Pre prints.org

Article Not peer-reviewed version

Distributed Subgraph Query
Processing Using Filtering Scores
on Spark

Kyoungsoo Bok , Minyoung Kim , Hyeonbyeong Lee , Dojin Choi , Jongtae Lim , Jaesoo Yoo .

Posted Date: 20 July 2023
doi: 10.20944/preprints202307.1394 v1

Keywords: subgraph query; search order; distributed graph; filtering score

E E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of

E Lan Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1424122
https://sciprofiles.com/profile/2989482
https://sciprofiles.com/profile/1774646
https://sciprofiles.com/profile/377645

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Distributed Subgraph Query Processing Using
Filtering Scores on Spark

Kyoungsoo Bok !, Minyoung Kim 2, Hyeonbyeong Lee 2, Dojin Choi 3, Jongtae Lim 2
and Jaesoo Yoo 2*

1 Department of Artificial Intelligence Convergence, Wonkwang University, Iksandae 460, Iksan 54538,
Jeonbuk, Korea; ksbok@wku.ac.kr (K.B.)

2 Department of Information and Communication Engineering, Chungbuk National University, Chungdae-
ro 1, Seowon-gu, Cheongju 28644, Chungbuk, Republic of Korea; cystitis@chungbuk.ac.kr (M.K.);
Ihb@chungbuk.ac.kr (H.L.); jtim@chungbuk.ac.kr (J.L.)

3 Department of Computer Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-
gu, Changwon 51140, Gyeongsangnam, Korea; dojinchoi@changwon.ac.kr (D.C.)

* Correspondence: yjs@chungbuk.ac.kr (J.Y.); Tel.: +82-43-261-3230

Abstract: As various services have been generating large scale graphs to represent multiple
relationships between objects, studies have been conducted to obtain subgraphs with particular
patterns. In this paper, we propose a distributed query processing method to efficiently search a
subgraph for a large graph on Spark. To reduce unnecessary processing costs, the search order is
determined by filtering scores using the probability distribution. The partitioned queries are
searched in parallel in the distributed graph of each slave node according to the search order, and
the local search results obtained from each slave node are combined and returned. The query is
partitioned in triplets based on the determined search order. The performance of the proposed
method is compared with the performance of existing methods to demonstrate its superiority.

Keywords: subgraph query; search order; distributed graph; filtering score

1. Introduction

A graph G=(V, E) comprises a set V of vertices and a set E of edges to represent multiple
relationships between objects in social media, biological networks, and the Internet of Things (IoT)
[1-4]. A graph is used with the objective of analyzing interactions, detecting anomaly patterns, and
providing recommendation services [5-8]. In the IoT, for example, data transmission and control
flows among connected devices (“things”) are modeled as graphs that are analyzed to identify
anomalies or to group things used by the interactions. Since large amounts of graphs have been
generated in respect of social media, the IoT, and so on, systems have been developed to partition
and store graphs to perform distributed processing [9-12].

Distributed parallel processing methods have been proposed to effectively process large
amounts of graph big data [13-16]. Pregel proposed a bulk synchronous parallel model for the
parallel processing of large graphs [17,18]. Pregel computations consist of a sequence of iterations,
called supersteps. Parallel such as MapReduce [19-21], which is a programming model for processing
large amounts of data in distributed parallel computing, simplify the design and implementation of
large capacity data processing systems; however, they may result in inefficient processing because
they do not support efficient data mining and machine learning algorithms. To resolve this problem,
GraphLab has been proposed, and it supports asynchronous processing while ensuring data
consistency in a distributed shared memory environment [22]. PowerGraph processes a graph
analysis algorithm by repeatedly executing a gather-apply-scatter (GAS) model to reduce network
communication and processing costs [23]. GraphX is a widely used large capacity data processing
engine that is used to perform parallel processing of graph data and simplify the implementation and
application of algorithms [24,25]. GraphX implemented on top of Spark uses resilient distributed

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.1394.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

datasets (RDDs), which are collections of objects that are partitioned across a cluster to provide in-
memory storage abstraction.

Subgraph queries are frequently used in application areas that use large graphs to determine
which subgraph matches a certain pattern [26-31]. In social media, for example, subgraph queries are
performed to obtain a user graph with a particular relation or identify communities that have similar
interactions. In the IoT, subgraph queries are used to detect anomaly patterns among objects or
identify IoT devices that perform similar actions. In protein—protein interaction networks, subgraph
queries are used to identify a particular protein structure. Subgraph query processing requires
performing a subgraph isomorphism test to identify a graph that structurally matches the query in
all graphs [28,31]. The subgraph isomorphism test compares all possible subgraphs in a large graph
and is therefore NP-complete.

To solve NP-compete problems occurring in subgraph query processing, filtering and
verification [32-35] and path based query processing [36-38] have been proposed. The filtering and
verification is divided into a filtering stage and a verification stage. The filtering stage extracts the
candidate set for the graphs. The verification stage performs the subgraph isomorphism test for the
candidate set. To extract a candidate set, building indices by extracting features of the graphs is
required. Commonly used features include paths, trees, and cycles, and hash table information is
occasionally used. When a query is entered, a candidate set that matches the features of the query is
extracted through the constructed index. The validation stage performs a subgraph isomorphism test
for the extracted candidate set to verify whether they actually match the query. Commonly used
subgraph isomorphism test algorithms include VF2 [39], GraphQL [40], and GADDI [41], among
others [42]. The filtering and verification requires additional costs for building and managing the
index for each feature for the entire graph. Furthermore, as the subgraph isomorphism test is an NP-
complete problem, the cost may vary greatly depending on the method of filtering the candidate set.

The path based query processing method searches subgraphs without executing a subgraph
isomorphism test algorithm [36-38,43,44]. Starting from a vertex in the graph that matches the query,
all paths are searched for the connected neighbor vertices to check whether they match the vertex of
the query. The search is performed for all connected vertices, and if a vertex that matches the query
is obtained, then the vertex ID is recorded, and the ID of the vertex recorded at the end of the search
becomes the path of the subgraph matching the query. In [37], a new query processing method was
proposed to partition a query into segments of triplets in Spark. In the head segment, which
corresponds to the first search order, a vertex that matches the label of the head segment vertex is
obtained in each graph and selected as the starting vertex. The labels of the neighbor vertices of the
selected starting vertex are checked to obtain a triplet matching the segment and return it to the
master. Then, a search for the partitioned segment is performed, and the master gathers the results
sent from the nodes. In this method, however, there are no special criteria for selecting the starting
vertex, and a cost model that can reduce the processing cost is not built. Therefore, the problem with
this method is that the processing cost increases if several vertices match the label of the head
segment, which is the starting vertex, or if the degree of the pertinent vertex is large.

In this paper, we propose a distributed query processing method to search a subgraph with the
same label as a query on Spark. Through a probability density function of the degree that can occur
at each vertex based on the statistical information collected for the graph, the probability of the degree
of the pertinent vertex appearing scores the probability that the search is not required. This value is
a probability that can filter out the vertices that do not need to be searched owing to the difference in
the degree between the query and the graph. As the probability of becoming filtered increases, it is
possible to search with less cost. The query is partitioned with the vertices in the order from the
highest filtering probability to the lowest, thereby searching the partitioned subqueries. The
contributions of this paper are as follows.

e We predict the filtering score to avoid the vertices that do not need to be searched, based on the
statistical information of the graph.

e We determine the search order that determines the priority of the vertices to be searched among
the vertices of the query through the filtering score.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

3

e We partition the query into subqueries according to the filtering score for distributed query
processing in Spark.

