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Abstract: When implementing SVMs, two major problems are encountered: (a) the number of local minima
increases exponentially with the number of samples and (b) the quantity of required computer storage,
required for a regular quadratic programming solver, increases by an exponential magnitude as the problem
size expands. The Kernel-Adatron family of algorithms gaining attention lately which has allowed it to handle
very large classification and regression problems. However, these methods treat different types of samples
(Noise, border, and core) in the same manner, which causes searches in unpromising areas and increases the
number of iterations. In this work, we introduce a hybrid method to overcome these shortcomings, namely
Optimal Recurrent Neural Network Density Based Support Vector Machine (Opt-RNN-DBSVM). This method
consists of four steps: (a) characterization of different samples, (b) elimination of samples with a low probability
of being a support vector, (c) construction of an appropriate recurrent neural network based on an original
energy function, and (d) solution of the system of differential equations, managing the dynamics of the RNN,
using the Euler-Cauchy method involving an optimal time step. The RNN remembers the regions explored
during the search process thanks to its recurrent architecture. We demonstrated that RNN-SVM converges to
feasible support vectors and Opt-RNN-DBSVM has a very low time complexity compared to RNN-SVM with
constant time step, and KAs-SVM. Several experiments were performed on academic data sets. We used several
classification performances measures to compare Opt-RNN-DBSVM to different classification methods and the
results obtained show the good performance of the proposed method.

Keywords: recurrent neural network (RNN); support vector machine (SVM); Kernel-Adatron algorithm (KA);
Euler-Cauchy algorithm

MSC: 90C20; 90C29; 90C90; 93E20

1. Introduction

The classification problem is an NP-Hard problem that has many applications in medicine,
industry, economics and other fields. Several types of classifiers have been proposed in the literature
to solve this problem, including the approach called Support Vector Machine based on Quadratic
Programming (QP) [5,6,7]. The difficulty in the implementation of SVMs on massive data comes in
the fact that the quantity of required computer storage required for a regular QP solver increases by
an exponential magnitude as the problem size expands.

In this paper, we introduce a new version of SVM that implements a preprocessing filter and a
recurrent neural network, namely Optimal Recurrent Neural Network Density Based Support Vector
Machine (Opt-RNN-DBSVM).

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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SVMs approaches are based on the existence of a linear separator which can be obtained by
exploding the data in a higher dimensional space through appropriate kernel functions. Among all
possible hyperplanes, the SVM searches for the one with the most confident separation margin for a
good generalization. This issue takes the form of a nonlinear constrained optimization problem that
is usually handled using optimization methods. Thanks to the Kuhen-Tuker conditions, all these
methods pass to the dual versions and call the optimizations methods to find the support vectors on
which the optimal margin is built. Unfortunately, the complexity in time and memory grow
exponentially with the size of data sets; in addition, the number of local minima grows too, which
influences the location of the separation margin and the quality of the predictions.

A primary area of research in the area of learning from empirical data through support vector
machines (SVMs) and addressing classification and regression issues is the development of
incremental learning designs when the size of the training dataset is massive \ cite{SMOTE}.

Out of many possible candidates, avoiding the usage of regular Quadratic Programming (QP)
solvers, the two learning methods gaining attention lately are Iterative Single-Data Algorithms
(ISDA) and Sequential Minimal Optimization (SMO) [3,5,7,9]. ISDAs operate from a single sample at
hand (pattern-based learning) towards the best fit solution. The Kernel AdaTron (KA) was the
primary ISDA for SVMs, using kernel functions to mapping data to the high dimensional character
space of SVMs P [2] and conducting AdaTron [1] processing in the character space. Platt's SMO
algorithm is an outlier among the so-called decomposition approaches introduced in [4,6], operating
on a 2-samples workset of samples at a time. Because the decision for the two-point workset may be
determined analytically, the SMO does not require the involvement of standard QP solvers. Due to
it being analytically driven, the SMO has been especially wildly popular and is the most commonly
utilized, analyzed, and further developed approach. Meanwhile, KA, though yielding somewhat
comparable performance (accuracy and computational required time) in resolving classification
issues, has not gained as much traction. The reason for this is twofold. First, up till lately [8], KA
appeared to be restricted to classification tasks and second, it "missed" the flower of the robust
theoretical framework. KA employs a gradient ascent procedure, and that fact also may have caused
some researchers to be suspicious of the challenges posed by gradient ascent techniques in the
presence of a perhaps ill-conditioned core array. In [10], for a lacking bias parameter b, the authors
derive and demonstrate the equality of two apparently dissimilar ISDAs, namely a KA approach and
an unbiased variant of the SMO training scheme [9] when constructing SVMs possessing positive
definite kernels. The equivalence is applicable to the classification and regression tasks, and sheds
additional insight in these apparently dissimilar methods of learning.

Despite the richness of the toolbox set up to solve the quadratic programs from SVM, and with
the large amount of data generated by social networks, medical and agricultural fields, etc., the
amount of computer memory required for a QP solver from the SVM dual grows hyper-exponentially
and additional methods implementing different techniques and strategies are more than necessary.

