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Abstract: In applied mathematics, statistics, operation research, physics, and engineering

mathematics, confluent representations of hypergeometric functions in one and two variables are

known to exist, and their occurrence in a variety of applications is also well recognised. In this article,

we intend to present a new derivation of the extended Watson summation theorem for the Kim et al.

given series 4F3. We assessed four attractive integrals involving generalized hypergeometric function

as an application. With a few particular cases, this note will come to an end. In the results given

above, symmetry appears on its own.

Keywords: Generalized hypergeometic function; extended Watson theorem; Gauss theorem; special

cases

0. Introduction

Let z be a complex variable, and let R and C stand for the sets of real and complex numbers,

respectively. The generalized binomial coefficient for α and β for real or complex parameters is defined

as, [9]

(

λ

µ

)

=
Γ(λ + 1)

Γ(µ + 1)Γ(λ − µ + 1)
=

(

λ

λ − µ

)

(λ, µ ∈ C),

in which:

Γ(z) =
∫ ∞

0
tz−1e−tdt,

indicates that the well-known gamma function for the special situation Re(z) > 0 can be reduced:

(

λ

n

)

=
(−1)n(−λ)n

n!
,

where (λ)r stands for the Pochhammer symbol [2], which is represented by:

(λ)r =
Γ(λ + r)

Γ(λ)
=

{

1; (r = 0, λ ∈ C \ {0})

λ(λ + 1) . . . (λ + r − 1); (r ∈ N, λ ∈ C)
(0.1)

The generalized hypergeometric functions [2] are defined as follows using Pochhammer’s symbol

(1.1):

pFq







α1, . . . , αp

; z

β1, . . . , βq






=

∞

∑
r=0

(α1)r . . .
(

αp

)

r

(β1)r . . .
(

βq

)

r

zr

r!
(0.2)
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Its substantial to note here that symmetry occurs in the numerator α1, . . . , αp and denominator

β1, . . . , βq parameters of the generalized hypergeometric function which means that by changing

the order of each of the numerator parameters provides the same function and is the same case

for denominator parameters. The convergent of the series (1.2) depend on the relation between

the parameters of both numerator and denominator and by using elementary ratio test, we get the

following cases, [2]:

i. If p ≤ q, then series converge for all |z| < ∞.
ii. If p = q + 1, the series converges for |z| < 1, otherwise it is diverges.

iii. If p = q + 1, on the circle of converge |z| = 1, the series is:

– Absolutely convergent if Re

(

q

∑
n=1

βn −
p

∑
n=1

αn

)

> 0.

– Conditionally convergent if −1 < Re

(

q

∑
n=1

βn −
p

∑
n=1

αn

)

≤ 0.

– Divergent if Re

(

q

∑
n=1

βn −
p

∑
n=1

αn

)

≤ −1.

iv. ∀ z 6= 0, the series generally diverges if p > q + 1. However, the series comes to an end

(terminates) and the generalized hypergeometric function becomes a polynomial in z when one

or more of the numerator parameters alphap are negative integers.

The function pFq is implemented as HypergeometricPFQ in MATHEMATICA and can be used to

calculate both symbolic and numerical data.

The classical summation theorems of Gauss, Gauss second, Kummer, and Bailey for the series 2F1

and Watson, Dixon, Whipple, and Saalschütz for the serie 3F2, among others, are crucial in the theory

of generalized hypergeometric series.

Many scholars have been motivated and inspired to create and study hypergeometric functions

of two or more variables as a result of the hypergeometric function’s enormous popularity, huge

applicability, and generalized hypergeometric functions of one variable. During 1992-1996, in a series

of three research papers, the generalizations of the aforementioned classical summation theorems were

established by Lavoie et al. [6,16,17] who also attained numerous special cases and limiting cases for

their conclusions. Later on, Lewanowicz [18] and Vidunas [19] obtained further generalizations of

Watson’s and Kummer’s summation theorems, respectively.

In 2010-2011, the above-mentioned classical summation theorems were most broadly developed and

extended by Rakha and Rathie [20] and Kim et al. [5]. Computer programmes in MATHEMATICA

and MAPLE have also been used to obtain and verify those results.