This paper is organized as follows. Section 2 presents previous studies related to this research,
and Section 3 explains the proposed path based distributed subgraph query processing method.
Section 4 discusses the performance evaluation to confirm the superiority of the proposed method.
Finally, Section 5 provides the concluding statements.

2. Related Work

Spark has a programming model for distributed data processing similar to MapReduce. Spark
uses a data type called an RDD to overcome data volatility in memory and efficiently perform
distributed processing [25,45]. An RDD comprises data stored in a distributed manner across many
nodes and allows for parallel processing. Moreover, it can recover on its own, even in the event of a
failure. An RDD is not processed at one node. It is divided into smaller units called partitions that are
distributed and processed at multiple nodes. Spark’s GraphX is a submodule that supports
distributed and parallel graph processing of large data [24]. GraphX generates RDDs by dividing
vertices and edges into two tables: VertexRDD and EdgeRDD. The divided RDDs are partitioned
using the vertex-cut method on each node. The Diver program serves as the master and instructs
walkers to perform tasks through the cluster manager. The workers that received the task instructions
perform the parallel processing of the partitioned VertexRDD and EdgeRDD.

In [37], a distributed graph path querying that operates without the need to build extensive
indices in Spark was proposed. In this framework, an input query is partitioned into such triplets.
Once the query partitioning of the master is finished, the partitioned subgraphs are disseminated to
all slaves, and each slave searches the received triplet. A vertex in the partitioned query is selected as
the starting vertex of the search, and the search is performed along the direction of the edge connected
to that vertex. The edge direction is recorded in the vertex information table, and the information of
the vertices approached along the edge is read to obtain the information of the neighbor vertices and
the edge direction. Once the search for a particular triplet is finished, each slave sends the search
result to the master, and the master records it and instructs the slave to obtain the next triplet. In the
master table, the search results are stored, thereby recording and accumulating the searched vertices.
When the search for all partitioned queries is finished, the accumulated vertices in the master’s table
become the searched path.

GraphCache is a caching system for undirected labeled graphs to support subgraph and
supergraph queries [33]. GraphCache consists of three modules: method M, query processing
runtime, and cache manager. The main objective of method M is a subgraph isomorphism test. The
cache manager deals with the management of data and metadata stored in the cache. GraphCache
introduces a number of graph cache replacement strategies including a hybrid graph cache
replacement policy. The query processing runtime executes queries and monitors the key. The query
processing runtime consists of the resource/thread manager, the internal subgraph/supergraph query
processors, the logic for candidate set pruning, and the statistics monitor. The internal
subgraph/supergraph query processors check whether the query is a subgraph or supergraph of
previous queries and execute queries using cached queries and their answer sets.

HGraph is a parallel and distributed tool for processing large scale graphs on top of Hadoop
and Spark [15]. HGraph consists of the application layer, the execution layer, and the distributed
storage layer. The application layer supports the APIs for implementing a program for large scale
graph processing. The distributed storage layer is based on the Hadoop File System (HDEFS) and
Spark RDD. HGraph uses two types of operators: unary operators and binary operators. Unary
operators are logical graph operators that take a single input graph. Binary operators perform
operations on two input graphs. HGraph operators run in memory and switch to the local disk when
both the physical and virtual memory are completely saturated.

In [46], query processing algorithms are proposed based on a worst-case optimal join algorithm
in a continuously changing large graph. To support distributed processing of the recent worst-case
optimal join algorithms, three distributed algorithms are introduced: BiGJoin, Delta-BiGJoin, and

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

BiGJoin-S. BiGJoin is a distributed algorithm for static graphs that achieves a subset of theoretical
guarantees. Each operation that BiGJoin performs on each tuple corresponds to an operation in the
serial execution of generic join. Therefore, BiGJoin inherits its computation and communication
optimality from generic join. Delta-BiGJoin is a distributed algorithm for dynamic graphs in insert
only environments. BiGJoin and Delta-BiGJoin are implemented in Timely Dataflow, which is a
distributed data parallel dataflow system in which one connects dataflow operators describing
computation using dataflow edges describing communication. BiGJoin-S is a distributed algorithm
for static graphs that achieves all theoretical guarantees, including balancing the workload between
distributed workers on any input instance.

MapReduce based multiple subgraph query processing (MSP) was proposed to process multiple
graph queries in Hadoop [47]. MSP uses structure based partitioning and an integrated graph index
(IGI) to reduce the query search space. The structure based data partition stores the subgraphs with
similar labels and structures on one node to improve the default partition provided by MapReduce.
The IGI created by the method proposed in [48] keeps all neighborhood information of the graphs to
extract common subgraphs. MSP performs two MapReduce operations: the first partitions the graphs
and creates an index for each partition; the second processes subgraph queries and index
maintenance. For query processing, MSP checks whether all edges of the query exist in that IGI. If all
the edges are not present in the IGI, the query is filtered. In the validation, only the necessary IGIs
are loaded based on the preprocessing phase.

3. The Proposed Distributed Subgraph Query Processing

3.1. Owverall Architecture

In the case of a path subgraph query, searching for a certain vertex can have a significant impact
on the search to minimize candidate results that satisfy partial query conditions. If there are countless
starting vertices that are searched first, numerous parallel searches are performed, leading to a larger
number of unnecessary searches than the number of vertices actually required for the search.
Furthermore, even if the search is performed starting with an appropriate number of vertices, the
connected neighbor vertices all have to be searched, indicating that there are countless cases to search
according to the number of connected edges. Therefore, the proposed method calculates the filtering
score to search for the subgraph that matches the query with a smaller number of searches, while
reducing unnecessary searches. A vertex with a high filtering score can filter more unnecessary
searches. If the search is performed in the search order of the vertices from the highest to the lowest
score, the search time can be reduced further. The filtering score is calculated through the probability
density functions considering the data distribution characteristics.

Figure 1 shows the overall architecture of the subgraph query processing method on Spark. In
the distributed environment, the graph is distributed according to the partition policy and stored in
multiple slave nodes, and the statistics are collected for the entire graph. The collected statistics
include the number of vertices for each label and the degree of each label. As the search order has a
significant impact on the performance in the path query, we compute a filtering score to determine
the search order for query processing. The filtering score is calculated based on the statistical
information to reduce unnecessary searches. The parallel searches are performed at each slave node
in Spark according to the determined search order. The query is partitioned into triplets according to
the filtering score to perform parallel searches. As the data are distributed and stored in different
nodes, it is necessary to join the results that have been locally searched in each slave node. The search
results are transmitted for joining through communication between the slave nodes, and the results
are finally joined at one slave node.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

Master

Distributed Query Processing

T

Query Partitioning

f

Filtering Score Calculation

f

Statistical Information Collection

Slave 1 Slave 2 Slave 3
Partitioned Query Partitioned Query Partitioned Query
Processing Processing Processing
Intermediate Result Intermediate Result Intermediate Result
Generation Generation Generation
Intermediate Result Intermediate Result Intermediate Result
Join Join Join

Figure 1. Overall architecture of the proposed query processing.

