
Article

Not peer-reviewed version

Distributed Subgraph Query

Processing Using Filtering Scores

on Spark

Kyoungsoo Bok , Minyoung Kim , Hyeonbyeong Lee , Dojin Choi , Jongtae Lim , Jaesoo Yoo

*

Posted Date: 20 July 2023

doi: 10.20944/preprints202307.1394.v1

Keywords: subgraph query; search order; distributed graph; filtering score

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1424122
https://sciprofiles.com/profile/2989482
https://sciprofiles.com/profile/1774646
https://sciprofiles.com/profile/377645

Article

Distributed Subgraph Query Processing Using
Filtering Scores on Spark

Kyoungsoo Bok 1, Minyoung Kim 2, Hyeonbyeong Lee 2, Dojin Choi 3, Jongtae Lim 2

and Jaesoo Yoo 2,*

1 Department of Artificial Intelligence Convergence, Wonkwang University, Iksandae 460, Iksan 54538,

Jeonbuk, Korea; ksbok@wku.ac.kr (K.B.)
2 Department of Information and Communication Engineering, Chungbuk National University, Chungdae-

ro 1, Seowon-gu, Cheongju 28644, Chungbuk, Republic of Korea; cystitis@chungbuk.ac.kr (M.K.);

lhb@chungbuk.ac.kr (H.L.); jtlim@chungbuk.ac.kr (J.L.)
3 Department of Computer Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-

gu, Changwon 51140, Gyeongsangnam, Korea; dojinchoi@changwon.ac.kr (D.C.)

* Correspondence: yjs@chungbuk.ac.kr (J.Y.); Tel.: +82-43-261-3230

Abstract: As various services have been generating large scale graphs to represent multiple

relationships between objects, studies have been conducted to obtain subgraphs with particular

patterns. In this paper, we propose a distributed query processing method to efficiently search a

subgraph for a large graph on Spark. To reduce unnecessary processing costs, the search order is

determined by filtering scores using the probability distribution. The partitioned queries are

searched in parallel in the distributed graph of each slave node according to the search order, and

the local search results obtained from each slave node are combined and returned. The query is

partitioned in triplets based on the determined search order. The performance of the proposed

method is compared with the performance of existing methods to demonstrate its superiority.

Keywords: subgraph query; search order; distributed graph; filtering score

1. Introduction

A graph G=(V, E) comprises a set V of vertices and a set E of edges to represent multiple

relationships between objects in social media, biological networks, and the Internet of Things (IoT)

[1–4]. A graph is used with the objective of analyzing interactions, detecting anomaly patterns, and

providing recommendation services [5–8]. In the IoT, for example, data transmission and control

flows among connected devices (“things”) are modeled as graphs that are analyzed to identify

anomalies or to group things used by the interactions. Since large amounts of graphs have been

generated in respect of social media, the IoT, and so on, systems have been developed to partition

and store graphs to perform distributed processing [9–12].

Distributed parallel processing methods have been proposed to effectively process large

amounts of graph big data [13–16]. Pregel proposed a bulk synchronous parallel model for the

parallel processing of large graphs [17,18]. Pregel computations consist of a sequence of iterations,

called supersteps. Parallel such as MapReduce [19–21], which is a programming model for processing

large amounts of data in distributed parallel computing, simplify the design and implementation of

large capacity data processing systems; however, they may result in inefficient processing because

they do not support efficient data mining and machine learning algorithms. To resolve this problem,

GraphLab has been proposed, and it supports asynchronous processing while ensuring data

consistency in a distributed shared memory environment [22]. PowerGraph processes a graph

analysis algorithm by repeatedly executing a gather-apply-scatter (GAS) model to reduce network

communication and processing costs [23]. GraphX is a widely used large capacity data processing

engine that is used to perform parallel processing of graph data and simplify the implementation and

application of algorithms [24,25]. GraphX implemented on top of Spark uses resilient distributed

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.1394.v1
http://creativecommons.org/licenses/by/4.0/

 2

datasets (RDDs), which are collections of objects that are partitioned across a cluster to provide in-

memory storage abstraction.

Subgraph queries are frequently used in application areas that use large graphs to determine

which subgraph matches a certain pattern [26–31]. In social media, for example, subgraph queries are

performed to obtain a user graph with a particular relation or identify communities that have similar

interactions. In the IoT, subgraph queries are used to detect anomaly patterns among objects or

identify IoT devices that perform similar actions. In protein–protein interaction networks, subgraph

queries are used to identify a particular protein structure. Subgraph query processing requires

performing a subgraph isomorphism test to identify a graph that structurally matches the query in

all graphs [28,31]. The subgraph isomorphism test compares all possible subgraphs in a large graph

and is therefore NP-complete.

To solve NP-compete problems occurring in subgraph query processing, filtering and

verification [32–35] and path based query processing [36–38] have been proposed. The filtering and

verification is divided into a filtering stage and a verification stage. The filtering stage extracts the

candidate set for the graphs. The verification stage performs the subgraph isomorphism test for the

candidate set. To extract a candidate set, building indices by extracting features of the graphs is

required. Commonly used features include paths, trees, and cycles, and hash table information is

occasionally used. When a query is entered, a candidate set that matches the features of the query is

extracted through the constructed index. The validation stage performs a subgraph isomorphism test

for the extracted candidate set to verify whether they actually match the query. Commonly used

subgraph isomorphism test algorithms include VF2 [39], GraphQL [40], and GADDI [41], among

others [42]. The filtering and verification requires additional costs for building and managing the

index for each feature for the entire graph. Furthermore, as the subgraph isomorphism test is an NP-

complete problem, the cost may vary greatly depending on the method of filtering the candidate set.

The path based query processing method searches subgraphs without executing a subgraph

isomorphism test algorithm [36–38,43,44]. Starting from a vertex in the graph that matches the query,

all paths are searched for the connected neighbor vertices to check whether they match the vertex of

the query. The search is performed for all connected vertices, and if a vertex that matches the query

is obtained, then the vertex ID is recorded, and the ID of the vertex recorded at the end of the search

becomes the path of the subgraph matching the query. In [37], a new query processing method was

proposed to partition a query into segments of triplets in Spark. In the head segment, which

corresponds to the first search order, a vertex that matches the label of the head segment vertex is

obtained in each graph and selected as the starting vertex. The labels of the neighbor vertices of the

selected starting vertex are checked to obtain a triplet matching the segment and return it to the

master. Then, a search for the partitioned segment is performed, and the master gathers the results

sent from the nodes. In this method, however, there are no special criteria for selecting the starting

vertex, and a cost model that can reduce the processing cost is not built. Therefore, the problem with

this method is that the processing cost increases if several vertices match the label of the head

segment, which is the starting vertex, or if the degree of the pertinent vertex is large.

In this paper, we propose a distributed query processing method to search a subgraph with the

same label as a query on Spark. Through a probability density function of the degree that can occur

at each vertex based on the statistical information collected for the graph, the probability of the degree

of the pertinent vertex appearing scores the probability that the search is not required. This value is

a probability that can filter out the vertices that do not need to be searched owing to the difference in

the degree between the query and the graph. As the probability of becoming filtered increases, it is

possible to search with less cost. The query is partitioned with the vertices in the order from the

highest filtering probability to the lowest, thereby searching the partitioned subqueries. The

contributions of this paper are as follows.

