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Article 

Predicting High-Density Polyethylene Melt Rheology 
Using a Multimode Tube Model Derived Using  
Non-Equilibrium Thermodynamics 
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Department of Chemical Engineering, Cyprus University of Technology, PO Box 50329, 3603 Limassol, Cyprus  
* Correspondence: Tel.: +357-25-002394, fax: +357-25-002668, e-mail: pavlos.stefanou@cut.ac.cy . 

Abstract: Based on the Generalized bracket, or Beris-Edwards, formalism of non-equilibrium thermodynamics, 
we have recently proposed [Stephanou et al. Materials, 13, 2867 (2020)] a new differential constitutive model for 
the rheology of entangled polymer melts and solutions. It has amended the shortcomings of a previous model 
that was too strict in the values of the convective constraint release parameter for the model not to violate the 
second law of thermodynamics and has been shown capable of predicting a transient stress undershoot 
(following the overshoot) at high shear rates. In this work, we wish to further examine this model’s capability 
of predicting the rheological response of industrial polymer systems by extending it to its multiple-mode 
version. The comparison against industrial rheological data (High-Density Polyethylene resins), as compared 
against available experimental data in (a) Small Amplitude Oscillatory shear, (b) start-up shear, and (c) start-
up uniaxial elongation, is noted to be good.  

Keywords: rheological model; polymer melts; non-equilibrium thermodynamics; multiple modes; 
normal stress coefficients; high-density polyethylene 

 

1. Introduction 

As reported by the Society of Plastics Industries (SPI) in 2000, the plastic industry in the US is 
positioned, in terms of shipment, in the fourth place among manufacturing industries after motor 
vehicles and equipment, electronic components and accessories, and petroleum refining [1]. A more 
recent survey estimates the global plastic packaging market to worth $269.6 billion by 2025 with a 
3.9% compound annual growth rate (CAGR).1 This alone highlights the impact of plastic materials 
in our lives and, thus, the significance of optimizing the polymer processing technology. Future 
polymer processing will focus not on the machine, but on the product [1]. Several instabilities appear 
in the polymer industry, which makes life difficult for polymer engineers. For example, under certain 
circumstances, when a molten plastic is forced through a die then the shark-skin defect appears [2]. 
To avoid this, it was suggested to slow down the manufacturing rate; however, this decreases the 
production rates of commercial products leading to an increase in cost. Wang et al. have suggested 
that this defect may be related to a molecular instability corresponding to an oscillation of the 
absorbed chains in the die exit area between coiled and stretched states [3]. As such, it seems that the 
answer needed should be sought by keeping the molecular level of description and performing 
molecular dynamics simulations. The ultimate goal is to predict the properties of a product via 
numerical simulations based on first molecular principles and multiple-scale techniques [1].  

Due to computational limitations, however, this aim was unachievable until the last few years, 
when the extended evolution of simulation algorithms, the parallelization of these algorithms and 
the race, very recently undertaken, to construct accurate coarse-grained potentials (derived directly 
from the atomistic simulations) have revolutionized the field. For example, by topologically and 
dynamically mapping atomistic simulation results onto the tube notion of de Gennes-Edwards, we 

                                                 
1  https://www.plasticstoday.com/packaging/global-plastic-packaging-market-worth-2696-billion-2025. 
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have recently been able [4], [5] to obtain the most fundamental function of the tube (reptation) theory 
(according to which the polymer motion due to entanglements is confined within a tube-like region 
whose axis coincides with the primitive path of the chain and its diameter provides a measure of the 
strength of the topological interactions), namely, the segment survival probability function, compare 
the atomistic simulations results against the predictions of modern tube models [6] and even propose 
modifications to improve these models on a molecular level [7], [8].  

Accurate continuum simulations (usually using a finite element scheme [9]) require the use of 
accurate constitutive models, able to provide the necessary molecular physics associated with the 
rheological behavior of polymeric systems. As such, the use of empirical models or without reference 
to molecular physics may fail to represent even qualitative features of the material behavior. 
Furthermore, a rather small set of parameters should be included in said models, to which a physical 
significance must be assigned, and the models should have the capacity to fit simultaneously all given 
data with a single set of parameter values [10]. Only then would polymer engineers be able to 
correctly predict the rheological response in industrial processes, and solved several long-standing 
problems that the industry faces. 

