
Article

Not peer-reviewed version

Target soybean leaf automatic

segmentation based on object

detection and interactive

segmentation models

Dong Wang , Zetao Huang , Haipeng Yuan , Yun Liang 

*

 , Shuqin Tu , Cunyi Yang

Posted Date: 18 July 2023

doi: 10.20944/preprints202307.1200.v1

Keywords: plant phenotype; soybean leaf; image segmentation; object detection

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3052819
https://sciprofiles.com/profile/3053543
https://sciprofiles.com/profile/317584
https://sciprofiles.com/profile/1814174


 

Article 
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Abstract: Plant phenotype plays an important role in crop breeding and planting. Leaf phenotype is an 

important part of plant phenotype. In order to analyze the leaf phenotype, the target leaf is required to be 

segmented from the complex background image. In this paper, an automatic soybean leaf segmentation 

method based on object detection and interactive segmentation models is proposed. Firstly, the Libra R-CNN 

object detection algorithm is used to detect all soybean leaves in the image. Then, based on the idea that the 

target soybean leaf is located in the center of the image and the area is large, the detection bounding box of the 

target leaf is selected. In order not to destroy the segmentation result, the bounding box is optimized to 

completely enclose the whole leaf. Finally, according to the optimized bounding box, the prior channels of 

foreground and background are constructed using Gaussian model. The two channels together with the 

original image are as the input of the interactive object segmentation with inside-outside guidance model to 

segment the target soybean leaf. A large number of qualitative and quantitative experimental results show that 

the method has high segmentation accuracy and strong generalization capacity. 

Keywords: plant phenotype; soybean leaf; image segmentation; object detection  

 

1. Introduction 

The study of soybean leaf phenotype plays an important role in breeding new soybean varieties, 

real-time monitoring of soybean plant growth, and refined cultivation management (Reynolds et al., 

2020). The phenotype parameters of soybean leaf include leaf length, leaf width, leaf area, etc. To 

obtain these data, traditional methods rely on manual measurement, which is time-consuming and 

causes irreversible damage to crops (Yang et al., 2020). To avoid damaging plant growth, data 

collection in a non-contact manner is gradually becoming a trend (ward et al., 2019). Images, as the 

most convenient and easily accessible medium, have become the main data type. The target leaf 

image for phenotype parameter measurement usually contain complex backgrounds when collecting 

under the growth state of soybean plants. The background contains leaves with the same color and 

texture as the target leaves, which brings difficulty to segment the target leaves. 

Fast and accurate leaf image segmentation under complex background conditions is always a 

difficult problem. Many traditional techniques have been adopted to solve the issue (Kumar and 

Domnic, 2019; Bai et al., 2017; Tian et al., 2019; Gao and Lin, 2018). Those techniques often heavily 

rely on initial parameters, which limits the application. In recent years, deep learning based 

segmentation models for crop are widely developed. Bhagat et al. constructed a leaf segmentation 

network with an encoder-decoder structure, where EfficientNet-B4 is as an encoder and a lateral 

output structure is introduced to improve segmentation accuracy (Bhagat et al., 2022). Wang et al. 

proposed an automated maize leaf segmentation algorithm and utilized image restoration technique 

to improve the segmentation results (Wang et al.,2020). Liu et al. combined Mask R-CNN with 

DBSCAN clustering algorithm to produce an accurate segmentation result (He et al., 2017; Liu et al., 

2020). Tian et al. designed an improved Mask R-CNN model by combining Mask R-CNN’s mask 

prediction branch with the U-Net model to improve the segmentation accuracy for apple blossom 
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images (Tian et al., 2020). All those methods are applied to simple scenarios. For complex images, 

Wang et al. proposed a DUNet model, which first removed the complex background using 

DeepLabv3 (Chen et al., 2018) and then segmented the leaf lesion spots using the UNet (Ronneberger 

et al., 2015) model (Wang et al., 2021).Tassis et al. proposed a two-stage model by identifying the 

target leaf region first with Mask R-CNN, and then segmenting the leaf lesion region with the UNet 

model (Tassis et al., 2021). Our model also includes two-stage of object detection and target object 

segmentation. However, a more difficult problem of segmenting target leaf from multiple similar 

leaves is given. 

Object detection model is mainly divided into single stage and two-stage detectors. YOLO 

(Redmon et al., 2016; Redmon et al., 2017) and SSD (Liu et al., 2016; Chandio et al., 2022) are single 

stage detectors. They are simpler and faster than two-stage detectors, but their accuracy is relatively 

weak. R-CNN (Girshick et al., 2014) introduced a two-stage detector for the first time. The followed 

Fast RCNN (Girshick, 2015) and Fast R-CNN (Ren et al., 2015) promoted the development. Faster R-

CNN proposed a region proposal network and adopted an end-to-end training approach. Cascade 

R-CNN extended Faster R-CNN to a multi-stage detector (Cai and Vasconcelos, 2018). Mask R-CNN 

extended Faster RCNN by adding a mask branch (He et al., 2017). Oriented R-CNN (xie et al., 2021) 

generated high-quality oriented candidate boxes. This paper adopted Libra R-CNN (Pang et al., 2019) 

which obtains better detection accuracy by optimizing sampling, feature fusion and Loss function 

definition. 