In the theory of hypergeometric and generalized hypergeometric series, the 3F2 hypergeometric

function has a particularly noteworthy role. Despite this, the 3F2 hypergeometric function has several

uses in mathematics, see [10], for further information on these applications. Also it has a lot of

applications in physics and statistics such as: Random Walks: further details regarding this application

may be found at[11]. 3j, 6j and 9j Symbols, see [12,13]. For more applications, see [14,15]. In the

Generalized hypergeometric function (1.2), with p = 3, q = 2, α1 = a, α2 = b, α3 = c, β1 =
1
2 (a + b + 1) and β2 = 2c with argument z = 1, we will get the well-known Watson summation

theorem [2] viz.

3F2







α, β, γ

; 1
1
2 (α + β + 1), 2γ







=
Γ
(

1
2

)

Γ
(

γ + 1
2

)

Γ
(

1
2 α + 1

2 β + 1
2

)

Γ
(

γ − 1
2 α − 1

2 β + 1
2

)

Γ
(

1
2 α + 1

2

)

Γ
(

1
2 β + 1

2

)

Γ
(

γ − 1
2 α + 1

2

)

Γ
(

γ − 1
2 β + 1

2

) , (0.3)
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provided Re(2γ − α − β) > −1.

Bailey [1], in his paper mentioned several interesting applications by using the aforementioned

classical summation theorems. In 2010, these classical summation theorems have been extended by

Kim et al. [5]. However, here we would like to mention some of the extended summation theorems

that will be required in our present investigations.

• Extension of Gauss second summation theorem:

3F2







α, β, δ + 1

; 1
2

1
2 (α + β + 3), δ






=

Γ
(

1
2

)

Γ
(

1
2 α + 1

2 β + 3
2

)

Γ
(

1
2 α − 1

2 β − 1
2

)

Γ
(

1
2 α − 1

2 β + 3
2

)

×







(

1
2 (α + β − 1)− αβ

δ

)

Γ
(

1
2 α + 1

2

)

Γ
(

1
2 β + 1

2

) +

(

α+β+1
δ − 2

)

Γ
(

1
2 α
)

Γ
(

1
2 β
)







, (0.4)

for δ = 1
2 (α + β + 1), the result (1.4) reduces to the following well-known Gauss second

summation theorem [2,8] viz.

2F1







α, β

; 1
2

1
2 (α + β + 1)






=

Γ
(

1
2

)

Γ
(

1
2 α + 1

2 β + 1
2

)

Γ
(

1
2 α + 1

2

)

Γ
(

1
2 β + 1

2

) . (0.5)

• Extension of Watson summation theorem [5]:

4F3







α, β, γ, δ + 1

; 1
1
2 (α + β + 3), 2γ, δ







=
2α+β−2Γ

(

γ + 1
2

)

Γ
(

1
2 α + 1

2 β + 3
2

)

Γ
(

γ − 1
2 α − 1

2 β − 1
2

)

(α − β − 1)(α − β + 1)Γ
(

1
2

)

Γ(α)Γ(β)

×







γ1

Γ
(

1
2 α
)

Γ
(

1
2 β
)

Γ
(

γ − 1
2 α + 1

2

)

Γ
(

γ − 1
2 β + 1

2

) + γ2

Γ
(

1
2 α + 1

2

)

Γ
(

1
2 β + 1

2

)

Γ
(

γ − 1
2 α
)

Γ
(

γ − 1
2 β
)







, (0.6)

provided Re(2γ− α− β) > 1. Also, the constant γ1 and γ2 are given by γ1 = α(2γ− α) + β(2γ−

β)− 2γ + 1 − αβ
δ (4γ − α − β − 1) and γ2 = 4

δ (α + β + 1)− 8. For δ = 1
2 (α + β + 1).

For δ = 1
2 (α + β + 1), the result (1.6) reduces to the classical Watson summation theorem (1.3).