Classical algorithms, namely ISDAs and SMO, do not distinguish between different types of
samples (noise, border, and core) which causes searches in unpromising areas. In this work

we introduce a hybrid method to overcome these shortcoming, namely Optimal Recurrent
Neural Network Density Based Support Vector Machine (Opt-RNN-DBSVM). This method proceeds
in four steps: (a) characterization of different samples based on the density of the data sets (noise,
core, and border), (b) elimination of samples with a low probability of being a support vector, namely
core samples that are very far from the borders of different components of different classes, (c)
construction of an appropriate recurrent neural network based on an original energy function making
balance between the SVM-dual components (constraints and objective function) and insuring the
feasibility of the network equilibrium points [3,4], and (d) solution of the system of differential
equations, managing the dynamics of the RNN, using the Euler-Cauchy method involving an optimal
time step. Due to its recurrent nature, the RNN was able to memorize locations visited during
previous explorations. At one hand, two main interesting fundamental results were demonstrated:
the convergence of RNN-SVM to feasible solutions and Opt-RNN-DBSVM has a very low time
complexity compared to Const-RNN-SVM, SMO-SVM, ISDA-5VM, and L1QP-SVM.
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On the other hand, several experimental studies were conducted based on well-known data sets.
Based on well-known performance measures (Accuracy F1-score Precision Recal), Opt-RNN-DBSVM
outperformed recurrent neural network-SVM with constant time step, Kernel-Adatron family of
algorithms-SVM family, and well-known non-kernel models; In fact, Opt-RNN-DBSVM improved
the accuracy, the F1Score, the precision, and the recall. Moreover, the proposed method requires a
very small number of support vectors. The rest of this paper is organized as follows: In the second
section, we give the flowchart of the proposed method. In the third section, we give the outline of our
recent SVM versions called Density Based Support Vector Machine. The fourth section presents, in
detail, the construction of recurrent neural networks associated with SVM-dual and the Euler-Cauchy
algorithm that implements an optimal time step. In the fifth section, we give some experimental
results. Finally, we give some conclusions and future extensions of Opt-RNN-DBSVM.

2. The architecture of the proposed method

The Kernel AdaTron (KA) algorithms, namely ISDAs, and SMO, treat different types of samples
(noise, border, and core) in the same manner (all samples are considered for several iterations and
supposed to be a support candidate with uniform probability), which causes searches in unpromising
areas and increase the number of iterations. In this work, we introduce an economic method to
overcome these shortcomings, namely Optimal Recurrent Neural Network Density Based Support
Vector Machine (Opt-RNN-DBSVM). This method proceeds in four steps (see Figure 1): (1)
Characterization of different samples based on the density of the data sets (noise, core, and border);
to this end, two parameters are introduced: the size of the neighborhood of the current sample and
the threshold that permits such categorization; (2) Elimination of samples with a low probability of
being a support vector, namely core samples that are very far from the borders of different
components of different classes and the noise samples that contain wrong information about the
phenomenon under study. In our previews work [28], we demonstrate that such suppression does
not influence the performance of the classifiers; (3) Construction of an appropriate recurrent neural
network based on an original energy function making balance between the SVM-dual components
(constraints and objective function) and ensuring the feasibility of the network equilibrium points
[3,4]; (4) Solution of the system of differential equations, managing the dynamics of the RNN, using
the Euler-Cauchy method involving an optimal time step. In this regard, the formula of the coming
state of the neurons, of the constructed RNN, is introduced into the energy function, which leads to
a 1-dimension quadratic optimization problem whose solution represents the optimal step of the
Euler-Cauchy process that ensures a maximum decrease of the energy function [37]. The components
of the produced equilibrium point represent the membership degrees of different samples to the
support vectors data set.
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Figure 1. Opt RNN DBSVM Flowchart.

3. Density based support vector machine

In the following, we denote by BD the set of N samples x;,...,xy labeled, respectively, by
Vi ,...,Yy, distributed via K class C;,...,Cg. Inour case, K =2 and y;€ {-1, +1}.

2.1. Classical support vector machine

The hyperplane we are looking for must satisfy the equation w.x; + b = 0, where w is the
weight that defines this SVM separator that satisfies the constraints family given by Vi = 1,...,N,

. . . 2
yi(w.x; + b) = 1. To ensure a maximum margin, you need to maximize —.
llw i

As the pattern are not linearly separable, we introduce the kernel functions K (that satisfy the
Mercer conditions [9]) to explore the data in appropriate space. By introducing the Lagrange
relaxation and writing the Kuhn-Tuker conditions, we obtain a quadratic optimization problem with
a single linear constraint that we solve to determine the support vectors [18]. To address the problem
of sutured constraints, some researchers have added the notion of a soft margin [8]. They employed
N supplementary slack variables {; = 0 at every constraint y;(w.x; + b) = 1. The sum of the
relaxed variables is weighted and included in the cost function:

