (lwylvel7sgn(wy)) (12)
The amplitude frequency characteristic surface of different order fractional differential operator
of two-dimensional signals can be obtained from equation (12), as shown in Figure (3). The figure

shows the amplitude frequency characteristic surface of fractional differential operator with order

ve {0’0‘ 1,0.5 ’1‘0} respectively. It can be seen from direct observation that the fractional

differential operator belongs to a high pass filter, and its cut-off frequency is related to the fractional
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differential order. With the increase of the differential order, the fractional differential operator's high
frequency filtering performance is stronger, that is, the fractional differential operator has the
attenuation effect on the low-frequency signal of the image, and the degree of attenuation increases
with the increase of the differential order.

Figure 3. Amplitude frequency characteristic surface of two-dimensional signal fractional
differentiation.

3.2. Image Enhancement Experiment and Analysis of Fractional Differential Operator

Under certain conditions, it can be considered that the fractional differentiation of two-
dimensional image signals /(x, y)in the X and Y directions is separable, thus obtaining a normalized
8-direction fractional differentiation image enhancement operator. The duration[a,?] of the image
signal I(x, y)is divided equally by the step size h=1, that is, , = [t—_a}”;l[t_a] , and the numerical

h
calculation expression of the fractional differential operator along the X and Y axes can be obtained,
as shown in Equations (13) and (14), where 7' (x, y)and £ (x, y)represent the fractional differential

remainder in the horizontal and vertical direction. (13)

(=)(=+]) I—2.0)+ =)= +D)(=+2)

D), if(x,y>+<—v>1(x—1,y)+T )

Ix=-3)+R(x,y) (13)

JDI(x,) ) il (x5 )+( ) (x,y—1) +m;v+l) I(x,y-2)+ (V) +61) (v+2)

I(x’y_3)+R;(x9y) (14)

Figure 4 represents the fractional order differential image enhancement mask operator /. This
operator extends Equations (13) and (14) to the other directions of the image to obtain an image
enhancement operator in the 8 direction. This operator has anisotropic rotation invariance and its
filtering coefficient is shown in Equation (15).

Wy, | - 0 0 | Wy, 0 0 | Ty,
0 0 0 0 0 0
0 0 Wy, 0 W, 0 W, 0 0
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Figure 4. Fractional order differential augmentation operator.
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As shown in Figure 5, in order to facilitate visual observation, Figure (b) to (f) respectively
represent the inverted images filtered by different order (ve { 0.1,0.5,0.8,1.0,2 0} ) differential

operator on the Barbara images. It can be seen from direct observation that the image is filtered by
fractional differential operator of order v=0.1, which improves the high frequency information of the
image to a certain extent, while retaining a large amount of low frequency information of the image.
As the differential order increases, the fractional order filtering operator attenuates a large amount
of low-frequency information in the image, while non-linear enhancing the high-frequency
information in the image. After the image is filtered by fractional differential operator with
differential order v=2.0, a large amount of low-frequency information of the image is removed, and
the high-frequency part of the image is nonlinear enhanced.

(©)

(d) (e) (f)

Figure 5. Fractional Differential Operator of Different Orders. (a) Original image; (b) v=0.1; (c) v=0.5;
(d) v=0.8; (e) v=1.0; (f) v=2.0.

Figure 6 shows the contrast diagram of Barbara image enhanced by different order (
Ve { 0.1,0.5,0.8,1.0,2 0} ) differential operator.It can be seen from direct observation that after the

image is enhanced by fractional differential operator of order v=0.1, because the low order differential
filter operator retains a large amount of low-frequency contour information and weak texture
information, and at the same time, the edge and texture information of the image are properly
improved, the image after filtering and fusion by the low order fractional differential operator will
appear overall bright and overexposure. After the image is enhanced by fractional differential
operator with the order of v=2.0, because the higher-order differential operator removes all low-
frequency information of the image, and at the same time greatly improves the high-frequency edge
and strong texture information of the image, the overall contrast of the image after filtering and fusion
by higher-order fractional differential operator will not be greatly improved, and edge jitter occurs.
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(f)

Figure 6. Fractional differential operator of different orders. (a) Original image; (b) v=0.1; (c) v=0.5; (d)
v=0.8; (e) v=1.0; (f) v=2.0.

