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Abstract: The theory of fractional calculus extends the order of classical integer calculus from integer to non-

integer. As a new engineering application tool, it has made many important research achievements in many 

fields, including image processing. This paper mainly studies the application of fractional calculus theory in 

image enhancement and denoising, including the basic theory of fractional calculus and its amplitude 

frequency characteristics, the application of fractional differential operator in image enhancement, and the 

application of fractional integral operator in image denoising. The experimental results show that the fractional 

calculus theory has more special advantages in image enhancement and denoising. Compared with the existing 

integer order image enhancement operators, the fractional differential operator can more effectively enhance 

the "weak edge" and "strong texture" details of the image. The fractional order integral image denoising 

operator can not only improve the signal-to-noise ratio of the image compared to traditional denoising 

methods, but also better preserve detailed information such as edges and textures of the image. 

Keywords: fractional order differential operator; fractional order integral operator; image 

enhancement; image denoising 

 

1. Introduction 

The fractional calculus theory has been born for about three hundred years, but in this long 

period of time, the fractional calculus theory is only the analysis and derivation of pure mathematical 

theory by mathematicians, and engineering technicians are unfamiliar with it[1][2]. It was not until 

Mandelbrot first proposed the fractal theory [3-5] and described Riemann-Liouville fractional 

calculus as Brownian motion in fractal media that fractional calculus was first applied to the field of 

engineering technology. Therefore, fractional calculus theory, as a mathematical description method 

for analyzing complex systems, gradually developed into a modeling tool for engineering 

technology. In recent decades, many scholars at home and abroad have found that fractional calculus 

operators have memory and nonlocality, which is very suitable for describing materials with memory 

and genetic properties in the real world. Therefore, fractional calculus theory has been increasingly 

applied in basic science and engineering and other fields, and its practical value has also been initially 

reflected [6]. In recent ten years, many scholars at home and abroad have found that fractional 

calculus has a broad application prospect in the field of signal analysis and processing. They have 

applied the theory of fractional calculus to traditional memristor elements and proposed different 

types of fractional impedance in natural realization forms [7-9]. In recent years, scholars at home and 

abroad have tried to integrate fractional calculus theory with classical swarm intelligence algorithm, 

and proposed fractional neural network algorithm and fractional ant colony algorithm based on 

Fractional Steepest Descent Approach. These new algorithms have achieved good application results 

[10-14]. The application of fractional calculus theory in image processing originates from Pu Yifei and 
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other researchers who found that fractional differentiation has such characteristics as "nonlocality" 

and "Weak derivative". They tentatively applied fractional calculus theory to digital image 

underlying processing and achieved good simulation results, and proposed six basic fractional 

differential operator for digital image processing, The application of fractional calculus theory in 

image processing is gradually emerging [15] [16].Meriem Hacini built a bi-directional fractional-order 

derivative mask for image processing applications[17]. It has been applied in edge detection and de-

noising problems using real and synthetic images by the proposed method used the gradient 

computation properties. Xuefeng Zhang proposed image enhancement method based on rough set 

and fractional order differentiator [18]. In the image enhancement process, 2D Fourier transform is 

employed to turn gray levels into a gradient, then an adaptive fractional order differential operator 

based on entropy is proposed to enhance the information of images. Meng-Meng Li proposed a novel 

active contour method for noisy image segmentation using adaptive fractional order differentiation 

[19], and the fractional differentiation with an adaptively defined order is incorporated into the fitting 

term to deal with noise during the evolution of curves. Since then many scholars have proposed many 

new image processing methods based on fractional calculus theory and partial differential equations 

[20-22]. Jian Bai proposed a new variational model for image denoising and decomposition using the 

fractional-order bounded variation space to capture cartoon patterns [23]. Through the combination 

of fractional calculus theory and partial differential equation theory, A. Abirami studied the variable-

order fractional diffusion model for medical image denoising using the Caputo finite difference 

scheme for the proposed problem [24]. Based on the PU operator theory, many scholars have 

expanded and improved it, and proposed a new classical image processing model incorporating 

fractional calculus theory [25-29], including image enhancement methods based on fractional 

Contrast Limited Adaptive Histogram Equalization, image denoising methods based on fractional 

order NLM, and image denoising methods based on fractional order BM3D. 