1 N
Min = lwll” + CZ ¢
i=1
subject to

yilp(x).w+b) 21—
G>0Vi=1,.,N

Here ¢ represents the transformation function derived from the function kernel K. We obtain the

coming dual problem:
N L N N
Max Z a; — EZ Z a;a;y;y;iK (x;, x;)
i=1

i=1i=1
subject to
< N
Z a;y; =0
i=1

0<a;<CVi=1,..,N
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Several methods can be used to solve this optimization problem: gradient methods, linearization
method Frank-Wolf method, generation column method, Newton method applied to the Kuhn
system [23], sub-gradient methods, Dantzig algorithm, Uzawa algorithm [23], recursive neural
networks [22], hill climbing, simulated annealing, search by calf, A*, genetic algorithm, ant colony
[24], and particle swarm method [22] ... etc. Several versions of SVM were proposed in the literature
among which we find the Least Squares Support Vector Machine Classifiers (LS-SVM) [12], the
generalized support vector machines (G-SVM) [10], Fuzzy support vector machine [2,11], One class
Support Vector Machine (OC-SVM) [13,18], Total Support Vector Machine (I-SVM) [14], Weighted
Support Vector Machine (W-SVM) [15], Granular Support Vector Machines (G-SVM) [16], Smooth
Support Vector Machine(S-SVM) [17], Proximity Support Vector Machine classifiers (P-SVM) [19],
Multisurface proximal support vector machine classification via generalized eigenvalues (GEP-SVM)
[20], and Twin support vector machines (T-SVM) [21] ... etc.

2.2. Density based support vector machine (DBSVM)

In this section, we give a short description of DBVSM method. We introduce real number r > 0
and the integer mp> 0, called min-points, and we define three types of samples: noise point, border
point and interior point (or cord point). We showed that the interior points do not change their nature
even when they are projected into another space by the kernel functions. Furthermore, we have
established that such points cannot be selected as support vectors [28].

Definition 1. Let S € R™ A point a € R" is said to be an Interior Point (or cord point) of S if there
r > 0 such that B(a,r) € S. The set of all interior point of S is denoted by Int(S).

Definition 2. For a given dataset BD, a non-negative real r and an integer mp, there exist three kind
of samples.
1. Asimple x is called C; — Noise Point (NP;) if |C;NB(x,r)| < mp.

[
2. Asimple x iscalled C; — Cord Point (CP;) if |C;NB(x,7)| = mp and x € envol((;)
3. A simple x is called C; — Border Point (NP;) if |C;NB(x,7)| <mp and there exists a C; —
Cord Point y such as x € B(y,r).
Let K be a kernel function allowing to move from the space R" to the space R" using the
transformation ¢ (heren < N).

Lemma 1. [28] If ais a C; — Cord point for a given ¢ and minpoints (mp), then ¢(a)is also a C; —
Cord point with appropriate €' and the same minpoints (mp).

Theorem 1. [28] A cord point is either a noise-point or a Border-point.

Proposition 1. [28] Lets € > 0 be a real number. The cord point set, CordPoint(minPoint),
decreasing function for the inclusion operator.

Let{a;,...,ay,} = BM U CM U N M be the set of the Lagrange multipliers where BM, CM, and N M
are the Lagrange multipliers of the border samples, cord samples, and noise samples, respectively.
As the elements of NM and CM can not be selected to be support vectors, the reduced dual problem

is given by:
( 1
war T b Y Y aamrkcnn

a;EBM a;€EBM a;€EBM
subject to

RD) A<
) Z ay; =0

a;EBM
0<a <C Va,€BM, Vi=1,..,N
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In this work, as the (RD) problem is quadratic with linear constraint, we use the continuous
Hopfield Network by proposing an original energy function in the coming section [26].

4. Recurrent neural network to optimal support vectors

The continuous Hopfield networks consist of interconnected neurons with a smooth sigmoid
activation function (usually a hyperbolic tangent). The differential equation which governs the
dynamics of the CHN is:

du u

—=—— 4 W.a+]

dt T
where u,a,W and I are, respectively, the vectors of neuron states, the outputs, the weight matrix,
and the biases. For a CHN of N neurons, the state u; and output «; of the neuron i are relied on by
the equation ai For an initial vector state u, € R", a vector u® € R" is called an equilibrium point
of the system 1, if and only if, 3t® € R* suchas Vt > t¢, u(t) = u®.Itshould be noted if the energy
function (or Lyapunov function) exists; the equilibrium point exists as well. Hopfield proved that the
symmetry of the matrix of the weight is a sufficient condition for the existence of the Lyapunov
function [25].

