
Review

Not peer-reviewed version

Exploring the State of Machine

Learning and Deep Learning in

Medicine: A Survey of Italian

Research Community

Alessio Bottrighi 

*

 and Marzio Pennisi 

*

Posted Date: 18 July 2023

doi: 10.20944/preprints202307.1152.v1

Keywords: Artificial Intelligence; Machine Learning; Medicine; Deep Learning

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2578815
https://sciprofiles.com/profile/2944879


Article

Exploring the State of Machine Learning and Deep
Learning in Medicine: A Survey of Italian Research
Community

Alessio Bottrighi 1,2,*,† , and Marzio Pennisi 1,2,*,†

1 Computer Science Institute, DiSIT, Università del Piemonte Orientale; alessio.bottrighi@uniupo.it,

marzio.pennisi@uniupo.it
2 Laboratorio Integrato di Intelligenza Artificiale e Informatica in Medicina DAIRI, AO AL—DISIT, UPO

* Correspondence: alessio.bottrighi@uniupo.it; Tel.+39-0131-360338 (A.B.) marzio.pennisi@uniupo.it;

Tel.+39-0131-360186 (M.P.)

† These authors contributed equally to this work.

Abstract: Artificial Intelligence (AI) is becoming increasingly important, especially in the medical

field. While AI has been used in medicine for some time, its growth in the last decade has been

remarkable. Specifically, Machine Learning (ML) and Deep Learning (DL) techniques in medicine

have been increasingly adopted thanks to the growing abundance of health-related data, improved

suitability of such techniques for managing large data-sets, and more computational power. The

Italian scientific community has been instrumental in advancing this research area. This article aims

at conducting a comprehensive investigation of the ML and DL methodologies and applications used

in medicine by the Italian research community in the last five years.

Keywords: Artificial Intelligence; Machine Learning; medicine; Deep Learning

1. Introduction

Nowadays, Artificial Intelligence (AI) is playing an increasingly important role in the medical

field, which has ever represented in the past a source of challenges and an important area for both

experimenting and developing AI methodologies. One of the first and most prominent AI research

areas is Machine Learning (ML) [1]. Like in medicine, for ML the observation and analysis of data

is fundamental. In the past century the development and use of ML methodologies in medicine

was however very limited, as presented in Figure 1. There are several reasons for such a limitation,

including the fact that the application of AI in medicine was initially focused towards different

approaches than ML, such as expert systems (e.g., [2]), and that the need for “large” amounts of data

to automatically discover hidden patterns was unthinkable at the time.

In recent years, the advent on novel paradigms such as big data and IoT, as well as new

computational models and increased computational resources, allowed AI and in particular machine

learning to become a growing phenomenon both in the industrial and research fields. These new

technologies have given researchers both new possibilities and new challenges. Furthermore, the

maturity of AI methodologies has led to numerous results. In particular, looking at the production

of scientific articles (see Figure 1), it is possible to see that the adoption ML/DL methodologies has

grown exponentially in the two last decades. This trend is particularly evident in the last 5 years (i.e.,

since 2018), and the Italian research community is one of the main worldwide players in such field,

being the seventh country for the number of scientific papers indexed on SCOPUS (see Figure 2).
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Figure 1. No. of papers indexed by SCOPUS per year on machine/deep learning for the medical field

(see Section 2.1 for details about the query).

To get a picture of the Italian scientific research in ML/DL in medicine, we carried out a systematic

survey of the state of the art in Italy, according to the last trends depicted in the scientific papers

produced by the Italian community. In particular, we focused on the period starting in 2018. Notably,

the query has been performed on the 13th of January 2023, and we decided to consider also the papers

that were published or are in publication in 2023.

Figure 2. Papers by country on machine learning/deep learning for the medical field indexed by

SCOPUS.