3.2. Filtering Score

Statistical information regarding the graph is collected to calculate the filtering score used for
determining the search order. The information collected as statistics includes the graph’s labels and
degree. In general, path subgraph queries first search for vertices with the same label as vertices
included in the query. In the graph, vertices with fewer labels matching the query can produce
relatively fewer candidate result sets than vertices that do not. Therefore, it is necessary to first search
for vertices that match the labels included in the query less. It is efficient to exclude the vertices with
a smaller degree than the degree of the query because even if they are searched, they pertain to paths
that are not likely to develop into the query. We calculate the probability of a particular degree
occurring at a certain vertex and use it for the cost prediction of the path.

Suppose G and Q are the vertices of a graph and a query with the same label. If matching vertices
are searched starting with every G, then as the number of labels L increases, the number of vertices
where the search starts will increase linearly. In Figure 2, more searches are required in the case of
searching for the path starting with v,, where the number of the same labels is 1 in Figure 2 (a),
compared to the case of searching for the path starting with v; and vs, where the number of the
same labels is 2. Therefore, our proposed method collects the statistics for the number of labels at
each vertex of G, and the vertices with a small number of labels are selected as the starting vertices.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

Vs Ve
(a) Graph (b) Query

Figure 2. Difference in the number of labels.

When vertices matching the query are searched, vertices having smaller degrees than the degree
of the query vertex do not need to be searched. For example, if vertices with the label A of the query
are searched, as shown in Figure 3, v; and vg will be searched. If the degree of vertex v; is D;, D;
and Dy are 4 and 1, respectively. Since the degree of the vertex with the label A of the query is 2, v;
with degree 4 has to be searched, but v, with degree 1 has no possibility of becoming the query
result. Vertices having degrees smaller than the degree of the query can be filtered out. Therefore, we
calculate the filtering score for avoiding the vertices to be searched depending on the difference in
the degree.

Di =2

(a) Graph (b) Query

Figure 3. Difference in the degree.

When real world data are modeled as a graph, the distribution of the vertices and their edges
shows a particular tendency depending on which data are used. Simply, the normal distribution will
be shown where the vertices of the graph and the edges connected to the vertices are evenly
distributed. However, many graph applications show a power-law distribution where a small
number of vertices has many edges [23,49,50]. If the vertices of the graph and the edges connected to
the vertices show a certain distribution, we herein calculate the probabilistic filtering scores that will
be excluded from the search and determine the search order to decide which vertices of the query
will be searched with higher priorities. The search order is determined based on the filtering score,
and the filtering score is calculated in two cases. The first case divides a normal distribution where
the vertices of the graph and their degrees are evenly distributed and a case of showing a power-law
distribution where the degrees are concentrated on a certain vertex. Subsequently, the degree of the
pertinent vertex is predicted through the probability density function of the corresponding
distribution, and the probabilistic search order is determined based on the predicted value. The

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023

7

second case determines the search order of the vertices through the average degree of the vertices
having the label corresponding to the query.

The proposed method defines a filtering score to determine the search order for query
processing. The filtering score is the filtering probability calculated through the probability density
function and the proportion of a certain label in the total labels obtained through the statistics
collection stage. The filtering probability considers different probability density functions because it
can show a different distribution depending on the graph characteristics. The first method calculates
through the probability density function of a normal distribution, denoted by normalFS. The second
method calculates through the probability density function of a power-law distribution, denoted by
powerES. The last method calculates using the average degree of a particular label without
considering the probabilistic distribution of data, denoted by avgDgFS.

Assuming that the vertices of the graph and their degrees follow an evenly distributed normal
distribution, Equation (1) shows the probability density function f(x), where x is the degree of the
vertices with label L as a variable for calculating the probability density function, u is the average

degree of the vertices, and ois the standard deviation of the degree of the vertices.
1)
fe) = o5 1)
Assuming that a vertex v; with the same label L exists in the graph and query, G,(v;) and
Q. (v;) in the probability density function denote the probability that the corresponding degree will
occur, respectively, and the area of Q;(v;)~G,(v;) is the probability that can filter, without searching,
the vertex G,(v;) that has a smaller degree than the degree of Q,(v;) according to the
aforementioned difference in the degree. Therefore, the area from the degree of G to that of Q,(v;)
for the selection of the starting vertex is called FPyp(v;), as shown in Equation (2).

Quwp 1 -G
FPyp(vy) = fGLL(IZ) ovon € 207 dx 2)

According to [51], the relation between the vertices and their degrees in a graph of the real world
follows a power-law distribution, and the probability that such vertices and degrees occur is
generally P(d) x d™%, with o = 2. Furthermore, [52] showed that a power-law distribution can be
expressed as a probability distribution called a zeta distribution or Pareto distribution. If the vertices
and edges in the power-law distribution have an exponential relationship of 2, then the variable s in
the zeta function can be specified as 2. The zeta function converges to a specific value, and the
probability density function of the Pareto distribution can be expressed as Equations (3) and (4).
Therefore, the probability density function of the power-law distribution can be represented by
Equation (5).

1

() =Ty 3)
(@) =35, 5= 4)
fO) = (5)

Let v; be the vertices of the graph having the same label as the query. In the probability density
function, G, (v;) and Q. (v;) represent the probability that the corresponding degree will occur, and
the area of G, (v;)~ Q.(v;) is the probability that can filter, without searching, the vertex G,(v;) that
has a smaller degree than Q,(v;) based on the aforementioned difference in the degree. Therefore,
the area from the degree of G, (v;) to that of Q. (v;) is called FPpp(v;), as shown in Equation (6), for

the selection of the starting vertex.
6

FPop(v) = [o dx ©)

When a query is entered as an input, the filtering score is calculated for all vertices of Q based

on the collected statistical information. For the filtering score, we consider the value calculated using

the three methods explained in the previous section and the proportion of a certain label in all labels

collected in the statistics collection stage. The filtering scores are classified into normalFS, powerFS,

and avgDgFS according to the distribution characteristics, as shown in Equations (7)~(9),
respectively. Table 1 shows the description of the parameters in Equations (7)~(9).

normalFS(v;) = % X FPyp(v;) @)

do0i:10.20944/preprints202307.1394.v1

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

8
powerFS(v;) = % X FPpp (v;) (8)
avgDgFS(v;) = Y= x AD, (v;))

Vaul

Table 1. Description of the parameters.

Parameters Description
FPyp(v;) Filtering probability of normal distribution
FPpp(v;) Filtering probability of power-law distribution
143 Number of vertices with label L in graph G
Vau Total number of vertices in graph G
AD; (v;) Average degree of collected labels

3.3. Query partitioning

A vertex that has the highest filtering score among the vertices of the query is selected as the
starting vertex, and the query is partitioned into triplets comprising a vertex having the next highest
filtering score among the neighbor vertices connected to the starting vertex. The triplet consists of <
TV, E;, HV; >. Here, TV; stores tail vertex information with the highest filtering score in the query,
HV; stores head vertex information with high filtering score among neighbor vertices of TV;, and E;
stores edge information. The initial start vertex is set to NULL by TV; and E;. Query partitioning is
performed for all neighbor vertices connected to the starting vertex. When the partitioning with the
neighbor vertices is finished, the same operation is performed at the vertex with the next highest
filtering score among the vertices connected to the neighbor vertices of the starting vertex.

