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Abstract: When implementing SVMs, two major problems are encountered: (a) the number of local minima 

increases exponentially with the number of samples and (b) the quantity of required computer storage, 

required for a regular quadratic programming solver, increases by an exponential magnitude as the problem 

size expands. The Kernel-Adatron family of algorithms gaining attention lately which has allowed it to handle 

very large classification and regression problems. However, these methods treat different types of samples 

(Noise, border, and core) in the same manner, which causes searches in unpromising areas and increases the 

number of iterations. In this work, we introduce a hybrid method to overcome these shortcomings, namely 

Optimal Recurrent Neural Network Density Based Support Vector Machine (Opt-RNN-DBSVM). This method 

consists of four steps: (a) characterization of different samples, (b) elimination of samples with a low probability 

of being a support vector, (c) construction of an appropriate recurrent neural network based on an original 

energy function, and (d) solution of the system of differential equations, managing the dynamics of the RNN, 

using the Euler-Cauchy method involving an optimal time step. The RNN remembers the regions explored 

during the search process thanks to its recurrent architecture. We demonstrated that RNN-SVM converges to 

feasible support vectors and Opt-RNN-DBSVM has a very low time complexity compared to RNN-SVM with 

constant time step, and KAs-SVM. Several experiments were performed on academic data sets. We used several 

classification performances measures to compare Opt-RNN-DBSVM to different classification methods and the 

results obtained show the good performance of the proposed method. 

Keywords: recurrent neural network (RNN); support vector machine (SVM); Kernel-Adatron algorithm (KA); 

Euler-Cauchy algorithm 

MSC: 90C20; 90C29; 90C90; 93E20 

 

1. Introduction 

The classification problem is an NP-Hard problem that has many applications in medicine, 

industry, economics and other fields. Several types of classifiers have been proposed in the literature 

to solve this problem, including the approach called Support Vector Machine based on Quadratic 

Programming (QP) [5,6,7]. The difficulty in the implementation of SVMs on massive data comes in 

the fact that the quantity of required computer storage required for a regular QP solver increases by 

an exponential magnitude as the problem size expands. 

In this paper, we introduce a new version of SVM that implements a preprocessing filter and a 

recurrent neural network, namely Optimal Recurrent Neural Network Density Based Support Vector 

Machine (Opt-RNN-DBSVM). 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2023                   doi:10.20944/preprints202307.1306.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.1306.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

SVMs approaches are based on the existence of a linear separator which can be obtained by 

exploding the data in a higher dimensional space through appropriate kernel functions. Among all 

possible hyperplanes, the SVM searches for the one with the most confident separation margin for a 

good generalization. This issue takes the form of a nonlinear constrained optimization problem that 

is usually handled using optimization methods. Thanks to the Kuhen-Tuker conditions, all these 

methods pass to the dual versions and call the optimizations methods to find the support vectors on 

which the optimal margin is built. Unfortunately, the complexity in time and memory grow 

exponentially with the size of data sets; in addition, the number of local minima grows too, which 

influences the location of the separation margin and the quality of the predictions. 

A primary area of research in the area of learning from empirical data through support vector 

machines (SVMs) and addressing classification and regression issues is the development of 

incremental learning designs when the size of the training dataset is massive \cite{SMOTE}. 

Out of many possible candidates, avoiding the usage of regular Quadratic Programming (QP) 

solvers, the two learning methods gaining attention lately are Iterative Single-Data Algorithms 

(ISDA) and Sequential Minimal Optimization (SMO) [3,5,7,9]. ISDAs operate from a single sample at 

hand (pattern-based learning) towards the best fit solution. The Kernel AdaTron (KA) was the 

primary ISDA for SVMs, using kernel functions to mapping data to the high dimensional character 

space of SVMs P [2] and conducting AdaTron [1] processing in the character space. Platt's SMO 

algorithm is an outlier among the so-called decomposition approaches introduced in [4,6], operating 

on a 2-samples workset of samples at a time. Because the decision for the two-point workset may be 

determined analytically, the SMO does not require the involvement of standard QP solvers. Due to 

it being analytically driven, the SMO has been especially wildly popular and is the most commonly 

utilized, analyzed, and further developed approach. Meanwhile, KA, though yielding somewhat 

comparable performance (accuracy and computational required time) in resolving classification 

issues, has not gained as much traction. The reason for this is twofold. First, up till lately [8], KA 

appeared to be restricted to classification tasks and second, it "missed" the flower of the robust 

theoretical framework. KA employs a gradient ascent procedure, and that fact also may have caused 

some researchers to be suspicious of the challenges posed by gradient ascent techniques in the 

presence of a perhaps ill-conditioned core array. In [10], for a lacking bias parameter b, the authors 

derive and demonstrate the equality of two apparently dissimilar ISDAs, namely a KA approach and 

an unbiased variant of the SMO training scheme [9] when constructing SVMs possessing positive 

definite kernels. The equivalence is applicable to the classification and regression tasks, and sheds 

additional insight in these apparently dissimilar methods of learning. 

Despite the richness of the toolbox set up to solve the quadratic programs from SVM, and with 

the large amount of data generated by social networks, medical and agricultural fields, etc., the 

amount of computer memory required for a QP solver from the SVM dual grows hyper-exponentially 

and additional methods implementing different techniques and strategies are more than necessary. 

Classical algorithms, namely ISDAs and SMO, do not distinguish between different types of 

samples (noise, border, and core) which causes searches in unpromising areas. In this work 

we introduce a hybrid method to overcome these shortcoming, namely Optimal Recurrent 

Neural Network Density Based Support Vector Machine (Opt-RNN-DBSVM). This method proceeds 

in four steps: (a) characterization of different samples based on the density of the data sets (noise, 

core, and border), (b) elimination of samples with a low probability of being a support vector, namely 

core samples that are very far from the borders of different components of different classes, (c) 

construction of an appropriate recurrent neural network based on an original energy function making 

balance between the SVM-dual components (constraints and objective function) and insuring the 

feasibility of the network equilibrium points [3,4], and (d) solution of the system of differential 

equations, managing the dynamics of the RNN, using the Euler-Cauchy method involving an optimal 

time step. Due to its recurrent nature, the RNN was able to memorize locations visited during 

previous explorations. At one hand, two main interesting fundamental results were demonstrated: 

the convergence of RNN-SVM to feasible solutions and Opt-RNN-DBSVM has a very low time 

complexity compared to Const-RNN-SVM, SMO-SVM, ISDA-SVM, and L1QP-SVM. 
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On the other hand, several experimental studies were conducted based on well-known data sets. 