This paper is mainly about the application of fractional calculus theory in digital image 

processing. The remaining structure of this article is as follows. Section 2 introduces mathematical 

and physical knowledge of fractional calculus theory. Section 3 introduces the construction of 

fractional order differential operator and the simulation contrast experiment in image enhancement. 

Section 4 proposes the construction of fractional order integral operators and simulation experiments 

in image denoising. Finally, the conclusions are given in Section6.. 

2. Basic Theory of Fractional Calculus 

In this section, we briefly introduce three contents. First, three basic definitions of fractional 

calculus theory and their practical scenarios. Second, amplitude frequency characteristics of 

fractional differential operator and fractional integral operator. At last, the amplitude frequency 

characteristics of fractional calculus of common signals. 

2.1. Fractional Calculus Theory 

Different definitions of fractional calculus can be obtained by analyzing the problem from 

different application angles. Up to now, there is still no unified time domain definition expression of 

fractional calculus. Among the numerous definitions, there are mainly three classical definitions of 

fractional calculus, which are Grümwald-Letnikov definition, Riemann-Liouville definition and 

Capotu definition. They are respectively Equation (1), Equation (2), and Equation (3) [1] [2]. 

• Grümwald-Letnikov of fractional calculus is defined as follows, 


−

=
→

−
Γ

+Γ
=

h

at

j

v

h

v
t

G
a jhxf

vj

jv
hxfD

0
0

)(
)(!

)(
lim)( Rv ∈          (1) 

• The definition of Riemann-Liouville for fractional order integration and Riemann Liouville for 

fractional order differentiation are as follows, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 July 2023                   doi:10.20944/preprints202307.1395.v1

https://doi.org/10.20944/preprints202307.1395.v1


 3 

 










−−Γ
−=

−Γ
−=





−+

−

−

t

a nvn

n
v
t

R
a

t

a v

v
t

R
a

dy
yx

yf

dt

d

vn
xfD

dy
yx

yf

v
xfD

1

1

)(

)(

）（

1
)(

)(

)(

）（

1
)(

          (2) 

• Caputo of fractional calculus is defined as follows, 
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The three definitions of fractional calculus are closely related and can be transformed under 

certain conditions. Both Riemann Liouville definition of fractional calculus and Caputo definition of 

fractional calculus are improvements to Grümwald-Letnikov definition of fractional calculus. 

Grümwald-Letnikov definition of fractional calculus can be converted into convolution operation 

form in numerical implementation, so it is very suitable for application in signal processing. The 

Riemann- Liouville definition of fractional calculus is mainly used to calculate the analytical solutions 

of some relatively simple functions. The Caputo definition of fractional calculus is applicable to the 

analysis of the initial boundary value problems of fractional differential equations, so it is very 

suitable for application in the engineering field. 

2.2. Amplitude Frequency Characteristics of Fractional Calculus Operators 

2.2.1. Fractional order differential operator 

Let the square integrable energy signal )()( 2 RLxf ∈ , whose Fourier transform is

dxexff
R

xi −
∧

= ωω )()( . The n-th derivative of the signal )(xf is (x)f n
( +∈ Zn  ), and according to 

the properties of the Fourier transform, Equation (4) can be obtained. 
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FT

n

 (4) 

By extending the positive integer n to the positive real number v ( +∈ Rv  ), the fractional order 

derivative of the signal )(xf can be obtained as )(xf v
 . According to the properties of fractional 

order Fourier transform [30-32], Equation (5) can be obtained, where

∧

)(ωvd can be further expanded 

to obtain Equation (6). 
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According to Equation (5) and Equation (6), the amplitude frequency characteristic curve of 

fractional order differential operator of one-dimensional signal can be obtained, as shown in Figure 