We adopt interactive segmentation model to segment target leaf, which can provide prior 

information. GrabCut uses bounding boxes to guide the segmentation process, which is one of the 

pioneering works of interactive segmentation tasks (Rother et al., 2004). Similarly, Xu et al. also uses 

bounding boxes as input to generate a two-dimensional distance map, and then segments the objects 

within the box using an encoder and decoder network model (Xu et al., 2017). IFCN guides users to 

click on positive (foreground) and negative (background) points for interactive segmentation based 

on the automatic segmentation model (Xu et al., 2016; Long et al., 2015). proposed a DEXTR 

segmentation model using four extreme points (Maninis et al., 2018). When the interactive click meets 

the conditions of multiple objects, Li et al. provided a solution to select the optimal result (Li et al., 

2018). Song et al. proposed an interactive image segmentation method based on reinforcement 

learning to simplify user interaction (Song et al., 2018). Benenson et al. proposed a two-stage 

interactive segmentation method by combining bounding box and click two interaction modes 

(Benenson et al., 2019). First a coarse result is obtained according to bounding box, and then the fine 

result is generated by utilizing click. Lin et al. proposed that the first point generally represents global 

information, while the subsequent points are all local (Lin et al., 2020). Different weights are assigned 

to the first point to achieve better segmentation results. The paper chooses interactive object 

segmentation with inside-outside guidance model proposed by Zhang et al. due to its convenient 

interaction and ideal result for our problem (Zhang et al., 2020). 

This paper presents a target soybean leaf segmentation model. First, all soybean leaves in the 

image are detected using object detection algorithm. Then the target soybean leaf is located based on 

the idea that the target soybean leaf is in the central position of the image and occupies a large image 

region. Finally, the target background and foreground priors are provided according to the bounding 

box of target soybean leaf and they guide the segmentation model to obtain accurate target soybean 

leaf. The contributions of this research can be summarized as follows: 1) An automatic target soybean 

leaf segmentation model was designed, and the results of qualitative and quantitative analysis 

showed that the model achieved satisfactory segmentation effect. 2) An accurate target soybean leaf 

location algorithm based on the leaf position and size is provided. And a localization accuracy driven 

parameter setting is designed to balance the importance of position and size. 3) A segmentation 

accuracy guided tolerance offset distance is proposed for optimizing the leaf bounding box. Multiple 

offset strategies to adjust the vertex positions of target bounding box are designed to handle the 

fluctuation of the segmentation accuracy. The scheme to achieve the maximize segmentation 

accuracy is selected. 
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2. Materials and Methods  

2.1. Data Set Acquisition  

The soybean leaf images used were taken in an experimental soybean cultivation field. We 

performed cropping and image enhancement operations on the collected images and scaled them to 

a uniform resolution of 512×512. Totally, we acquired 2954 images to construct data set, dividing 

1619 images for model training and 1335 for model evaluation. Figure 1 shows samples of the leaf 

images in data set. 

 

Figure 1. Soybean leaf samples in data set. 

For leaf detection and segmentation model based on deep learning, training set is required. The 

quality of training set tends to affect the prediction accuracy of the model. The leaf detection and 

segmentation networks in our model are both supervised and the training data need to be annotated. 

For images with multiple similar objects, it is necessary to annotate all objects to improve detection 

accuracy. Labelme is a commonly used free and open source annotation software for data annotation. 

Therefore, we utilized Labelme to label all the salient leaves in the leaf images based on the idea that 

the target leaf is also salient. The labelled samples for leaf detection model are shown in Figure 2a. 

The goal of the leaf segmentation network is to segment the target leaf. So when constructing the 

training set, we only need to label the mask of the target leaf in the image, as shown in Figure 2b. 

 

Figure 2. Image annotation samples. (a) detection samples. (b) Segmentation samples. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2023                   doi:10.20944/preprints202307.1200.v1

https://doi.org/10.20944/preprints202307.1200.v1


 4 

 

2.2. Methods  

A soybean leaf image segmentation model is proposed and the pipeline is shown in Figure 3. 

Firstly, the image is input into the leaf detection network named as Libra R-CNN, which predicts all 

possible leaf bounding boxes in the image. Secondly, the leaf with the larger leaf bounding box and 

closer to the center of the image is selected as target leaf. Finally, the target leaf, together with its 

bounding box, is input into the bootstrap segmentation network. The output is the segmentation of 

the target leaf. 

 

Figure 3. Overview of the leaf segmentation model. 

2.2.1. Libra R-CNN Network for Leaf Detection 

The overall architecture of leaf detection model uses Libra R-CNN network, which is composed 

of feature extraction, region proposal generation and region proposal optimization, as shown in 

Figure 4. Firstly, feature extraction is performed on the input image. In this phase, the feature maps 

of different layers are fused and enhanced. Secondly, a large number of region proposals are 

generated on the basis of the output feature maps. Finally, the final prediction results are obtained 

by optimizing the region proposals. 
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Figure 4. The overall architecture of Libra R-CNN. 

a) Feature extraction for leaf detection 

The feature extraction module includes basic feature extraction, feature fusion and feature 

enhancement, and its overall structure is shown in Figure 5. Basic feature extraction uses the residual 

neural network (ResNet) (He et al., 2016), which shows strong feature extraction ability and is widely 

used in the feature extraction module of various deep neural networks. Feature maps of four different 

sizes are built from bottom to top. A pyramid structure of feature maps is constructed by using the 

forward propagation of convolutional neural networks to obtain feature maps of different size. The 

size between two neighbor feature maps with different resolutions is twice.   

 

Figure 5. Feature extraction for leaf detection module. 

Feature fusion follows basic feature extraction. In convolutional networks, the low-level feature 

map has less semantic information, and the target location is relatively accurate. The high-level 

feature map has more semantic information, and the target location is rough. Feature fusion combines 

low-level and high-level features to fully utilize the features of each level, thereby better capturing 

image details and contextual information. Feature pyramid network (FPN) (Lin et al., 2017) is 

adopted for feature fusion. The feature maps output {B2, B3, B4, B5} from the last layer of each stage 

in ResNet50 except the first stage are used to construct the feature map pyramid. First double 

upsampling is performed on B5 to achieve the same resolution as B4. At the same time, 1x1 

convolution is operated on B4 to get the same channel numbers as the upsampling feature maps of 

B5. Then add them together element by element to obtain the new feature map as C4. And so on to 

get feature maps C3 and C2, as shown in Figure 5. So the features are continuously fused. 