Based on well-known performance measures (Accuracy F1-score Precision Recal), Opt-RNN-DBSVM 

outperformed recurrent neural network-SVM with constant time step, Kernel-Adatron family of 

algorithms-SVM family, and well-known non-kernel models; In fact, Opt-RNN-DBSVM improved 

the accuracy, the F1Score, the precision, and the recall. Moreover, the proposed method requires a 

very small number of support vectors. The rest of this paper is organized as follows: In the second 

section, we give the flowchart of the proposed method. In the third section, we give the outline of our 

recent SVM versions called Density Based Support Vector Machine. The fourth section presents, in 

detail, the construction of recurrent neural networks associated with SVM-dual and the Euler-Cauchy 

algorithm that implements an optimal time step. In the fifth section, we give some experimental 

results. Finally, we give some conclusions and future extensions of Opt-RNN-DBSVM. 

2. The architecture of the proposed method 

The Kernel AdaTron (KA) algorithms, namely ISDAs, and SMO, treat different types of samples 

(noise, border, and core) in the same manner (all samples are considered for several iterations and 

supposed to be a support candidate with uniform probability), which causes searches in unpromising 

areas and increase the number of iterations. In this work, we introduce an economic method to 

overcome these shortcomings, namely Optimal Recurrent Neural Network Density Based Support 

Vector Machine (Opt-RNN-DBSVM). This method proceeds in four steps (see Figure 1): (1) 

Characterization of different samples based on the density of the data sets (noise, core, and border); 

to this end, two parameters are introduced: the size of the neighborhood of the current sample and 

the threshold that permits such categorization; (2) Elimination of samples with a low probability of 

being a support vector, namely core samples that are very far from the borders of different 

components of different classes and the noise samples that contain wrong information about the 

phenomenon under study. In our previews work [28], we demonstrate that such suppression does 

not influence the performance of the classifiers; (3) Construction of an appropriate recurrent neural 

network based on an original energy function making balance between the SVM-dual components 

(constraints and objective function) and ensuring the feasibility of the network equilibrium points 

[3,4]; (4) Solution of the system of differential equations, managing the dynamics of the RNN, using 

the Euler-Cauchy method involving an optimal time step. In this regard, the formula of the coming 

state of the neurons, of the constructed RNN, is introduced into the energy function, which leads to 

a 1-dimension quadratic optimization problem whose solution represents the optimal step of the 

Euler-Cauchy process that ensures a maximum decrease of the energy function [37]. The components 

of the produced equilibrium point represent the membership degrees of different samples to the 

support vectors data set. 
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Figure 1. Opt RNN DBSVM Flowchart. 

3. Density based support vector machine 

In the following, we denote by BD the set of N samples 𝑥ଵ , . . . , 𝑥ே  labeled, respectively, by 𝑦ଵ , . . . , 𝑦ே, distributed via 𝐾 class 𝐶ଵ , . . . , 𝐶௄. In our case, 𝐾 = 2 and 𝑦௜∈ {−1, +1}. 

2.1. Classical support vector machine 

The hyperplane we are looking for must satisfy the equation 𝑤. 𝑥௜  +  𝑏 =  0, where w is the 

weight that defines this SVM separator that satisfies the constraints family given by ∀𝑖 =  1, . . . , 𝑁,𝑦௜(𝑤. 𝑥௜  +  𝑏) ≥ 1. To ensure a maximum margin, you need to maximize 
ଶ∥୵ ∥. 

As the pattern are not linearly separable, we introduce the kernel functions K (that satisfy the 

Mercer conditions [9]) to explore the data in appropriate space. By introducing the Lagrange 

relaxation and writing the Kuhn-Tuker conditions, we obtain a quadratic optimization problem with 

a single linear constraint that we solve to determine the support vectors [18]. To address the problem 

of sutured constraints, some researchers have added the notion of a soft margin [8]. They employed 

N supplementary slack variables 𝜁௜ ≥ 0  at every constraint 𝑦௜(𝑤. 𝑥௜  +  𝑏) ≥ 1 . The sum of the 

relaxed variables is weighted and included in the cost function: 

⎩⎪⎨
⎪⎧ 𝑀𝑖𝑛 12 ‖𝑤‖ଶ + 𝐶 ෍ 𝜁௜ே

௜ୀଵ𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜𝑦௜(𝜑(𝑥௜). 𝑤 + 𝑏) ≥ 1 − 𝜁௜𝜁௜ ≥ 0, ∀𝑖 = 1, … , 𝑁
  

Here φ represents the transformation function derived from the function kernel K. We obtain the 

coming dual problem: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑀𝑎𝑥 ෍ 𝛼௜ − 12ே

௜ୀଵ ෍ ෍ 𝛼௜𝛼௝𝑦௜𝑦௝𝐾(𝑥௜ , 𝑥௝)ே
௜ୀଵ

ே
௜ୀଵ𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜෍ 𝛼௜𝑦௜ = 0ே

௜ୀଵ0 ≤ 𝛼௜ ≤ 𝐶, ∀𝑖 = 1, … , 𝑁
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Several methods can be used to solve this optimization problem: gradient methods, linearization 

method Frank-Wolf method, generation column method, Newton method applied to the Kuhn 

system [23], sub-gradient methods, Dantzig algorithm, Uzawa algorithm [23], recursive neural 

networks [22], hill climbing, simulated annealing, search by calf, A*, genetic algorithm, ant colony 

[24], and particle swarm method [22] ... etc. Several versions of SVM were proposed in the literature 

among which we find the Least Squares Support Vector Machine Classifiers (LS-SVM) [12], the 

generalized support vector machines (G-SVM) [10], Fuzzy support vector machine [2,11], One class 

Support Vector Machine (OC-SVM) [13,18], Total Support Vector Machine (T-SVM) [14], Weighted 

Support Vector Machine (W-SVM) [15], Granular Support Vector Machines (G-SVM) [16], Smooth 

Support Vector Machine(S-SVM) [17], Proximity Support Vector Machine classifiers (P-SVM) [19], 

Multisurface proximal support vector machine classification via generalized eigenvalues (GEP-SVM) 

[20], and Twin support vector machines (T-SVM) [21] ... etc. 