1 (a). It can be seen from direct observation that firstly fractional order differential operator has a 

strengthening effect on medium and high frequency signals, and the amplitude of the strengthening 

increases nonlinearly and sharply with the increase of frequency and differential order. Secondly, 

fractional order differential order ]1,0[∈v , in the very low frequency part ( 1<ω ) of the signal, the 

fractional order differential operator improves the amplitude of the signal to a certain extent, and the 

amplitude of the increase is slightly greater than that of the first and second order differential 

operator. In the end, the fractional order differential order ]1,0[∈v  , in the middle and high 

frequency part ( 1>ω  )of the signal, the fractional order differential operator improves the 

amplitude of the signal to a certain extent, but the amplitude of the increase is also significantly less 
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than the first and second order differential operator. The above properties show that the fractional 

order differential operator has the property of "Weak derivative", and the fractional order differential 

operator not only strengthens the high frequency component of the signal, but also retains the very 

low frequency component of the signal nonlinearly. In addition, by analyzing the physical meaning 

of fractional calculus operator from the perspective of signal processing, it can be seen that fractional 

differential operator can be understood as generalized amplitude and phase modulation. Its 

amplitude changes exponentially with frequency in fractional order, and its phase is the generalized 

Hilbert change of frequency [15]. 

  

(a) (b) 

Figure 1. Amplitude frequency characteristic curve of fractional calculus operator. (a) fractional 

differential; (b) fractional integral. 

2.2.2. Fractional Order Integral Operator 

Let the square integrable energy signal )()( 2 RLtf ∈  , whose Fourier transform is

dtetff
R

ti −
∧

= ωω )()(  . When −∈Rv , 1−= DI  and vv −='  can be assumed to obtain the Fourier 

transform form of the fractional order integral operator based on the G-L definition, as shown in 

Equation (7). Further expand the expression 
'

)( viω to obtain Equation (8). 
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According to Equations (7) and (8), the amplitude frequency characteristic curve of the fractional 

order integration operator for one-dimensional signals can be obtained, as shown in Figure 1 (b). By 

direct observation, it can be seen that firstly fractional order integration operators have an attenuation 

effect on both medium and high frequency signals, and they rapidly decay nonlinearly with 

increasing frequency and integration order. Secondly, fractional order integration order ]1,0[' ∈v  , in 

the frequency 1<ω   region of the signal, the fractional order integration operator improves the 

amplitude of the signal to a certain extent, but the amplitude of the improvement is much smaller 

than that of the first and second order integration operators. At last, fractional order integration order

]1,0[' ∈v  , in the frequency 1>ω  region of the signal, the fractional order integration operator 

weakens the amplitude of the signal to a certain extent, but the amplitude of the weakening is also 

significantly smaller than that of the first and second order integration operators. The above 

properties indicate that the fractional order integral operator not only weakens the high-frequency 
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part of the signal, but also preserves the highest frequency part nonlinearly. The fractional order 

integration operator not only weakens the low-frequency part of the signal, but also preserves the 

lowest frequency part. 

2.3. Fractional Order Calculus Processing and Analysis of Common Signals 

Figure 2a–d show the amplitude frequency characteristic curve of fractional calculus after 

processing square wave signal (Equation 9), triangular signal (Equation 10), sinusoidal signal (

)sin(t ) and Gaussian signal (Equation 11) respectively. It can be seen from direct observation that 

firstly when the order increases from 0 to 1, the fractional calculus result of the square wave signal 

increases sharply at its sudden change, and the fractional calculus result of the triangular wave signal 

gradually becomes a rectangular wave. Secondly, when the fractional derivative order 1=v is used, 

it represents the first derivative of the sine and Gaussian signals, which can be understood that the 

direction of change of the signal at that point is the fastest. When the fractional order differential 

order ]1,0[∈v  is reached, it indicates that the sine and Gaussian signals are fractional order 

continuous interpolation between the value of the function itself and the direction of the fastest 

change. 
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(c) (d)  

Figure 2. Fractional Calculus Amplitude Frequency Diagram of Common Signals. (a) Square Wave; 

(b) Triangular Wave; (c) Sine Wave; (d) Gaussian Signal. 