Algorithm 1 shows the query partitioning. Once the starting vertex and the search order are
determined, they are registered as a round in accordance with the determined search order. The
round represents the search order of performing a parallel process at each slave node, and the next
round is performed only after finishing the previous round. The starting vertex with the highest
filtering score is registered as R,. The vertex that has the next highest score among the neighbor
vertices connected to the starting vertex is registered as the next round. When the round registration
for all neighbor vertices connected to the starting vertex is finished, the same operation is performed
for the neighbor vertices of the starting vertex. As a result, all vertices of the query are partitioned in
the order from the highest to the lowest filtering score and the partitioned triplets are registered in
qRound.

Algorithm 1 Query partitioning

Input:
QLabelList : query label
NeighborVertexList : neighbor vertices
filteringScore : filtering score
Output:
qRound = {TLi, TLz, ..., TLx} : triplets to indicate query search order
while QLabelList < @
add Q (top filteringScore of QLabelList) to gRound
remove Q; in QLabelList;
if Q,’s NeighborVertexList is empty
add top filteringScore of neighbor vertex of Q,’s NeighborVertexList to qRound
remove Q; in QLabelList;
else
add top filteringScore of Qs NeighborVertexList to gRound
remove Q; in QLabellList;
end if
end while
return qRound

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

Figure 4 shows the process of dividing a query into triplets. First, we construct triplets by finding
the highest vertex in the query graph and performing a depth-first search (DFS) based on that vertex.
Suppose query Q consists of five vertices and the number next to the vertex is the filtering score. Since
the vertex with label A has the highest filtering score, we set the vertex with label A as the starting
vertex and add the initial triplet TL; to qRound. When the starting vertex is selected, triplets are
added to qRound while continuously performing DFS based on the filtering score. With a vertex with
label A as the starting vertex, a neighbor vertex with a high filtering score is selected as TL, and
added to qRound. While this process is repeated until DFS is finished, triplets for the query are
registered in qRound.

*(8)

35

Figure 4. An example of query partitioning.

3.4. Distributed Query Processing

The proposed method works as a master-slave architecture in a Spark environment. The master
node calculates a filtering score through statistical information collection. The query is partitioned
based on the filtering score and the query processing rounds are registered. The master node instructs
each slave node to perform the query according to the search order. The slave nodes that have
received the instruction perform the search in their own partitions and record the results in the result
table. Each slave node generates intermediate results according to the search order registered in the
qRound and combines the intermediate results generated from each slave through join operations to
deliver the final results to the master node.

Algorithm 2 represents a distributed query processing process performed in a slave. Triplets are
stored in the qRound according to the order in which query processing is performed. Each slave
searches the graph according to the triplet order registered in the qRound, generating intermediate
results with matching labels. When the first round R, is performed for the subgraph query, each
slave node searches all vertices with the label selected as the starting vertex. After that, in the second
round R;, the neighbor vertex with the label of R; connected to the vertex with the label of the
starting vertex is searched. The next round is searched through the ID of the vertex recorded in the
search result. When R, is performed according to the query processing rounds, each slave node
searches for all vertices with the label selected as the starting vertex. Subsequently, R; is performed,
and the neighbor vertices with the label R; connected to the vertex labeled as the starting vertex are
searched and recorded. In the next round, the search is performed based on the ID of the vertices
recorded in the search results. Based on this, the search is only performed for the neighbors of the
vertices obtained in the previous round, and the processing cost can be efficiently reduced because
there is no need to search again from the vertices that were not needed in the previous search. Each
slave stores partitions divided by a vertex-cut method, and the vertex that becomes the basis for
division is replicated to each slave. When we encounter replication vertices while searching a graph
using triplets according to the qRound order, we set a join tag because query processing is no longer

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

10

possible on the current slave node. Candidate results in slave nodes are joined based on the vertex to
which the join tag is assigned.

Algorithm 2 Distributed Query Processing

Input:
QLabelList : query label
gRound : query search order
G : graph
Output:
resultsubgraphs : Result subgraph
resultsubgraphs — @
temp < find vertices and edges with same label as query via G(QLabelList)
while round < gRound
headLabel <— round.head // label of a head vertex
tailLabel < round.tail // head of a tail vertex
rvertex < find vertices that match the query label via temp(headLabel, tailLabel)
expand resultsubgraphs
if resultsubgraphs is not expandable via the next round
if rvertex is partitioned vertex
add join tag to partitioning vertex
resultsubgraphs += rvertex
else
break
end if
end if
end while
exchange resultsubgraphs between slave nodes for join processing
resultsubgraphs < join with other partition
return resultsubgraphs

Figure 5 shows the intermediate search results by round. As a result of performing Ry, v;
connected to v3 can be searched, but the graph has no vertex with a label A connected to v;-v; in
R,. Therefore, (v3,v,) is excluded in the result of R,. As (v3,v;) has been removed in R;, there is no
need to search for the vertices with a label D connected to v;. If a vertex due to the graph partitioning
is encountered in the process of searching according to the round in each partition, there may be more
vertices connected to the pertinent vertex in the replicated partition, but this information cannot be
known in the current partition. Therefore, a join tag is marked on the corresponding vertices of all
partitions that have replicated the vertex, and the next search is commenced. The join tag is used
when sending/receiving the search result between the slave nodes after the local search. The join tag
is a mark used to store only intermediate results that require joins to avoid storing unnecessary
intermediate results. In R,, a replicated v, is obtained, and a join tag is marked. As the vertex with
a join tag indicates that there is a path in another partition, the search begins again at the vertex with
the join tag in R;, which is the next round. As such, owing to the method of performing the next
round only for the results of the previous round, there is the advantage that the size of the table
recording the results is gradually reduced, and unnecessary searching is not performed.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023

Slave 1

Slave 2

do0i:10.20944/preprints202307.1394.v1

(a) Graph G and query Q
Round | Label Round Searc‘h results of Searcp results of
Slave 1 Slave 2
R, C
e (v2), (v3) (v7)
R, C-B
RJ (VZ’VI)E (v_h v]) (V;, v9)
R, | ca :
R, (v, vy vilJ2]), (v, (v7, vg, vg) (v7, v,
..) i 12), vyia])
; (V4, Vo, Vg),
Vs, Vi, Vulla], Vs), .
% e (1:;[]':][13,],) 5 (VaveVilialsve)s
— (v2ve,vylia])

(b) Search results

Figure 5. Search results by round.