2.2. Density based support vector machine (DBSVM) 

In this section, we give a short description of DBVSM method. We introduce real number r > 0 

and the integer mp> 0, called min-points, and we define three types of samples: noise point, border 

point and interior point (or cord point). We showed that the interior points do not change their nature 

even when they are projected into another space by the kernel functions. Furthermore, we have 

established that such points cannot be selected as support vectors [28]. 

Definition 1. Let 𝑆 ⊆  ℝ௡. A point 𝑎 ∈  ℝ௡ is said to be an Interior Point (or cord point) of S if there 𝑟 > 0 such that 𝐵(𝑎, 𝑟) ⊆ 𝑆. The set of all interior point of S is denoted by 𝐼𝑛𝑡(𝑆). 

Definition 2. For a given dataset BD, a non-negative real r and an integer mp, there exist three kind 

of samples. 

1. A simple 𝑥 is called 𝐶௜ − 𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑖𝑛𝑡 (𝑁𝑃௜) if |𝐶௜⋂𝐵(𝑥, 𝑟)| < 𝑚𝑝. 

2. A simple 𝑥 is called 𝐶௜ − 𝐶𝑜𝑟𝑑 𝑃𝑜𝑖𝑛𝑡 (𝐶𝑃௜) if |𝐶௜⋂𝐵(𝑥, 𝑟)| ≥ 𝑚𝑝 and 𝑥 ∈ 𝑒𝑛𝑣𝑜𝑙(𝐶௜)ᇩᇭᇭᇪᇭᇭᇫ௢
 

3. A simple 𝑥  is called 𝐶௜ − 𝐵𝑜𝑟𝑑𝑒𝑟 𝑃𝑜𝑖𝑛𝑡 (𝑁𝑃௜)  if |𝐶௜⋂𝐵(𝑥, 𝑟)| < 𝑚𝑝  and there exists a 𝐶௜ −𝐶𝑜𝑟𝑑 𝑃𝑜𝑖𝑛𝑡 𝑦 such as 𝑥 ∈ 𝐵(𝑦, 𝑟). 

Let K be a kernel function allowing to move from the space ℝ௡ to the space ℝே using the 

transformation 𝜙 (ℎ𝑒𝑟𝑒 𝑛 <  𝑁).  

Lemma 1. [28] If a is a 𝐶௜ − 𝐶𝑜𝑟𝑑 𝑝𝑜𝑖𝑛𝑡 for a given 𝜖 and minpoints (mp), then 𝜙(𝑎) is also a 𝐶௜ −𝐶𝑜𝑟𝑑 𝑝𝑜𝑖𝑛𝑡 with appropriate ϵ′ and the same minpoints (mp). 

Theorem 1. [28] A cord point is either a noise-point or a Border-point. 

Proposition 1. [28] Lets 𝜖 >  0  be a real number. The cord point set, 𝐶𝑜𝑟𝑑𝑃𝑜𝑖𝑛𝑡(𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡), 
decreasing function for the inclusion operator. 

Let {𝛼ଵ, . . . , 𝛼௡}  =  𝐵𝑀 ∪  𝐶𝑀 ∪  𝑁 𝑀 be the set of the Lagrange multipliers where BM, CM, and N M 

are the Lagrange multipliers of the border samples, cord samples, and noise samples, respectively. 

As the elements of 𝑁𝑀 and 𝐶𝑀 can not be selected to be support vectors, the reduced dual problem 

is given by: 

𝑅𝐷)
⎩⎪⎪
⎨⎪
⎪⎧𝑀𝑎𝑥 ෍ 𝛼௜ − 12ఈ೔∈஻ெ ෍ ෍ 𝛼௜𝛼௝𝑦௜𝑦௝𝐾(𝑥௜ , 𝑥௝)ఈ೔∈஻ெఈ೔∈஻ெ𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜෍ 𝛼௜𝑦௜ = 0ఈ೔∈஻ெ0 ≤ 𝛼௜ ≤ 𝐶,   ∀𝛼௜ ∈ 𝐵𝑀, ∀𝑖 = 1, … , 𝑁
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In this work, as the (RD) problem is quadratic with linear constraint, we use the continuous 

Hopfield Network by proposing an original energy function in the coming section [26]. 

4. Recurrent neural network to optimal support vectors 

The continuous Hopfield networks consist of interconnected neurons with a smooth sigmoid 

activation function (usually a hyperbolic tangent). The differential equation which governs the 

dynamics of the CHN is: 𝑑𝑢𝑑𝑡 = − 𝑢𝜏 + 𝑊. 𝛼 + 𝐼  

where 𝑢, 𝛼, 𝑊 and I are, respectively, the vectors of neuron states, the outputs, the weight matrix, 

and the biases. For a CHN of 𝑁 neurons, the state 𝑢௜ and output 𝛼௜ of the neuron i are relied on by 

the equation αi For an initial vector state 𝑢଴  ∈ ℝ௡, a vector 𝑢௘ ∈  ℝ௡ is called an equilibrium point 

of the system 1, if and only if, ∃𝑡௘ ∈  ℝା such as ∀𝑡 ≥ 𝑡௘ , 𝑢(𝑡)  =  𝑢௘. It should be noted if the energy 

function (or Lyapunov function) exists; the equilibrium point exists as well. Hopfield proved that the 

symmetry of the matrix of the weight is a sufficient condition for the existence of the Lyapunov 

function [25]. 