Feature enhancement is given after feature fusion. Multi-level features are further strengthened 

using the same deeply integrated balanced semantic features. First, the multi-level features {C2, C3, 

C4, C5} is scaled to the same size such as C4 with interpolation (C5) or max-pooling (C2 and C3) 

operation respectively. Set the resized features as {C2, C3, C4, C5}, the average feature is calculated 

as C = 14 ∑ Ci5i=2   (1) 
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Then the average feature is further refined to be more discriminative by embedded Gaussian 

non-local attention (Wang et al., 2018). That is, for feature 𝑥𝑖  in position i and feature 𝑥𝑗  in any 

position j in average feature C, the attention is defined as yi = 1∑ eθ(xi)Tϕ(xj)∀j ∑ eθ(xi)Tϕ(xj)g(xj)∀j   (2) 

where θ, ϕ and g are 1*1 convolution operator.  

With the attention as residual block, feature 𝑟𝑖 in position i in the refined average feature R is 

written as  ri = Wryi + xi (3) 

where 𝑊𝑟 is convolution operation with the same channel number as x. 

The refined average feature R is as the integrated balanced semantic features. Feature R is then 

rescaled to the same resolutions as {C2, C3, C4, C5} and is added with them separately to form new 

multi-scale features {P2, P3, P4, P5} to strengthen the features. The features {P2, P3, P4, P5} are used 

for leaf detection.   

b) Region proposal generation 

The region proposal generation is including three steps, as shown in Figure 6. First, according 

to input image size and feature maps, the anchor generator generates thousands of anchors. Second, 

IoU-balanced sampling is executed on the anchors to select. Third, with the selected anchors and 

feature maps as the input, region proposal generator generates region proposals.  

 

Figure 6. Region proposal generation. 

The anchors are generated based on the feature maps. Specifically, for each feature point of one 

feature map, three anchors are generated on the corresponding image position. The anchors are with 

the same area and three different aspect ratios of 1:1, 1:2 and 2:1, as shown in Figure 7. We assign the 

anchor size of 1:1 aspect ratio for feature map P2 to be 13*13. Since deeper feature map has a wider 

field of perception and can better detect large-sized objects, the anchors mapped to the original image 

are assigned a larger size. According to the scale factors between the sizes of feature maps, the anchor 

sizes of 1:1 aspect ratio for feature map P3, P4 and P5 are 25*25, 50*50 and 100*100 separately.  
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Figure 7. Anchor generation based on feature point of different scale feature maps. (a) three anchors 

from feature point in feature map P2 ; (b)three anchors from feature point in feature map P3. 

The traditional random sampling method ignores large number of hard samples, which can 

improve the accuracy of the network. IoU-balanced Sampling is adopted to mine hard anchor 

samples. IoU(Intersection over Union) is the ratio of the overlap area and the union area between the 

predicted bounding box and the ground truth, which is defined as 

If an anchor has an IoU value less than 0.3, it is classified as a negative sample. If the IoU value 

is greater than 0.7, it is classified as a positive sample. In other cases, anchors are classified as 

discarded samples and do not participate in the loss calculation. IoU-balanced Sampling uses 

stratified sampling to select hard negative samples. This is done by dividing the sampling interval 

equally into K bins according to the IoU, and then selecting samples from them uniformly.  

The region proposal generator generates the region proposals. First, the class (foreground or 

background) and regression parameters (the position, length and width) are predicted for each 

anchor. Then proposals are generated according to the regression parameters. Finally, region 

proposals are obtained by non-maximum suppression (NMS) which searches for proposals with the 

highest prediction probability in the local area. 

c) Region proposal optimization 

Region proposal optimization is the process of adjusting the position, width and height of region 

proposals and predicting the probability scores of each box for all classes. The network structure is 

shown in Figure 8. First, RoIAlign converts features of RoI (region of interest) to a small feature map 

with a fixed size of 7×7. RoIAlign, proposed by Mask R-CNN, is a feature extraction module for RoIs. 

It maps the region proposals to the corresponding feature map to obtain RoIs and then performs a 

maximum pooling operation on thses specific regions to produce 7×7 feature matrices. To pool the 

specific region, a bilinear interpolation is used to calculate each element value of the matrices. Second, 

these 7×7 feature matrices are flattened and inputed into two serial fully connected layers. Then two 

parallel branches of the fully connected layer are followed, which output the class probabilities and 

regression parameters for each proposal separately. Finally, the regression parameters are used to 

correct the position and size of the proposals. A series of leaf bounding boxes can be obtained by 

selecting the boxes with high leaf class probability.  

IoU = Area of OverlapArea of Union   (4) 
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Figure 8. Region proposal optimization. 

d) Loss function definition for leaf detection 

The loss of the leaf detection network consists of two parts, one for the RPN and the other for 

the region proposal optimization network, which is defined as 𝐿 = 𝐿𝑟𝑝𝑛 + 𝐿𝑟𝑝𝑜 (5) 

The loss function 𝐿𝑟𝑝𝑛 for the RPN network is given as 𝐿𝑟𝑝𝑛 = 1𝑁𝑐𝑙𝑠 ∑  𝑖 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖∗) + 1𝑁𝑟𝑒𝑔 ∑  𝑖 𝑝𝑖∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖∗)  (6) 

which includes the classification loss 𝐿𝑐𝑙𝑠 and the regression loss 𝐿𝑟𝑒𝑔 of anchors, where 𝑝𝑖 is the 

probability that anchor i is predicted to be positive. 𝑝𝑖∗ is 1 if anchor i is positive and 0 otherwise. 𝑡𝑖 
is the four predicted regression parameters on anchor i, while 𝑡𝑖∗ is the actual regression parameters. 