3.1. Continuous Hopfield network based on the original energy function

To solve the obtained dual problem via recurrent neural network [26], we propose the following
energy function:

B B
E(ay, ...,ay,) = By Z “i—70 Z Z a;a;y;yiK (x;, x;) + By Z aiyi+72 Z a;yi

a;EBM a;EBM a;EBM a;EBM @;EBM

To determine the vector of the neurons biases, we calculate the partial derivatives of E:

0F
——(ay, ..,an,) = Bo = Bo Z a;y:y;iK (xi,%;) +Bryi + Bayi Z a;y;

60(1-
a;€EBM a;€BM

The components of the biases vector are given by:
O0E
Ii = _aal, (0) = —ﬁo _ﬁlyi ,Vl = 1, ,N

To determine the connection weights W between each neurons pair, we calculate the second
partial derivatives of E:
0%E
W (@, ..., an) = —BoyiyiK (x1, %) + Boyiyj
The components of the weights W matrix are given by:

o°E
To calculate the equilibrium point of the proposed recurrent neural network, we use the Euler-
Cauchy iterative method:

(1) Initialization: a?, ..., ay,, and the step p° are randomly chosen;
(2) Given ai, ..., af and the step p', the step p'*! is chosen such that E‘*! is maximum and we
calculate uy,..,uy using: Vi=1,..,N', uf*t =u! +pt+1(2j=1 v Wit +1) , then we

..... L4
calculate y;, ...,y using the activation function f:y; = f(uf*?), then the ai*l, .., aii'are
given by: a‘*! = P(y), where P is the projection operator on the set {a € RV, ¥¥ a;y; =0.}

(3) Returnto 1) until ||at*! — at|| < &, where € > 0.

The Figure 2 shows the connection weights W between each pair of neurons.
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7
. vf Yiyj 2
Theorem 2.1f i =j, P;; =1— o else P;; = — where S = Y1 N Vi
Proof of Theorem 2. We have P=1—-A%(A.A)™ %A and A= [y, ..,yn], then (4.A9)71=
- 1 '
(s ooyl 1 o, ¥y D™t = - because N' = Fioy i y7
- 1
Thus A (4.4 1. A= E[yl’ B L T
2 s
Finally, for i = j, P;; =1 — %, and for i # j,P;; = —y;,y,’.
Concerning the constraint family satisfaction 0 < a; <C,Vi=1,..,N', we use the activation
function.

-X

f(x) = C.tanh G) =C .%, where 7is supposed to be a very large positive real number, which

ensures Vx,—C < f(x) < C.
We consider a kernel function K such that K(x,x) = C # 0.

Theorem 3. A continuous Hopfield network has an equilibrium points if W;; =0 and W, ; = W;;.
Theorem 4.1f C = %, then CHN-SVM has an equilibrium points.
0

Proof of Theorem 2. We have W;; = (BoK;, j— ﬁz)yiyj then Viandj W;; =W;;because K is
symmetric. In the other hand W;; = B,y K (x;, x;) — Boy? = Bo X % —B,=0

0
Then CHN-SVM has an equilibrium points

3.2. Continuous Hopfield network with optimal time step

In this section, we chose, mathematically, the optimal time size in each iteration of the Euler-
Cauchy method to solve the dynamical equation of the recurrent neural network proposed in this
paper.

Atthe end of the k' iteration, we know a* andlet s, be the next step size permits to calculate
a**! using the formula: a**! = a* + 5, VE(a*) must be chosen such as E(a**!) < E(a*) at

maximum.
As the activation function of the proposed neural network is the tanh, then: % = %ai(l -
a;)VE(a)

The matrix form of the energy function is:
— t Bo e t Bzt 2
E(a) = BoU a—;(a) Ta+ B,y a+7(y a)

where U = (1,...,1)t € RY o = (1,...,1)t e RN’,andTi,j = yiyjK(xi,xj)foralliandj.

At the k'™ iteration, the state a* is known, then a**! is calculated by:
k
a
k+1 k
ak*t = ok + 5, —
kdt

where s, is the actual time step that must be optimal. To this end, we substitute a**! by a* +

dak .
sk% in E(a®™):

e(sk) = E(ak+1) = OSAkS]% + Bksk + Ck

where
_ g yrdat _ g (daky' ek
Ax =By a ﬁo(dt)Tgt’ ) )
d d d d
Bie = BoU* S = Bol@) T S + Buyt S+ By (yta®) (0 5),
Cy = BoUtak — 0.56,(a*):Tak + pytak + 0.56,(vtak)?.
Thus the best time step is the minimum of e(sy). The Figure 3a—c gives different cases.
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(a) RNN-DBSVM 1 (b) RNN-DBSVM 2 (c) RNN-DBSVM 3

3.3. Opt-RNN-DBSVM algorithm

In this section, the procedures described in Sections 2.2, 3.1, and 3.2 are summarized into
Algorithm 1.

Algorithm 1. Opt-RNN-DBSVM.