• We predict the filtering score to avoid the vertices that do not need to be searched, based on the

statistical information of the graph.

• We determine the search order that determines the priority of the vertices to be searched among

the vertices of the query through the filtering score.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 3

• We partition the query into subqueries according to the filtering score for distributed query

processing in Spark.

This paper is organized as follows. Section 2 presents previous studies related to this research,

and Section 3 explains the proposed path based distributed subgraph query processing method.

Section 4 discusses the performance evaluation to confirm the superiority of the proposed method.

Finally, Section 5 provides the concluding statements.

2. Related Work

Spark has a programming model for distributed data processing similar to MapReduce. Spark

uses a data type called an RDD to overcome data volatility in memory and efficiently perform

distributed processing [25,45]. An RDD comprises data stored in a distributed manner across many

nodes and allows for parallel processing. Moreover, it can recover on its own, even in the event of a

failure. An RDD is not processed at one node. It is divided into smaller units called partitions that are

distributed and processed at multiple nodes. Spark’s GraphX is a submodule that supports

distributed and parallel graph processing of large data [24]. GraphX generates RDDs by dividing

vertices and edges into two tables: VertexRDD and EdgeRDD. The divided RDDs are partitioned

using the vertex-cut method on each node. The Diver program serves as the master and instructs

walkers to perform tasks through the cluster manager. The workers that received the task instructions

perform the parallel processing of the partitioned VertexRDD and EdgeRDD.

In [37], a distributed graph path querying that operates without the need to build extensive

indices in Spark was proposed. In this framework, an input query is partitioned into such triplets.

Once the query partitioning of the master is finished, the partitioned subgraphs are disseminated to

all slaves, and each slave searches the received triplet. A vertex in the partitioned query is selected as

the starting vertex of the search, and the search is performed along the direction of the edge connected

to that vertex. The edge direction is recorded in the vertex information table, and the information of

the vertices approached along the edge is read to obtain the information of the neighbor vertices and

the edge direction. Once the search for a particular triplet is finished, each slave sends the search

result to the master, and the master records it and instructs the slave to obtain the next triplet. In the

master table, the search results are stored, thereby recording and accumulating the searched vertices.

When the search for all partitioned queries is finished, the accumulated vertices in the master’s table

become the searched path.

GraphCache is a caching system for undirected labeled graphs to support subgraph and

supergraph queries [33]. GraphCache consists of three modules: method M, query processing

runtime, and cache manager. The main objective of method M is a subgraph isomorphism test. The

cache manager deals with the management of data and metadata stored in the cache. GraphCache

introduces a number of graph cache replacement strategies including a hybrid graph cache

replacement policy. The query processing runtime executes queries and monitors the key. The query

processing runtime consists of the resource/thread manager, the internal subgraph/supergraph query

processors, the logic for candidate set pruning, and the statistics monitor. The internal

subgraph/supergraph query processors check whether the query is a subgraph or supergraph of

previous queries and execute queries using cached queries and their answer sets.

HGraph is a parallel and distributed tool for processing large scale graphs on top of Hadoop

and Spark [15]. HGraph consists of the application layer, the execution layer, and the distributed

storage layer. The application layer supports the APIs for implementing a program for large scale

graph processing. The distributed storage layer is based on the Hadoop File System (HDFS) and

Spark RDD. HGraph uses two types of operators: unary operators and binary operators. Unary

operators are logical graph operators that take a single input graph. Binary operators perform

operations on two input graphs. HGraph operators run in memory and switch to the local disk when

both the physical and virtual memory are completely saturated.

In [46], query processing algorithms are proposed based on a worst-case optimal join algorithm

in a continuously changing large graph. To support distributed processing of the recent worst-case

optimal join algorithms, three distributed algorithms are introduced: BiGJoin, Delta-BiGJoin, and

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 4

BiGJoin-S. BiGJoin is a distributed algorithm for static graphs that achieves a subset of theoretical

guarantees. Each operation that BiGJoin performs on each tuple corresponds to an operation in the

serial execution of generic join. Therefore, BiGJoin inherits its computation and communication

optimality from generic join. Delta-BiGJoin is a distributed algorithm for dynamic graphs in insert

only environments. BiGJoin and Delta-BiGJoin are implemented in Timely Dataflow, which is a

distributed data parallel dataflow system in which one connects dataflow operators describing

computation using dataflow edges describing communication. BiGJoin-S is a distributed algorithm

for static graphs that achieves all theoretical guarantees, including balancing the workload between

distributed workers on any input instance.

MapReduce based multiple subgraph query processing (MSP) was proposed to process multiple

graph queries in Hadoop [47]. MSP uses structure based partitioning and an integrated graph index

(IGI) to reduce the query search space. The structure based data partition stores the subgraphs with

similar labels and structures on one node to improve the default partition provided by MapReduce.

The IGI created by the method proposed in [48] keeps all neighborhood information of the graphs to

extract common subgraphs. MSP performs two MapReduce operations: the first partitions the graphs

and creates an index for each partition; the second processes subgraph queries and index

maintenance. For query processing, MSP checks whether all edges of the query exist in that IGI. If all

the edges are not present in the IGI, the query is filtered. In the validation, only the necessary IGIs

are loaded based on the preprocessing phase.

3. The Proposed Distributed Subgraph Query Processing

3.1. Overall Architecture

In the case of a path subgraph query, searching for a certain vertex can have a significant impact

on the search to minimize candidate results that satisfy partial query conditions. If there are countless

starting vertices that are searched first, numerous parallel searches are performed, leading to a larger

number of unnecessary searches than the number of vertices actually required for the search.

Furthermore, even if the search is performed starting with an appropriate number of vertices, the

connected neighbor vertices all have to be searched, indicating that there are countless cases to search

according to the number of connected edges. Therefore, the proposed method calculates the filtering

score to search for the subgraph that matches the query with a smaller number of searches, while

reducing unnecessary searches. A vertex with a high filtering score can filter more unnecessary

searches. If the search is performed in the search order of the vertices from the highest to the lowest

score, the search time can be reduced further. The filtering score is calculated through the probability

density functions considering the data distribution characteristics.

Figure 1 shows the overall architecture of the subgraph query processing method on Spark. In

the distributed environment, the graph is distributed according to the partition policy and stored in

multiple slave nodes, and the statistics are collected for the entire graph. The collected statistics

include the number of vertices for each label and the degree of each label. As the search order has a

significant impact on the performance in the path query, we compute a filtering score to determine

the search order for query processing. The filtering score is calculated based on the statistical

information to reduce unnecessary searches. The parallel searches are performed at each slave node

in Spark according to the determined search order. The query is partitioned into triplets according to

the filtering score to perform parallel searches. As the data are distributed and stored in different

nodes, it is necessary to join the results that have been locally searched in each slave node. The search

results are transmitted for joining through communication between the slave nodes, and the results

are finally joined at one slave node.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 5

Figure 1. Overall architecture of the proposed query processing.