3.1. Continuous Hopfield network based on the original energy function 

To solve the obtained dual problem via recurrent neural network [26], we propose the following 

energy function: 

𝐸(𝛼ଵ, … , 𝛼ேᇱ) = 𝛽଴ ෍ 𝛼௜ − 𝛽଴2ఈ೔∈஻ெ ෍ ෍ 𝛼௜𝛼௝𝑦௜𝑦௝𝐾(𝑥௜ , 𝑥௝)ఈ೔∈஻ெఈ೔∈஻ெ + 𝛽ଵ ෍ 𝛼௜𝑦௜ఈ೔∈஻ெ + 𝛽ଶ2 ቌ ෍ 𝛼௜𝑦௜ఈ೔∈஻ெ ቍଶ
  

To determine the vector of the neurons biases, we calculate the partial derivatives of 𝐸: 𝜕𝐸𝜕𝛼௜ (𝛼ଵ, … , 𝛼ேᇱ) = 𝛽଴ − 𝛽଴ ෍ 𝛼௝𝑦௜𝑦௝𝐾൫𝑥௜ , 𝑥௝൯ఈೕ∈஻ெ +𝛽ଵ𝑦௜ + 𝛽ଶ𝑦௜ ෍ 𝛼௜𝑦௜ఈ೔∈஻ெ   

The components of the biases vector are given by: 𝐼௜ = 𝜕𝐸𝜕𝛼𝑖 (0) = −𝛽0 − 𝛽1𝑦𝑖    , ∀𝑖 = 1, … , 𝑁′  

To determine the connection weights 𝑊 between each neurons pair, we calculate the second 

partial derivatives of E: 𝜕ଶ𝐸𝜕𝛼௜𝜕𝛼௝ (𝛼ଵ, … , 𝛼ேᇱ) = −𝛽଴𝑦௜𝑦௝𝐾൫𝑥௜ , 𝑥௝൯ + 𝛽ଶ𝑦௜𝑦௝  

The components of the weights 𝑊 matrix are given by: 𝑊௜,௝ = 𝜕2𝐸𝜕𝛼𝑖𝜕𝛼𝑗 (0) = 𝛽0𝑦𝑖𝑦𝑗𝐾൫𝑥𝑖, 𝑥𝑗൯ − 𝛽2𝑦𝑖𝑦𝑗  

To calculate the equilibrium point of the proposed recurrent neural network, we use the  Euler-

Cauchy iterative method: 

(1) Initialization: 𝛼ଵ଴, … , 𝛼ேᇱ଴ , and the step 𝜌଴ are randomly chosen; 

(2) Given 𝛼ଵ௧ , … , 𝛼ேᇲ௧  and the step 𝜌௧, the step 𝜌௧ାଵ is chosen such that 𝐸௧ାଵ is maximum and we 

calculate 𝑢ଵ, … , 𝑢ேᇲ  using: ∀𝑖 = 1, … , 𝑁ᇱ, 𝑢௜௧ାଵ = 𝑢௜௧ + 𝜌௧ାଵ൫∑ 𝑊௜,௝𝛼௝௧ + 𝐼௜௝ୀଵ,…,ேᇲ ൯ , then we 

calculate 𝛾ଵ, … , 𝛾ேᇲ  using the activation function 𝑓: 𝛾௜ = 𝑓(𝑢௜௧ାଵ) , then the 𝛼ଵ௧ାଵ, … , 𝛼ேᇲ௧ାଵ are 

given by: 𝛼௧ାଵ = 𝑃(𝛾), where P is the projection operator on the set {𝛼 ∈ ℝேᇱ ,   ∑ 𝛼௜𝑦௜ = 0ேᇱ௜ୀଵ . } 

(3) Return to 1) until ‖𝛼௧ାଵ − 𝛼௧‖ ≤ 𝜀, where 𝜀 > 0. 

The Figure 2 shows the connection weights W between each pair of neurons. 
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Theorem 2. If 𝑖 = 𝑗, 𝑃௜,௝ = 1 − ௬೔మேᇱ, else 𝑃௜,௝ = − ௬೔௬ೕேᇱ , where 𝑆 =  ∑ 𝑦௜ଶ௜ୀଵ,…,ேᇱ  

Proof of Theorem 2. We have 𝑃 = 𝐼 − 𝐴௧. (𝐴. 𝐴௧)ିଵ. 𝐴  and 𝐴 = ሾ𝑦ଵ, … , 𝑦ேᇱሿ , then (𝐴. 𝐴௧)ିଵ =(ሾ𝑦ଵ, … , 𝑦ேᇲሿ௧ . ሾ𝑦ଵ, … , 𝑦ேᇲሿ)ିଵ = ଵேᇱ because 𝑁ᇱ =  ∑ 𝑦௜ଶ௜ୀଵ,…,ேᇱ  

Thus 𝐴௧ . (𝐴. 𝐴௧)ିଵ. 𝐴 = ଵேᇱ ሾ𝑦ଵ, … , 𝑦ேᇲሿ௧. ሾ𝑦ଵ, … , 𝑦ேᇲሿ 
Finally, for 𝑖 = 𝑗, 𝑃௜,௝ = 1 − ௬೔మேᇱ, and for 𝑖 ≠ 𝑗, 𝑃௜,௝ = − ௬೔௬ೕேᇱ . 

Concerning the constraint family satisfaction 0 ≤ 𝛼௜ ≤ 𝐶, ∀𝑖 = 1, … , 𝑁′ , we use the activation 

function. 𝑓(𝑥) = 𝐶. 𝑡𝑎𝑛ℎ ቀ௫ఛቁ = 𝐶. ௘ೣି௘షೣ௘ೣା௘షೣ, where 𝜏 is supposed to be a very large positive real number, which 

ensures ∀𝑥, −𝐶 ≤ 𝑓(𝑥) ≤ 𝐶. 

We consider a kernel function 𝐾 such that 𝐾(𝑥, 𝑥) = 𝐶 ≠ 0. 

Theorem 3. A continuous Hopfield network has an equilibrium points if 𝑊௜,௝ = 0 and  𝑊௜,௝ = 𝑊௝,௜. 
Theorem 4. If 𝐶 = ఉమఉబ, then CHN-SVM has an equilibrium points. 

Proof of Theorem 2. We have 𝑊௜,௝ = ൫𝛽଴𝐾௜,௝ − 𝛽ଶ൯𝑦௜𝑦௝  then ∀𝑖 𝑎𝑛𝑑 𝑗  𝑊௜,௝ = 𝑊௝,௜ because K is 

symmetric. In the other hand 𝑊௜,௜ = 𝛽଴𝑦௜𝐾(𝑥௜ , 𝑥௜) − 𝛽ଶ𝑦௜ଶ = 𝛽଴ × ఉమఉబ − 𝛽ଶ = 0 

Then CHN-SVM has an equilibrium points 

3.2. Continuous Hopfield network with optimal time step 

In this section, we chose, mathematically, the optimal time size in each iteration of the Euler-

Cauchy method to solve the dynamical equation of the recurrent neural network proposed in this 

paper. 