Summarizing, with the aim of taking a snapshot of the current Italian research community on ML,

in this paper:

• We will review the state-of-the-art in Italy of recent years (i.e., since 2018), focusing on ML/DL in

medicine, including all medical areas.
• We will present a general map of ML/DL research in Italy
• We will propose a categorization of ML/DL approaches in medicine
• We will comprehensively classify the most relevant medicine-related ML/DL applications

The paper is organized as follows: in Section 2, we present and discuss the methods used to

gather the data for building this review. In particular, Section 2.1 describes the framework for the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2023                   doi:10.20944/preprints202307.1152.v1

https://doi.org/10.20944/preprints202307.1152.v1


3 of 28

paper selection, Section 2.2 analyses the possible limitations of our work and Section 2.3 presents the

dimension used for the paper classification. In Section 3, we present the output of our analyses. In

Section 3.1, we present a general picture of ML/DL research in Italy since 2018. Then, in Section 3.2,

a comprehensive overview and classification of ML/DL relevant papers in medicine are provided.

Finally, in Section 4 we present our final considerations.

2. Methods

In this section, we describe our methods: first, we illustrate the ground of our survey (2.1) and

discuss the limitation (2.2), and then we present the dimension of our analysis (2.3).

2.1. The framework

We will outline here the process for selecting and analyzing the papers included in the review.

In Figure 3, we provide a visual representation of our methodology. The blue ovals represent the

activities that were performed automatically, the green boxes activities that were performed manually,

and in the orange boxes we show the number of papers outputted by the previous activity is reported.

The starting point of our work is the output of the query in Figure 3 performed1 via SCOPUS (i.e.,

https://www.scopus.com/search/form.uri#basic), shown below:

(( TITLE-ABS-KEY (machine AND learning)

OR TITLE-ABS-KEY (deep AND learning))

AND (TITLE-ABS-KEY (medicine)

OR TITLE-ABS-KEY (medical) OR TITLE-ABS-KEY (health)))

AND PUBYEAR > 2017

AND LIMIT-TO ( AFFILCOUNTRY , ‘‘Italy’’ )

We have selected all papers that in the title, in the abstract or in the keywords present the term

“machine learning” or the term “deep learning”, and a reference to a medical area (i.e., one of the terms

“medicine”,“medical”, and “health”) and that are published from 2018 (i.e., PUBYEAR > 2017) and at

least one of authors has the affiliation in Italy (i.e., LIMIT-TO ( AFFILCOUNTRY , “Italy” )) 2

This query provides as output 2742 papers. These papers are used to provide a general description

of the Italian research area in the field (see 3.1). Then, we filter (i.e., apply more conditions to the

SCOPUS query) the papers to be more focused on the significant works. We have restricted the paper

to analyze on the basis of:

• type of paper: only research journal paper (i.e., we excluded review/survey paper and conference

paper)
• subject area: we have considered only relevant subject areas in SCOPUS, i.e., Medicine, Computer

Science, Engineering, Biochemistry, Genetics and Molecular Biology, Neuroscience, Pharmacology,

Toxicology and Pharmaceutics, Health Profession, Nursing, Dentistry, Immunology and Microbiology,

Multidisciplinary

Moreover, we have considered only journals that have published at least 5 five eligible papers in the

period (i.e., the papers are published in 38 journals).

Thus, we obtained a set of 458 papers that are considered to be analyzed. These papers required

manual pruning before we could begin the analysis phase. Some of these papers were not directly

related to the medical field, (e.g., medical problems are only cited as possible applications of

the proposed approaches, the query did not exclude all the reviews/surveys, there are position

1 All the queries have been performed on the 13th January 2023
2 Notably the data for 1 and 2 are produced with similar queries, where the constraints about the publishing year and the

affiliation country are properly removed
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papers/letters about future perspectives, etc.). Additionally, we excluded any papers in which it was

clear that Italian researchers did not contribute to the machine learning/deep learning aspects of the

work. Next, we considered also 58 papers with a high number of citations (i.e., those in the 98th

percentile) that were not selected by the previous filter. These papers were read and (manually) filtered

in the same way.