3.2. Filtering Score

Statistical information regarding the graph is collected to calculate the filtering score used for

determining the search order. The information collected as statistics includes the graph’s labels and

degree. In general, path subgraph queries first search for vertices with the same label as vertices

included in the query. In the graph, vertices with fewer labels matching the query can produce

relatively fewer candidate result sets than vertices that do not. Therefore, it is necessary to first search

for vertices that match the labels included in the query less. It is efficient to exclude the vertices with

a smaller degree than the degree of the query because even if they are searched, they pertain to paths

that are not likely to develop into the query. We calculate the probability of a particular degree

occurring at a certain vertex and use it for the cost prediction of the path.

Suppose G and Q are the vertices of a graph and a query with the same label. If matching vertices

are searched starting with every G, then as the number of labels L increases, the number of vertices

where the search starts will increase linearly. In Figure 2, more searches are required in the case of

searching for the path starting with 𝑣ସ, where the number of the same labels is 1 in Figure 2 (a),

compared to the case of searching for the path starting with 𝑣ଷ and 𝑣଺, where the number of the

same labels is 2. Therefore, our proposed method collects the statistics for the number of labels at

each vertex of G, and the vertices with a small number of labels are selected as the starting vertices.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 6

(a) Graph (b) Query

Figure 2. Difference in the number of labels.

When vertices matching the query are searched, vertices having smaller degrees than the degree

of the query vertex do not need to be searched. For example, if vertices with the label A of the query

are searched, as shown in Figure 3, 𝑣ଷ and 𝑣଺ will be searched. If the degree of vertex 𝑣௜ is 𝐷௜, 𝐷ଷ

and 𝐷଺ are 4 and 1, respectively. Since the degree of the vertex with the label A of the query is 2, 𝑣ଷ

with degree 4 has to be searched, but 𝑣଺ with degree 1 has no possibility of becoming the query

result. Vertices having degrees smaller than the degree of the query can be filtered out. Therefore, we

calculate the filtering score for avoiding the vertices to be searched depending on the difference in

the degree.

(a) Graph (b) Query

Figure 3. Difference in the degree.

When real world data are modeled as a graph, the distribution of the vertices and their edges

shows a particular tendency depending on which data are used. Simply, the normal distribution will

be shown where the vertices of the graph and the edges connected to the vertices are evenly

distributed. However, many graph applications show a power-law distribution where a small

number of vertices has many edges [23,49,50]. If the vertices of the graph and the edges connected to

the vertices show a certain distribution, we herein calculate the probabilistic filtering scores that will

be excluded from the search and determine the search order to decide which vertices of the query

will be searched with higher priorities. The search order is determined based on the filtering score,

and the filtering score is calculated in two cases. The first case divides a normal distribution where

the vertices of the graph and their degrees are evenly distributed and a case of showing a power-law

distribution where the degrees are concentrated on a certain vertex. Subsequently, the degree of the

pertinent vertex is predicted through the probability density function of the corresponding

distribution, and the probabilistic search order is determined based on the predicted value. The

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 7

second case determines the search order of the vertices through the average degree of the vertices

having the label corresponding to the query.

The proposed method defines a filtering score to determine the search order for query

processing. The filtering score is the filtering probability calculated through the probability density

function and the proportion of a certain label in the total labels obtained through the statistics

collection stage. The filtering probability considers different probability density functions because it

can show a different distribution depending on the graph characteristics. The first method calculates

through the probability density function of a normal distribution, denoted by normalFS. The second

method calculates through the probability density function of a power-law distribution, denoted by

powerFS. The last method calculates using the average degree of a particular label without

considering the probabilistic distribution of data, denoted by avgDgFS.

Assuming that the vertices of the graph and their degrees follow an evenly distributed normal

distribution, Equation (1) shows the probability density function 𝑓(𝑥), where 𝑥 is the degree of the

vertices with label L as a variable for calculating the probability density function, 𝜇 is the average

degree of the vertices, and 𝜎is the standard deviation of the degree of the vertices. 𝑓(𝑥) = ଵఙ√ଶగ 𝑒ି(ೣషഋ)మమ഑మ (1)

Assuming that a vertex 𝑣௜ with the same label 𝐿 exists in the graph and query, 𝐺௅(𝑣௜) and 𝑄௅(𝑣௜) in the probability density function denote the probability that the corresponding degree will

occur, respectively, and the area of 𝑄௅(𝑣௜)~𝐺௅(𝑣௜) is the probability that can filter, without searching,

the vertex 𝐺௅(𝑣௜) that has a smaller degree than the degree of 𝑄௅(𝑣௜) according to the

aforementioned difference in the degree. Therefore, the area from the degree of G to that of 𝑄௅(𝑣௜)

for the selection of the starting vertex is called 𝐹𝑃ே஽(𝑣௜), as shown in Equation (2). 𝐹𝑃ே஽(𝑣௜) = ׬ ଵఙ√ଶగ 𝑒ି(ೣషഋ)మమ഑మ 𝑑𝑥ொಽ(௩೔)ீಽ(௩೔) (2)

According to [51], the relation between the vertices and their degrees in a graph of the real world

follows a power-law distribution, and the probability that such vertices and degrees occur is

generally 𝑃(𝑑) ∝ 𝑑ିఈ, with α ≈ 2. Furthermore, [52] showed that a power-law distribution can be

expressed as a probability distribution called a zeta distribution or Pareto distribution. If the vertices

and edges in the power-law distribution have an exponential relationship of 2, then the variable s in

the zeta function can be specified as 2. The zeta function converges to a specific value, and the

probability density function of the Pareto distribution can be expressed as Equations (3) and (4).

Therefore, the probability density function of the power-law distribution can be represented by

Equation (5). 𝜁(𝛾) = ∑ ଵ௞ംஶ௞ୀଵ (3) 𝜁(2) = ∑ ଵ௞మஶ௞ୀଵ = గమ଺ (4) 𝑓(𝑥) = ଺(గ௫)మ (5)

Let 𝑣௝ be the vertices of the graph having the same label as the query. In the probability density

function, 𝐺௅(𝑣௜) and 𝑄௅(𝑣௜) represent the probability that the corresponding degree will occur, and

the area of 𝐺௅(𝑣௜)~ 𝑄௅(𝑣௜) is the probability that can filter, without searching, the vertex 𝐺௅(𝑣௜) that

has a smaller degree than 𝑄௅(𝑣௜) based on the aforementioned difference in the degree. Therefore,

the area from the degree of 𝐺௅(𝑣௜) to that of 𝑄௅(𝑣௜) is called 𝐹𝑃௉஽(𝑣௜), as shown in Equation (6), for

the selection of the starting vertex. 𝐹𝑃௉஽(𝑣௜) = ׬ ଺(గ௫)మொಽ(௩೔)ீಽ(௩೔) 𝑑𝑥 (6)

When a query is entered as an input, the filtering score is calculated for all vertices of Q based

on the collected statistical information. For the filtering score, we consider the value calculated using

the three methods explained in the previous section and the proportion of a certain label in all labels

collected in the statistics collection stage. The filtering scores are classified into normalFS, powerFS,

and avgDgFS according to the distribution characteristics, as shown in Equations (7)~(9),

respectively. Table 1 shows the description of the parameters in Equations (7)~(9). 𝑛𝑜𝑟𝑚𝑎𝑙𝐹𝑆(𝑣௜) = ௏ಽ௏ೌ೗೗ × 𝐹𝑃ே஽(𝑣௜) (7)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 8

𝑝𝑜𝑤𝑒𝑟𝐹𝑆(𝑣௜) = ௏ಽ௏ೌ೗೗ × 𝐹𝑃௉஽(𝑣௜) (8) 𝑎𝑣𝑔𝐷𝑔𝐹𝑆(𝑣௜) = ௏ಽ௏ೌ೗೗ × 𝐴𝐷௅(𝑣௜) (9)

Table 1. Description of the parameters.