Algorithm 1 Opt-RNN-DBSVM
Require: mp,r, 3y, 31, 3:.C,ITER
Ensure: Optimal support vectors
% Density based preprocessing:
CP «+ @; BP «+— @; NP « O;
for all s in DS do
if |B(s,r) N DS| > mp then
CP «+ CPU {s}
else if mp > |B(s,r) N DS| > ZE then
BP «+ BPU {s}
else
NP« NPU({s}
end if
end for
RDS « DS\ {NPUCP}
% RNN-Building:
I « Bo+ ,31)'
W « 3()1\' -_— .‘34_)_)/"2
% Optimal Euler-Cauchy to RNN stability:
stepg = rand(0, 1)
af « rand(0,1,|RDS|)
for k=1,....ITER do
Dk «— d:i—‘:
A« Boyt Dy — Bo (D) T Dy
By « BoUtDy. — Bo(a*)tT Dy + B1yt D + Bo(yta®)(yt Dy)
Cr « BoUta* — 0.5;3(;((1k)'f1'1)k + Bryta® + 0.58:(ytak)?
Sk argmin.epo 1€(s)
o+l  oF 4 spDy
end for

The input of Algorithm 1 is the radius r (the size of the neighborhood of the current sample), the
minimum of samples mp into B(Current_sample, r) (that determines the type of this sample), the
three lagrangian parameters fg,f;,and f, (that makes a compromise between the dual
components), the bound C of SVM [28], and the number of iterations (that represents an artificial
convergence).

The Algorithm 1 processes in three macro-steps: Data preprocessing, RNN-SVM construction,
and RNN-S5VM equilibrium point estimation. The input of the first phase is the initial data set with
labeled samples. Based on r and mp the algorithm determines the types of different samples based
on the number of current sample neighbourhood discrete size. The output of this phase is a reduced
sub-data set (The initial data set minus the core samples).

The Input of the second phase are the reduced data set, the Lagrangian parameters By, 51, B2,
and the SVM bound C. Based on the energy function built in 3.1 and on the first and second
derivatives, the architecture of CHN-SVM is built; the bias and connection weights, which represent
the output of this phase, are calculated. These later represent the input of the third phase and the
Euler-Cauchy algorithm is used to calculate the degree of membership of different samples to the set
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of support vectors set; to ensure optimal decreasing of the energy function, at each iteration, an
optimal step is determined by solving a quadratic 1-dimension optimization problem; see sub-section
3.2. At the convergence, the proposed algorithm produces the support vectors based on which Opt-
RNN-DBSVM can predict the class of unseen samples.

Proposition 2. If N, r, and ITER represent, respectively, the size of a labeled data set BD, the number
of the remained samples(output of the preprocessing phase, and the number of iterations, then the
complexity of algorithm 1is O(r? * ITER).

Proof of proposition 2. First, in the preprocessing phase, we calculate, for each sample (x!,x/), the
distance d(x!,x/) and we execute N comparisons to determine the type of each sample; thus the
complexity of this phase is O(N?). Second, during ITER iterations, we update the activation of each
neuron using the activation of all the other neurons to solve the reduced SVM-dual, thus the third
phase has a complexity of O(r? * ITER).

Finally, the complexity of algorithm 1is O(N?) + O(r* x ITER). Let's denote Const- RNN-

SVM the SVM version that implements recurrent neural network based on con- constant time step.
Following the same reasoning, the complexity of Const-RNN-SVM is of O(N? x ITER).
Notes: - As Kernel-Adatron Algorithm (KA) is the kernel version of SMO and ISDA and KA
implements two embedded N-loops in each iteration, then the complexity of SMO and ISDA is of
[40]. In addition, we consider L1QP-SVM that implements numerical linearalgebra Gauss—Seidel
method [49], which implements two embedded N-loops in each iteration, then the complexity of SMO
and ISDA is of O(N? x ITER). - For a very high size and high-density labeled data set, we have: r <
< N, thus ITERour << ITERCHN —SVM and ITERour < ITERL1QP — SV M ITERour <
ITERSMO — SV M and ITERour << ITERISDA — SV M.

Thus complexity(our) < complexity(CHN — SV M) and complexity(our) <
complexity(L1QP — SVM) , complexity(our) < complexity(SMO — SV M) and
complexity(our) < complexity(ISDA — SVM).

4. Experimentation

In this section, we compare Opt-RNN-DBSVM to several classifiers: Const-RNN-SVM (SVM
based on a recurrent neural network using constant Euler-Cauchy time step), SMO- SVM, ISDA-SVM,
L1QP-SVM, and some non-kernel classifiers (for example MLP, NB, KNN, Decision Tree...). The
classifiers were tested on several data sets: iris, abalone, wine, ecoli, balance, liver, spect, seed, and
PIMA (collected from the University of California at Irvine (UCI)[29]). The performance measures,
used in this study, are accuracy, F1 score, precision, and recall.

4.1. Opt-RNN-DBSVM vs Const-CHN-SVM

In this section, we compare Opt-RNN-DBSVM to Const-RNN-SVM by considering different
values of the Euler-Cauchy time step s € {.1,.2,...,.8}.