However, polymers exhibit a wide spectrum of relaxation times, which gives polymeric fluids a 
partial memory [11]. Conformation tensor-based models that include only a single mode cannot 
describe small-amplitude oscillatory shear (SAOS) where a spectrum of relaxation times is needed. 
Even for dilute solutions, both theory and experiments suggest that a superposition of several 
exponential modes is obtained [12]. Over the past two decades or so, several researchers employed 
multiple modes of well-known models in order to improve their predictive capabilities. For example, 
the Kaye-Bernstein–Kearsley–Zapas (K-BKZ) integral model [13], [14], the Phan-Thien and Tanner 
(PTT) model [14–17], and the Giesekus model [14], [17] have been used to predict the rheological 
behaviour of industrial polymers, such as low-density polyethylene (LDPE) and high-density 
polyethylene (HDPE). Although such well-known rheological models are able to reproduce 
experimentally observable features of the material functions in various flows, they fail, as mentioned 
above, to capture the correct physics. 

Polymers with large molecular weights should be described via the use of tube theory 
mentioned above, which introduces terms such as reptation, chain contour length fluctuations and 
constraint release (CR) due to the motion of surrounding chains [18]. Under flow, as polymer chains 
are oriented, a number of entanglements are expected to be on average lost as dictated by the 
convective constraint release (CCR) mechanism [19], [20] and shown to be the case by detailed 
atomistic non-equilibrium molecular dynamics (NEMD) simulations [21]. More recently, tube models 
[22–25] have been used to predict the appearance of a transient stress undershoot (following the 
overshoot) at high shear rates in start-up shear, that originated from the molecular tumbling of 
polymer chains in simple shear. Tube models have also been generalized to account for branches, 
such as the pom-pom model [26] and, its thermodynamically-admissible version, the Pom-pon [27] 
model. Also, several works employed multiple-mode versions of well-known tube models to predict 
the rheological response of industrial polymer systems; we mention here only a few of these works. 
Inkson et al. [28] used a multimode version of the pom-pom model and found that it can address 
quantitatively the rheology of LDPE for shear, uniaxial elongation and planar extension. Soulages et 
al. [29] investigated the lubricated flow of a LDPE in a cross-slot geometry and compared the 
predictions of the extended Pom-Pom model [30][14] and the modified extended Pom-Pom model 
[16] versus a plethora of rheological data: in shear they compared against transient and steady-state 
shear viscosity and first normal stress coefficient, and the steady-state second normal stress 
difference, and in uniaxial extension they compared against the transient uniaxial extensional 
viscosity. They noted that both models perform equally well (note that the thermodynamic 
admissibility of these two models is shown in Ref. [31]). Hoyle et al. [32] evaluated the performance 
of the multimode pom-pom model against both  LDPE and branched HDPE melts, whereas more 
recently Konaganti et al. [14] employed the double convected pom-pom [26] model to predict the 
rheological behavior of a high-molecular-weight HDPE melt. Since multimode versions have been 
illustrated to be superior to single-mode ones, our aim in this paper is to generalize the tube model 
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of Stephanou et al. [22] to its multiple-mode version and use it to predict the rheological response of 
a HDPE melt.  

The structure of the paper is as follows: in Section 2 the new model is briefly derived using NET. 
In Section 3 we derive the expressions for the relevant rheological material functions obtained by 
analyzing the asymptotic behavior of the model in the limits of small shear rates. The results obtained 
with the new model are then presented in Section 4: we first discuss its parameterization and then 
show how accurately and reliably it can describe the viscoelasticity of HDPE polymer melts. The 
paper concludes with Section 5 where the most important aspects of our work are summarized, and 
future plans are highlighted and discussed.  