Parameters Description 𝐹𝑃ே஽(𝑣௜) Filtering probability of normal distribution 𝐹𝑃௉஽(𝑣௜) Filtering probability of power-law distribution 𝑉௅ Number of vertices with label 𝐿 in graph 𝐺 𝑉௔௟௟ Total number of vertices in graph 𝐺 𝐴𝐷௅(𝑣௜) Average degree of collected labels

3.3. Query partitioning

A vertex that has the highest filtering score among the vertices of the query is selected as the

starting vertex, and the query is partitioned into triplets comprising a vertex having the next highest

filtering score among the neighbor vertices connected to the starting vertex. The triplet consists of <𝑇𝑉௜ , 𝐸௜ , 𝐻𝑉௜ >. Here, 𝑇𝑉௜ stores tail vertex information with the highest filtering score in the query, 𝐻𝑉௜ stores head vertex information with high filtering score among neighbor vertices of 𝑇𝑉௜, and 𝐸௜
stores edge information. The initial start vertex is set to NULL by 𝑇𝑉௜ and 𝐸௜. Query partitioning is

performed for all neighbor vertices connected to the starting vertex. When the partitioning with the

neighbor vertices is finished, the same operation is performed at the vertex with the next highest

filtering score among the vertices connected to the neighbor vertices of the starting vertex.

Algorithm 1 shows the query partitioning. Once the starting vertex and the search order are

determined, they are registered as a round in accordance with the determined search order. The

round represents the search order of performing a parallel process at each slave node, and the next

round is performed only after finishing the previous round. The starting vertex with the highest

filtering score is registered as 𝑅଴. The vertex that has the next highest score among the neighbor

vertices connected to the starting vertex is registered as the next round. When the round registration

for all neighbor vertices connected to the starting vertex is finished, the same operation is performed

for the neighbor vertices of the starting vertex. As a result, all vertices of the query are partitioned in

the order from the highest to the lowest filtering score and the partitioned triplets are registered in

qRound.

Algorithm 1 Query partitioning

Input:

QLabelList : query label

NeighborVertexList : neighbor vertices

filteringScore : filtering score

Output:

qRound = {TL1, TL2, ..., TLn} : triplets to indicate query search order

while QLabelList ← ∅

add QL (top filteringScore of QLabelList) to qRound

remove 𝑄௅ in QLabelList;

if 𝑄௅’s NeighborVertexList is empty

add top filteringScore of neighbor vertex of 𝑄௅’s NeighborVertexList to qRound

remove 𝑄௅ in QLabelList;

else

add top filteringScore of 𝑄௅’s NeighborVertexList to qRound

remove 𝑄௅ in QLabelList;

end if

end while

return qRound

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 9

Figure 4 shows the process of dividing a query into triplets. First, we construct triplets by finding

the highest vertex in the query graph and performing a depth-first search (DFS) based on that vertex.

Suppose query Q consists of five vertices and the number next to the vertex is the filtering score. Since

the vertex with label A has the highest filtering score, we set the vertex with label A as the starting

vertex and add the initial triplet 𝑇𝐿ଵ to qRound. When the starting vertex is selected, triplets are

added to qRound while continuously performing DFS based on the filtering score. With a vertex with

label A as the starting vertex, a neighbor vertex with a high filtering score is selected as 𝑇𝐿ଶ and

added to qRound. While this process is repeated until DFS is finished, triplets for the query are

registered in qRound.

Figure 4. An example of query partitioning.

3.4. Distributed Query Processing

The proposed method works as a master-slave architecture in a Spark environment. The master

node calculates a filtering score through statistical information collection. The query is partitioned

based on the filtering score and the query processing rounds are registered. The master node instructs

each slave node to perform the query according to the search order. The slave nodes that have

received the instruction perform the search in their own partitions and record the results in the result

table. Each slave node generates intermediate results according to the search order registered in the

qRound and combines the intermediate results generated from each slave through join operations to

deliver the final results to the master node.

Algorithm 2 represents a distributed query processing process performed in a slave. Triplets are

stored in the qRound according to the order in which query processing is performed. Each slave

searches the graph according to the triplet order registered in the qRound, generating intermediate

results with matching labels. When the first round 𝑅଴ is performed for the subgraph query, each

slave node searches all vertices with the label selected as the starting vertex. After that, in the second

round 𝑅ଵ, the neighbor vertex with the label of 𝑅ଵ connected to the vertex with the label of the

starting vertex is searched. The next round is searched through the ID of the vertex recorded in the

search result. When 𝑅଴ is performed according to the query processing rounds, each slave node

searches for all vertices with the label selected as the starting vertex. Subsequently, 𝑅ଵ is performed,

and the neighbor vertices with the label 𝑅ଵ connected to the vertex labeled as the starting vertex are

searched and recorded. In the next round, the search is performed based on the ID of the vertices

recorded in the search results. Based on this, the search is only performed for the neighbors of the

vertices obtained in the previous round, and the processing cost can be efficiently reduced because

there is no need to search again from the vertices that were not needed in the previous search. Each

slave stores partitions divided by a vertex-cut method, and the vertex that becomes the basis for

division is replicated to each slave. When we encounter replication vertices while searching a graph

using triplets according to the qRound order, we set a join tag because query processing is no longer

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 10

possible on the current slave node. Candidate results in slave nodes are joined based on the vertex to

which the join tag is assigned.