The anchor classification loss  𝐿𝑐𝑙𝑠 defined by binary cross-entropy is  𝐿𝑐𝑙𝑠 = −[𝑝𝑖∗𝑙𝑜𝑔(𝑝𝑖) + (1 − 𝑝𝑖∗)𝑙𝑜𝑔(1 − 𝑝𝑖) (7) 

the regression loss 𝐿𝑟𝑒𝑔 is based on balanced L1 loss. The key idea of balanced L1 loss is suppressing 

the regression gradients from outliers (inaccurate samples) to balance the involved samples and tasks. 

The gradient function for 𝐿1𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑(𝑥) is given as 𝜕𝐿1𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑(𝑥)𝜕𝑥 = { 𝛼 ln(𝑏|𝑥| + 1)       𝑖𝑓|𝑥| < 1           𝛾                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8) 

where α  and b are control factors, 𝛾  is a constant. To ensure continuity of the gradient, set α ln(b + 1) = γ. In our experiments, 𝛼 is set to 0.5 and 𝛾 is set to 1.5. 

The balanced L1 loss is got by integrating the gradient formulation in Equation (8) as 

𝐿1𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑(𝑥) = {𝛼𝑏 (𝑏|𝑥| + 1)𝑙𝑛(𝑏|𝑥| + 1) − 𝛼|𝑥| 𝑖𝑓|𝑥| < 1𝛾|𝑥| + 𝐶 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (9) 

where C is a constant.  

The definition of regression loss 𝐿𝑟𝑒𝑔 using Balanced L1 Loss is 𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖∗) = ∑  𝑗∈{𝑥,𝑦,𝑤,ℎ} 𝐿1𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑(𝑡𝑖𝑗 − 𝑡𝑖𝑗∗ )  (10) 
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where 𝑡𝑖𝑗  (j=x, y, w, h) is a specific regression parameter of 𝑡𝑖 , which is used to correct the x-

coordinate, y-coordinate, height and width of Anchor respectively, and 𝑡𝑖𝑗∗  is a specific regression 

parameter of 𝑡𝑖∗. The loss of leaf bounding box prediction network 𝐿𝑏𝑝𝑛 is defined as 

Here 𝑝𝑖 ′ is the softmax probability of proposal i for each category (including background). 𝑢𝑖 
is the actual category label. 𝑡𝑖𝑢𝑖  is the predicted regression parameters for the category 𝑢𝑖 
corresponding to proposal i  and 𝑣𝑖  is the actual regression parameters. The classification loss 𝐿𝑐𝑙𝑠1 of the proposals is defined using the cross-entropy loss for multiple classifications as 𝐿𝑐𝑙𝑠1(𝑝𝑖 ′ , 𝑢𝑖) = −𝑙𝑜𝑔(𝑝𝑖𝑢𝑖) (12) 

where 𝑝𝑖𝑢𝑖 is the predicted probability of the category 𝑢𝑖 corresponding to proposal i. In this study, 

although 𝐿𝑐𝑙𝑠 and 𝐿𝑐𝑙𝑠1 are used for different purposes, one for binary classification and the other 

for multiple classification, since the leaf bounding box prediction network predicts only two category 

probabilities for a proposal: background and leaf, 𝐿𝑐𝑙𝑠1 here is equal to 𝐿𝑐𝑙𝑠. The regression loss 𝐿𝑟𝑒𝑔 

is used to defined the regression loss of Proposals, which is calculated in equation (10). 

2.2.2. Target Leaf Localization 

We have detected the rectangular bounding boxes of all possible leaves in the image during the 

detection phase. However, only the leaf is needed which is located in the central region of the image 

and with a large size, so is the bounding box. The distance between the two center points of the image 

and each rectangular bounding box is used to measure the position, which is defined as  𝑑𝑖 = √(𝑝𝑖(𝑥) − 𝑐(𝑥))2 + (𝑝𝑖(𝑦) − 𝑐(𝑦))2 (13) 

where 𝑝𝑖 is the center position of the i-th rectangular bounding box and c is the center position of 

the image. We normalize the distance as 𝑑𝑛𝑖 = 𝑑𝑖−𝑑𝑚𝑖𝑛𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛  (14) 

where 𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑑𝑖} and dmin = min{di}, that is, 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 is the maximum distance and 

the minimum distance of all 𝑑𝑖. 
Similarly, set the area of the i-th rectangular bounding box 𝑆𝑖 , the maximum area and the 

minimum area of all bounding boxes 𝑆𝑚𝑎𝑥 and 𝑆𝑚𝑖𝑛. The normalization is  𝑆𝑛𝑖 = 𝑆𝑖−𝑆𝑚𝑖𝑛𝑆𝑚𝑎𝑥−𝑆𝑚𝑖𝑛  (15) 

The maximum area and the smallest distance are expected for the target bounding box. Gaussian 

function is used to balance the role of area 𝑆𝑛𝑖  and position 𝑑𝑛𝑖. The target bounding box is founded 

by the maximum product of two Gaussian functions, that is  {𝑒(−𝑑𝑛𝑖𝜎1 ) ∗ 𝑒(−(1−𝑆𝑛𝑖)𝜎2 )}    𝑖    𝑚𝑎𝑥  (16) 

where σ1 and σ2 are control parameters. As shown in Figure 3., the leaf detection model detects all 

leaves marked by bounding boxes and then the target leaf localization model finds the target 

bounding box. 

a) Accuracy driven parameter setting for target leaf localization 

The control parameters 𝜎1, 𝜎2 are two key parameters of the target leaf localization module. 