2. The constitutive model 

2.1. State variables 

This work considers an isothermal and incompressible flow, meaning that the total mass density, 
ρ, and the entropy density (or temperature) are excluded from the vector of state variables. To 
characterize the polymer chains, the entanglement strand conformation tensor c, following 

Stephanou et al. [22], [33], is considered which is made dimensionless through 
B

K k T=c c ,  where 

K denotes the spring constant of the Hookean dumbbells representing the entanglement strands, kB 

the Boltzmann constant, and T the absolute temperature [34]. The conformation tensor c  refers to 
one entanglement strand and at equilibrium (zero flow field applied) coincides with the unit tensor. 
To characterize the multiple modes of the polymer chains, N conformation tensors are considered, 
one for each mode [34]. Finally, the momentum density M as the hydrodynamic variable is further 
considered, so that overall, the vector of state variables is expressed as

(1) (2) ( ) ( ){ , , ,..., ,..., }i N=x M c c c c . 

2.2. System Hamiltonian  

The mechanical part of the system’s Hamiltonian is given by [34] 

( ) ( ) ( )m enH K A= +x x x ,            (1) 

where 

2

( )
2

enK dV


= 
M

x ,                         (2) 

represents the kinetic energy of the system, whereas [22], [34], [35]:  

( )( )( ) ( )( )

1

1
( ) ( ) tr ln det

2

N
i i

i

e

i

A a dV G dV
=

 = =  − −   x x c I c ,                    (3) 

represents the system’s Helmholtz free energy (with ( )a x  the Helmholtz free energy density) that 

includes two contributions: the dimensionless potential ( )( )( )

tr
i

 −c I  accounting for chain 

stretching, and an entropic contribution involving the logarithm of the determinant of the 

conformation tensor of each mode. Here, 
( )i

eG  is the entanglement modulus of the ith mode. The 

partial derivative of the potential with respect to the trace of the conformation tensor defines the 
(dimensionless) effective spring constant [35], [36] for the ith mode 

( ) ( )( )

( )

( )

tr
tr

tr

i

i

i
h






c

c

c

,      (4a) 
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so that the corresponding Volterra derivative of the free energy with respect to the conformation 
tensor is 

( ) ( )
( ) 1

( ) ( )

( )
tr

2

i
i i

e

i

GA
h





− = −  
c I c

c

,            (4b) 

where I is the unit tensor. Here, the FENE-P(Wagner) expression is used: 

( )
( )

( )

( )( )

3
tr

tr

i
i

e

i
i

e

b
h

b

−
=

−
c

c

.                (4c) 

where ( )i

eb  is the finite extensibility (FENE) parameter of the entanglement strand associated 

with the ith mode. As shown by Stephanou et al. [33], ( ) ( )2

03 0.82
e e

b C M M
 =    (when all 

FENE parameters are considered equal), where C  is the polymer characteristic ratio at infinite 

chain length, Me the entanglement molecular weight, and M0 the average molar mass of a monomer,. 
For example, for PS melts be=54 [33].  

2.3. The Poisson and dissipation brackets 

Following Beris and Edwards [34], the Poisson bracket for multiple modes is given as 

  ( ) ( )

( ) ( )
1

( )

( ) ( )
1

( )

( )

,

              

              

N
i i

a ai ic
i a a

N
i

a i i
i a a

i

i

a

F G G F
F G c c dV

c M c M

F G G F
c dV

c M c M

F
c

c

   
   

  
   




   
   

   
   




=

=

    
= −  −             

    
+  −             

+ 





( )
1

N

i
i a

G G F
dV

M c M
 

  

  
  =

    
−     

     


.    (5a) 

Note that here, and throughout this paper, Einstein’s summation convention for repeated Greek 
indices is employed. The complete Poisson bracket is then simply given as: 

 

 

,

              ,
c

F G G F
F G M M dV

M M M M

F G

   
   

   
   

    
= −  −             
+


.        (5b) 

Next, the following expression for the dissipation bracket associated with the conformation tensors 
is used [34]  

  ( )

( ) ( )nec
1

( )

( ) ( )
1

,
N

ii

i i
i a

N
i

i i
i

F G
F G dV

c c

F G G F
L dV

c M c M


 

  
   

 
 

   
   

=

=

= − 

    
+  −             




.               (6) 