Algorithm 2 Distributed Query Processing

Input:

QLabelList : query label

qRound : query search order

G : graph

Output:

resultsubgraphs : Result subgraph

resultsubgraphs ← ∅

temp ← find vertices and edges with same label as query via G(QLabelList)

while round ← qRound

 headLabel ← round.head // label of a head vertex

tailLabel ← round.tail // head of a tail vertex

rvertex ← find vertices that match the query label via temp(headLabel, tailLabel)

expand resultsubgraphs

 if resultsubgraphs is not expandable via the next round

if rvertex is partitioned vertex

add join tag to partitioning vertex

resultsubgraphs += rvertex

else

break

end if

end if

end while

exchange resultsubgraphs between slave nodes for join processing

resultsubgraphs ← join with other partition

return resultsubgraphs

Figure 5 shows the intermediate search results by round. As a result of performing 𝑅ଵ , 𝑣ଵ

connected to 𝑣ଷ can be searched, but the graph has no vertex with a label A connected to 𝑣ଷ-𝑣ଵ in 𝑅ଶ. Therefore, (𝑣ଷ,𝑣ଵ) is excluded in the result of 𝑅ଶ. As (𝑣ଷ,𝑣ଵ) has been removed in 𝑅ଷ, there is no

need to search for the vertices with a label D connected to 𝑣ଵ. If a vertex due to the graph partitioning

is encountered in the process of searching according to the round in each partition, there may be more

vertices connected to the pertinent vertex in the replicated partition, but this information cannot be

known in the current partition. Therefore, a join tag is marked on the corresponding vertices of all

partitions that have replicated the vertex, and the next search is commenced. The join tag is used

when sending/receiving the search result between the slave nodes after the local search. The join tag

is a mark used to store only intermediate results that require joins to avoid storing unnecessary

intermediate results. In 𝑅ଶ, a replicated 𝑣ସ is obtained, and a join tag is marked. As the vertex with

a join tag indicates that there is a path in another partition, the search begins again at the vertex with

the join tag in 𝑅ଷ, which is the next round. As such, owing to the method of performing the next

round only for the results of the previous round, there is the advantage that the size of the table

recording the results is gradually reduced, and unnecessary searching is not performed.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 11

(a) Graph G and query Q

(b) Search results

Figure 5. Search results by round.

Figure 6 shows the results of such search result joins. When the partitioned query searches are

finished, an intermediate search result table is created in each partition, and the intermediate result

tables are sent/received using communications between the partitions for the join. Because the search

is performed asynchronously in each partition, the completion time of each search is different. The

partitions that have finished searching already and are in the waiting state send their intermediate

result tables if there is another partition that has finished the search. As the cost required for the

communication increases as the size of the table increases, the communication cost can be reduced if

a table of a small size is transmitted. The partition that has received the intermediate result performs

the join with its own intermediate result table.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 12

Figure 6. Joining of search results.

4. Performance Evaluation

4.1. Analysis

Various distributed query methods have been proposed to effectively perform subgraph search

on large graphs. Distributed subgraph query processing methods are divided into filtering and

verification and pathbased processing according to the query processing technique. GraphCache [33]

is a representative filtering and verification method to improve graph query processing through

caching data. When a query similar to a previously performed query comes in, it generates a

candidate result using the cached query and the query execution result, and performs a verification

phase to generate the final result. However, when a new query that has not been previously

performed is requested, the filtering phase is performed. MSP [47] is an FTV that processes multiple

subgraph queries through MapReduce framework. MSP uses an index called IGI, which is available

in the filtering phase and the verification phase in a distributed environment. IGI integrates common

subgraphs to reduce the cost of processing multiple queries. When edge labels integrate different

vertices, instead of adding vertices and edges separately, we reduce the size of the IGI by adding

edge information to the vertices. During the verification phase, HDFS does not load all the IGIs, but

only the required IGIs. HGprah[15] is a prototype tool for distributed graph processing in Hadoop

and Spark. HGraph has a master-slave structure, and the master manages the workflow, and the

actual distributed processing is performed through the slave. HGraph does not provide a separate

query processing method and uses Hadoop and Spark's execution engine. DWJ [46] is a method for

processing both static and dynamic queries in a distributed environment based on the worst-case

optimal join algorithm. [46] proposed a path based processing method that supports both static and

dynamic queries in a distributed environment based on the worst-case optimal join algorithm. It

constructs an edge index to access outgoing and incoming neighbors based on each vertex. DWJ can

be applied to directional queries with specific patterns and provides an extended function for using

static query results for dynamic query processing. [37] performs path based query processing in a

master/slave environment. The master divides the query into triplets and delivers them to all slaves.

Each slave selects a specific vertex based on the received triplets and performs a search along the

direction of the edge connected to the vertex. When the search for one triplet is completed, each slave

transmits the search result to the master and expands the search area based on the other triplet.

Therefore, it constructs an index and does not perform an isomorphism test. However, since the

search is performed based on the arbitrary vertices included in the query, unnecessary comparisons

are performed to produce results satisfying the query.

The filtering and verification method generates a candidate set through an index in the filtering

step. Since the candidate set contains results corresponding to false positives, it is verified through

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 13

the verification step. The filtering and verification method requires the cost of constructing and

managing the index for the graph, and there is a cost difference depending on the method of verifying

the candidate set. Path based processing creates a set of candidates that match queries while exploring

neighbor vertices based on a specific vertex without constructing an index. The search is performed

for all connected vertices, and if a vertex matching the query is found, the vertex ID is recorded, and

up to the ID of the vertex recorded at the end of the search is a subgraph matching the query.

However, existing path based processing has not presented a method for generating candidate results

that satisfy queries at minimal cost. That is, it performs random comparison without presenting a

criterion for determining which vertex is good to start processing the query based on. The search cost

increases linearly if the number of vertices matching the label of the vertex that begins processing the

query is large or if the degrees of those vertices are large. The proposed method computes filtering

scores to reduce the cost of exploring neighbor vertices in the process of generating a set of candidates

satisfying the query. The query is divided into triplets based on the vertex with a high filtering score

among the vertices included in the query. The master delivers the search order to each slave, and the

slab performs the search on its partition and generates an intermediate result. It generates a final

result by performing a join operation on the calculated intermediate result in each slave. In this case,

in order to reduce the transmitted intermediate result, a slave with a small size of the intermediate

result delivers the intermediate result to another slave.

Table 2 shows the results of comparative analysis of the characteristics of the existing methods

and the proposed method for processing distributed subgraph queries. Methodology, FAV , and Path

represent a query processing method, filtering and verification, and a path based processing

technique, respectively. Environment is a system environment that performs queries, and

GraphCache does not provide distributed processing, but the proposed and other methods support

distributed processing. Query Type represents the type of query supported by each method, and

Random represents the support of arbitrary subgraph searches on labeled graphs. Most methods are

random, but DWJ only supports subgraph searches with specific patterns on diversity graphs. Index

represents an index used for query processing in each method. The filtering and verification method

uses indexes, but path based methods do not use indexes. Since HGraph is a framework for

distributed subgraph processing, it does not specifically present a specific index or query processing

method. Verification indicates whether an isomorphism test is performed on a candidate set, and

only the filtering and verification method performs Verification. The search order indicates whether

it provides a search order of vertices for query processing, and other methods except for the proposed

method do not provide a separate processing order. In particular, the filtering and verification

method quickly generates a candidate set through an index, but a verification step must be performed

for all candidate sets.

Table 2. Characteristic comparison of distributed query processing schemes.