At the end of the 𝑘௧௛ iteration, we know 𝛼௞ and let 𝑠௞ be the next step size permits to calculate 𝛼௞ାଵ  using the formula: 𝛼௞ାଵ =  𝛼௞ + 𝑠௞∇𝐸( 𝛼௞)  must be chosen such as 𝐸(𝛼௞ାଵ)  ≤  𝐸(𝛼௞)  at 

maximum.   

As the activation function of the proposed neural network is the 𝑡𝑎𝑛ℎ , then: 
ௗఈ೔ௗ௧ = ଶఛ 𝛼௜(1 −𝛼௜)∇𝐸( 𝛼) 

The matrix form of the energy function is: 𝐸( 𝛼) = 𝛽଴𝑈௧𝛼 − 𝛽଴2 (𝛼)௧𝑇𝛼 + 𝛽ଵ𝑦௧𝛼 + 𝛽ଶ2 (𝑦௧𝛼)ଶ  

where 𝑈 =  (1, . . . , 1)௧ ∈  ℝேᇲ  , 𝛼 =  (1, . . . , 1)௧  ∈  ℝேᇲ  , 𝑎𝑛𝑑 𝑇௜,௝  =  𝑦௜𝑦௝𝐾൫𝑥௜ , 𝑥௝൯𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗. 
At the 𝑘௧௛ iteration, the state 𝛼௞ is known, then 𝛼௞ାଵ is calculated by: 𝛼௞ାଵ =  𝛼௞ + 𝑠௞ 𝛼௞𝑑𝑡   

where 𝑠௞  is the actual time step that must be optimal. To this end, we substitute 𝛼௞ାଵ by 𝛼௞  + 𝑠௞ ௗఈೖௗ௧   in 𝐸(𝛼௞ାଵ): 𝑒(𝑠௞) = 𝐸(𝛼௞ାଵ) = 0.5𝐴௞𝑠௞ଶ + 𝐵௞𝑠௞ + 𝐶௞  

where 𝐴௞ = 𝛽ଶ𝑦௧ ௗఈೖௗ௧ − 𝛽଴ ቀௗఈೖௗ௧ ቁ௧ 𝑇 ௗఈೖௗ௧ , 𝐵௞ = 𝛽଴𝑈௧ ௗఈೖௗ௧ − 𝛽଴(𝛼௞)௧𝑇 ௗఈೖௗ௧ + 𝛽ଵ𝑦௧ ௗఈೖௗ௧ + 𝛽ଶ(𝑦௧𝛼௞) ቀ𝑦௧ ௗఈೖௗ௧ ቁ, 𝐶௞ = 𝛽଴𝑈௧𝛼௞ − 0.5𝛽଴(𝛼௞)௧𝑇𝛼௞ + 𝛽ଵ𝑦௧𝛼௞ + 0.5𝛽ଶ(𝑦௧𝛼௞)ଶ. 

Thus the best time step is the minimum of 𝑒(𝑠௞). The Figure 3a–c gives different cases. 
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(a) RNN-DBSVM 1 (b) RNN-DBSVM 2 (c) RNN-DBSVM 3 

3.3. Opt-RNN-DBSVM algorithm  

In this section, the procedures described in Sections 2.2, 3.1, and 3.2 are summarized into 

Algorithm 1. 

Algorithm 1. Opt-RNN-DBSVM. 

 

The input of Algorithm 1 is the radius r (the size of the neighborhood of the current sample), the 

minimum of samples mp into B(Current_sample, r) (that determines the type of this sample), the 

three lagrangian parameters 𝛽଴, 𝛽ଵ, 𝑎𝑛𝑑 𝛽ଶ  (that makes a compromise between the dual 

components), the bound C of SVM [28], and the number of iterations (that represents an artificial 

convergence). 

The Algorithm 1 processes in three macro-steps: Data preprocessing, RNN-SVM construction, 

and RNN-SVM equilibrium point estimation. The input of the first phase is the initial data set with 

labeled samples. Based on r and mp the algorithm determines the types of different samples based 

on the number of current sample neighbourhood discrete size. The output of this phase is a reduced 

sub-data set (The initial data set minus the core samples). 

The Input of the second phase are the reduced data set, the Lagrangian parameters 𝛽଴, 𝛽ଵ, 𝛽ଶ, 

and the SVM bound C. Based on the energy function built in 3.1 and on the first and second 

derivatives, the architecture of CHN-SVM is built; the bias and connection weights, which represent 

the output of this phase, are calculated. These later represent the input of the third phase and the 

Euler-Cauchy algorithm is used to calculate the degree of membership of different samples to the set 
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of support vectors set; to ensure optimal decreasing of the energy function, at each iteration, an 

optimal step is determined by solving a quadratic 1-dimension optimization problem; see sub-section 

3.2. At the convergence, the proposed algorithm produces the support vectors based on which Opt-

RNN-DBSVM can predict the class of unseen samples.  

Proposition 2. If N, r, and ITER represent, respectively, the size of a labeled data set BD, the number 

of the remained samples(output of the preprocessing phase, and the number of iterations, then the 

complexity of algorithm 1 is 𝑂(𝑟ଶ  ∗  𝐼𝑇𝐸𝑅). 
Proof of proposition 2. First, in the preprocessing phase, we calculate, for each sample (𝑥௜ , 𝑥௝), the 

distance 𝑑(𝑥௜ , 𝑥௝) and we execute N comparisons to determine the type of each sample; thus the 

complexity of this phase is 𝑂(𝑁ଶ). Second, during ITER iterations, we update the activation of each 

neuron using the activation of all the other neurons to solve the reduced SVM-dual, thus the third 

phase has a complexity of 𝑂(𝑟ଶ  ∗  𝐼𝑇𝐸𝑅). 
Finally, the complexity of algorithm 1 is 𝑂(𝑁ଶ)  +  𝑂(𝑟ଶ  ×  𝐼𝑇𝐸𝑅). Let’s denote Const-  RNN-

SVM the SVM version that implements recurrent neural network based on con- constant time step. 

Following the same reasoning, the complexity of Const-RNN-SVM is of 𝑂(𝑁ଶ  ×  𝐼𝑇𝐸𝑅). 