The above properties indicate that the integer order differential of the signal at stationary is zero, 

while the fractional order differential at stationary is not zero. The integer order differential value of 

the signal along the slope is constant, while the fractional order differential value of the signal along 

the slope is variable, but exhibits nonlinear changes over time. The characteristics of fractional 

calculus operator can make it retain some low-frequency weak texture information to a certain extent 

while strengthening the details of image high-frequency edges and textures. Therefore, the image 

processing method based on fractional calculus is better than the traditional image processing 

method based on integer order, which is not only conducive to extracting the edge and texture of the 

image, but also can retain the contour information of the image to a certain extent. 

3. Research on the Application of Fractional Differential in Image Enhancement 

In this section, we mainly introduce two contents, the characteristics of fractional differential 

operator of image signals and the image enhancement experiment of fractional order. The 

characteristic of fractional differential operator of image signal mainly analyzes the relationship 

between the differential order of fractional differential operator and the high pass strength of two-

dimensional signal. The image enhancement experiment of fractional order differential operator 

mainly proves the advantages of fractional order differential image enhancement algorithm 

compared with integral order image enhancement operator after image processing.   

3.1. Amplitude frequency characteristics of fractional order differential image enhancement operators   

Let the fractional order v derivative of the two-dimensional energy function ),( yxf be ),( yxf v

 (
+∈ Rv ). Because of the separability of the fractional Fourier transform, it can be considered that the 

fractional order differential filter of the two-dimensional energy function ),( yxf v

is separable. 

Therefore, the fractional order differential filter function of the two-dimensional energy function

)y,(xf can be obtained by expanding on the basis of Equation (5), as shown in Equation (12). (𝐷𝑓∧ )௩(𝜔௫, 𝜔௬) = ቀ|𝜔௫|௩𝑒௜ೡഏమ ௦௚௡(ఠೣ)ቁ ∗ ቀห𝜔௬ห௩𝑒௜ೡഏమ ௦௚௡(ఠ೤)ቁ                       (12) 

The amplitude frequency characteristic surface of different order fractional differential operator 

of two-dimensional signals can be obtained from equation (12), as shown in Figure (3). The figure 

shows the amplitude frequency characteristic surface of fractional differential operator with order

{ }0.1,5.0,1.0,0∈v respectively. It can be seen from direct observation that the fractional 

differential operator belongs to a high pass filter, and its cut-off frequency is related to the fractional 
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differential order. With the increase of the differential order, the fractional differential operator's high 

frequency filtering performance is stronger, that is, the fractional differential operator has the 

attenuation effect on the low-frequency signal of the image, and the degree of attenuation increases 

with the increase of the differential order. 

 

Figure 3. Amplitude frequency characteristic surface of two-dimensional signal fractional 

differentiation. 

3.2. Image Enhancement Experiment and Analysis of Fractional Differential Operator 

Under certain conditions, it can be considered that the fractional differentiation of two-

dimensional image signals ),( yxI in the X and Y directions is separable, thus obtaining a normalized 

8-direction fractional differentiation image enhancement operator. The duration ],[ ta of the image 

signal ),( yxI is divided equally by the step size 1=h , that is, [ ]at
h

at
n

h

−=



 −

=
=1

 , and the numerical 

calculation expression of the fractional differential operator along the X and Y axes can be obtained, 

as shown in Equations (13) and (14), where ),( yxRv
x

and ),( yxRvy represent the fractional differential 

remainder in the horizontal and vertical direction. (13) 
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Figure 4 represents the fractional order differential image enhancement mask operator
DW . This 

operator extends Equations (13) and (14) to the other directions of the image to obtain an image 

enhancement operator in the 8 direction. This operator has anisotropic rotation invariance and its 

filtering coefficient is shown in Equation (15). 
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Figure 4. Fractional order differential augmentation operator. 
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As shown in Figure 5, in order to facilitate visual observation, Figure (b) to (f) respectively 

represent the inverted images filtered by different order ( { }0.2,0.1,8.0,5.0,1.0∈v ) differential 

operator on the Barbara images. It can be seen from direct observation that the image is filtered by 

fractional differential operator of order v=0.1, which improves the high frequency information of the 

image to a certain extent, while retaining a large amount of low frequency information of the image. 