After these filtering steps, we were left with 214 papers. We analyzed these papers using the

criteria described in the following subsection.

2.2. Limitations

Our survey may be of course subject to some limitations related to the research criteria we adopted.

First, we focused our research on Scopus, thus excluding a priori papers that were indexed by other

databases such as Web Of Science (WOS) and PubMed only. However, we can safely assert that

Scopus usually covers more journals and records than Web of Science and PubMed and then it usually

represents the ideal source for such kind of research, also considering the huge coverage overlap

among these databases. Furthermore, for what regards PubMed, it must be said that it is usually more

oriented to the medical domain rather than to the Computer Science topics described in this survey.

Another limitation may be entitled to the research criteria adopted for selecting the relevant

papers. In particular, we focused on research articles published in international journals, thus excluding

conference proceedings, letters, reviews, and so on. The reasons for our choice were twofold. First, we

wanted to concentrate on novel research only, and for such reason, reviews and surveys were excluded.

Second, we excluded conference papers, because, in our opinion, novel but well-established research is

commonly published in scientific journals rather than presented at international conferences, especially

for what regards the Italian research community. While this can be in general considered correct, in

some cases outstanding research may also be presented at leading international conferences and/or

included in articles of different types. To mitigate such issues, we also included seminal papers (i.e.,

98 percentile top-cited articles) that were excluded by the filtering criteria described in the previous

section. Such papers have a number of citations that ranges from 90 to more than 500.

Finally, it is worth noting that at, the time of writing, researchers belonging to the Italian

community have contributed in the last five years to more than 40 books regarding the topics analysed

by this survey.

All of these facts suggest that the research community is fervent3, even beyond the results shown

by this survey.

2.3. Analysis Criteria

We analyzed the papers considering the following dimensions:

• the medical topics;
• the type of data;
• the type of preprocessing methods;
• the learning methods;
• the evaluation methods.

To identify the most common medical topics addressed in the papers, we systematically recorded

and analyzed them.

To classify the type of data used, we adapted the taxonomy proposed in [3] and included four

categories: Clinical Images, Biosignals, Biomedicine, and Electronic Health Records (EHR). However,

we also encountered several types of data that did not fit within these four categories, which were

sourced from diverse and problem-specific contexts. Given that the proportion of papers using such

3 see also the discussion in Section 3.1 about international funding and international co-authoring.
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data was relatively low (around 10%) but relevant in the general context, we created a new generic

class called “Others”. Figure 4 provides a graphical representation of the taxonomy and its related

sub-areas.

Regarding the type of pre-processing methods and the learning methods, we classify the papers

in the macro-areas according to the methods used. Note here that papers may belong to multiple

classes if they encompass the use of methodologies belonging to different macro-areas.

We consider the following macro-classes for the type of pre-processing methods:

• feature selection;
• feature extraction;
• feature reduction;
• data filtering;
• data normalization;
• missing data management;
• undersampling;
• oversampling;
• other.

We instead consider the following macro-class for the type of learning methods:

• ML supervised
• ML unsupervised
• ML semisupervised
• ML reinforcement learning
• DL supervised
• DL unsupervised
• DL semisupervised
• DL reinforcement learning

Moreover, we made some (simple quantitative) considerations about of publication journals.

SCOPUS QUERY

2742 PAPERS
(SIMPLE)

GENERAL 

ANALYSIS

FILTER

458 PAPERS2284 PAPERS

98° PERCENTILE 

OF CITATIONS

58 PAPERS
MANUAL

PRUNING

214 PAPERS

ANALYSIS

FALSE TRUE

Figure 3. Graphical view of the framework applied in this work.
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Clinical images Biosignals Biomedicine E.H.R. Other

Oncology ECG Genomics
Treatment Plans

Wearable 

devices

Cardiovascular

Orthopaedics

Neurology

Pulmonology

Other:

Gastroenterology

Ophthalmology
Abdominal

EEG

PCG

PPG

EMG

NSS

SS

Transcriptomics

Proteomics

Metabolism

Desase analysis

Risk analysis

Questionnaires

Handwriting

Audio 

registration

Application fields in 

Medicine

Figure 4. Graphical representation of the data types taxonomy in Medicine for ML/DL.