11

Figure 6 shows the results of such search result joins. When the partitioned query searches are
finished, an intermediate search result table is created in each partition, and the intermediate result
tables are sent/received using communications between the partitions for the join. Because the search
is performed asynchronously in each partition, the completion time of each search is different. The
partitions that have finished searching already and are in the waiting state send their intermediate
result tables if there is another partition that has finished the search. As the cost required for the
communication increases as the size of the table increases, the communication cost can be reduced if
a table of a small size is transmitted. The partition that has received the intermediate result performs
the join with its own intermediate result table.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

12

Round Search results of Slave 1 Search results of Slave 2
Ry (v2), (v3) (v-)
R, (vavy), (vs, v)) (v, v9)
R: (V_?: v]a vJ[jj})s (1"_\’~ 1:]) (V?a v95 vS) (V?, v9! V«’[j.?])
s 2 (V=, Vg, Vg), (V;,Vg,v_‘g[j1],v6),
R. Vi, V5, ¥ , V), (Vil02], vs) i By
3 (V2 v Vlla), vs), (vilial, v: (V- Vo, [i5])

Join

Final result

(v, v, Vlial, vs)
(V7 Vor "4U2]a Ve)
(V2 Vg, Vilia], vs)

Figure 6. Joining of search results.
4. Performance Evaluation

4.1. Analysis

Various distributed query methods have been proposed to effectively perform subgraph search
on large graphs. Distributed subgraph query processing methods are divided into filtering and
verification and pathbased processing according to the query processing technique. GraphCache [33]
is a representative filtering and verification method to improve graph query processing through
caching data. When a query similar to a previously performed query comes in, it generates a
candidate result using the cached query and the query execution result, and performs a verification
phase to generate the final result. However, when a new query that has not been previously
performed is requested, the filtering phase is performed. MSP [47] is an FTV that processes multiple
subgraph queries through MapReduce framework. MSP uses an index called IGI, which is available
in the filtering phase and the verification phase in a distributed environment. IGI integrates common
subgraphs to reduce the cost of processing multiple queries. When edge labels integrate different
vertices, instead of adding vertices and edges separately, we reduce the size of the IGI by adding
edge information to the vertices. During the verification phase, HDFS does not load all the IGIs, but
only the required IGIs. HGprah[15] is a prototype tool for distributed graph processing in Hadoop
and Spark. HGraph has a master-slave structure, and the master manages the workflow, and the
actual distributed processing is performed through the slave. HGraph does not provide a separate
query processing method and uses Hadoop and Spark's execution engine. DW]J [46] is a method for
processing both static and dynamic queries in a distributed environment based on the worst-case
optimal join algorithm. [46] proposed a path based processing method that supports both static and
dynamic queries in a distributed environment based on the worst-case optimal join algorithm. It
constructs an edge index to access outgoing and incoming neighbors based on each vertex. DW] can
be applied to directional queries with specific patterns and provides an extended function for using
static query results for dynamic query processing. [37] performs path based query processing in a
master/slave environment. The master divides the query into triplets and delivers them to all slaves.
Each slave selects a specific vertex based on the received triplets and performs a search along the
direction of the edge connected to the vertex. When the search for one triplet is completed, each slave
transmits the search result to the master and expands the search area based on the other triplet.
Therefore, it constructs an index and does not perform an isomorphism test. However, since the
search is performed based on the arbitrary vertices included in the query, unnecessary comparisons
are performed to produce results satisfying the query.

The filtering and verification method generates a candidate set through an index in the filtering
step. Since the candidate set contains results corresponding to false positives, it is verified through

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

13

the verification step. The filtering and verification method requires the cost of constructing and
managing the index for the graph, and there is a cost difference depending on the method of verifying
the candidate set. Path based processing creates a set of candidates that match queries while exploring
neighbor vertices based on a specific vertex without constructing an index. The search is performed
for all connected vertices, and if a vertex matching the query is found, the vertex ID is recorded, and
up to the ID of the vertex recorded at the end of the search is a subgraph matching the query.
However, existing path based processing has not presented a method for generating candidate results
that satisfy queries at minimal cost. That is, it performs random comparison without presenting a
criterion for determining which vertex is good to start processing the query based on. The search cost
increases linearly if the number of vertices matching the label of the vertex that begins processing the
query is large or if the degrees of those vertices are large. The proposed method computes filtering
scores to reduce the cost of exploring neighbor vertices in the process of generating a set of candidates
satisfying the query. The query is divided into triplets based on the vertex with a high filtering score
among the vertices included in the query. The master delivers the search order to each slave, and the
slab performs the search on its partition and generates an intermediate result. It generates a final
result by performing a join operation on the calculated intermediate result in each slave. In this case,
in order to reduce the transmitted intermediate result, a slave with a small size of the intermediate
result delivers the intermediate result to another slave.

Table 2 shows the results of comparative analysis of the characteristics of the existing methods
and the proposed method for processing distributed subgraph queries. Methodology, FAV, and Path
represent a query processing method, filtering and verification, and a path based processing
technique, respectively. Environment is a system environment that performs queries, and
GraphCache does not provide distributed processing, but the proposed and other methods support
distributed processing. Query Type represents the type of query supported by each method, and
Random represents the support of arbitrary subgraph searches on labeled graphs. Most methods are
random, but DW] only supports subgraph searches with specific patterns on diversity graphs. Index
represents an index used for query processing in each method. The filtering and verification method
uses indexes, but path based methods do not use indexes. Since HGraph is a framework for
distributed subgraph processing, it does not specifically present a specific index or query processing
method. Verification indicates whether an isomorphism test is performed on a candidate set, and
only the filtering and verification method performs Verification. The search order indicates whether
it provides a search order of vertices for query processing, and other methods except for the proposed
method do not provide a separate processing order. In particular, the filtering and verification
method quickly generates a candidate set through an index, but a verification step must be performed
for all candidate sets.

Table 2. Characteristic comparison of distributed query processing schemes.

Schemes Methodology Environment Query Type index Verification Search Order
GraphCache[33] FAV Single Random GCingex, Mingex 0 X
MSP[47] FAV Hadoop Random IGI 0 X
HGraph[15] - Hadoop, Spark ~ Random - - X
DW][46] Path Timely Dataflow Directed Edge index X X
SPQI[37] Path Spark Random X X X

Proposed Path Spark Random X X Filtering score

4.2. Evaluation Results

To demonstrate the superiority of the proposed method, we performed self-performance
evaluation according to various distributions of graphs in various datasets and compared the
performance with existing schemes. Table 3 shows the performance evaluation environment,
comprising an Intel(R) Core(TM) i7-6700 CPU 3.40GHz processor, and 30GB memory. In order to
perform the experimental evaluation in a distributed environment, we constructed three Spark based
clusters and implemented them through Scala in GraphX. To evaluate the query processing

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

14

performance across a variety of datasets, we used real datasets provided by Stanford [53] and
randomly generated datasets created through the graph generator software GTgraph [54], as shown
in Table 4. Suny_dip is a biology dataset, comprising approximately 20,000 vertices and 70,000 edges.
Dblp is a coauthor network dataset, comprising approximately 400,000 vertices and 1 million edges.
Skitter is an Internet topology dataset, comprising approximately 1.7 million vertices and 11 million
edges. GTgraph is a randomly generated dataset with the same number of vertices and edges as the
skitter dataset. The datasets were generated such that the vertices and their degrees would be evenly
generated. Various methods for processing subgraph queries have been proposed. Query processing
methods performed in a single server environment do not incur communication costs to distribute
queries and sign up for distributed query processing results. However, query processing methods
performed in a single server environment increase query processing time because they perform query
processing while visiting vertices sequentially. Therefore, distributed processing methods are
required to improve the processing performance of large subgraph queries. Various schemes have
been proposed for the distributed processing of subgraph queries. However, they have various
conditions and purposes of subgraph queries and different distributed environments. [46] supports
query processing for a specific connected pattern for a directed graph in a Timely Dataflow
environment [37] provides a query processing method for any subgraph in a Spark environment,
similar to the proposed method.