Tables 1 and 2 give different values of accuracy, F1-score, precision, and recall on the considered
data sets. The results show the superiority of Opt-RNN-DBSVM over Const-CHN-SVM (step €
STEP = {1,.2,...,.9}); this superiority is quantified as follow:

3.43% = accuracy(Opt — RNN — DBSV M(s)) — accuracy(const — RNN — SV M))

max (
(s,d)ESTEPXDATA

2.31% = max (F1Score(Opt — RNN — DBSV M(s)) — F1Score(const — RNN — SV M))
(5,d)ESTEPXDATA

7.52% = (precision(Opt — RNN — DBSV M(s)) — precision(const — RNN — SV M))

max
(s,d)ESTEPXDATA

6.5% = (recall(Opt — RNN — DBSV M(s)) — recall(const — RNN — SV M))

max
(s,d)ESTEPXDATA

where DATA is the set of different considering data sets. These results are not strange because Opt-
RNN-SVM ensures an optimal decrease of the CHN energy function at each step.
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Table 1. Performance of Const-CHN-SVM on different data sets for different values of time step.

SVM-CHN s =.1
Accuracy Fl-score

SVM-CHN s =.2
Precision Recall Accuracy Fl-score

Precision Recall

Iris 95.98 96.66 90.52 92.00 96.66 95.98 91.62 92.00
Abalone 80.98 40.38 82.00 27.65 80.66 40.38 81.98 27.65
Wine 79.49 78.26 73.52 74.97 79.49 78.26 73.52 74.97
Ecoli 88.05 96.77 97.83 97.33 88.05 97.77 97.83 97.99
Balance 79.70 70.7 55.60 62.70 79.70 70.7 55.60 62.70
Liver 80.40 77.67 77.90 70.08 80.40 77.67 77.90 70.08
Spect 92.12 90.86 91.33 90.00 97.36 99.60 97.77 1.00
Seed 85.71 83.43 92.70 75.04 85.71 83.43 92.70 75.04
PIMA 79.22 61.90 84.7 49.6 79.22 61.90 83.97 49.6
Table 2. Performance of Const-CHN-SVM on different data sets for different values of time step.
SVM-CHN s =.3 SVM-CHN s = .4
Accuracy Fl-score Precision Recall Accuracy Fl-score Precision Recall
Iris 94.53 95.86 89.66 98.23 95.96 93.88 89.33 95.32
Abalone 77.99 51.68 83.85 30.88 81.98 41.66 83.56 33.33
Wine 80.23 77.66 74.89 74.97 81.33 77.65 73.11 74.43
Ecoli 88.86 95.65 96.88 97.33 86.77 97.66 97.83 97.95
Balance 79.75 70.89 55.96 62.32 79.66 70.45 56.1 66.23
Liver 80.51 78.33 77.9 70.56 80.40 77.67 77.90 70.08
Spect 97.63 98.99 97.81 98.56 96.40 98.71 96.83 97.79
Seed 85.71 83.43 92.70 75.88 85.71 83.43 92.70 75.61
PIMA 79.22 61.93 84.82 49.86 79.22 61.90 84.98 49.89
SVM-CHN s =.5 SVM-CHN s =.6
Accuracy Fl-score Precision Recall Accuracy Fl-score Precision Recall
Iris 94.53 95.86 89.66 98.23 95.96 93.88 89.33 95.32
Abalone 78.06 51.83 83.96 40.45 82.1 42.15 83.88 38.26
Wine 80.84 78.26 7491 75.20 81.39 77.86 73.66 74.47
Ecoli 88.97 95.7 96.91 97.43 86.77 97.66 97.83 97.95
Balance 79.89 71.00 56.11 62.72 79.71 70.64 56.33 66.44
Liver 80.66 78.33 77.9 70.56 80.40 77.67 77.90 70.08
Spect 91.36 92.60 91.77 84.33 91.36 92.60 91.77 84.33
Seed 84.67 82.96 92.23 74.18 84.11 83.08 92.63 75.48
PIMA 79.12 61.75 84.62 49.86 79.12 61.33 84.68 48.55
SVM-CHN s =.7 SVM-CHN s =.8
Accuracy Fl-score Precision Recall Accuracy Fl-score Precision Recall
Iris 94.53 95.86 89.66 98.23 95.96 93.88 89.33 95.32
Abalone 77.99 51.68 83.85 30.88 81.98 41.66 83.56 33.33
Wine 80.23 77.66 74.89 74.97 81.33 77.65 73.11 74.43
Ecoli 88.86 95.65 96.88 97.33 86.77 97.66 97.83 97.95
Balance 79.75 70.89 55.96 62.32 79.66 70.45 56.1 66.23
Liver 80.51 78.33 77.9 70.56 80.40 77.67 77.90 70.08
Spect 94.36 84.60 83.77 85.99 94.36 84.60 83.77 85.99
Seed 85.71 83.43 92.70 75.88 85.71 83.43 92.70 75.61
PIMA 79.22 61.93 84.82 49.86 79.22 61.90 84.98 49.89
SVM-CHN s =.9 DBSVM optimal value of s
Accuracy Fl-score Precision Recall Accuracy Fl-score Precision Recall
Iris 95.96 93.88 89.33 95.32 97.96 96.19 95.85 98.5
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Abalone 81.98 41.66 83.56 33.33 98.38 96.07 96.18