Schemes Methodology Environment Query Type index Verification Search Order

GraphCache[33] FAV Single Random 𝐺𝐶௜௡ௗ௘௫, 𝑀௜௡ௗ௘௫ 0 X

MSP[47] FAV Hadoop Random IGI 0 X

HGraph[15] - Hadoop, Spark Random - - X

DWJ[46] Path Timely Dataflow Directed Edge index X X

SPQ[37] Path Spark Random X X X

Proposed Path Spark Random X X Filtering score

4.2. Evaluation Results

To demonstrate the superiority of the proposed method, we performed self-performance

evaluation according to various distributions of graphs in various datasets and compared the

performance with existing schemes. Table 3 shows the performance evaluation environment,

comprising an Intel(R) Core(TM) i7-6700 CPU 3.40GHz processor, and 30GB memory. In order to

perform the experimental evaluation in a distributed environment, we constructed three Spark based

clusters and implemented them through Scala in GraphX. To evaluate the query processing

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 14

performance across a variety of datasets, we used real datasets provided by Stanford [53] and

randomly generated datasets created through the graph generator software GTgraph [54], as shown

in Table 4. Suny_dip is a biology dataset, comprising approximately 20,000 vertices and 70,000 edges.

Dblp is a coauthor network dataset, comprising approximately 400,000 vertices and 1 million edges.

Skitter is an Internet topology dataset, comprising approximately 1.7 million vertices and 11 million

edges. GTgraph is a randomly generated dataset with the same number of vertices and edges as the

skitter dataset. The datasets were generated such that the vertices and their degrees would be evenly

generated. Various methods for processing subgraph queries have been proposed. Query processing

methods performed in a single server environment do not incur communication costs to distribute

queries and sign up for distributed query processing results. However, query processing methods

performed in a single server environment increase query processing time because they perform query

processing while visiting vertices sequentially. Therefore, distributed processing methods are

required to improve the processing performance of large subgraph queries. Various schemes have

been proposed for the distributed processing of subgraph queries. However, they have various

conditions and purposes of subgraph queries and different distributed environments. [46] supports

query processing for a specific connected pattern for a directed graph in a Timely Dataflow

environment [37] provides a query processing method for any subgraph in a Spark environment,

similar to the proposed method.

Table 3. Performance evaluation environment.

Parameter Value

Processor Intel(R) Core(TM) i7-6700 CPU 3.40GHz

Memory 30G

Number of clusters 3

Programming language Scala

Table 4. Datasets used in the performance evaluation.

Dataset Vertices Edges Description

suny_dip 22,596 69,148 Biology data

dblp 425,961 1,049,866 Coauthor network

skitter 1,696,415 11,095,298 Internet topology

GTgraph 1,696,415 11,095,298 Randomly generated graph

To show the superiority of distributed query processing using the proposed filtering scores, we

compared the proposed distributed query processing scheme with an scheme proposed in [37] .

Query processing performance depends on the dataset and query types used in the experiment.

Therefore, we defined four query types for the randomly generated dataset and the real dataset and

compared the average search time required for query processing by generating 10 queries for each

query type. Figure 7 shows the query types used to compare the search time. Queries Q1~Q4 show

large structural differences. Query Q1 has a structure, wherein one vertex and another vertex are

simply connected; Q2 has a structure of concentration on one vertex; Q3 has a structure of

concentration on two vertices; finally, Q4 is a query with a structure, wherein a simple structure is

mixed with a structure of concentration on a small number of vertices.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 15

Figure 7. Query types according to the structure.

Figure 8 shows the search times according to the distribution of the graph in the randomly

generated dataset and real dataset. In the calculation for the degree, Case 1 is divided into a normal

distribution and a power-law distribution according to the distribution, and the score is calculated

based on the probability of the degree of the query occurring in each distribution. The normal

distribution and power-law distribution are denoted by normalFS and powerFS, respectively. Case 2

is a method of calculating the score based only on the average degree in the graph, and it is denoted

by avgDgFS. The dataset generated randomly through GTGraph was used as the normal distribution

data in the experiment, and the real dataset was used as the power-law distribution dataset.

Regardless of the data, Case 1, wherein the score was calculated based on the probability density

function’s filtering probability and the number of labels, demonstrated better performance than Case

2, wherein the score was calculated based on the average data and the degree. This was because the

graph’s vertices and degrees followed a certain distribution. The average value provided only the

baseline value and did not compensate for the values outside the baseline. Conversely, the calculation

using the probability density function in Case 1 showed excellent performance in most cases because

it provides paths that can perform the query with a smaller number of searches using the statistical

information of the real dataset.

Figure 8. Search time according to the graph distribution.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 16

Figure 9 shows the search time according to the datasets. In relatively small Sunny_dip and dblp

datasets, the order in which query processing is performed by filtering scores does not have a

significant impact, but the proposed method shows slightly better performance. The existing method

[37] begins the search based on vertices with matching labels without any special search order, which

results in more candidate results in datasets with many vertices and edges, such as Skitter, resulting

in poor performance than the proposed method. The time required for determining the search order

by calculating the filtering score through the collected statistical information and partitioning the

query was not long compared to the search time. The proposed method performs better than the

existing method because it performs path comparison based on vertices that are likely to generate not

many candidate results through filtering scores. In the proposed method, powerFS considering the

power-law distribution shows superior performance compared to avgDgFS considering the average

degree. In particular, the larger the graph, the more power-law distribution characteristics are, the

more performance differences occur in the Skitter dataset.

(a) Suny_dip

(b) Dblp

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 17

(c) Skitter

Figure 9. Comparison of search time according to the dataset.

Figure 10 shows the search time among query types in the randomly generated dataset. Since a

query compare vertices that exist in a structurally simple path based on a particular vertex, a large

set of candidates does not occur. Therefore, there is not much difference in performance between the

existing method and the proposed method. It may be seen that query processing time increases

because there are more neighbor vertices to be compared in queries Q2~Q4 than Q1. The existing

method [37] increases the search time compared to the proposed method because the number of

vertices to be compared increases as the search range expands when there are many vertices that

match a specific label. However, the proposed method improves query processing performance

compared to the existing method because it extends the search range based on vertices that are

believed to generate a small set of candidates through filtering scores even if the query is complex.

Although the difference in the search time is not large between the queries, the performances of

normalFS and avgDgFS in the proposed method are excellent in terms of the search methods. The

performance difference was not large between the query types in the randomly generated dataset. In

addition, a simple form of query did not show a large difference in the performance evaluation of the

real dataset.

Figure 10. Comparison of search times among query types in randomly generated data.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 18

Figure 11 shows the search time between query types in the real dataset. The real data set has

various distributions of vertices with specific labels based on specific vertices. Therefore, when the

filtering score is applied according to the query type, there is a large difference in performance. Query

Q1 searches only one neighbor vertex based on a particular vertex, and query Q2 compares multiple

neighbor vertices based on one vertex, but only needs to expand the search scope once. Therefore,

determining the search order through Q1 and Q2 filtering scores does not have much effect on

performance. However, the proposed method can reduce the number of vertices to be compared next

based on the starting vertex, resulting in some performance improvement over the existing method.

Since queries Q3 and Q4 extend the search range based on specific vertices, reducing the number of

vertices to be compared while generating candidate results has a significant impact on performance.

Existing methods should compare all neighbor vertices for each vertex if there are many vertices in

the graph that match the label of the vertex included in the query. Therefore, if the vertex to be

compared increases, such as Q3 and Q4, the performance is degraded. However, the proposed

method can reduce the vertices to be searched additionally for a relatively small set of candidates

because filtering scores determine the order to be searched. As a result, the more complex the query

is, the more performance the proposed method is relatively better than the existing method. In the

case of Q4, the most noticeable performance difference was shown in the comparison with the

existing method. The proposed method shows strength in queries of a mixed structure, such as Q4,

because the search method of paths that can create the query with a small number of searches

involves predicting the probability of each vertex occurring in the graph for the query, rather than

random searching.