Notes: - As Kernel-Adatron Algorithm (KA) is the kernel version of SMO and ISDA and KA 

implements two embedded N-loops in each iteration, then the complexity of SMO and ISDA is of 

[40]. In addition, we consider L1QP-SVM that implements numerical linearalgebra Gauss–Seidel 

method [49], which implements two embedded N-loops in each iteration, then the complexity of SMO 

and ISDA is of 𝑂(𝑁ଶ  ×  𝐼𝑇𝐸𝑅). - For a very high size and high-density labeled data set, we have: 𝑟 <<  𝑁,  thus 𝐼𝑇𝐸𝑅𝑜𝑢𝑟 <<  𝐼𝑇𝐸𝑅𝐶𝐻𝑁 − 𝑆𝑉𝑀  and 𝐼𝑇𝐸𝑅𝑜𝑢𝑟 ≪  𝐼𝑇𝐸𝑅𝐿1𝑄𝑃 − 𝑆𝑉 𝑀 𝐼𝑇𝐸𝑅𝑜𝑢𝑟 ≪ 𝐼𝑇𝐸𝑅𝑆𝑀𝑂 − 𝑆𝑉 𝑀 and 𝐼𝑇𝐸𝑅𝑜𝑢𝑟 <<  𝐼𝑇𝐸𝑅𝐼𝑆𝐷𝐴 − 𝑆𝑉 𝑀. 

Thus 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑜𝑢𝑟)  ≺ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐶𝐻𝑁 −  𝑆𝑉 𝑀)  and 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑜𝑢𝑟)  ≺ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐿1𝑄𝑃 −  𝑆𝑉𝑀) , 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑜𝑢𝑟)  ≺  𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑆𝑀𝑂 −  𝑆𝑉 𝑀)  and 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑜𝑢𝑟)  ≺  𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐼𝑆𝐷𝐴 −  𝑆𝑉𝑀). 
4. Experimentation 

In this section, we compare Opt-RNN-DBSVM to several classifiers: Const-RNN-SVM (SVM 

based on a recurrent neural network using constant Euler-Cauchy time step), SMO- SVM, ISDA-SVM, 

L1QP-SVM, and some non-kernel classifiers (for example MLP, NB, KNN, Decision Tree...). The 

classifiers were tested on several data sets: iris, abalone, wine, ecoli, balance, liver, spect, seed, and 

PIMA (collected from the University of California at Irvine (UCI)[29]). The performance measures, 

used in this study, are accuracy, F1 score, precision, and recall. 

4.1. Opt-RNN-DBSVM vs Const-CHN-SVM  

In this section, we compare Opt-RNN-DBSVM to Const-RNN-SVM by considering different 

values of the Euler-Cauchy time step 𝑠 ∈  {.1, .2, . . . , .8}. 

Tables 1 and 2 give different values of accuracy, F1-score, precision, and recall on the considered 

data sets. The results show the superiority of Opt-RNN-DBSVM over Const-CHN-SVM  (𝑠𝑡𝑒𝑝 ∈ 𝑆𝑇𝐸𝑃 =  {.1, .2, . . . , .9}); this superiority is quantified as follow: 3.43% =  max(ୱ,ୢ)∈ୗ୘୉୔×ୈ୅୘୅ ቀ𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦൫𝑂𝑝𝑡 − 𝑅𝑁𝑁 − 𝐷𝐵𝑆𝑉 𝑀(𝑠)൯ − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑐𝑜𝑛𝑠𝑡 − 𝑅𝑁𝑁 − 𝑆𝑉 𝑀)ቁ  2.31% =  max(ୱ,ୢ)∈ୗ୘୉୔×ୈ୅୘୅(F1Score(Opt − RNN − DBSV M(s)) − F1Score(const − RNN − SV M))  7.52% =  max(ୱ,ୢ)∈ୗ୘୉୔×ୈ୅୘୅(precision(Opt − RNN − DBSV M(s)) − precision(const − RNN − SV M))  6.5% =  max(ୱ,ୢ)∈ୗ୘୉୔×ୈ୅୘୅(recall(Opt − RNN − DBSV M(s)) − recall(const − RNN − SV M))  

where DATA is the set of different considering data sets. These results are not strange because Opt-

RNN-SVM ensures an optimal decrease of the CHN energy function at each step. 
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Table 1. Performance of Const-CHN-SVM on different data sets for different values of time step. 

 SVM-CHN s = .1 SVM-CHN s = .2 
 Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall 

Iris 95.98 96.66 90.52 92.00 96.66 95.98 91.62 92.00 

Abalone 80.98 40.38 82.00 27.65 80.66 40.38 81.98 27.65 

Wine 79.49 78.26 73.52 74.97 79.49 78.26 73.52 74.97 

Ecoli 88.05 96.77 97.83 97.33 88.05 97.77 97.83 97.99 

Balance 79.70 70.7 55.60 62.70 79.70 70.7 55.60 62.70 

Liver 80.40 77.67 77.90 70.08 80.40 77.67 77.90 70.08 

Spect 92.12 90.86 91.33 90.00 97.36 99.60 97.77 1.00 

Seed 85.71 83.43 92.70 75.04 85.71 83.43 92.70 75.04 

PIMA 79.22 61.90 84.7 49.6 79.22 61.90 83.97 49.6 

Table 2. Performance of Const-CHN-SVM on different data sets for different values of time step. 