Wine 81.33 77.65 73.11 74.43 96.47 95.96 96.08
Ecoli 86.77 88.46 90.77 91.19 91.82 97.66 97.83
Balance 79.66 70.45 56.1 66.23 91.31 90.33 89.54
Liver 80.40 77.67 77.90 70.08 88.10 85.95 86.00
Spect 94.36 84.60 83.77 85.99 95.55 86.20 85.28
Seed 85.71 83.43 86.18 75.61 88.90 84.31 92.70
PIMA 79.22 61.90 75.90 49.89 79.87 68.04 84.98

93.19
96.02
97.95
90.89
85.50
86.31
84.40
62.05

Figures 4 and A1-A5 give the series of optimal steps generated by Opt-RNN-DBSVM during
iterations for different data sets. We remark that all the optimal steps are taken from the interval [3,4]

which furnishes an optimal domain for those using a CHN based on constant step.

Figure 4. IRIS data set.

4.2. Opt-RNN-DBSVM vs Classical-Optimizer-SVM

In this section, we give the performance of different Classical-Optimizer-SVM ( L1QP- SVM,
ISDA-SVM, and SMO-SVM) applied to several datasets, and compare the number of support vectors

obtained by the different Classical-Optimizer-SVM and Opti-RNN- SVM.

The Table 3 gives the values of the measures of accuracy, F1 score, precision, and recall of
Classical-Optimizer-SVM on different datasets. The results show the superiority of Opt-RNN-

DBSVM.
Table 3. Performance of Classical-Optimizer-SVM on different data sets.
L1QP-SVM ISDA-SVM

Accuracy Fl-score Precision Recall Accuracy Fl-score Precision Recal

Iris 71.59 62.02 70.80 55.17 82.00 83.64 76.67 92.00
Abalone 74.15 70.80 71.48 59.30 83.70 68.22 70.00 80.66
Wine 72.90 65.79 75.53 60.11 66.08 65.80 66.00 70.02
Ecoli 66.15 55.89 61.33 41.30 51.60 48.30 33.33 51.39
Balance 65.20 53.01 60.51 41.22 50.44 58.36 68.32 60.20
Liver 64.66 52.06 60.77 40.44 50.00 48.00 62.31 51.22
Spect 70.66 62.02 67.48 50.11 77.60 71.20 75.33 70.11
Seed 70.51 58.98 67.30 45.30 80.66 81.25 79.80 79.30
PIMA 65.18 53.23 60.88 39.48 49.32 44.33 48.90 50.27
SMO- SVM CHN- DBSVM optimal value of s
Accuracy Fl-score Precision Recall Accuracy Fl-score Precision Recal

Iris 71.59 62.02 70.80 55.17 97.96 96.19 95.85 98.5
Abalone 74.15 70.80 71.48 59.30 98.38 96.07 96.18 93.19
Wine 72.90 65.79 75.53 60.11 96.47 95.96 96.08 96.02
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Ecoli 66.15 55.89 61.33 41.30 91.82 88.46 90.77 91.19
Balance 65.20 53.01 60.51 41.22 91.31 90.33 89.54 90.89
Liver 64.66 52.06 60.77 40.44 88.10 85.95 86.00 85.50
Spect 70.66 62.02 67.48 50.11 95.55 86.20 85.28 86.31
Seed 70.51 58.98 67.30 45.30 88.90 84.31 86.18 84.40
PIMA 65.18 53.23 60.88 39.48 79.87 68.04 75.90 62.05

Figures 5-8 illustrates, respectively, the support vectors obtained using L1IQP-SVM, L1QP-S5VM,
SMO-SVM, and Opti-RNN-S5VM applied to IRIS data. We note that (a) ISDA considers more than
96% as support vectors, which is really an exaggeration, (b) L1QP and SMO use a reasonable number
of samples as support vectors, but most of them are duplicated, and (c) thanks to the preprocessing,
Opt-RNN can reduce the number of support vectors by more than 32%, compared to SMO and L1QP,
which allows it to overcome the over-learning phenomenon encountered with SMO and L1QP.
Figure 8 gives the support vectors obtained by Opt-RNN-DBSVM applied to IRIS data.

Figure 5. Vectors support obtained by ISDA algorithm.
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Figure 7. Vectors support obtained by SMO algorithm.
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In this section, we compare Opt-RNN-DBSVM to several non-kernel classifiers, namely
NiaveBayes [30], MLP [31], Knn [32], AdaBoostM1 [33], DecisionTree [34], SGDClassifier [35],
Nearest Centroid Classifier [35], and Classical SVM [1].