Table 3. Performance evaluation environment.

Parameter Value
Processor Intel(R) Core(TM) i7-6700 CPU 3.40GHz
Memory 30G
Number of clusters 3
Programming language Scala

Table 4. Datasets used in the performance evaluation.

Dataset Vertices Edges Description
suny_dip 22,596 69,148 Biology data
dblp 425,961 1,049,866 Coauthor network
skitter 1,696,415 11,095,298 Internet topology
GTgraph 1,696,415 11,095,298 Randomly generated graph

To show the superiority of distributed query processing using the proposed filtering scores, we
compared the proposed distributed query processing scheme with an scheme proposed in [37] .
Query processing performance depends on the dataset and query types used in the experiment.
Therefore, we defined four query types for the randomly generated dataset and the real dataset and
compared the average search time required for query processing by generating 10 queries for each
query type. Figure 7 shows the query types used to compare the search time. Queries Q1~Q4 show
large structural differences. Query Q1 has a structure, wherein one vertex and another vertex are
simply connected; Q2 has a structure of concentration on one vertex; Q3 has a structure of
concentration on two vertices; finally, Q4 is a query with a structure, wherein a simple structure is
mixed with a structure of concentration on a small number of vertices.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

15

5388 Ok

Figure 7. Query types according to the structure.

Figure 8 shows the search times according to the distribution of the graph in the randomly
generated dataset and real dataset. In the calculation for the degree, Case 1 is divided into a normal
distribution and a power-law distribution according to the distribution, and the score is calculated
based on the probability of the degree of the query occurring in each distribution. The normal
distribution and power-law distribution are denoted by normalFS and powerFS, respectively. Case 2
is a method of calculating the score based only on the average degree in the graph, and it is denoted
by avgDgFS. The dataset generated randomly through GTGraph was used as the normal distribution
data in the experiment, and the real dataset was used as the power-law distribution dataset.
Regardless of the data, Case 1, wherein the score was calculated based on the probability density
function’s filtering probability and the number of labels, demonstrated better performance than Case
2, wherein the score was calculated based on the average data and the degree. This was because the
graph’s vertices and degrees followed a certain distribution. The average value provided only the
baseline value and did not compensate for the values outside the baseline. Conversely, the calculation
using the probability density function in Case 1 showed excellent performance in most cases because
it provides paths that can perform the query with a smaller number of searches using the statistical
information of the real dataset.

2,750
2,740

2,730

15
~
[
o

Search time(sec)
;
o

2,700

- .

2,680
avgDgFS normalFS powerFS
Method

Figure 8. Search time according to the graph distribution.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

16

Figure 9 shows the search time according to the datasets. In relatively small Sunny_dip and dblp
datasets, the order in which query processing is performed by filtering scores does not have a
significant impact, but the proposed method shows slightly better performance. The existing method
[37] begins the search based on vertices with matching labels without any special search order, which
results in more candidate results in datasets with many vertices and edges, such as Skitter, resulting
in poor performance than the proposed method. The time required for determining the search order
by calculating the filtering score through the collected statistical information and partitioning the
query was not long compared to the search time. The proposed method performs better than the
existing method because it performs path comparison based on vertices that are likely to generate not
many candidate results through filtering scores. In the proposed method, powerFS considering the
power-law distribution shows superior performance compared to avgDgFS considering the average
degree. In particular, the larger the graph, the more power-law distribution characteristics are, the

more performance differences occur in the Skitter dataset.

powerFS avgDgFS Existing Method
Method

0.35

Search time(ms)
f= [=]
e — o) S
[W [3S) (9, w2

=4
S
W

S

(a) Suny_dip

0.216

0.214
0.208
0.204
0.202

powerFS avgDgFS Existing Method
Method

(=]
[\
—_
(3]

Search time(sec)
=
3¢

(=]
[
(=
(s

(b) Dblp

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

17

Search time(sec)
[38) \S) [Se] o (3]
(%) S W N ~

(S
8]

powerFS avgDgFS Existing Method
Method

(c) Skitter

Figure 9. Comparison of search time according to the dataset.

Figure 10 shows the search time among query types in the randomly generated dataset. Since a
query compare vertices that exist in a structurally simple path based on a particular vertex, a large
set of candidates does not occur. Therefore, there is not much difference in performance between the
existing method and the proposed method. It may be seen that query processing time increases
because there are more neighbor vertices to be compared in queries Q2~Q4 than Q1. The existing
method [37] increases the search time compared to the proposed method because the number of
vertices to be compared increases as the search range expands when there are many vertices that
match a specific label. However, the proposed method improves query processing performance
compared to the existing method because it extends the search range based on vertices that are
believed to generate a small set of candidates through filtering scores even if the query is complex.
Although the difference in the search time is not large between the queries, the performances of
normalFS and avgDgFS in the proposed method are excellent in terms of the search methods. The
performance difference was not large between the query types in the randomly generated dataset. In

addition, a simple form of query did not show a large difference in the performance evaluation of the
real dataset.

mnormalFS “avgDgFS mExisting Method

0
Ql Q2 Q3 o

Query types

Search time(sec)
—_ [3] [\ (%)
o W) W o

i

Figure 10. Comparison of search times among query types in randomly generated data.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

18

Figure 11 shows the search time between query types in the real dataset. The real data set has
various distributions of vertices with specific labels based on specific vertices. Therefore, when the
filtering score is applied according to the query type, there is a large difference in performance. Query
Q1 searches only one neighbor vertex based on a particular vertex, and query Q2 compares multiple
neighbor vertices based on one vertex, but only needs to expand the search scope once. Therefore,
determining the search order through Q1 and Q2 filtering scores does not have much effect on
performance. However, the proposed method can reduce the number of vertices to be compared next
based on the starting vertex, resulting in some performance improvement over the existing method.
Since queries Q3 and Q4 extend the search range based on specific vertices, reducing the number of
vertices to be compared while generating candidate results has a significant impact on performance.
Existing methods should compare all neighbor vertices for each vertex if there are many vertices in
the graph that match the label of the vertex included in the query. Therefore, if the vertex to be
compared increases, such as Q3 and Q4, the performance is degraded. However, the proposed
method can reduce the vertices to be searched additionally for a relatively small set of candidates
because filtering scores determine the order to be searched. As a result, the more complex the query
is, the more performance the proposed method is relatively better than the existing method. In the
case of 4, the most noticeable performance difference was shown in the comparison with the
existing method. The proposed method shows strength in queries of a mixed structure, such as Q4,
because the search method of paths that can create the query with a small number of searches
involves predicting the probability of each vertex occurring in the graph for the query, rather than
random searching.