  SVM-CHN s = .3 SVM-CHN s = .4 

  Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall 

Iris 94.53 95.86 89.66 98.23 95.96 93.88 89.33 95.32 

Abalone 77.99 51.68 83.85 30.88 81.98 41.66 83.56 33.33 

Wine 80.23 77.66 74.89 74.97 81.33 77.65 73.11 74.43 

Ecoli 88.86 95.65 96.88 97.33 86.77 97.66 97.83 97.95 

Balance 79.75 70.89 55.96 62.32 79.66 70.45 56.1 66.23 

Liver 80.51 78.33 77.9 70.56 80.40 77.67 77.90 70.08 

Spect 97.63 98.99 97.81 98.56 96.40 98.71 96.83 97.79 

Seed 85.71 83.43 92.70 75.88 85.71 83.43 92.70 75.61 

PIMA 79.22 61.93 84.82 49.86 79.22 61.90 84.98 49.89 

  SVM-CHN s = .5 SVM-CHN s = .6 

  Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall 

Iris 94.53 95.86 89.66 98.23 95.96 93.88 89.33 95.32 

Abalone 78.06 51.83 83.96 40.45 82.1 42.15 83.88 38.26 

Wine 80.84 78.26 74.91 75.20 81.39 77.86 73.66 74.47 

Ecoli 88.97 95.7 96.91 97.43 86.77 97.66 97.83 97.95 

Balance 79.89 71.00 56.11 62.72 79.71 70.64 56.33 66.44 

Liver 80.66 78.33 77.9 70.56 80.40 77.67 77.90 70.08 

Spect 91.36 92.60 91.77 84.33 91.36 92.60 91.77 84.33 

Seed 84.67 82.96 92.23 74.18 84.11 83.08 92.63 75.48 

PIMA 79.12 61.75 84.62 49.86 79.12 61.33 84.68 48.55 

 
  SVM-CHN s = .7 SVM-CHN s = .8 

  Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall 

Iris 94.53 95.86 89.66 98.23 95.96 93.88 89.33 95.32 

Abalone 77.99 51.68 83.85 30.88 81.98 41.66 83.56 33.33 

Wine 80.23 77.66 74.89 74.97 81.33 77.65 73.11 74.43 

Ecoli 88.86 95.65 96.88 97.33 86.77 97.66 97.83 97.95 

Balance 79.75 70.89 55.96 62.32 79.66 70.45 56.1 66.23 

Liver 80.51 78.33 77.9 70.56 80.40 77.67 77.90 70.08 

Spect 94.36 84.60 83.77 85.99 94.36 84.60 83.77 85.99 

Seed 85.71 83.43 92.70 75.88 85.71 83.43 92.70 75.61 

PIMA 79.22 61.93 84.82 49.86 79.22 61.90 84.98 49.89 

  SVM-CHN s = .9 DBSVM optimal value of s 

  Accuracy F1-score Precision Recall Accuracy F1-score Precision Recall 

Iris 95.96 93.88 89.33 95.32 97.96 96.19 95.85 98.5 
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Abalone 81.98 41.66 83.56 33.33 98.38 96.07 96.18 93.19 

Wine 81.33 77.65 73.11 74.43 96.47 95.96 96.08 96.02 

Ecoli 86.77 88.46 90.77 91.19 91.82 97.66 97.83 97.95 

Balance 79.66 70.45 56.1 66.23 91.31 90.33 89.54 90.89 

Liver 80.40 77.67 77.90 70.08 88.10 85.95 86.00 85.50 

Spect 94.36 84.60 83.77 85.99 95.55 86.20 85.28 86.31 

Seed 85.71 83.43 86.18 75.61 88.90 84.31 92.70 84.40 

PIMA 79.22 61.90 75.90 49.89 79.87 68.04 84.98 62.05 

Figures 4 and A1–A5 give the series of optimal steps generated by Opt-RNN-DBSVM during 

iterations for different data sets. We remark that all the optimal steps are taken from the interval [3,4] 

which furnishes an optimal domain for those using a CHN based on constant step. 

 

Figure 4. IRIS data set. 

4.2. Opt-RNN-DBSVM vs Classical-Optimizer-SVM  

In this section, we give the performance of different Classical-Optimizer-SVM ( L1QP- SVM, 

ISDA-SVM, and SMO-SVM) applied to several datasets, and compare the number of support vectors 

obtained by the different Classical-Optimizer-SVM and Opti-RNN- SVM. 

The Table 3 gives the values of the measures of accuracy, F1 score, precision, and recall of 

Classical-Optimizer-SVM on different datasets. The results show the superiority of Opt-RNN-

DBSVM. 

Table 3. Performance of Classical-Optimizer-SVM on different data sets. 

  L1QP-SVM   ISDA-SVM  

 Accuracy F1-score Precision Recall Accuracy F1-score Precision Recal 

Iris 71.59 62.02 70.80 55.17 82.00 83.64 76.67 92.00 

Abalone 74.15 70.80 71.48 59.30 83.70 68.22 70.00 80.66 

Wine 72.90 65.79 75.53 60.11 66.08 65.80 66.00 70.02 

Ecoli 66.15 55.89 61.33 41.30 51.60 48.30 33.33 51.39 

Balance 65.20 53.01 60.51 41.22 50.44 58.36 68.32 60.20 

Liver 64.66 52.06 60.77 40.44 50.00 48.00 62.31 51.22 

Spect 70.66 62.02 67.48 50.11 77.60 71.20 75.33 70.11 

Seed 70.51 58.98 67.30 45.30 80.66 81.25 79.80 79.30 

PIMA 65.18 53.23 60.88 39.48 49.32 44.33 48.90 50.27 

  SMO- SVM  CHN- DBSVM optimal value of s 

 Accuracy F1-score Precision Recall Accuracy F1-score Precision Recal 

Iris 71.59 62.02 70.80 55.17 97.96 96.19 95.85 98.5 

Abalone 74.15 70.80 71.48 59.30 98.38 96.07 96.18 93.19 

Wine 72.90 65.79 75.53 60.11 96.47 95.96 96.08 96.02 
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Ecoli 66.15 55.89 61.33 41.30 91.82 88.46 90.77 91.19 

Balance 65.20 53.01 60.51 41.22 91.31 90.33 89.54 90.89 

Liver 64.66 52.06 60.77 40.44 88.10 85.95 86.00 85.50 

Spect 70.66 62.02 67.48 50.11 95.55 86.20 85.28 86.31 

Seed 70.51 58.98 67.30 45.30 88.90 84.31 86.18 84.40 

PIMA 65.18 53.23 60.88 39.48 79.87 68.04 75.90 62.05 

Figures 5–8 illustrates, respectively, the support vectors obtained using L1QP-SVM, L1QP-SVM, 

SMO-SVM, and Opti-RNN-SVM applied to IRIS data. We note that (a) ISDA considers more than 

96% as support vectors, which is really an exaggeration, (b) L1QP and SMO use a reasonable number 

of samples as support vectors, but most of them are duplicated, and (c) thanks to the preprocessing, 

Opt-RNN can reduce the number of support vectors by more than 32%, compared to SMO and L1QP, 

which allows it to overcome the over-learning phenomenon encountered with SMO and L1QP. 