Table 4 give the values of the measures accuracy, Fl-score, precision, and recall for the
considered data sets. The best performance is reached by Opt-RNN-DBSVM followed by classical

methods SVM, Decision Tree, and Adabsot are close to the Opt-RNN-DBSVM method.

Table 4. Comparison between Opt-RNN-DBSVM and different classification methods on the Iris and

abalone data sets.

Iris
Method Accuracy F1-score Precision Recall
Niave Bayes 90.00 87.99 77.66 1.00
MLP 26.66 0.00 0.00 0.00
Knn 96.66 95.98 91.62 1.00
AdaBoostM1 86.66 83.66 71.77 1.00
Dicision Tree 69.25 76.12 70.01 69.55
SGDClassifier 76.66 46.80 1.00 30.10
Random Forest Classifier 90.00 87.99 77.66 1.00
Nearest Centroid Classifier 96.66 95.98 91.62 1.00
Classical SVM 96.66 95.98 91.62 1.00
Opt-RNN-DBSVM 97.96 92.19 95.85 96.05
Abalone
Method Accuracy F1-score Precision Recall
Niave Bayes 68.89 51.19 41.37 67.33
MLP 62.91 47.63 36.32 47.63
Knn 81.93 53.74 70.23 43.02
AdaBoostM1 82.29 55.99 70.56 55.06
Dicision Tree 76.79 51.33 52.06 49.63
SGDClassifier 80.86 64.74 58.08 70.57
Nearest Centroid Classifier 76.07 64.79 62.60 61.15
RandomForestClassifier 82.28 57.56 71.11 48.34
Classical SVM 80.98 40.38 82.00 27.65
Opt-RNN-DBSVM 98.38 96.07 96.18 93.19

Additional comparison studies were performed on PIMA and Germandiabetes data sets and the

ROC curves were used to calculate the AUC for the best performance obtained from each non-kernel
classifier. Figures A6 and A7 show the comparison of the ROC curves of the classifiers DT, KNN,
MLP, NB, and Opt-RNN-DBSVM method, evaluated on the PIMA data set. We point out that Opt-
RNN-DBSVM quickly converges to the best results and obtains more true positives for a small
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number of false positives compared to several classification methods. More comparisons are given in
Appendix A; Figures A8 and A9 show the comparison of the ROC curve of the classical SVM and
Opt-RNN-DBSVM method, evaluated on the Germany diabetes data set.

5. Conclusions

The main challenges of SVM implementation are: the number of local minima and the amount
of computer memory, required for solving the SVM-dual, increase exponentially with respect to the
size of the data set. The Kernel-Adatron family of algorithms, ISDA and SMO, has handled very large
classification and regression problems. However, these methods treat noise, boundary, and kernel
samples in the same way, resulting in a blind search in unpromising areas. In this paper, we have
introduced a hybrid approach to deal with these drawbacks, namely Optimal Recurrent Neural
Network Density Based SupportVector Machine (Opt-RNN-DBSVM), which performs in four
phases: Characterization of different samples, elimination of the samples having a weak probability
to be support vector, building an appropriate recurrent neural network based on original energy
function, and solving the differential equation system, governing the RNN dynamic, using Euler-
Cauchy method implementing an optimal time step. Due to its recurrent nature, the RNN was able
to memorize locations visited during previous explorations. On one hand, two main interesting
fundamental results were demonstrated: the convergence of RNN-SVM to feasible solutions and Opt-
RNN-DBSVM has a very low time complexity compared to Const-RNN-SVM, SMO-5VV, ISDA-
SVM, and L1QP-SVM. On the other hand, several experimental studies were conducted based on
well-known data sets (iris, abalone, wine, ecoli, balance, liver, spect, seed, pima). Based on credible
performance measures (Accuracy Fl-score Precision Recal), Opt-RNN-DBSVM outperformed Const-
RNN-SVM, KAs- SVM, and some non-kernel models (cited Table 4). In fact, Opt-RNN-DBSVM
improved accuracy by up to 3.43%, F1Score by up to 2.31%, precision by up to 7.52%, and recall by
up to 6.5%. In addition, compared SMO-SVM, ISDA-SVM, and L1QP-SVM, Opt-RNN-DBSVM a
reduction of the number of support vectors by up to 32%, which permits to save of memory for huge
applications that implement several machine learning models. The main problem encountered in the
implementation of Opt-RNN-DBSVM is the determination of the Lagrange parameters involved in
the SVM energy function. In this sense, a genetic strategy will be introduced to determine these
parameters considering each data set.
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Appendix A

Figure A1. ABALONE data set.
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Figure A6. RUC curve for the different classification methods applied to PIMA diabetes data set.
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Figure A7. Opt-RNN-DBSVM vs SVM RUC curve applied to PIMA diabetes data set.
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Figure A8. RUC curve for the different classification methods applied to PIMA diabetes data set.
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Figure A9. Opt-RNN-DBSVM vs SVM RUC curve applied to PIMA diabetes data set.
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