3. Results

In this section, we present the output of our analyses:

• in 3.1 we provide a general analysis on all papers to provide a (simple) general snapshot of

ML/DL Italian research in the medical area;
• in 3.2 we provide a systematic analysis of the selected papers as described in 2.

3.1. A description of Italian Machine Learning/Deep Learning research in the medical area at a glance

In this section, we give a general description of the whole Italian research community through the

paper published and indexed by SCOPUS since 2018.

As described in Section 1, the Italian community is one of the most productive players in the area

with more than 2500 papers. Figure 5 shows a continuous increasing trend in the last 5 years. It is quite

interesting to point out that most papers are published in international journals (i.e., around 74%) and

are open-access (i.e., around 59%). In such papers, 74 Italian institutions are involved: in this list, there

are not only universities and research institutes but also hospitals. This fact shows that participation

is wide-ranging and concerns actors in all aspects, i.e., both AI and medical ones, and shows a link

between the research and academic groups with the local communities.
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Figure 5. Report of documents published by the Italian community in machine learning/deep learning

for the medical field in the years 2018-2022 indexed by SCOPUS.

Analyzing the founding sponsor’s point of view, it is possible to see a wide spectrum of national

and international founding sponsors. Figure 6 shows the top 10 founding sponsors, which papers have

acknowledged. From a numerical point of view, the European Union was the first sponsor. Notably,

the voice “European Union” groups different types of grants, e.g., Horizon 2020, 7th Framework

Programme for Research, European Research Council. Moreover, the financial sponsorship of the

Italian government is very relevant through grants provided by two different ministries (i.e., Ministry

of Education, University and Research, and Ministry of Health). The other founding sponsors confirm

well-established participation in international projects funded by grants, particularly from U.S.A. and

U.K. agencies. Notably, the Italian research community’s international involvement is very high and

such fact is confirmed by the data concerning the nationality affiliation of co-authors, see Figure 7.

Figure 6. The top 10 funding sponsors acknowledged in the papers.
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Figure 7. The top-10 coauthoring country with Italian researcher.

3.2. Systematic analysis

On the basis of criteria and the “manual pruning” phase described in 2.1, we have selected 224

papers. These papers have been analysed through the criteria described in 2.3.

Figure 8 shows the source journal of 224 papers. The papers are distributed in 42 journals. In

Figure 8, the journals are ordered in an alphabetic way. In the period analyzed, the top 3 journals for

the number of publications are IEEE Access, Scientific Reports, and Applied Science.

Conteggio di Source journal

IEEE Journal of Biomedical and Health Informatics

JMIR Medical Informatics

Diagnostics

International Journal of Environmental Research 

International Journal of Molecular Sciences

Applied Sciences

Sensors

Frontiers in Neurology

IEEE Access

Scientific Reports

Artificial Intelligence in Medicine

Information Sciences

Electronics

Expert Systems with Applications

Computer Methods and Programs in Biomedicine

Cancers

Nutrients

Journal of Clinical Medicine

Journal of Personalized Medicine

Frontiers in Oncology

Big Data Research

PLoS Computational Biology

PLoS ONE

Journal of Clinical Methods

Biomedical Signal Processing and Control

BMC Medical Informatics and Decision Making

IEEE Sensors

Informatics in Medicine Unlocked

Computers in Biology and Medicine

Neural Networks

Journal of Diabetes Science and Technology

Future Generation Computer Systems

Neurocomputing

Nature Communications

Springer Science and Business Media Deutschland 

Journal of Medical Systems

Neural Computing and Applications

Medical and Biological Engineering and Computing

International Journal of Medical Informatics

Information

Frontiers in Medicine

Physica Medica

IEEE Transactions on Biomedical Engineering

0 5 10 15 20

Source Journal

Figure 8. Source Journals of papers considered in the systematic review.
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Let us point out that not all the 224 papers are analyzed with our methodology, since 10 of these