Figure 8 gives the support vectors obtained by Opt-RNN-DBSVM applied to IRIS data. 

 

Figure 5. Vectors support obtained by ISDA algorithm. 

 

Figure 6. Vectors support obtained by L1QP algorithm. 

 

Figure 7. Vectors support obtained by SMO algorithm. 
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Figure 8. Vectors support obtained by Opt RNN SVM algorithm. 

4.3. Opt-RNN-DBSVM vs non-kernel classifiers 

In this section, we compare Opt-RNN-DBSVM to several non-kernel classifiers, namely 

NiaveBayes [30], MLP [31], Knn [32], AdaBoostM1 [33], DecisionTree [34], SGDClassifier [35], 

Nearest Centroid Classifier [35], and Classical SVM [1]. 

Table 4 give the values of the measures accuracy, F1-score, precision, and recall for the 

considered data sets. The best performance is reached by Opt-RNN-DBSVM followed by classical 

methods SVM, Decision Tree, and Adabsot are close to the Opt-RNN-DBSVM method.  

Table 4. Comparison between Opt-RNN-DBSVM and different classification methods on the Iris and 

abalone data sets. 

Iris 

Method Accuracy F1-score Precision Recall 

Niave Bayes 90.00 87.99 77.66 1.00 

MLP 26.66 0.00 0.00 0.00 

Knn 96.66 95.98 91.62 1.00 

AdaBoostM1 86.66 83.66 71.77 1.00 

Dicision Tree 69.25 76.12 70.01 69.55 

SGDClassifier 76.66 46.80 1.00 30.10 

Random Forest Classifier 90.00 87.99 77.66 1.00 

Nearest Centroid Classifier 96.66 95.98 91.62 1.00 

Classical SVM 96.66 95.98 91.62 1.00 

Opt-RNN-DBSVM 97.96 92.19 95.85 96.05 

Abalone 

Method Accuracy F1-score Precision Recall 

Niave Bayes 68.89 51.19 41.37 67.33 

MLP 62.91 47.63 36.32 47.63 

Knn 81.93 53.74 70.23 43.02 

AdaBoostM1 82.29 55.99 70.56 55.06 

Dicision Tree 76.79 51.33 52.06 49.63 

SGDClassifier 80.86 64.74 58.08 70.57 

Nearest Centroid Classifier 76.07 64.79 62.60 61.15 

RandomForestClassifier 82.28 57.56 71.11 48.34 

Classical SVM 80.98 40.38 82.00 27.65 

Opt-RNN-DBSVM 98.38 96.07 96.18 93.19 

Additional comparison studies were performed on PIMA and Germandiabetes data sets and the 

ROC curves were used to calculate the AUC for the best performance obtained from each non-kernel 

classifier. Figures A6 and A7 show the comparison of the ROC curves of the classifiers DT, KNN, 

MLP, NB, and Opt-RNN-DBSVM method, evaluated on the PIMA data set. We point out that Opt-

RNN-DBSVM quickly converges to the best results and obtains more true positives for a small 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2023                   doi:10.20944/preprints202307.1306.v1

https://doi.org/10.20944/preprints202307.1306.v1


 14 

 

number of false positives compared to several classification methods. More comparisons are given in 

Appendix A; Figures A8 and A9 show the comparison of the ROC curve of the classical SVM and 

Opt-RNN-DBSVM method, evaluated on the Germany diabetes data set. 

5. Conclusions 

The main challenges of SVM implementation are: the number of local minima and the amount 

of computer memory, required for solving the SVM-dual, increase exponentially with respect to the 

size of the data set. The Kernel-Adatron family of algorithms, ISDA and SMO, has handled very large 

classification and regression problems. However, these methods treat noise, boundary, and kernel 

samples in the same way, resulting in a blind search in unpromising areas. In this paper, we have 

introduced a hybrid approach to deal with these drawbacks, namely Optimal Recurrent Neural 

Network Density Based SupportVector Machine (Opt-RNN-DBSVM), which performs in four 

phases: Characterization of different samples, elimination of the samples having a weak probability 

to be support vector, building an appropriate recurrent neural network based on original energy 

function, and solving the differential equation system, governing the RNN dynamic, using Euler-

Cauchy method implementing an optimal time step. Due to its recurrent nature, the RNN was able 

to memorize locations visited during previous explorations. On one hand, two main interesting 

fundamental results were demonstrated: the convergence of RNN-SVM to feasible solutions and Opt-

RNN-DBSVM has a very low time complexity compared to Const-RNN-SVM, SMO-SVM, ISDA-

SVM, and L1QP-SVM. On the other hand, several experimental studies were conducted based on 

well-known data sets (iris, abalone, wine, ecoli, balance, liver, spect, seed, pima). Based on credible 

performance measures (Accuracy F1-score Precision Recal), Opt-RNN-DBSVM outperformed Const-

RNN-SVM, KAs- SVM, and some non-kernel models (cited Table 4). In fact, Opt-RNN-DBSVM 

improved accuracy by up to 3.43%, F1Score by up to 2.31%, precision by up to 7.52%, and recall by 

up to 6.5%. In addition, compared SMO-SVM, ISDA-SVM, and L1QP-SVM, Opt-RNN-DBSVM a 

reduction of the number of support vectors by up to 32%, which permits to save of memory for huge 

applications that implement several machine learning models. The main problem encountered in the 

implementation of Opt-RNN-DBSVM is the determination of the Lagrange parameters involved in 

the SVM energy function. In this sense, a genetic strategy will be introduced to determine these 

parameters considering each data set. 
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Appendix A 

 

Figure A1. ABALONE data set. 
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Figure A2. PIMA data set. 

  
Figure A3. WINE data set 

 

Figure A4. SEED data set. 
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. 

Figure A5. GERMANY data set. 

 

Figure A6. RUC curve for the different classification methods applied to PIMA diabetes data set. 

 

Figure A7. Opt-RNN-DBSVM vs SVM RUC curve applied to PIMA diabetes data set. 
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Figure A8. RUC curve for the different classification methods applied to PIMA diabetes data set. 

  

Figure A9. Opt-RNN-DBSVM vs SVM RUC curve applied to PIMA diabetes data set. 
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