In order to find the ideal values for 𝜎1, 𝜎2, we took 20 numbers in the interval of (0,2] as the 

candidates in an equally spaced manner. That is, totally 400 set of 𝜎1 and 𝜎2 are provided. Since 

the target leaf is located by the position and area, we regard the center of bounding box predicted by 

Libra R-CNN as the leaf position and the area of bounding box as the leaf area. In addition, we 

introduce a label to mark whether a leaf is the target. If the label is 1, it shows the leaf is the target, 

otherwise, it is not. We tested on 1335 soybean leaf images including 2956800 bounding boxes. The 

𝐿𝑟𝑝𝑜 = − ∑  𝑖 𝐿𝑐𝑙𝑠1(𝑝𝑖 ′ , 𝑢𝑖) + 1𝑁𝑐𝑙𝑠 ′ ∑  𝑖 [𝑢𝑖 > 0]𝐿𝑟𝑒𝑔(𝑡𝑖𝑢𝑖 , 𝑣𝑖)  (11) 
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results of the experiment are shown in Figure 9, where the green dots indicate all estimated target 

leaves correct. We calculated the average values of 𝜎1 and 𝜎2 corresponding to those green dots as 

the final parameter values. That is, 𝜎1 = 0.3 and 𝜎2 = 1.4. 

 

Figure 9. parameter affection on target leaf localization. 

b) Vertex offset strategy for target leaf bounding box optimization 

In some cases, the bounding box predicted by the leaf detector cannot completely enclose the 

whole leaf, as shown in Figure 10, which will lead to incomplete segmentation results. If the vertices 

of the bounding box are moved outward by a certain distance to make the bounding box include the 

whole leaf, the segmentation effect can be improved. The new vertex coordinates moving outward 

are calculated as (𝑥i, 𝑦i) = (xi′ + (−1)𝛾1𝑑𝑡 , yi′ + (−1)𝛾2𝑑𝑡) (17) 

where xi′, yi′(i = 1,2,3,4) are the original coordinates of the vertex, 𝑥i, 𝑦i are the coordinates after 

moving, 𝑑𝑡 is the moving distance and 𝛾1, 𝛾2 are the factors measuring the relative positions of the 

vertices. 𝛾1 is equal to 1 if the vertex is on the left side of the bounding box and 0 otherwise, and 𝛾2 

is equal to 1 if the vertex is on the upper side of the bounding box and 0 otherwise. 

Bounding box optimization is to improve leave segment accuracy. We provide a strategy for 𝑑𝑡 

parameter setting guided by segment accuracy. Set five values 0, 5, 10, 15 and random value in [0,15] 

for 𝑑𝑡 to correct target leaf bounding box. We train five target leaf segmentation network according 

to the five setting for 𝑑𝑡. Set these five leaf segmentation networks are called Fix0_SNet, Fix5_SNet, 

Fix10_SNet, Fix15_SNet and Ran_SNet. To evaluate the segmentation accuracy, we utilize five leaf 

bounding box under five 𝑑𝑡 settings as input. The experiment results show the highest segmentation 

accuracy from the combination of Fix10_SNet with 𝑑𝑡=10  and test input of optimized bounding box 

with 𝑑𝑡 = 5. Experiment details and analysis in 3.1. 
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Figure 10. Bounding box optimization. (a) bounding box enclosing part leaf; (b) optimized bounding 

box. 

2.2.3. Target Leaf Segmentation Network 

The target leaf segmentation model is consisted of four stages, as shown in Figure 11. (1) input 

data processing, where outside information and inside information of target leaf are given. (2) feature 

extraction, where the multi-scale features of the target leaf are extracted. (3) feature refinement, where 

the multi-scale features are upsampling and fused to repair boundary feature of segmentation region. 

(4) the mask prediction, where the mask of target leaf is generated. 

 

Figure 11. Target leaf segmentation model. 

a) Input data processing 

The input data processing introduces prior guidance for target leaf segmentation model. It 

consists of three steps, as shown in Figure 12. (1) the part region of original image is used for target 

leaf segmentation. Image cropping operation is executed to obtained the part region by shifting 30 

pixels outwards along the target leaf bounding box. (2) the cropped image is scaled to a standard size 

(e.g., 512×512), and the vertex coordinates of the target leaf bounding box are adjusted accordingly. 

(3) two single-channel Gaussian heat maps are constructed to provide background and foreground 
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prior guidance according to the target leaf bounding box. Using the center point coordinates (𝑥0,𝑦0) 

of the bounding box, the channel for foreground prior guidance is defined by Gaussian heat map as 𝐹𝑃 = 𝑒(−(𝑥−𝑥0)2+(𝑦−𝑦0)2𝜎2 )
 (18) 

where 𝜎 = 5√𝑙𝑜𝑔2. Similarly, using the 4 vertex coordinates {(𝑥𝑖 , 𝑦𝑖) | i∈{1,2,3,4}} of the bounding box, 

the channel for background prior guidance is 𝐵𝑃 = 𝑚𝑎𝑥{𝑒(−(𝑥−𝑥𝑖)2+(𝑦−𝑦𝑖)2𝜎2 )|𝑖 ∈ {1,2,3,4}} (18) 

The two Gaussian heat maps are concatenated with the scaled image to form an input data with 

five channels for target leaf segmentation model. 