As the differential order increases, the fractional order filtering operator attenuates a large amount 

of low-frequency information in the image, while non-linear enhancing the high-frequency 

information in the image. After the image is filtered by fractional differential operator with 

differential order v=2.0, a large amount of low-frequency information of the image is removed, and 

the high-frequency part of the image is nonlinear enhanced. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 5. Fractional Differential Operator of Different Orders. (a) Original image; (b) v=0.1; (c) v=0.5; 

(d) v=0.8; (e) v=1.0; (f) v=2.0. 

Figure 6 shows the contrast diagram of Barbara image enhanced by different order (

{ }0.2,0.1,8.0,5.0,1.0∈v  ) differential operator.It can be seen from direct observation that after the 

image is enhanced by fractional differential operator of order v=0.1, because the low order differential 

filter operator retains a large amount of low-frequency contour information and weak texture 

information, and at the same time, the edge and texture information of the image are properly 

improved, the image after filtering and fusion by the low order fractional differential operator will 

appear overall bright and overexposure. After the image is enhanced by fractional differential 

operator with the order of v=2.0, because the higher-order differential operator removes all low-

frequency information of the image, and at the same time greatly improves the high-frequency edge 

and strong texture information of the image, the overall contrast of the image after filtering and fusion 

by higher-order fractional differential operator will not be greatly improved, and edge jitter occurs. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 6. Fractional differential operator of different orders. (a) Original image; (b) v=0.1; (c) v=0.5; (d) 

v=0.8; (e) v=1.0; (f) v=2.0. 

As shown in Figure 7, Figure (b) and Figure (c) respectively represent images enhanced by 

fractional order differential operator of order v=0.5 and v=0.8, Figure (d), Figure (e) and Figure (f) 

represent images enhanced by classical integer order differential enhancement operators sobel, 

prewitt and laplacian, and Figure 8 represents histograms corresponding to each image in Figure 7. 

Direct observation shows that the fractional differential operator of order v=0.5 and v=0.8 can not 

only improve the weak texture feature information in the smooth area of the image as much as 

possible, but also can nonlinearly enhance the strong texture detail information in the image with 

relatively small gray value change amplitude and frequency, and can also nonlinearly enhance the 

high-frequency edge information in the image with relatively large gray value change amplitude. 

The histogram contrast diagram (8) obtained by image enhancement methods of different methods 

shows that the fractional order differential enhancement operator has better gray level equalization 

distribution and better overall image contrast than the image processed by the integer order 

differential operator. 

   

(a) (b) (c) 
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(d) (e) (f) 

Figure 7. Differential Image Enhancement Method. (a) Original image;(b) v=0.5;(c) v=0.8;(d) Sobel ; 

(e) Prewitt;(f) Laplacian. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 8. Grayscale histogram. (a) Original image; (b) v=0.5; (c) v=0.8; (d) Sobel; (e) Prewitt; (f) 

Laplacian. 

4. Research on the Application of Fractional Integral in Image Denoising 

This section mainly elaborates on the characteristics of fractional order integration operators for 

image signals and the experiments on image denoising using fractional order integration operators. 

The former mainly analyzes the relationship between the integration order of fractional order integral 

operators and the low-pass intensity of two-dimensional signals. The latter demonstrates the 

advantages of fractional order integral image denoising operators over integer order image denoising 

operators in processing noisy images from both subjective visual comparison and objective indicator 

performance. 

4.1. The Amplitude Frequency Characteristics of Fractional Order Integral Operator Image Denoising 

Operator 

Let the fractional integral of the two-dimensional energy function )y,(xf be ),(
'

yxf v    ( −∈ Rv'

). Because of the separability of the fractional Fourier transform, it can be considered that the 

fractional integral filter of the two-dimensional energy function )y,(xf is separable. Therefore, the 
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fractional integral filter function of the two-dimensional energy function )y,(xf can be obtained by 

expanding on the basis of Equation (7), as shown in Equation (16). 
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Figure 9 shows the amplitude frequency characteristic surface of different order (

{ }0.2,0.1,8.0,5.0,1.0∈v ) fractional integration operators for two-dimensional signals 

obtained from Equation (16) .Direct observation shows that fractional order integration operators 

belong to low-pass filters, and their cutoff frequency is related to the fractional order of integration. 

