Supplementary data

An Overview of Climate Change Impacts on Agriculture and their mitigation strategies

Farhana Bibi¹, Azizur Rahman^{2,*}

- ¹ Department of Biosciences, Grand Asian University Sialkot, 51040, Pakistan.
- ² Centre for Climate Change Research, University of Toronto, Toronto, ON M5G 1L5, Canada.
- * Correspondence: mazizur.rahman@utoronto.ca; aziz@climatechangeresearch.ca.

Table 1: Physiological and biochemical responses of plants upon abiotic stresses

Sr. No	Parameter	Crop	Physiological & biochemical responses to stress	Ref.
1	Heat stress	Tomato	Decrease in fruit yield, increase in antioxidant content in leaf and fruit	[1]
	(32 °C)			
2	Heat Stress	Lamb's Lettuce	Decrease in plant biomass and photosynthetic pigments, accumulation of high H2O2 in leaf	[2]
	(35°C/25°C : day/night)			
3	Salinity Stress (75mM NaCl)	Rice	Depletion in cellular water content, higher accumulation of Na+, decrease in photosynthetic pigments Chl a and Chl b, Activation of aquaponic genes	[3]
4	Heat stress (35-42 °C)	Rice	Decrease in seedlings growth and chlorophyll content, decrease in survival rate by 18-20%, increase in percentage of injury	[4]
5	Heat stress	Wheat	Changes in rate of evapotranspiration, increased plants wilting, increase water loss in tissues, decrease in volume	[5]
	(38 °C/ 31 °C : day/night)			
6	Low temperature	Cucumber	Increased electrolytes leakage, hydrogen peroxide levels and intracellular concentration of CO2,	[6]

	stress (9 °C/ 5 °C : day/ night)		decrease in relative water content, net photosynthetic rate, rate of transpiration, stomatal conductance, and leaf pigments	
7	High CO2 levels	Wheat (heat tolerant genotype)	Decrease in lysine metabolism, and metabolites including N acetylonithine, overall yield did not improved	[7]
8	Elevated CO2 levels	Barley	Decrease in specific leaf area and stomatal conductance, decrease in transpiration rate	[8]
9	Salinity stress (150-300mM NaCl)	Sugarcane	Decrease in photosynthetic rate, stomatal conductance and photoassimilate transportation from leaves to other plant tissues	[9]
10	Salinity stress (250mM NaCl)	Soybean	Decrease in photosynthetic pigments, carbohydrates, phenolic content, flavonoids and antioxidants	[10]
11	Salinity + Heat Stress (75mM NaCl + 30 C/ 26 C: day/ night)	Rice	Reduced dry and fresh weight of shots, reduced relative water content of leaves	[3]

Table 2: Effect of Biochar on crops and soil properties

Sr. No.	Type of Biochar	Crop	Treatment effect on soil	Treatment effect on crops	Ref.
1.	Pine needle Biochar	Chick pea	Treatment resulted in elevated water holding capacity, Buffered the soil pH to 6.5	Increase in Biomass and plant fresh weight	[11]
2.	Corn stalk Biochar	Sugar Beet	Reduction in soil fomesafen residues by 29-46%, increase in soil pH by 3.49%, increase in soil water content by 13.8%, increase in soil nitrogen,	Increase in growth, development and photosynthetic content of crop	[12]

			by 9.68, 17.7 and 11.8%		
3.	Sunflower Biochar	Millet	Increased soil water content by 47%, increased soil dissolved organic carbon by 90% and nitrogen by 74%	Increased plants nutrients sodium, potassium and phosphorus, increased leaf relative water content by 40%, improved overall yield by 58%	[13]
4.	Sunflower Plate Biochar	Rice	Increased soil pH and pH buffering capacity, reduced the available Cd content of soil	Reduced the potential risk of cadmium absorption by rice plants	[14]
5.	Biochar- Fertilizer	Chinese Cabbage	Increased the inorganic nitrogen content of soil	Increased leaf length, width and leaf number. Increased the nitrogen utilization efficiency, amino acids, sugars and vitamin C content	[15]
		Maize		Increased plants height, stem diameter, ear height and starch content of grains	