Figure 11. Comparison of search time between query types in real data.

5. Conclusions

In this paper, we proposed a distributed query processing method to search a subgraph on

Spark. In this method, the filtering score is calculated to eliminate unnecessary searches in the query

search through the distribution of the vertices of the graph and their edges. Based on the calculated

filtering score, the vertex that can be filtered most is selected as the starting vertex, and the search is

performed by partitioning the query into subqueries of smaller units depending on the filtering score.

This facilitates a faster search for the subgraphs compared to the existing methods. In the evaluation

results, the proposed method demonstrates a performance improvement compared to the existing

methods in the real dataset. Although the absolute performance improvement does not appear to be

high, the relative performance has been proven to be excellent because there is no disk I/O in Spark,

a distributed in-memory environment. The proposed method is difficult to apply in other distributed

environments because subgraphs are processed through filtering scores on Spark. In the future, we

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 19

will conduct research to apply the proposed method to heterogeneous graphs and to reduce the cost

of join computation in a distributed environment. In addition, to demonstrate the relative superiority

of distributed query processing methods, we will conduct performance evaluations with state-of-the-

art studies using datasets with varying configurations of vertices and edges on a single server.

Author Contributions: Conceptualization, K.B., M.K., D.C., H.L., and J.Y.; methodology, K.B., M.K., D.C., J.L.,

and J.Y.; software, M.K., H.L., and D.C.; validation, K.B., M.K., D.C., and J.L.; formal analysis, K.B., M.K., and

J.Y.; writing—original draft preparation, K.B., M.K., and J.L.; writing—review and editing, K.B. and J.Y. All

authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the

Korean government (MSIT) (No. 2022R1A2B5B02002456), by the Institute of Information & Communications

Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No.2014-3-00123,

Development of High Performance Visual Big Data Discovery Platform for Large-Scale Realtime Data Analysis),

and by the Cooperative Research Program for Agriculture Science and Technology Development (Project No.

PJ016247012022), Rural Development Administration, Republic of Korea.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bok, K.; Jeong, J.; Choi, D.; Yoo, J. Detecting Incremental Frequent Subgraph Patterns in IoT Environments.

Sensors 2018, 18, 1-16.

2. Bok, K.; Yoo, S.; Choi, D.; Lim, J.; Yoo, J. In-Memory Caching for Enhancing Subgraph Accessibility. Appl.

Sci. 2020, 10, 1-18.

3. Michail, D.; Kinable, J.; Naveh, B.; Sichi, J.V. JGraphT - A Java Library for Graph Data Structures and

Algorithms. ACM Trans. Math. Softw. 2020, 46, 1-29.

4. Nguyen, V.; Sugiyama, K.; Nakov, P.; Kan, M. FANG: leveraging social context for fake news detection

using graph representation. Commun. ACM 2022, 65, 124-132.

5. Saeed, Z.; Abbasi, R.A.; Razzak, M.I.; Xu, G. Event Detection in Twitter Stream Using Weighted Dynamic

Heartbeat Graph Approach. IEEE Comput. Intell. Mag. 2019, 14, 29-38.

6. Lee, J.; Bae, H.; Yoon, S. Anomaly Detection by Learning Dynamics from a Graph. IEEE Access 2020, 8,

64356-64365.

7. Canturk, D.; Karagoz, P.; SgWalk: Location Recommendation by User Subgraph-Based Graph Embedding.

IEEE Access 2021, 9, 134858-134873.

8. Guo, Q.; Zhuang, F.; Qin, C.; Zhu, H.; Xie, X.; Xiong, H.; He, Q. A Survey on Knowledge Graph-Based

Recommender Systems. IEEE Trans. Knowl. Data Eng. 2022, 34, 3549-35646

9. Mukherjee, A.; Chaki, R.; Chaki, N. An Efficient Data Distribution Strategy for Distributed Graph

Processing System. In Proceedings of International Conference on Computer Information Systems and

Industrial Management, Barranquilla, Colombia, 15-17 July 2022.

10. Choi, D.; Han, J.; Lim, J.; Han, J.; Bok, K.; Yoo, J. Dynamic Graph Partitioning Scheme for Supporting Load

Balancing in Dis-tributed Graph Environments. IEEE Access 2021, 9, 65254-65265.

11. Davoudian, A.; Chen, L.; Tu, H.; Liu, M. A Workload-Adaptive Streaming Partitioner for Distributed Graph

Stores. Data Sci. Eng. 2021, 6, 163-179.

12. Ayall, T.; Liu, H.; Zhou, C.; Seid, A.M.; Gereme, F.B.; Abishu, H.N.; Yacob, Y.H. Graph Computing Systems

and Partitioning Techniques: A Survey. IEEE Access 2022, 10, 118523-118550.

13. Liu, N.; Li, D.; Zhang, Y.; Li, X. Large-scale graph processing systems: a survey. Frontiers Inf. Technol.

Electron. Eng. 2020, 21, 384-404.

14. Bouhenni, S.; Yahiaoui, S.; Nouali-Taboudjemat, N.; Kheddouci, H. A Survey on Distributed Graph Pattern

Matching in Massive Graphs. ACM Comput. Surv. 2022, 54, 1-35.

15. Adoni, W.Y.H.; Tarik, N.; Krichen, M.; El Byed, A. HGraph: Parallel and Distributed Tool for Large-Scale

Graph Processing. In Proceedings of International Conference on Artificial Intelligence and Data Analytics,

Riyadh, Saudi Arabia, 6-7 April 2021.

16. Fan, W.; He, T.; Lai, L.; Li, X.; Li, Y.; Li, Z.; Qian, Z.; Tian, C.; Wang, L.; Xu, J.; Yao, Y.; Yin, Q.; Yu, W.; Zeng,

K.; Zhao, K.; Zhou, J.; Zhu, D.; Zhu, R. GraphScope: A Unified Engine For Big Graph Processing. Proc.

VLDB Endow. 2021, 14, 2879-2892.

17. Malewicz, G.; Austern, H.M.; Bik, J.A.; Dehnert, J.; Horn, I.; Leiser, N.; Czajkowski, G.M. Pregel: a system

for large-scale graph processing. In Proceedings of ACM SIGMOD International Conference on

Management of data, Indianapolis, Indiana, USA, 6-10 June 2010.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 20

18. Xu, Q.; Wang, X.; Li, J.; Zhang, Q.; Chai, L. Distributed Subgraph Matching on Big Knowledge Graphs

Using Pregel. IEEE Access 2019, 7, 116453-116464.

19. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51,

107-113.

20. Su, Q.; Huang, Q.; Wu, N.; Pan, Y. Distributed subgraph query for RDF graph data based on MapReduce.

Comput. Electr. Eng. 2022, 102, 108221.

21. Angles, R.; López-Gallegos, F.; Paredes, R. Power-Law Distributed Graph Generation With MapReduce.

IEEE Access 2021, 9, 94405-94415.