As the order of integration increases, the low-pass performance of fractional order integration 

operators becomes stronger, that is, the fractional order integration operator has a attenuation effect 

on the high-frequency signal of the image, and the degree of attenuation increases nonlinearly with 

the increase of integration order. 

 

Figure 9. Amplitude frequency characteristic surface of two-dimensional signal fractional 

integration. 

4.2. Experiment and Analysis of Fractional Order Integral Operator for Image Denoising 

4.2.1. Construction of Fractional Order Integral Operators 

As mentioned above, it can be considered that the fractional integration of two-dimensional 

image signals ),( yxI  in the X-axis and Y-axis directions is separable under certain conditions. We can 

use the normalized 8-direction fractional order integration operator to denoise the images separately. 

By dividing the duration ],[ ta of image signal ),( yxI into equal steps 1=h , i.e. [ ]at
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numerical expression for the fractional order integration operator along the X and Y axes defined by 

G-L can be obtained, as shown in Equations (17) and (18), where ),(
‘

yxR v
x
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yxR v
x

represent the 

residual terms of the fractional order integration in the horizontal and vertical directions. 
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Figure 10 shows the fractional order integral denoising operator
IW  . This operator extends 

Equations (19) and (20) to the remaining 6 directions of the image, resulting in an 8-direction 

denoising operator. This operator has anisotropic rotation invariance and its filtering coefficient is 

shown in Equation (19). 
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Figure 10. Fractional order integral denoising mask operator. 
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4.2.2. Evaluation Criterion 

1. Subjective Evaluation 

Subjective evaluation refers to the subjective evaluation of the enhanced image by directly 

applying the human eye to it, striving to truly reflect human visual perception. Subjective visual 

evaluation is more vivid and vivid because it directly affects images with the human eye [33] [34]. 

Due to the sensitivity of the human eye to the texture details and edge parts of the image, this 

experiment adopts direct observation of the overall visual effect of the denoised image, with a focus 

on observing the edges and texture features of the image. 

2. Objective Evaluation 

The objective indicator evaluation method constructs mathematical functions based on certain 

objective image evaluation features that can reflect the subjective perception of the human eye, and 

obtains calculation results based on certain image features based on the evaluation function. This 

article uses average gradient, edge preservation coefficient, and signal-to-noise ratio to compare and 

analyze the processing effects of image denoising operators [35]. 

• Average Gradient (AG) 

The average gradient value of an image can represent the contrast of details and texture changes 

in the image, and can to some extent reflect the clarity of the image. The calculation formula for the 

average gradient value is shown in Equation (20). 
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• Edge Preservation Index (EPI) 

The edge preservation index represents the situation where the filtering operator maintains the 

horizontal or vertical edges of the image. The higher the EPI value, the higher the operator's ability 

to preserve edges. The formula for the edge preservation coefficient is shown in Equation (21). 
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• Signal-Noise Ratio(SNR) 
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Image signal-to-noise ratio is an important indicator to measure the quality of an image, 

representing the ratio of the size of the image signal to the noise signal. The calculation formula for 

image signal-to-noise ratio is shown in Equation (22). 
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4.2.3. Experimental results and comparative analysis 

As shown in Figure 11, it represents the image denoised by fractional integral image denoising 

operators of different orders for the Barbara image with Gaussian white noise of mean 0=µ and 

variance 1.0=σ  . By direct observation, it can be seen that the denoising operator with a fractional 

integration order of v=0.1 has weak denoising ability, but almost no loss of image edge and texture 

information is caused. The denoising operator with a fractional integration order of v=1.0 has good 

denoising ability, but it results in severe loss of image edge and texture information, and poor visual 

effect. From this, it can be seen that as the order of the fractional integration operator increases, the 

performance of noise removal improves. However, the high-frequency information attenuation of 

the denoised image also increases, resulting in a more severe degree of image blur. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 11. Fractional order integration operators of different orders. (a) Original image;(b) Noisy 

image;(c) v=0.01;(d) v=0.1;(e) v=0.5;(f) v=1.0. 