The first integral on the right-hand side of Eq. (6) accounts for relaxation effects of each conformation 
tensor, which is proportional to a fourth–rank relaxation tensor, whereas the second integral allows 
for non-affine deformation for each conformation tensor. Note that the subscript “nec”, meaning “no 
entropy production correction,” is added to the dissipation bracket to indicate that this bracket is 
without terms involving Volterra derivatives with respect to the entropy density, which can be 
omitted when one considers (as we do here) isothermal systems [34]. Note further that although, in 
general, the dissipation bracket allows explicit coupling between cross modes, see Eq. (8.2-25) of Beris 
and Edwards,[34] here are omitted for simplicity. Then,  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2023                   doi:10.20944/preprints202307.1292.v1

https://doi.org/10.20944/preprints202307.1292.v1


 5 

 

( ) ( ) ( )

,[1] ( )

i ii i

i

A
c L u

c
    






= − +  ,                   (7a) 

where we have defined the upper-convected time derivatives: 

( )

( ) ( ) ( ) ( )

,[1]

i

i i i i
c

c u c c u c u
t


         


 +  −  − 


.                (7b) 

Finally, the stress tensor is given as, 

( ) ( )

( ) ( )
1

2
N

i i

a i i
i

A A
c L

c c
  

 

 
 =

 
= +  

 
 .           (8) 

2.4. The Matrices L and Λ  

The relaxation matrix for each mode ( )ii

  is split into two contributions, following Stephanou 

et al. [22], and with different relaxation times: 

( ) ( )
( )
( )

( ) ( )

reptrept,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

CR

( ) ( )

RouseRouse,( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

2

i i

ii i i i i i i i i

i i

e

i i

ii i i i i i i i

i i

e R

f tr
c c c c

G

f tr
c c c c

G tr

        

       

   


  


 = + + +

 = + + +

c

c

c
( )( )i



.           (9a) 

Here, ( )

CR

i  is the CR relaxation time of the ith mode, which is considered to be half the corresponding 

reptation time, ( ) ( )1
CR 2

i i

d = [37] [note that this coincides with the equilibrium CCR relaxation time, 

see Eq. (9e)], ( )( )i

R tr c  is the Rouse relaxation time of the ith mode,  

( )
( )

( )
( ) ( )

R,eq
3

ik
i

i i

R

tr
tr 

 
=  

 

c
c ,                       (9b) 

where ( )

,eq

i

R  is the equilibrium Rouse relaxation time of the ith mode given as 
( ) ( )

,eq3i i

d RZ =  [18], 

and ( )ik  is the Extended-White Metzner (EWM) exponent [34] for the ith mode. Note that for the 
Rouse time a shear-rate-dependency through the use of the trace of the conformation tensor of each 

mode is considered. The functions ( )( ) ( )

rep

i i
f trc  and ( )( ) ( )

Rouse

i i
f trc  are scalar functions of the trace 

of the conformation tensor defined via:[22] 

( ) ( ) ( )
( )
( ) ( )

( ) ( ) ( ) ( ) ( )

Rouse rep ( ) ( ) ( )

3
1

3 3

i i

i i i i i

ccr i i i

ccr

h tr tr
f tr f tr

h tr tr




−
= − =

 + − 

c c
c c

c c

,          (9c) 

where 
( )i

ccr  is the CCR parameter of the ith mode. For the (dimensionless) mobility tensor ( )iβ  of 

the ith mode, the Giesekus’ postulate ( ) ( ) ( )i i i= +β I σ  is used [35] with 
( ) ( )i i

iG=σ σ  and 
( )i  is 

the anisotropic mobility (Giesekus) parameter [14], [17] of the ith mode. Then, with 
( ) rep,( ) Rouse,( )ii ii ii

   =  +  we obtain 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

CCR

1

2

ii i i i i i i i i

i i i

e

c c c c
G tr

           


 = + + +
c

,         (9d) 

where [22], [37] the CCR relaxation time is obtained as 
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( ) ( )
( )

( )
( ) ( )

( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
CR CRCCR

31 1 1 1

3 3

i i

i

ccri ii i i i i i i
R ccr

h tr tr

tr tr h tr tr


   

  −
 = + −
   + −   

c c

c c c c

.    (9e) 

Finally, the expression for the ( )i
L  matrix is given via [34], [35]   

( )
( )

( ) ( ) ( ) ( ) ( )

2

i
i i i i i

L c c c c        
    = − + + + .                             (11) 

Here, 
( )i  is the non-affine/slip parameter of the ith mode. This parameter is important as it allows 

for the prediction of a transient stress undershoot (following the overshoot) at high shear rates [22]. 