22. Low, Y.; Gonzalez, J.; Kyrola, A.; Bickson, D.; Guestrin, C.; Hellerstein, J. Distributed GraphLab: A

Framework for Machine Learning in the Cloud. Proc. VLDB Endow. 2012, 5, 716-727.

23. Gonzalez, J.; Low, Y.; Gu, H.; Bickson, D.; Guestrin, C. PowerGraph: Distributed graph-parallel

computation on natural graphs. In Proceedings of USENIX Symposium on Operating Systems Design and

Implementation, Hollywood, CA, USA, 8-10 October 2012.

24. Xin, R.S.; Gonzalez, J.; Michael, F.J.; Ion, S. Graphx: A resilient distributed graph system on spark. In

Proceedings of International Workshop on Graph Data Management Experiences and Systems, New York,

NY, USA, 24 June 2013.

25. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.;

Franklin, M.J.; Ghodsi, A.; Gonzalez, J.; Shenker, S.; Stoica, I. Apache spark: a unified engine for big data

processing. Commun. ACM 2016, 59, 56-65.

26. Talukder, N.; Zaki, M.J. A distributed approach for graph mining in massive networks. Data Min. Knowl.

Discov. 2016, 30, 1024-1052.

27. Tian, Y.; McEachin, R.C.; Santos, C.; States, D.J.; Patel, J.M. SAGA: a subgraph matching tool for biological

graphs. Bioinform. 2006, 23, 232-239.

28. Zhu, L.; Yao, Y.; Wang, Y.; Hei, X.; Zhao, Q.; Ji, W.; Yao, Q. A novel subgraph querying method based on

paths and spectra. Neural Comput. Appl. 2019, 31, 5671-5678.

29. Liang, Y.; Zhao, P. Workload-Aware Subgraph Query Caching and Processing in Large Graphs. In

Proceedings of IEEE International Conference on Data Engineering, Macao, China, 8-11 April 2019.

30. 30-22. Sun, S.; Luo, Q. Scaling Up Subgraph Query Processing with Efficient Subgraph Matching. In

Proceedings of IEEE International Conference on Data Engineering, Macao, China, 8-11 April 2019.

31. Luaces, D.; Viqueira, J.R.R.; Cotos, J.M.; Flores, J.C. Efficient access methods for very large distributed graph

databases. Inf. Sci. 2021, 573, 65-81.

32. Cheng, J.; Ke, Y.; Ng, W. Efficient query processing on graph databases. ACM Trans. Database Syst. 2009, 34,

1-48.

33. Wang, J.; Ntarmos, N.; Triantafillou, P. GraphCache: a caching system for graph queries. In Proceedings of

International Conference on Extending Database Technology, Venice, Italy, 21-24 March 2017.

34. Li, Y.; Yang, Y.; Zhong, Y. An Incremental Partitioning Graph Similarity Search Based on Tree Structure

Index. In Proceedings of International Conference of Pioneering Computer Scientists, Engineers and

Educators, Taiyuan, China, 18-21 September 2020.

35. Wangmo, C.; Wiese, L. Efficient Subgraph Indexing for Biochemical Graphs. In Proceedings of

International Conference on Data Science, Technology and Applications, Lisbon, Portugal, 11-13 July 2022.

36. Khuller, S.; Raghavachari, B.; Young, N. Balancing minimum spanning trees and shortest-path trees.

Algorithmica 1995, 14, 305-321.

37. Balaji, J.; Sunderraman, R. Distributed Graph Path Queries Using Spark. In Proceedings of Annual

Computer Software and Applications Conference, Atlanta, GA, USA, 10-14 June 2016.

38. Wei, F. TEDI: efficient shortest path query answering on graphs. In Proceedings of ACM SIGMOD

International Conference on Management of Data, Indianapolis, Indiana, USA, 6-10 June 2010.

39. Cordella, L.P.; Foggia, P.; Sansone, C.; Vento, M. A (sub)graph isomorphism algorithm for matching large

graphs. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1367-1372.

40. He, H.; Singh, A.K. Graphs-at-a-time: query language and access methods for graph databases. In

Proceedings of ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada,

10-12 June 2008.

41. Zhang, S.; Li, S.; Yang, J. GADDI: distance index based subgraph matching in biological networks. In

Proceedings of Inter-national Conference on Extending Database Technology, Saint Petersburg, Russia, 24-

26 March 2009.

42. Ullmann, J.R. An algorithm for subgraph isomorphism. J. ACM 1976, 23, 31-42.

43. Zhang, X.; Chen, L. Distance-aware selective online query processing over large distributed graphs. Data

Sci. Eng. 2017, 2, 2-21.

44. Jing, N.; Huang, Y.W.; Rundensteiner, E.A. Hierarchical encoded path views for path query processing: An

optimal model and its performance evaluation. IEEE Trans. Knowl. Data Eng. 1998, 10, 409-432.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

 21

45. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, F.; Venkataraman, S.;

Franklin, M.J.; Ghodsi, A.; Gonzalez, J.; Shenker, S.; Stoica, I. Apache Spark: a unified engine for big data

processing. Commun. ACM 2016, 59, 56-65.

46. Ammar, K.; McSherry, F.; Salihoglu, S.; Joglekar, M. Distributed Evaluation of Subgraph Queries Using

Worst-case Optimal and Low-Memory Dataflows. Proc. VLDB Endow. 2018, 11, 691-704.

47. Fathimabi, S.; Subramanyam, R B.V.; Somayajulu, D.V.L.N. MSP: Multiple Sub-graph Query Processing

using Structure-based Graph Partitioning Strategy and Map-Reduce. J. King Saud Univ. Comput. Inf. Sci.

2019, 31, 22-34.

48. Cheng, J.; Ke, Y.; Fu, A.W.; Yu, J.X. Fast graph query processing with a low-cost index. VLDB J. 2021, 20,

521-539.

49. Sala, A.; Zheng, H.; Zhao, B.Y.; Gaito, S.; Rossi, G.P. Brief announcement: revisiting the power-law degree

distribution for social graph analysis. In Proceedings of Annual ACM Symposium on Principles of

Distributed Computing, Zurich, Switzerland, 5-28 July 2010.

50. Zhang, S.; Jiang, Z.; Hou, X.; Li, M.; Yuan, M.; You, H. DRONE: An Efficient Distributed Subgraph-Centric

Framework for Processing Large-Scale Power-law Graphs. IEEE Trans. Parallel Distributed Syst. 2023, 34,

463-474.

51. Faloutsos, M.; Faloutsos, P.; Faloutsos, C. On power-law relationships of the internet topology. ACM

SIGCOMM Comput. Commun. Rev. 1999, 29, 251-262.

52. Goldstein, M.L.; Morris, S.A.; Yen, G.G. Problems with fitting to the power-law distribution. Eur. Phys. J. B.

2005, 41, 255-258.

53. Stanford Large Network Dataset Collection, Available online: https://snap.stanford.edu/data (accessed on

15 January 2021).

54. GTgraph, Available online: http://www.cse.psu.edu/~kxm85/software/GTgraph (accessed on 5 October

2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