As shown in Figure 12, it represents the image denoised by image denoising operators of 

different methods for the Barbara image with Gaussian white noise of mean 0=µ and variance

1.0=σ . As shown in Figure 12, Figure 12c represents the image processed using the mean method, 

Figure 12d represents the image processed using the Gaussian method, Figure 12e represents the 

image processed using the Wiener method, and Figure 12f represents the image processed using the 

fractional integration low order iteration method. As shown in Figure 13, Figure 13a represents the 

inverse image of the residual image between the average method processed image and the original 

image (the inverse image is for visual observation), Figure 13b represents the inverse image of the 
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residual image between the Gaussian method processed image and the original image, and Figure 

13c  represents the inverse image of the residual image between the Wiener method processed image 

and the original image, Figure 13d represents the inverse image of the residual image between the 

image processed by the fractional order integration low order iteration method and the original 

image. From direct observation, it can be seen that the proposed method in this article is a low order 

fractional order integral iterative denoising method. Due to setting a smaller integration order, in 

each iteration of denoising, compared to integer order integration denoising methods, this method 

can to some extent preserve the edge and texture information of the image, thus achieving "micro 

denoising" of noisy images. Table 1 shows the comparison of average gradient values, edge 

preservation coefficients, and signal-to-noise ratio values after processing images using different 

denoising methods. By direct observation, it can be seen that the low order fractional order integral 

iterative denoising method proposed in this article preserves detailed information such as edges and 

textures of the image while ensuring a higher signal-to-noise ratio as much as possible compared to 

integer order denoising methods. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 12. Images after denoising using different methods. (a) Original image;(b) Noisy image; (c) 

Mean denoising; (d) Gaussian denoising;(e) Wiener denoising;(f) Fractional integral denoising. 

  
(a) (b) 
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(c) (d) 

Figure 13. Residual images of denoised images using different methods. (a) Mean denoising; (b) 

Gaussian denoising;(c) Wiener denoising;(d) Fractional integral denoising. 

Table 1. Comparison of experimental data of image denoising algorithms using different methods. 

Denoising average gradient method Edge retention coefficient Signal to Noise Ratio 

mean value 

Gaussian       

Wiener 

fractional order 

0.0138 

0.0186   

0.0165 

0.0208 

    0.3547 

0.5388 

0.4356     

0.7084 

18.2964 

19.3706 

19.2437 

19.8679 

5. Conclusions 

Fractional calculus is to extend the calculus order of classical integer calculus from integer to 

non-integer or even complex numbers. Integer calculus theory has obtained many classical image 

processing models in image underlying processing. This paper mainly studies the image 

enhancement and denoising methods based on the single theory of fractional calculus, without using 

the self-similarity and local feature information of the image. First, the paper introduces three 

classical definitions of fractional calculus and the application fields of different definitions. Secondly, 

the paper discusses the amplitude frequency characteristics of the fractional calculus operator in 

detail, and deeply studies the nonlinear relationship between the high pass and low-pass 

performance of the fractional calculus operator of one-dimensional and two-dimensional signals and 

the order of calculus. On this basis, the paper constructs the image enhancement model based on the 

fractional differential operator and the image denoising model based on the fractional calculus 

operator. Finally, the experimental data shows that the fractional order calculus image processing 

method proposed in this paper has better contrast and clarity enhancement effect than the integer 

order calculus method in image enhancement, and has better edge preserving and denoising ability 

in image enhancement. The fractional order calculus theory is the extension and continuation of 

integer order calculus. Attempting to apply the fractional order calculus theory to the underlying 

image processing has broad development prospects. At present, the research focus of scholars at 

home and abroad is to build new image processing methods based on the fractional order calculus 

theory and classic intelligent algorithms. It is believed that with the further improvement of computer 

hardware performance, the classic intelligent algorithms will be further optimized, the new method 

of fractional order image processing will definitely play an important role in future practical 

applications. 
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