2.5. Thermodynamic admissibility 

Any thermodynamic system must obey the restriction of a non-negative rate of total entropy 
production. When the fluid studied is isothermal and incompressible, the entropy production results 

from the degradation of mechanical energy leading to  , 0m m mdH dt H H=  .[34] For this to be 

satisfied in our model the following must hold: 

( )
( ) ( )( )

2
( )( ) 3

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )
1 1 1CCR

1
1 1 1 0

2

iiN N
ki i i ie

ki i ii i
i i ka k

hGF G
h

c c tr




 

    
  = = =

−
  = + − −    

c
,  (12) 

where ( ) , {1,2,3}, {1,.., }i

k k i N = =  are the three eigenvalues of the conformation tensor of the ith 

mode. Obviously, since the condition ( )( ) ( ) ( )0 1 1,0 1,i i i
i   −     and 

( ) 0,i

ccr i    [22] 

guarantees that each term of the summation is positive, then the sum as a whole is positive as well, 
meaning that the multi-mode version of the model is thermodynamically admissible.  

2.6. Conformation tensor evolution equation 

The evolution equation for each of the dimensionless conformation tensors is obtained by 
substituting Eqs. (4b), (9d) and (11) in Eq. (7a), 

( ) ( ) ( )

( ) ( ) ( ) 

( ) ( ) ( ) 2 ( ) ( ) ( )

[1] ( ) ( )

CCR

( ) ( ) ( ) ( ) ( ) ( )

1
1 tr

tr

                     1 2 1 tr 1 1 , [1, ]

i i i i i i

i i

i i i i i i

h

h i N

 


   

= − − 

   + − − − − −     

c c c c
c

c c I

,    (13) 

The CCR relaxation time for the ith mode is given by eq. (9d) and the (dimensionless) effective spring 
constant is given by Eq. (4c). Finally, the expression for the extra (polymeric) stress tensor is obtained 
by substituting Eqs. (4b) and (11) in Eq. (8) as 

( )( ) ( ) ( )

1

tr
N

i i i

e

i

G h
=

 = − σ c c I .                  (14) 

3. Asymptotic behavior of the model in steady state shear 

In this section, we provide analytical expressions describing the asymptotic behavior of the 
multiple-mode version of the Stephanou et al. [22] model in the limit of weak flows for the following 

three cases: inception of simple shear flow (SSF) described by the kinematics ( ),0,0y=u  where 

  is the (constant) shear rate, inception of uniaxial elongation flow (UEF) described by the 

kinematics ( )1 1
2 2

, ,x y z  = − −u  where   is the (constant) elongation rate, and small amplitude 

oscillatory shear (SAOS) described by the kinematics ( )( )cos ,0,0t y =u  where  is the 

oscillation frequency. The material functions to be analyzed are: a) the transient shear viscosity 
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( )t+   (= ( )yx t  ) and the first, 1 ( )t+ , (= ( ) 2

xx yy( ) ( )t t  − ) and second, 2 ( )t+ , (=

( ) 2

yy zz( ) ( )t t  − ) normal stress coefficients in the case of shear, b) the transient elongational 

viscosity ( )E t+ , (= ( )xx yy( ) ( )t t  − ), in the case of uniaxial elongation, and c)  the storage, 

( )G  , and loss, ( )G  , moduli in the case of SAOS.  