 

Figure 12. - Input data processing. 

b) Feature extraction for target leaf segmentation 

The feature extraction network adopts a structure design similar to FPN, as shown in Figure 13, 

including basic feature extraction and semantic information fusion. In the basic feature extraction 

part, the ResNet101 is used to construct a pyramid structured multi-scale feature map. Unlike the 

general FPN structure, the deepest feature map output from ResNet101 is processed by the pyramid 

scene parsing (PSP) (Zhao et al., 2017) module to enrich the feature representation with global 

contextual information. The structure of PSP module is shown by Figure 14. Firstly, the input feature 

map is averaged by four pooling windows to produce four pooled feature maps with size 1*1, 2*2, 

3*3 and 6*6 respectively. Secondly, these feature maps are operated in sequence by convolution, batch 

normalization and finally up-sampled to generate multi-scale feature maps with the same size as the 

original feature map. Finally, the generated multi-scale feature maps and the original feature map 

are concatenated and followed by convolution and batch normalization to output a feature map of 

semantic information fusion. After enriching the feature representation of the last layer, FPN is used 

to fuse the feature maps of adjacent stages through the top-down path and the lateral path. 
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Figure 13. Feature extraction for target leaf segmentation. 

 

Figure 14. PSP module. 

C) Feature refinement 

The multi-scale feature maps extracted from the feature extraction network lose feature details, 

which may destroy the boundary of segment region. The feature refinement network aims to repair 

the lost boundary feature by up sampling and fusing the multi-scale feature information. The 

structure of the feature refinement network is shown in Figure 15. Firstly, the residual block is used 

for feature enhancement. The number of residual blocks is different for different layers, where 3, 2, 

1, 0 are for C5, C4, C3 and C2 separately. Next, up-sampling is performed on these enhanced feature 

maps so that their size is equal to the lowest level feature map P2. Finally, the feature maps P2, P3, 

P4 and P5 are concatenated to obtain the refined feature map. 
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Figure 15. Feature refinement module. 

d) Mask prediction 

The process of mask prediction is shown in Figure 16. The refined feature map is first passed 

through the mask predictor to generate a target mask, and then the mask is mapped back to the 

original image. The predictor adopts a structure similar to the residual block. Three serial convolution 

layer operators act on and add the input feature map. The result is followed by a batch normalization 

operation to generate the mask of target leaf. According to the position and size of target leaf 

bounding box, the mask is mapped to the original image so as to segment the target leaf from the 

original image. 

 

Figure 16. Mask prediction. 

e) Loss function definition for leaf segmentation 

In order to better supervise the model training, we not only construct the loss for the final 

generated mask, but also calculate the loss for the mask predicted from each level of CoarseNet (C2, 

C3, C4, C5). Therefore, the total loss of the model is the sum of the five losses L = ∑ L𝑘5k=1   (19) 

The loss Lk is defined using binary cross-entropy loss as 
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𝐿𝑘 = − 1𝑁 ∑ [𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]𝑖   (20) 

where 𝑝𝑖 is the predicted value of pixel i of mask k and 𝑦𝑖 (0 or 1) is the ground truth.  

3. Experimental Results and Analysis 

The computer configurations for the model experiments are shown in Table 1. We trained the 

leaf detector and the leaf segmentation network separately. The training parameter settings for the 

two models are shown in Table 2. 

Table 1. Computer configuration. 

Configuration Parameter 

CPU Intel(R) Core(TM) i7 - 6700 CPU 

GPU GeForce GTX 1080 Ti 

Operating system Ubuntu 22.04 LTS 

Base environment CUDA : 11.6 

Development environment Pycharm2022 

Table 2. Training setting. 

Parameter Leaf detector Leaf segmentation network 

Epoch 60 100 

Learning rate 0.001 1×10-8 

Batch 4 5 

Weight decay 0.0005 0.005 

Momentum 0.9 0.9 

3.1. Vertex Offset Strategy for Bounding Box 

The vertex coordinates of bounding box have an important impact on the leaf segmentation 

results. In this experiment, we explore tolerance offset distance strategy for vertex coordinates of 

bounding box to maximize leaf segmentation accuracy. It refers to the strategy of combining leaf 

segmentation networks trained by supervised data with different tolerance offset distance 𝑑𝑡. In this 

experiment, we use 0, 5, 10, 15 and random offset distance in the range of [0,15] to train five leaf 

segmentation networks for comparison and analysis. These five leaf segmentation networks are 

called Fix0_SNet, Fix5_SNet, Fix10_SNet, Fix15_SNet and Ran_SNet. When evaluating the 

segmentation accuracy of the overall model, four offset distance 𝑑𝑡 is separately tested again. So 

there are totally 20 combination schemes and the corresponding segmentation accuracies are shown 

in Figure 17a. X-axis represents offset distance 𝑑𝑡 , Y-axis represents segmentation accuracies 

measured by AP and five segmentation networks are marked by five colors. We may notice the 

highest accuracy of 0.976 is from the combination of test  𝑑𝑡 = 5 and training 𝑑𝑡 = 10.  
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Figure 17. The segmentation accuracy of the model with different leaf detectors and vertex offset 

strategies. (a) Libra R-CNN as detector. (b) Faster R-CNN as detector. (c) Yolov5x as detector. 

3.2. The Affection of Leaf Detectors on the Segmentation 

In order to verify the affection of leaf detector on the segmentation results, we used two popular 

detection models of Faster R-CNN and yolov5x in replace of Libra R-CNN. We also applied all guide 

offset strategies to each model and record the results of each experiment. The experimental results 

are shown in Figure 17(b) and (c). According to the statistics, we can see that the strategy of combining 𝑑𝑡 = 0 and Fix5_SNet can make the segmentation model achieve the highest segmentation accuracy 

with 96.2% accuracy by using Faster R-CNN as the detector, while the strategy of combining 𝑑𝑡 = 0 

and Fix10_SNet can achieve the highest accuracy of 95.5% by yolov5x. Comparing the experimental 

results of the three detectors, the segmentation model using Libra R-CNN has the best segmentation 

performance.  