• Gauss summation theorem [2,8]:

2F1







α, β

; 1

γ






=

Γ (γ) Γ (γ − α − β)

Γ (γ − α) Γ (γ − β)
, (0.7)

provided Re(γ − α − β) > 0.
• Special case of (1.7) [[8],p.49]:

2F1







− 1
2 n, − 1

2 n + 1
2

; 1

γ + 1
2






=

2n (γ)n

(2γ)n

. (0.8)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2023                   doi:10.20944/preprints202307.1211.v1

https://doi.org/10.20944/preprints202307.1211.v1


4 of 9

• A definite integral due to MacRobert [7]:

∫ 1

0
xλ−1(1 − x)µ−1[1 + ax + b(1 − x)]−λ−µdx =

1

(1 + a)λ(1 + b)µ

Γ(λ)Γ(µ)

Γ(λ + µ)
, (0.9)

provided Re(λ) > 0, Re(µ) > 0 and the constant a and b are such that none of the expressions

1 + a, 1 + b and [1 + ax + b(1 − x)], 0 ≤ x ≤ 1 is not zero.
• Relation between Pochhammer symbol and Gamma function:

(d)n =
Γ(d + n)

Γ(d)
. (0.10)

• Elementary identities:

(−n)2m = 22m

(

−
1

2
n

)

m

(

−
1

2
n +

1

2

)

m

=
n!

(n − 2m)!
. (0.11)

(β)n+2m = (β)2m(β + 2m)n. (0.12)

(α)2n = 22n

(

1

2
α

)

n

(

1

2
α +

1

2

)

n

. (0.13)

• A result recorded in Rainville [[8], Equ. 8, p.57]:

∞

∑
n=0

[ n
2 ]

∑
m=0

A(m, n) =
∞

∑
n=0

∞

∑
m=0

A(m, n + 2m). (0.14)

The paper is organised as follows. In section 1, we shall give a new derivation of the extended Watson

summation theorem . As an applications, in section 2, we shall evaluate integrals involving generalized

hypergeometric function by employing extended Watson summation theorem (1.6), while section 3,

deals with some of the interesting special cases of our main findings.

The following is how the paper is set up. We will present a new derivation of the extended Watson

summation theorem (ref. 1.3) in section 1. The extended Watson summation theorem (1.6) will be used

in section 2 as an application for obtaining integrals involving generalized hypergeometric function

3F2, and section 3 will discuss some of the remarkable particular cases of our major results. endnote.

1. A new derivation of the result (1.6)

In this section, we shall give a new derivation of the extended Watson summation theorem (1.6).

For this, In order to derive the result (1.6), we proceed as follows.

Consider the integral, For Re(d) > 0:

I =
∫ ∞

0
e−ttd−1

4F4







α, β, γ, δ + 1

; t
1
2 (α + β + 3), 2γ, δ, d






dt.

By describing 4F4 as a series and changing the integration and series order, which is simply supported

by the series’ uniform convergence, we have

I =
∞

∑
n=0

(α)n(β)n(γ)n(δ + 1)n
(

1
2 (α + β + 3)

)

n
(2γ)n(δ)n(d)nn!

∫ ∞

0
e−ttd+n−1dt.
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Evaluating the well-known gamma integral and making use of the result (1.10), we have after some

simplification:

I = Γ(d)
∞

∑
n=0

(α)n(β)n(γ)n(δ + 1)n
(

1
2 (α + β + 3

)

n
(2γ)n(δ)nn!

. (1.1)

Summing up the series, we have

I = Γ(d) 4F3







α, β, γ, δ + 1

; 1
1
2 (α + β + 3), 2γ, δ,






. (1.2)

On the other hand, writing (2.1) in the following form:

I = Γ(d)
∞

∑
n=0

(α)n(β)n(δ + 1)n
(

1
2 (α + β + 3)

)

n
(δ)n2nn!

{

2n(γ)n

(2γ)n

}

.

Now, making use of the result (1.8), we have

I = Γ(d)
∞

∑
n=0

(α)n(β)n(δ + 1)n
(

1
2 (α + β + 3)

)

n
(δ)n2nn!

2F1







− 1
2 n, − 1

2 n + 1
2

; 1

γ + 1
2






.

Further, expressing 2F1 as a series, we have after some simplification,

I = Γ(d)
∞

∑
n=0

[ n
2 ]

∑
m=0

(α)n(β)n(δ + 1)n

(

− 1
2 n
)

m

(

− 1
2 n + 1

2

)

m
(

1
2 (α + β + 3)

)

n
(δ)n2n

(

γ + 1
2

)

m
m!n!