As shown in Figure 7, Figure (b) and Figure (c) respectively represent images enhanced by
fractional order differential operator of order v=0.5 and v=0.8, Figure (d), Figure (e) and Figure (f)
represent images enhanced by classical integer order differential enhancement operators sobel,
prewitt and laplacian, and Figure 8 represents histograms corresponding to each image in Figure 7.
Direct observation shows that the fractional differential operator of order v=0.5 and v=0.8 can not
only improve the weak texture feature information in the smooth area of the image as much as
possible, but also can nonlinearly enhance the strong texture detail information in the image with
relatively small gray value change amplitude and frequency, and can also nonlinearly enhance the
high-frequency edge information in the image with relatively large gray value change amplitude.
The histogram contrast diagram (8) obtained by image enhancement methods of different methods
shows that the fractional order differential enhancement operator has better gray level equalization
distribution and better overall image contrast than the image processed by the integer order
differential operator.
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Figure 7. Differential Image Enhancement Method. (a) Original image;(b) v=0.5;(c) v=0.8;(d) Sobel ;
(e) Prewitt;(f) Laplacian.

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 04 0.8 0.8
Normalized grayscale Normalized grayscale Normalized grayscale

(a) (b) (©)

0.2 04 0.6 0.8 02 0.4 0.6 0.8 0.2 04 0.6 0.8
Normalized grayscale ‘Normalized grayscale Normalized grayscale

(d) (e) (f)
Figure 8. Grayscale histogram. (a) Original image; (b) v=0.5; (c) v=0.8; (d) Sobel; (e) Prewitt; (f)

Laplacian.

4. Research on the Application of Fractional Integral in Image Denoising

This section mainly elaborates on the characteristics of fractional order integration operators for
image signals and the experiments on image denoising using fractional order integration operators.
The former mainly analyzes the relationship between the integration order of fractional order integral
operators and the low-pass intensity of two-dimensional signals. The latter demonstrates the
advantages of fractional order integral image denoising operators over integer order image denoising
operators in processing noisy images from both subjective visual comparison and objective indicator
performance.

4.1. The Amplitude Frequency Characteristics of Fractional Order Integral Operator Image Denoising
Operator

Let the fractional integral of the two-dimensional energy function £’ (x, y)be £* (x,y7) (V, e R
)- Because of the separability of the fractional Fourier transform, it can be considered that the
fractional integral filter of the two-dimensional energy function 7(x, y)is separable. Therefore, the
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fractional integral filter function of the two-dimensional energy function /(x, y)can be obtained by
expanding on the basis of Equation (7), as shown in Equation (16).

. -V
_y i——sgn(@,)

e

—
—y I——sgn(w,)
‘ o,

(7ry (0, ) =

x
(16)

Figure 9 shows the amplitude frequency characteristic surface of different order (
= { 0.1,0.5,0.8,1.0, 2. 0} ) fractional integration operators for two-dimensional signals
obtained from Equation (16) .Direct observation shows that fractional order integration operators
belong to low-pass filters, and their cutoff frequency is related to the fractional order of integration.
As the order of integration increases, the low-pass performance of fractional order integration
operators becomes stronger, that is, the fractional order integration operator has a attenuation effect
on the high-frequency signal of the image, and the degree of attenuation increases nonlinearly with
the increase of integration order.

Figure 9. Amplitude frequency characteristic surface of two-dimensional signal fractional
integration.