3.3. Comparative Experiment 

To highlight the performance of our leaf segmentation model, three baseline segmentation 

models, Mask R-CNN, DeepLabv3 and UNet, were compared with quantitative analysis and 

qualitative comparison.  

3.3.1. Quantitative Analysis 

The evaluation metrics of quantitative analysis adopted are Accuracy, Precision, Recall, F1 Score, 

AP and AR to measure the segmentation accuracy. All the models are trained and tested by our 

constructed soybean leaf data set, that is, 1619 images for training and 1335 images for evaluating. 

The statistics results are shown in Table 3. By comparing those data, we can notice that our 

segmentation accuracy is better than the others, which proves that our model has stronger 

segmentation capability.  

Table 3. quantitative comparison. 

Model AP AR Accuracy Precision Recall F1 

Ours 0.976 0.981 0.993 0.9899 0.9901 0.99 

Mask R-CNN 0.921 0.936 0.9838 0.9759 0.9778 0.9769 

DeepLabv3 0.767 0.815 0.9645 0.9422 0.9584 0.9769 

UNet 0.794 0.834 0.9675 0.9544 0.9521 0.9532 

Among those evaluation metrics, they can be divided two categories: the four metrics of 

Accuracy, Precision, Recall and F1 Score are used for comparison with the whole image. In 

segmentation task, the predicted mask pixels are compared with the ground truth, and these pixels 

are classified as false-positive samples, true-positive samples, false-negative samples, or true-

negative samples. Due to large number of images and large proportion of background pixels in the 

images, the proportion of true-positive samples and true-negative samples will be too large. It 

induces three large indicators, which brings us the illusion of high segmentation accuracy. The 

evaluation values by those four metrics are closer between those models, as shown in Table 3. The 

other two metrics of AP and AR are used for comparison between predicted positive mask and 

ground truth. They divide the samples with the IoU values of the predicted mask and the true mask, 

and calculate Precision and Recall with IoU thresholds. The results are more persuasive. From Table 

3, there are significant differences for AP and AR metrics between those models.  

3.3.2. Quantitative Comparison  

Figure 18 shows some of the segmentation results produced by the comparison methods. The 

data is diverse with incomplete leaves such as the second sample and occluded leaves such as the 

fourth sample. From the results, for the baseline segmentation models, background pixels are 
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regarded as foregrounds, such as samples 2, 3, and 6 by mask RCNN, Samples 2, 4, and 6 by UNet, 

samples 2, 3, and 6 by DeepL abv3. There are also foregrounds pixels as background, such as sample 

5 by mask RCNN, samples 1 and 5 by UNet, the samples 1, 4, and 5 by DeepL abv3. Although artifacts 

also exist in our results, such as exampls 5 and 6 where part background pixels are regarded as 

foreground, the segmentation effect is the best among the models. Maybe two operations play an 

important role. One is the high accuracy of the input bounding box for segmentation model. The 

other is the segmentation model is guided by inside and outside information of segmentation region. 

 

Figure 18. The segmentation results of different models. 

4. Conclusions 

Target soybean leaf extraction is a prerequisite for calculating the phenotypic parameters of 

soybean leaves. In this paper, an automatic segmentation model of soybean leaf is proposed by 

combining object detection and interactive image segmentation technology. Based on the idea that 

the target leaf is located in the center of the image and the leaf area is large, a method to locate the 

target soybean leaf is provided. The bounding box of target soybean leaf is optimized to achieve more 

accurate segmentation of target soybean leaf. Various experimental data and comparative analysis 

show that our model has higher segmentation accuracy and better generalization capacity.  

However, because the target soybean leaf and the background soybean leaf are highly similar 

both in color and texture, it makes the segmentation of target soybean leaf difficult. In some cases, it 

is difficult to find the boundary between the target leaf and the background leaf, which may induce 

the wrong segmentation. As shown in Figure 19, part region of the background leaf is regarded as 

the foreground. In order to further improve the segmentation precision, image depth or NeRF(Neural 

Radiance Field) based implicit 3D reconstruction technology may be adopted to obtain more 

information to identify the foreground and background soybean leaves.  
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           (a)                    (b) 

Figure 19. Failure case. (a) original image; (b) segmentation result. 

Reference 

1 Bai, X., Li, X., Fu, Z., Lv, X., & Zhang, L. (2017). A fuzzy clustering segmentation method based on 
neighborhood  grayscale  information for defining cucumber leaf spot disease images. Computers 
and Electronics in  Agriculture, 136, 157-165. 

2 Benenson, R., Popov, S., & Ferrari, V. (2019). Large-scale interactive object segmentation with human 
annotators.  In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 
11700-11709. 

3 Bhagat, S., Kokare, M., Haswani, V., Hambarde, P., & Kamble, R. (2022). Eff-UNet++: A novel architecture 
for plant  leaf segmentation and counting. Ecological Informatics, 68, 101583. 

4 Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality object detection. In Proceedings 
of the  IEEE conference on computer vision and pattern recognition, pp. 6154-6162. 

5 Chandio, A., Gui, G., Kumar, T., Ullah, I., Ranjbarzadeh, R., Roy, A. M., Shen, Y. (2022). Precise single-stage 
 detector. arXiv preprint arXiv:2210.04252. 

6 Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable 
 convolution for  semantic image segmentation. In Proceedings of the European conference on 
computer vision  (ECCV), pp. 801-818. 

7 Gao, L., & Lin, X. (2018). A method for accurately segmenting images of medicinal plant leaves with 
complex  backgrounds. Computers and Electronics in Agriculture, 155, 426-445. 

8 Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pp. 
1440-1448. 

9 Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection 
and  semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp.  580-587. 