.

Now, making use of the identity (1.11), we have

I = Γ(d)
∞

∑
n=0

[ n
2 ]

∑
m=0

(α)n(β)n(δ + 1)n
(

1
2 (α + β + 3

)

)n(δ)n

(

γ + 1
2

)

m
(δ)n22m+nm!(n − 2m)!

.

Next, replacing n by n + 2m and making use of the result (1.14), we have

I = Γ(d)
∞

∑
n=0

∞

∑
m=0

(α)n+2m(β)n+2m(δ + 1)n+2m
(

1
2 (α + β + 3)

)

n+2m
(δ)n+2m

(

γ + 1
2

)

m
2n+4mm!n!

.

Now, making use of the identity (1.12) and after some simplification

I = Γ(d)
∞

∑
m=0

(α)2m(β)2m(δ + 1)2m
(

1
2 (α + β + 3)

)

2m

(

γ + 1
2

)

m
(δ)2m24mm!

∞

∑
n=0

(α + 2m)n(β + 2m)n(δ + 1 + 2m)n
(

1
2 (α + β + 3) + 2m

)

n
(δ + 2m)n2nn!

.
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Summing up the inner series, we have

I = Γ(d)
∞

∑
m=0

(α)2m(β)2m(δ + 1)2m
(

1
2 (α + β + 3)

)

2m

(

γ + 1
2

)

m
(δ)2m24mm!

× 3F2







α + 2m, β + 2m, δ + 1 + 2m

; 1
2

1
2 (α + β + 3) + 2m, δ + 2m






.

We now observe that the 3F2 appearing can be expressed with the help of the result (1.4) and once it

has been simplified and using the result (1.13) separating into four parts then summarizing the series

and employing the result(1.7), we obtain

I = Γ(d)
2α+β−2Γ

(

γ + 1
2

)

Γ
(

1
2 α + 1

2 β + 3
2

)

Γ
(

γ − 1
2 α − 1

2 β − 1
2

)

(α − β − 1)(α − β + 1)Γ
(

1
2

)

Γ(α)Γ(β)

×







γ1

Γ
(

1
2 α
)

Γ
(

1
2 β
)

Γ
(

γ − 1
2 α + 1

2

)

Γ
(

γ − 1
2 β + 1

2

) + γ2

Γ
(

1
2 α + 1

2

)

Γ
(

1
2 β + 1

2

)

Γ
(

γ − 1
2 α
)

Γ
(

γ − 1
2 β
)







, (1.3)

where the constant γ1 and γ2 are the same as given in equation (1.6). Finally, equating the results (2.2)

and (2.3), we arrive at our desired result (1.6). This completes the derivation of the result (1.6).

2. Application

In this section, by employing extended Watson summation theorem (1.6), the following integrals

employing generalized hypergeometric function 3F2 will be evaluated. With the constants a and b are

such that none of the expressions 1 + a, 1 + b and [1 + ax + b(1 − x)], 0 ≤ x ≤ 1 is not a zero., these

integrals are

∫ 1

0
xγ−1(1 − x)γ−1[1 + ax + b(1 − x)]−2γ

× 3F2







α, β, δ + 1

;
(1+a)x

1+ax+b(1−x)
1
2 (α + β + 3), δ






dx

=
1

(1 + a)γ(1 + b)γ

Γ(γ)Γ(γ)

Γ(2γ)
Ω, (2.1)

provided Re(γ) > 0, Re(2γ − α − β) > 1. Also Ω is the same as given in (1.6). Then

∫ 1

0
xβ−1(1 − x)2γ−β−1[1 + ax + b(1 − x)]−2γ

× 3F2







α, γ, δ + 1

;
(1+a)x

1+ax+b(1−x)
1
2 (α + β + 3), δ






dx

=
1

(1 + a)β(1 + b)2γ−β

Γ(β)Γ(2γ − β)

Γ(2γ)
Ω, (2.2)
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provided Re(β) > 0, Re(2γ − β) > 0, Re(2γ − α − β) > 0.

Also Ω is the same as given in (1.6).