potassium, soil organic matter

References

- [1] T. Mesa, J. Polo, A. Arabia, V. Caselles, and S. Munné-Bosch, "Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality," *J. Plant Physiol.*, vol. 268, p. 153581, 2022, doi: https://doi.org/10.1016/j.jplph.2021.153581.
- [2] B. Hawrylak-Nowak, S. Dresler, K. Rubinowska, R. Matraszek-Gawron, W. Woch, and M. Hasanuzzaman, "Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high temperature stress," *Plant Physiol. Biochem.*, vol. 127, pp. 446–456, 2018, doi: https://doi.org/10.1016/j.plaphy.2018.04.018.
- [3] L. Nahar, M. Aycan, S. Hanamata, M. Baslam, and T. Mitsui, "Impact of Single and Combined Salinity and High-Temperature Stresses on Agro-Physiological, Biochemical, and Transcriptional Responses in Rice and Stress-Release," *Plants*, vol. 11, no. 4, 2022, doi: 10.3390/plants11040501.
- [4] S. Aryan *et al.*, "Phenological and physiological responses of hybrid rice under different high-temperature at seedling stage," *Bull. Natl. Res. Cent.*, vol. 46, no. 1, p. 45, 2022, doi: 10.1186/s42269-022-00742-y.

- [5] P. M. P. Correia, J. Cairo Westergaard, A. da Silva, T. Roitsch, E. Carmo-Silva, and J. da Silva, "High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress," *J. Exp. Bot.*, vol. 73, no. 15, pp. 5235–5251, 2022, doi: 10.1093/jxb/erac160.
- [6] B. Amin *et al.*, "Biochemical and Physiological Responses of Cucumis sativus Cultivars to Different Combinations of Low-Temperature and High Humidity," *J. Plant Growth Regul.*, vol. 42, no. 1, pp. 390–406, 2023, doi: 10.1007/s00344-021-10556-3.
- [7] L. O. A. Abdelhakim *et al.*, "Elevated CO2 Improves the Physiology but Not the Final Yield in Spring Wheat Genotypes Subjected to Heat and Drought Stress During Anthesis," *Front. Plant Sci.*, vol. 13, no. March, 2022, doi: 10.3389/fpls.2022.824476.
- [8] Y. Chen, Z. Wei, H. Wan, J. Zhang, J. Liu, and F. Liu, "CO2 Elevation and Nitrogen Supply Alter the Growth and Physiological Responses of Tomato and Barley Plants to Drought Stress," *Agronomy*, vol. 12, no. 8, 2022, doi: 10.3390/agronomy12081821.
- [9] D. Zhao, K. Zhu, A. Momotaz, and X. Gao, "Sugarcane Plant Growth and Physiological Responses to Soil Salinity during Tillering and Stalk Elongation," *Agriculture*, vol. 10, no. 12, 2020, doi: 10.3390/agriculture10120608.
- [10] P. Mangena, "Role of Benzyladenine Seed Priming on Growth and Physiological and Biochemical Response of Soybean Plants Grown under High Salinity Stress Condition," *Int. J. Agron.*, vol. 2020, p. 8847098, 2020, doi: 10.1155/2020/8847098.
- [11] B. Fatima *et al.*, "Accompanying effects of sewage sludge and pine needle biochar with selected organic additives on the soil and plant variables," *Waste Manag.*, vol. 153, pp. 197–208, 2022, doi: https://doi.org/10.1016/j.wasman.2022.08.016.
- [12] X. Li *et al.*, "Influence of Biochar on Soil Properties and Morphophysiology of Sugar Beet Under Fomesafen Residues," *J. Soil Sci. Plant Nutr.*, 2023, doi: 10.1007/s42729-023-01157-y.
- [13] M. al-R. Taheri, A. R. Astaraei, A. Lakzian, and H. Emami, "The role of biochar and sulfur-modified biochar on soil water content, biochemical properties and millet crop under saline-sodic and calcareous soil," *Plant Soil*, 2023, doi: 10.1007/s11104-023-05912-z.
- [14] H. Lu *et al.*, "Effects of the increases in soil pH and pH buffering capacity induced by crop residue biochars on available Cd contents in acidic paddy soils," *Chemosphere*, vol. 301, p. 134674, 2022, doi: https://doi.org/10.1016/j.chemosphere.2022.134674.
- [15] H. Zhao, T. Xie, H. Xiao, and M. Gao, "Biochar-Based Fertilizer Improved Crop Yields and N Utilization Efficiency in a Maize– Chinese Cabbage Rotation System," *Agriculture*, vol. 12, no. 7, 2022, doi: 10.3390/agriculture12071030.