10 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of 
the IEEE  conference on computer vision and pattern recognition (pp. 770-778). 

11 He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international 
conference  on computer vision, pp. 2961-2969. 

12 Kumar, J. P., & Domnic, S. (2019). Image based leaf segmentation and counting in rosette 
plants. Information  processing in agriculture, 6(2), 233-246. 

13 Li, Z., Chen, Q., & Koltun, V. (2018). Interactive image segmentation with latent diversity. In Proceedings 
of the IEEE  Conference on Computer Vision and Pattern Recognition, pp. 577-585. 

14 Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks 
for object  detection. In Proceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 2117-2125). 

15 Lin, Z., Zhang, Z., Chen, L. Z., Cheng, M. M., & Lu, S. P. (2020). Interactive image segmentation with first 
click  attention. In Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, pp.  13339-13348. 

16 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot 
multibox  detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The 
Netherlands, October  11–14, 2016, Proceedings, Part I 14 (pp. 21-37). Springer International Publishing. 

17 Liu, X., Hu, C., & Li, P. (2020). Automatic segmentation of overlapped poplar seedling leaves combining 
Mask  R-CNN and DBSCAN. Computers and Electronics in Agriculture, 178, 105753. 

18 Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. 
In Proceedings  of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2023                   doi:10.20944/preprints202307.1200.v1

https://doi.org/10.20944/preprints202307.1200.v1


 19 

 

19 Maninis, K. K., Caelles, S., Pont-Tuset, J., & Van Gool, L. (2018). Deep extreme cut: From extreme points to 
object  segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, 
pp. 616-625. 

20 Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., & Lin, D. (2019). Libra r-cnn: Towards balanced learning 
for object  detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, pp. 821-830. 

21 Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference 
on  computer vision and pattern recognition, pp. 7263-7271. 

22 Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object 
detection.  In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-
788. 

23 Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region 
proposal  networks. Advances in neural information processing systems, 28. 

24 Reynolds, M., Chapman, S., Crespo-Herrera, L., Molero, G., Mondal, S., Pequeno, D. N., Pinto, F., Pinera-
Chavez, F. J.,  Poland, J., Rivera-Amado, C., et al. Breeder friendly phenotyping. Plant Science, pp. 
110396, 2020. 

25 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image 
segmentation.  In Medical  Image Computing and Computer-Assisted Intervention–MICCAI 2015: 
18th International  Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (pp. 234-
241). Springer International  Publishing. 

26 Rother, C., Kolmogorov, V., & Blake, A. (2004). “ GrabCut” interactive foreground extraction using iterated 
graph  cuts. ACM  transactions on graphics (TOG), 23(3), 309-314.  

27 Song, G., Myeong, H., & Lee, K. M. (2018). Seednet: Automatic seed generation with deep reinforcement 
learning for  robust interactive segmentation. In Proceedings of the IEEE conference on computer vision 
and pattern  recognition, pp.1760-1768. 

28 Tassis, L. M., de Souza, J. E. T., & Krohling, R. A. (2021). A deep learning approach combining instance and 
semantic  segmentation to identify diseases and pests of coffee leaves from in-field images. Computers 
and Electronics in  Agriculture, 186, 106191. 

29 Tian, K., Li, J., Zeng, J., Evans, A., & Zhang, L. (2019). Segmentation of tomato leaf images based on adaptive 
 clustering number of K-means algorithm. Computers and Electronics in Agriculture, 165, 104962. 

30 Tian, Y., Yang, G., Wang, Z., Li, E., & Liang, Z. (2020). Instance segmentation of apple flowers using the 
improved  mask  R–CNN model. Biosystems engineering, 193, 264-278. 

31 Wang, C., Du, P., Wu, H., Li, J., Zhao, C., & Zhu, H. (2021). A cucumber leaf disease severity classification 
method  based on the fusion of DeepLabV3+ and U-Net. Computers and Electronics in 
Agriculture, 189, 106373. 

32 Wang, P., Zhang, Y., Jiang, B., & Hou, J. (2020). An maize leaf segmentation algorithm based on image 
repairing   technology. Computers and electronics in agriculture, 172, 105349. 

33 Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. In Proceedings of the IEEE 
conference  on computer vision and pattern recognition, pp. 7794-7803. 

34 Ward, B., Brien, C., Oakey, H., Pearson, A., Negrão, S., Schilling, R. K., ... & van den Hengel, A. (2019). 
 High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum 
 vulgare). The Plant Journal, 98(3), 555-570. 

35 Xie, X., Cheng, G., Wang, J., Yao, X., & Han, J. (2021). Oriented R-CNN for object detection. In Proceedings 
of the  IEEE/CVF international conference on computer vision, pp. 3520-3529. 

36 Xu, N., Price, B., Cohen, S., Yang, J., & Huang, T. (2017). Deep grabcut for object selection. arXiv preprint 
 arXiv:1707.00243. 

37 Xu, N., Price, B., Cohen, S., Yang, J., & Huang, T. S. (2016). Deep interactive object selection. In Proceedings 
of the  IEEE conference on computer vision and pattern recognition, pp. 373-381. 

38 Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., ... & Yan, J. (2020). Crop phenomics 
and  high-throughput phenotyping: past decades, current challenges, and future 
perspectives. Molecular  Plant, 13(2), 187-214. 

39 Zhang, S., Liew, J. H., Wei, Y., Wei, S., & Zhao, Y. (2020). Interactive object segmentation with inside-outside 
 guidance. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 
 12234-12244. 

40 Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the 
IEEE  conference on computer vision and pattern recognition, pp. 2881-2890. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2023                   doi:10.20944/preprints202307.1200.v1

https://doi.org/10.20944/preprints202307.1200.v1