To obtain the asymptotic behavior, we need to expand the conformation tensor for each mode 
in the limit of small strain rates (by invoking a linearization of the evolution equation for each of the 
conformation tensors) and solve the corresponding ordinary differential equations analytically; after 
this, we obtain the non-zero stress tensor components via Eq. (14). Finally, we obtain the following 
results for the relevant material functions: 

Inception of shear: 

( ) ( ) ( )

CR ( )
1 CR

1 exp
N

i i

e i
i

t
t G 


+

=

  
= − −  

  
 ,                 (15a) 

( ) ( )2
( ) ( )

1 CR ( ) ( )
1 CR CR

2 1 1 exp
N

i i

e i i
i

t t
t G

 
+

=

    
 = − + −    

    
 ,                  (15b) 

( ) ( ) ( )

( )

2
( ) ( ) ( ) ( ) ( )

2 CR ( ) ( )
1 CR CR

2
( ) ( )

( ) ( ) ( )

CR CR CR

1 1 1 exp

                                        1 exp 1 exp

N
i i i i i

e i i
i

i i

i i i

t t
t G

t t t

   
 

 
  

+

=

      − = + − − + −            
     − − − − −     

     


.   (15c) 

Inception of uniaxial elongation: 

( ) ( ) ( )

CR ( )
1 CR

3 1 exp
N

i i

E e i
i

t
t G 


+

=

  
= − −  

  
 .                (16) 

meaning that Trouton’s law holds for the steady-state extensional viscosity.  

Small Amplitude Oscillatory Shear: 

( ) ( )
( )

( )
( )

( )

CR( )

2
( )

1
CR

( )
( ) CR

2
( )

1
CR

1

1

i
N

i

e
i

i

iN
i

e
i

i

G G

G G









=

=

 =
+

 =
+




.                   (17) 

In equations (15)-(17), we have defined ( )2
( ) ( ) ( )1i i i

e eG G − .  

4. Results and Discussion 

The FENE parameter can be easily calculated via ( ) ( )2

03 0.82e eb M M C=   as mentioned 

above. For PE M0=14 gr/mole, whereas C∞=7.3 and Me = 828 g/mole (see Table 3.3, p. 151 of Ref. [38]). 
These values yield be = 16.34. We will compare against the experimental data of Konaganti et al. [14] 
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that have performed rheological measurements of the sample HDPE-1 reported by the same group 
[39] for which Mw=206 kg/mole; thus, the number of entanglements is equal to Z≈249. The relaxation 
spectrum is the same as the one used by Konaganti et al. [14] (see their Table 2 for T=200 oC) but is 
also provided in Table 1, and it was obtained by fitting the storage and loss moduli, Eqs. (7), with the 
corresponding experimental data. The comparison against the experimental storage and loss moduli 
is available in Figure 1. 

Table 1. Relaxation spectrum [14]. 

Mode ( )i

e
G  (Pa) ( )

CR

i  (s) 

1 387,808 0.00086 

2 185,307 0.0075 

3 93,338 0.0548 

4 37,766 0.403 

5 12,934 2.99 

6 5,025 30.78 

 

Figure 1. Comparison of the model predictions with the experimental data presented in Ref. [14] for 
the storage and loss moduli at 200 oC of an HDPE sample. The relaxation spectrum is provided in 
Table 1. 

All the remaining parameter values are obtained by fitting the model predictions against the 
experimental data; note that for simplicity we assume that each parameter has the same value for all 
modes although, in general, different values for each mode could be considered (e.g., see the work of 
Konaganti et al. [14]). The following values of the model parameter are chosen to provide a good 
comparison against the experimental data: ξ=0.02, α=0.3, βccr=4×10−4, and k=-3.5. 

4.1. Comparison with start-up shear flow data 

Figure 2 illustrates the comparison between the experimental data for the growth of the shear 
viscosity upon inception of shear flow and the simulated results obtained from the model. The 
experimental data (blue symbols) were collected at three different shear rates: 0.05 1/s, 0.5 1/s, and 1 
1/s, whereas the orange lines represent the simulated shear viscosity values at the corresponding 
shear rates. It can be observed that the model accurately captures the trends and magnitude of the 
shear viscosity over time. Note that although a non-zero value of ξ is employed, the undershoots 
produced are too small to note in the scale used for Figure 2. Although no experimental data are 
provided, we further provide here the corresponding prediction of the growth of the first and second 
normal stress coefficients in Figure 3, and the steady-state values of all viscometric material functions 
in Figure 4. 
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Figure 2. Growth of the shear viscosity prediction (orange lines) upon inception of the shear flow at 
three different dimensionless shear rates and comparison with the experimental data (blue symbols) 
considered in Ref. [14] . The thick orange line depicts the LVE envelope, Equation (15a). 