H powerFS avgDgFS mExisting Method

Ql Q Q3 Q4

Query types

Search time(sec)
—_ —_ N |38 w w
W o W [i S i

S

Figure 11. Comparison of search time between query types in real data.

5. Conclusions

In this paper, we proposed a distributed query processing method to search a subgraph on
Spark. In this method, the filtering score is calculated to eliminate unnecessary searches in the query
search through the distribution of the vertices of the graph and their edges. Based on the calculated
filtering score, the vertex that can be filtered most is selected as the starting vertex, and the search is
performed by partitioning the query into subqueries of smaller units depending on the filtering score.
This facilitates a faster search for the subgraphs compared to the existing methods. In the evaluation
results, the proposed method demonstrates a performance improvement compared to the existing
methods in the real dataset. Although the absolute performance improvement does not appear to be
high, the relative performance has been proven to be excellent because there is no disk I/O in Spark,
a distributed in-memory environment. The proposed method is difficult to apply in other distributed
environments because subgraphs are processed through filtering scores on Spark. In the future, we

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

19

will conduct research to apply the proposed method to heterogeneous graphs and to reduce the cost
of join computation in a distributed environment. In addition, to demonstrate the relative superiority
of distributed query processing methods, we will conduct performance evaluations with state-of-the-
art studies using datasets with varying configurations of vertices and edges on a single server.

Author Contributions: Conceptualization, K.B., M.K,, D.C,, H.L., and].Y.; methodology, K.B.,, M.K,, D.C,, J.L.,
and J.Y.; software, M.K., H.L.,, and D.C,; validation, K.B.,, M.K,, D.C,, and].L.; formal analysis, K.B., M.K,, and
J.Y.; writing—original draft preparation, K.B., M.K,, and]J.L.; writing—review and editing, K.B. and J.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean government (MSIT) (No. 2022R1A2B5B02002456), by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No.2014-3-00123,
Development of High Performance Visual Big Data Discovery Platform for Large-Scale Realtime Data Analysis),
and by the Cooperative Research Program for Agriculture Science and Technology Development (Project No.
PJ016247012022), Rural Development Administration, Republic of Korea.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bok, K;Jeong, J.; Choi, D.; Yoo, J. Detecting Incremental Frequent Subgraph Patterns in IoT Environments.
Sensors 2018, 18, 1-16.

2. Bok, K; Yoo, S.; Choi, D.; Lim, J.; Yoo, J. In-Memory Caching for Enhancing Subgraph Accessibility. Appl.
Sci. 2020, 10, 1-18.

3. Michail, D.; Kinable, J.; Naveh, B.; Sichi,].V. JGraphT - A Java Library for Graph Data Structures and
Algorithms. ACM Trans. Math. Softw. 2020, 46, 1-29.

4. Nguyen, V.; Sugiyama, K.; Nakov, P.; Kan, M. FANG: leveraging social context for fake news detection
using graph representation. Commun. ACM 2022, 65, 124-132.

5. Saeed, Z.; Abbasi, R.A.; Razzak, M.L; Xu, G. Event Detection in Twitter Stream Using Weighted Dynamic
Heartbeat Graph Approach. IEEE Comput. Intell. Mag. 2019, 14, 29-38.

6. Lee, J.; Bae, H.; Yoon, S. Anomaly Detection by Learning Dynamics from a Graph. IEEE Access 2020, 8,
64356-64365.

7. Canturk, D.; Karagoz, P.; SgWalk: Location Recommendation by User Subgraph-Based Graph Embedding.
IEEE Access 2021, 9, 134858-134873.

8. Guo, Q. Zhuang, F.; Qin, C; Zhu, H,; Xie, X,; Xiong, H.; He, Q. A Survey on Knowledge Graph-Based
Recommender Systems. IEEE Trans. Knowl. Data Eng. 2022, 34, 3549-35646

9. Mukherjee, A.,; Chaki, R.; Chaki, N. An Efficient Data Distribution Strategy for Distributed Graph
Processing System. In Proceedings of International Conference on Computer Information Systems and
Industrial Management, Barranquilla, Colombia, 15-17 July 2022.

10. Choi, D;; Han, J.; Lim, J.; Han, J.; Bok, K.; Yoo, J. Dynamic Graph Partitioning Scheme for Supporting Load
Balancing in Dis-tributed Graph Environments. IEEE Access 2021, 9, 65254-65265.

11. Davoudian, A; Chen, L.; Tu, H; Liu, M. A Workload-Adaptive Streaming Partitioner for Distributed Graph
Stores. Data Sci. Eng. 2021, 6, 163-179.

12. Ayall, T; Liu, H.; Zhou, C.; Seid, A.M.; Gereme, F.B.; Abishu, H.N.; Yacob, Y.H. Graph Computing Systems
and Partitioning Techniques: A Survey. IEEE Access 2022, 10, 118523-118550.

13. Liu, N.; Li, D.; Zhang, Y.; Li, X. Large-scale graph processing systems: a survey. Frontiers Inf. Technol.
Electron. Eng. 2020, 21, 384-404.

14. Bouhenni, S.; Yahiaoui, S.; Nouali-Taboudjemat, N.; Kheddouci, H. A Survey on Distributed Graph Pattern
Matching in Massive Graphs. ACM Comput. Surv. 2022, 54, 1-35.

15. Adoni, W.Y.H,; Tarik, N.; Krichen, M.; El Byed, A. HGraph: Parallel and Distributed Tool for Large-Scale
Graph Processing. In Proceedings of International Conference on Artificial Intelligence and Data Analytics,
Riyadh, Saudi Arabia, 6-7 April 2021.

16. Fan,W. He, T, Lai, L.; Li, X,; Li, Y.; Li, Z,; Qian, Z; Tian, C.; Wang, L.; Xu,].; Yao, Y.; Yin, Q.; Yu, W.; Zeng,
K.; Zhao, K,; Zhou, J.; Zhu, D.; Zhu, R. GraphScope: A Unified Engine For Big Graph Processing. Proc.
VLDB Endow. 2021, 14, 2879-2892.

17. Malewicz, G.; Austern, H.M.; Bik, J.A.; Dehnert, J.; Horn, L; Leiser, N.; Czajkowski, G.M. Pregel: a system
for large-scale graph processing. In Proceedings of ACM SIGMOD International Conference on
Management of data, Indianapolis, Indiana, USA, 6-10 June 2010.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 doi:10.20944/preprints202307.1394.v1

20

18. Xu, Q.; Wang, X,; Li, J.; Zhang, Q.; Chai, L. Distributed Subgraph Matching on Big Knowledge Graphs
Using Pregel. IEEE Access 2019, 7, 116453-116464.

19. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51,
107-113.

20. Su, Q.; Huang, Q.; Wu, N.; Pan, Y. Distributed subgraph query for RDF graph data based on MapReduce.
Comput. Electr. Eng. 2022, 102, 108221.

21. Angles, R.; Lopez-Gallegos, F.; Paredes, R. Power-Law Distributed Graph Generation With MapReduce.
IEEE Access 2021, 9, 94405-94415.