4.2. Experiment and Analysis of Fractional Order Integral Operator for Image Denoising

4.2.1. Construction of Fractional Order Integral Operators

As mentioned above, it can be considered that the fractional integration of two-dimensional
image signals /(x,)) in the X-axis and Y-axis directions is separable under certain conditions. We can

use the normalized 8-direction fractional order integration operator to denoise the images separately.
By dividing the duration[a, ¢] of image signal /(x, ) into equal steps =1, i.e. = l:t_a}h l[t a, the
h

numerical expression for the fractional order integration operator along the X and Y axes defined by
G-L can be obtained, as shown in Equations (17) and (18), where p" (x, y)and ¢’ (x, y)represent the

residual terms of the fractional order integration in the horizontal and vertical directions.

v(v +1) v+ +2) ,
e I(x=3,y)+R(x,y) a7

I(xay—3)+R;(an’) (

8 1), =16) + 10— )+ 2D 12 )+

vy +1)

GIVI(x », I(x VI, y=)+——>

L VDI +2)
I(xy 2)+—6

18)
Figure 10 shows the fractional order integral denoising operator /; . This operator extends

Equations (19) and (20) to the remaining 6 directions of the image, resulting in an 8-direction
denoising operator. This operator has anisotropic rotation invariance and its filtering coefficient is
shown in Equation (19).
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Figure 10. Fractional order integral denoising mask operator.
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4.2.2. Evaluation Criterion

1. Subjective Evaluation

Subjective evaluation refers to the subjective evaluation of the enhanced image by directly
applying the human eye to it, striving to truly reflect human visual perception. Subjective visual
evaluation is more vivid and vivid because it directly affects images with the human eye [33] [34].
Due to the sensitivity of the human eye to the texture details and edge parts of the image, this
experiment adopts direct observation of the overall visual effect of the denoised image, with a focus
on observing the edges and texture features of the image.

2. Objective Evaluation

The objective indicator evaluation method constructs mathematical functions based on certain
objective image evaluation features that can reflect the subjective perception of the human eye, and
obtains calculation results based on certain image features based on the evaluation function. This
article uses average gradient, edge preservation coefficient, and signal-to-noise ratio to compare and
analyze the processing effects of image denoising operators [35].

e  Average Gradient (AG)
The average gradient value of an image can represent the contrast of details and texture changes

in the image, and can to some extent reflect the clarity of the image. The calculation formula for the
average gradient value is shown in Equation (20).

row col
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e  Edge Preservation Index (EPI)

The edge preservation index represents the situation where the filtering operator maintains the
horizontal or vertical edges of the image. The higher the EPI value, the higher the operator's ability
to preserve edges. The formula for the edge preservation coefficient is shown in Equation (21).
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Z Z Ahor‘izonLalf;ft”(j’ ']) + A vertical f‘;ﬁgr(j’ J>‘
EP[ = =22 (1)

row col
Ahorizontalfl'mf(’f(l’ J) + Averticalfl;gﬁ)f(l’ ‘]>‘

22

i=1 j=1

e  Signal-Noise Ratio(SNR)
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Image signal-to-noise ratio is an important indicator to measure the quality of an image,
representing the ratio of the size of the image signal to the noise signal. The calculation formula for
image signal-to-noise ratio is shown in Equation (22).

S £y

SNR =10 x 1g =1 J=1 (22)

row col
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4.2.3. Experimental results and comparative analysis

As shown in Figure 11, it represents the image denoised by fractional integral image denoising
operators of different orders for the Barbara image with Gaussian white noise of mean & = 0 and

varianceo=01 . By direct observation, it can be seen that the denoising operator with a fractional
integration order of v=0.1 has weak denoising ability, but almost no loss of image edge and texture
information is caused. The denoising operator with a fractional integration order of v=1.0 has good
denoising ability, but it results in severe loss of image edge and texture information, and poor visual
effect. From this, it can be seen that as the order of the fractional integration operator increases, the
performance of noise removal improves. However, the high-frequency information attenuation of
the denoised image also increases, resulting in a more severe degree of image blur.