 

Figure 3. Model predictions (red, blue and orange lines) of the growth of the first (a) and second (b) 
normal stress coefficients, upon inception of shear flow. The thick black lines depict the LVE envelope, 
Eqs. (15b) and (15c). Same parameter values as in Figure 2. 
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Figure 4. Model predictions of the steady-state a) shear viscosity, (b) first, and (c) second normal stress 
coefficient of the HDPE-1 sample. Same parameter values as in Figure 2. 

4.2. Comparison with start-up uniaxial elongational flow data 

In Figure 5 we provide the comparison of the model predictions with the experimental 
measurements of Konaganti et al. [14] for the growth of the elongational viscosity as a function of 
time upon inception of uniaxial elongational at three different stretch rates: 0.05 1/s, 0.5 1/s, and 5 1/s. 
The comparison employs the same parameter values as the ones used in Figure 2 except =0, as 
instructed by Stephanou et al. [35], and the corresponding steady-state prediction is provided in 
Figure 6. Given that the parameter values were selected based on the start-up shear data (Figure 2), 
the comparison is noted to be adequately well.  Overall, the proposed model demonstrates good 
agreement with the experimental data, indicating its effectiveness in describing the rheological 
behavior of polymers of industrial significance.  
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Figure 5. Comparison of the model predictions (lines) with the experimental measurements (symbols) 
of Konaganti et al. [14] for the growth of the elongational viscosity as a function of time for several 
stretch rates. The thick black line depicts the LVE envelope, Equation (16). Same parameter values as 
in Figure 2 except =0. 

 

Figure 6. Model predictions of the steady-state uniaxial elongational viscosity. Same parameter values 
as in Figure 2 except =0. 

5. Conclusions 

In this work, we have developed the multiple-mode version of a generalized, conformation-
tensor based viscoelastic model for polymer melts, that has been proposed recently by one of us [22], 
by making use of the generalized bracket formalism of Beris and Edwards [34]. As its forerunner, the 
monodisperse version [22], it accounts for the most significant effects that can be realized in entangled 
polymers systems: anisotropic drag, finite extensibility, non-affine motion (leading to the exhibition 
of a transient stress undershoot at large shear rates), and variable chain relaxation due to convective 
constraint release.  The multiple-mode version of the model has been shown to bear a very good 
predictive capability with regards to the industrial experimental data for HDPE of Konaganti et al. 
[14]. 

The model in its present form considers only strictly linear chains. Industrial samples, 
particularly LDPE, are never strictly linear having either short or long branches distributed along 
their entire backbone. There is clear evidence that all material functions of PE are considerably 
affected by even the presence of low levels of long chain branching [40]. We therefore need to 
generalize it and allow for the explicit consideration of branches, following the guidelines provided 
by the pom-pom [26] and, its thermodynamically-admissible version, the Pom-pon [27] model. 
Furthermore, the multi-mode version does not explicitly consider the molecular weight (MW) 
distribution of industrial samples, such as the log-normal of gamma distributions that are able to 
describe experimental distributions [41]. As such, we should also generalize it to handle molecular 
weight distribution following the work of Schieber [42], [43]. This generalized constitutive model will 
allow for the more accurate prediction of the rheological response of polymeric systems used 
industrially that do possess an extensive spectrum of MW and not a very narrow distribution as it is 
customarily assumed when deriving a constitutive model. Only then would polymer engineers be 
able to accurately use the predictions of the revised constitutive model against the rheological 
response noted in actual industrial processes. Our findings provide a foundation for future research 
aimed at enhancing the properties of high MW polymers for diverse applications. 
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