∫ 1

0
xβ−1(1 − x)

1
2 (α−β+3)−1[1 + ax + b(1 − x)]

1
2 (α+β+3)

× 3F2







α, γ, δ + 1

;
(1+a)x

1+ax+b(1−x)

2γ, δ






dx

=
1

(1 + a)β(1 + b)
1
2 (α−β+3)

Γ(β)Γ
(

1
2 (α − β + 3)

)

Γ
(

1
2 (α + β + 3)

) Ω, (2.3)

provided Re(β) > 0, Re(α − β) > −3, Re(2γ − α − β) > 0.

Also Ω is the same as given in (1.6).

∫ 1

0
xδ(1 − x)2γ−δ−2[1 + ax + b(1 − x)]−2γ

× 3F2







α, β, γ

;
(1+a)x

1+ax+b(1−x)
1
2 (α + β + 3), δ






dx

=
1

(1 + a)δ(1 + b)2γ−δ−1

Γ(δ + 1)Γ (2γ − δ − 1)

Γ (2γ)
Ω, (2.4)

provided Re(δ) > 0, Re(2γ − δ) > 1, Re(2γ − α − β) > 1.

Proof. In order to establish the results (3.1) to (3.4) we proceed as follows:

By using I to represent the left side of (3.1), we have

I =
∫ 1

0
xγ−1(1 − x)γ−1[1 + ax + b(1 − x)]−2γ

× 3F2







α, β, δ + 1

;
(1+a)x

1+ax+b(1−x)
1
2 (α + β + 3), δ






dx.

Expressing 3F2 as series, change the order of integration and summation, we get after some algebra.

I =
∞

∑
n=0

(α)n(β)n(δ + 1)n(1 + a)n

(

1
2 (α + β + 3)

)

n
(δ)nn!

∫ ∞

0
xγ+n−1(1 − x)γ−1[1 + ax + b(1 − x)]−2γ−ndx.

Now, evaluating the integral with the help of the known integral (1.11) due to MacRobert, we have

I =
Γ(γ)

(1 + a)γ(1 + b)γ

∞

∑
n=0

(α)n(β)n(δ + 1)n
(

1
2 (α + β + 3)

)

n
(δ)nn!

Γ(γ + n)

Γ(2γ + n)
.

Using the relation (1.10), we have

I =
Γ(γ)Γ(γ)

(1 + a)γ(1 + b)γ

∞

∑
n=0

(α)n(β)n(γ)n(δ + 1)n
(

1
2 (α + β + 3)

)

n
(2γ)n(δ)nn!

.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2023                   doi:10.20944/preprints202307.1211.v1

https://doi.org/10.20944/preprints202307.1211.v1


8 of 9

Summing up the series, we have

I =
Γ(γ)Γ(γ)

(1 + a)γ(1 + b)γΓ(2γ) 4F3







α, β, γ, δ + 1

; 1
1
2 (α + β + 3), 2γ, δ







Now, it’s easy to see that the 4F3 appearing can be evaluated with the help of the result (1.6) and we

easily arrive at the right-hand side of our first integral (3.1). In exactly, the same manner, the other

integrals (3.2) to (3.4) can be established. So we left this to the interested reader as an exercise.

Remark 1. For a similar proof, we refer a recent paper by Jun and Kilicman [4].

3. Special Cases

We will discuss a few of the remarkable specific cases of our major results in this section. For this,

it’s easily seen that in the integrals (3.1) to (3.4), if n is zero or a positive integer and β = −2n and α is

replaced by α + 2n or β = −2n − 1, α is replaced by α + 2n + 1. In both cases, one of the two terms

appearing in the right-hand side of the integrals (3.1) to (3.4) vanish and we can easily obtain eight

new and interesting results. But due to lack of space we are not given here.

4. Concluding Remark

The fact that generalized hypergeometric functions are always reduced to gamma functions and

that the results are always significant from an application standpoint should be noteworthy at this

point. In this note, we have given a new derivation of the extended Watson theorem due to Kim et

al.. As an application, we evaluated four interesting integrals involving generalized hypergeometric

functions. In the end, we mention outlines of the special cases. In order to wrap up this note, we

would like to mention that evaluation of finite single and double integrals is now being studied as an

application and will be covered in our upcoming article in this area.
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