(d) (e)

Figure 11. Fractional order integration operators of different orders. (a) Original image;(b) Noisy
image;(c) v=0.01;(d) v=0.1;(e) v=0.5;(f) v=1.0.

As shown in Figure 12, it represents the image denoised by image denoising operators of
different methods for the Barbara image with Gaussian white noise of mean # = 0 and variance

0=01. As shown in Figure 12, Figure 12c represents the image processed using the mean method,
Figure 12d represents the image processed using the Gaussian method, Figure 12e represents the
image processed using the Wiener method, and Figure 12f represents the image processed using the
fractional integration low order iteration method. As shown in Figure 13, Figure 13a represents the
inverse image of the residual image between the average method processed image and the original
image (the inverse image is for visual observation), Figure 13b represents the inverse image of the
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residual image between the Gaussian method processed image and the original image, and Figure
13c represents the inverse image of the residual image between the Wiener method processed image
and the original image, Figure 13d represents the inverse image of the residual image between the
image processed by the fractional order integration low order iteration method and the original
image. From direct observation, it can be seen that the proposed method in this article is a low order
fractional order integral iterative denoising method. Due to setting a smaller integration order, in
each iteration of denoising, compared to integer order integration denoising methods, this method
can to some extent preserve the edge and texture information of the image, thus achieving "micro
denoising” of noisy images. Table 1 shows the comparison of average gradient values, edge
preservation coefficients, and signal-to-noise ratio values after processing images using different
denoising methods. By direct observation, it can be seen that the low order fractional order integral
iterative denoising method proposed in this article preserves detailed information such as edges and
textures of the image while ensuring a higher signal-to-noise ratio as much as possible compared to
integer order denoising methods.

Figure 12. Images after denoising using different methods. (a) Original image;(b) Noisy image; (c)
Mean denoising; (d) Gaussian denoising;(e) Wiener denoising;(f) Fractional integral denoising.

(a) (b)
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(© (d)
Figure 13. Residual images of denoised images using different methods. (a) Mean denoising; (b)
Gaussian denoising;(c) Wiener denoising;(d) Fractional integral denoising.
Table 1. Comparison of experimental data of image denoising algorithms using different methods.
Denoising average gradient method Edge retention coefficient Signal to Noise Ratio
mean value 0.0138 0.3547 18.2964
Gaussian 0.0186 0.5388 19.3706
Wiener 0.0165 0.4356 19.2437
fractional order 0.0208 0.7084 19.8679

5. Conclusions

Fractional calculus is to extend the calculus order of classical integer calculus from integer to
non-integer or even complex numbers. Integer calculus theory has obtained many classical image
processing models in image underlying processing. This paper mainly studies the image
enhancement and denoising methods based on the single theory of fractional calculus, without using
the self-similarity and local feature information of the image. First, the paper introduces three
classical definitions of fractional calculus and the application fields of different definitions. Secondly,
the paper discusses the amplitude frequency characteristics of the fractional calculus operator in
detail, and deeply studies the nonlinear relationship between the high pass and low-pass
performance of the fractional calculus operator of one-dimensional and two-dimensional signals and
the order of calculus. On this basis, the paper constructs the image enhancement model based on the
fractional differential operator and the image denoising model based on the fractional calculus
operator. Finally, the experimental data shows that the fractional order calculus image processing
method proposed in this paper has better contrast and clarity enhancement effect than the integer
order calculus method in image enhancement, and has better edge preserving and denoising ability
in image enhancement. The fractional order calculus theory is the extension and continuation of
integer order calculus. Attempting to apply the fractional order calculus theory to the underlying
image processing has broad development prospects. At present, the research focus of scholars at
home and abroad is to build new image processing methods based on the fractional order calculus
theory and classic intelligent algorithms. It is believed that with the further improvement of computer
hardware performance, the classic intelligent algorithms will be further optimized, the new method
of fractional order image processing will definitely play an important role in future practical
applications.
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