22. Low, Y.; Gonzalez,].; Kyrola, A.; Bickson, D.; Guestrin, C.; Hellerstein, J. Distributed GraphLab: A
Framework for Machine Learning in the Cloud. Proc. VLDB Endow. 2012, 5, 716-727.

23. Gonzalez, J; Low, Y., Gu, H. Bickson, D.; Guestrin, C. PowerGraph: Distributed graph-parallel
computation on natural graphs. In Proceedings of USENIX Symposium on Operating Systems Design and
Implementation, Hollywood, CA, USA, 8-10 October 2012.

24. Xin, R.S.;; Gonzalez, J.; Michael, F.J; Ion, S. Graphx: A resilient distributed graph system on spark. In
Proceedings of International Workshop on Graph Data Management Experiences and Systems, New York,
NY, USA, 24 June 2013.

25. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.;
Franklin, M.J.; Ghodsi, A.; Gonzalez, J.; Shenker, S.; Stoica, I. Apache spark: a unified engine for big data
processing. Commun. ACM 2016, 59, 56-65.

26. Talukder, N.; Zaki, M.]. A distributed approach for graph mining in massive networks. Data Min. Knowl.
Discov. 2016, 30, 1024-1052.

27. Tian, Y.; McEachin, R.C,; Santos, C.; States, D.].; Patel,].M. SAGA: a subgraph matching tool for biological
graphs. Bioinform. 2006, 23, 232-239.

28. Zhu, L; Yao, Y.; Wang, Y.; Hei, X.; Zhao, Q.; Ji, W.; Yao, Q. A novel subgraph querying method based on
paths and spectra. Neural Comput. Appl. 2019, 31, 5671-5678.

29. Liang, Y.; Zhao, P. Workload-Aware Subgraph Query Caching and Processing in Large Graphs. In
Proceedings of IEEE International Conference on Data Engineering, Macao, China, 8-11 April 2019.

30. 30-22. Sun, S.; Luo, Q. Scaling Up Subgraph Query Processing with Efficient Subgraph Matching. In
Proceedings of IEEE International Conference on Data Engineering, Macao, China, 8-11 April 2019.

31. Luaces, D.; Viqueira,].R.R.; Cotos,].M.; Flores,].C. Efficient access methods for very large distributed graph
databases. Inf. Sci. 2021, 573, 65-81.

32. Cheng, J.;Ke, Y.; Ng, W. Efficient query processing on graph databases. ACM Trans. Database Syst. 2009, 34,
1-48.

33. Wang, J.; Ntarmos, N.; Triantafillou, P. GraphCache: a caching system for graph queries. In Proceedings of
International Conference on Extending Database Technology, Venice, Italy, 21-24 March 2017.

34. Li, Y, Yang, Y.; Zhong, Y. An Incremental Partitioning Graph Similarity Search Based on Tree Structure
Index. In Proceedings of International Conference of Pioneering Computer Scientists, Engineers and
Educators, Taiyuan, China, 18-21 September 2020.

35. Wangmo, C.; Wiese, L. Efficient Subgraph Indexing for Biochemical Graphs. In Proceedings of
International Conference on Data Science, Technology and Applications, Lisbon, Portugal, 11-13 July 2022.

36. Khuller, S.; Raghavachari, B.; Young, N. Balancing minimum spanning trees and shortest-path trees.
Algorithmica 1995, 14, 305-321.

37. Balaji, J.; Sunderraman, R. Distributed Graph Path Queries Using Spark. In Proceedings of Annual
Computer Software and Applications Conference, Atlanta, GA, USA, 10-14 June 2016.

38. Wei, F. TEDL efficient shortest path query answering on graphs. In Proceedings of ACM SIGMOD
International Conference on Management of Data, Indianapolis, Indiana, USA, 6-10 June 2010.

39. Cordella, L.P.; Foggia, P.; Sansone, C.; Vento, M. A (sub)graph isomorphism algorithm for matching large
graphs. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1367-1372.

40. He, H.; Singh, AK. Graphs-at-a-time: query language and access methods for graph databases. In
Proceedings of ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada,
10-12 June 2008.

41. Zhang, S; Li, S.; Yang, J. GADDI: distance index based subgraph matching in biological networks. In
Proceedings of Inter-national Conference on Extending Database Technology, Saint Petersburg, Russia, 24-
26 March 2009.

42. Ullmann, J.R. An algorithm for subgraph isomorphism.]. ACM 1976, 23, 31-42.

43. Zhang, X.; Chen, L. Distance-aware selective online query processing over large distributed graphs. Data
Sci. Eng. 2017, 2, 2-21.

44. Jing, N.; Huang, Y.W.; Rundensteiner, E.A. Hierarchical encoded path views for path query processing: An
optimal model and its performance evaluation. IEEE Trans. Knowl. Data Eng. 1998, 10, 409-432.

https://doi.org/10.20944/preprints202307.1394.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 July 2023 do0i:10.20944/preprints202307.1394.v1

21

45. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, F.; Venkataraman, S.;
Franklin, M.J.; Ghodsi, A.; Gonzalez, J.; Shenker, S.; Stoica, I. Apache Spark: a unified engine for big data
processing. Commun. ACM 2016, 59, 56-65.

46. Ammar, K,; McSherry, F.; Salihoglu, S.; Joglekar, M. Distributed Evaluation of Subgraph Queries Using
Worst-case Optimal and Low-Memory Dataflows. Proc. VLDB Endow. 2018, 11, 691-704.

47. Fathimabi, S.; Subramanyam, R B.V.; Somayajulu, D.V.L.N. MSP: Multiple Sub-graph Query Processing
using Structure-based Graph Partitioning Strategy and Map-Reduce. J. King Saud Univ. Comput. Inf. Sci.
2019, 31, 22-34.

48. Cheng, J.; Ke, Y.; Fu, AW,; Yu,].X. Fast graph query processing with a low-cost index. VLDB]. 2021, 20,
521-539.

49. Sala, A.; Zheng, H.; Zhao, B.Y; Gaito, S.; Rossi, G.P. Brief announcement: revisiting the power-law degree
distribution for social graph analysis. In Proceedings of Annual ACM Symposium on Principles of
Distributed Computing, Zurich, Switzerland, 5-28 July 2010.

50. Zhang, S;Jiang, Z.; Hou, X.; Li, M.; Yuan, M.; You, H. DRONE: An Efficient Distributed Subgraph-Centric
Framework for Processing Large-Scale Power-law Graphs. IEEE Trans. Parallel Distributed Syst. 2023, 34,
463-474.

51. Faloutsos, M.; Faloutsos, P.; Faloutsos, C. On power-law relationships of the internet topology. ACM
SIGCOMM Comput. Commun. Rev. 1999, 29, 251-262.

52. Goldstein, M.L.; Morris, S.A.; Yen, G.G. Problems with fitting to the power-law distribution. Eur. Phys. . B.
2005, 41, 255-258.

53. Stanford Large Network Dataset Collection, Available online: https://snap.stanford.edu/data (accessed on
15 January 2021).

54. GTgraph, Available online: http://www.cse.psu.edu/~kxm85/software/GTgraph (accessed on 5 October
2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202307.1394.v1