(i.e., [4–13] ) proposed new ML/DL methodologies, metrics or approaches that may be strongly related

to the medical area, but they are not focused on a specific disease or on a specific case study. However,

we beliave that it is very important that the Italian community does not only provide a bridge between

ML/DL area and the medical area, but also proposes solutions to general issues, which are arisen by

the peculiarity of the medical field.

First, let us focus on the medical topics considered in the paper we have analysed. Figure 9 shows

the distribution of such medical topics and Table 2 reports the paper classification by medical topic.

Note that all the topics considered only by just one paper are included within the other category.

Table 1. Classification by approach.

Methodology Approach Reference

Machine Learning

Unsupervised
Supervised

Semi-Supervised
reinforcement Learning

[14–35]
[14,31,33,35–46,46–170,170–187]

[34,81,174,188,189]
[187,190,191]

Deep Learning

Unsupervised

Supervised

Semi-Supervised
reinforcement Learning

[32,46,64,175,192,193]

[176–186,194–224]
[36,37,43,50,84,101,108,116,189]

[117,124,132,136,140,142,144,152,159,193]

[26]
[23,199]

Researches that adopt multiple approaches may be present in more than one line.

The most faced is topic is represented by SARS-CoV-2 (i.e., 11.2 %). This result is not strange, since

we considered the pandemic period and most of the efforts of the scientific community were focused

against SARS-CoV-2. Cancer is also a very important topic (i.e., 16.77 %), with breast cancer representing

one most considered topics (i.e., 7%), along with lung cancer, prostate cancer, and colorectal cancer

that are considered by more than one paper. Such results are in line with cancer incidence, that sees

such cancers as the most common types of cancers for occurrence in Europe [225]. Since different types

of cancers are considered, we considered those appearing in just one article in the other types of cancer

category (i.e., 4.2 %). Another relevant topic is represented by Parkinson’s disease (i.e., 3.7 %).

Then, let us analyse the dimension of the type of data used. Table 3 shows that majority of the

papers (i.e., 82.2%, 176 papers) uses only one data type. However, it is quite interesting to note that

38 papers (i.e., 17.5%) use 2 or 3 different types of data dealing with the issue of managing data with

different characteristics.
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Table 2. Classification by medical topic

Topic Reference

Alzheimer’s disease [41–43,174,191,226]
Autism Spectrum Disorders [47,227]
%midrule Brain Tumors [50,188,195]
Breast Cancer [15–19,52–57,175,196–198]
Cardiovascular disease [60–62,176,201]
Chronic Kidney Disease [67,68,202]
Dementia [77–79,179]
Diabetes [80–85,204]
Exposure to extremely low frequency waves [20,21]
Glioblastoma [91,206]
Heart Failure [92–94,182,207]
kidney disease [100,228]
Lung Cancer [23,103–106]
Melanoma [109,110]
Multiple Sclerosis [24,113,211]
Parkinson’s Disease [25,123–129]
Prostate Cancer [130,131]
Rectal cancer [134,135,184]
SARS-CoV-2 [27,34,35,46,143–147,185,186,215,216]

[148–155,187,193,217]
Seasonal flu [28,156]
Sepsis [157–159]
Stroke [165,219]
Varicella Zoster [169,224]
Voice releated pathologies [172,173]
Other types of cancer [29,31,58,59,66,69,160,199,214]
Surgery related [63,99,121,132,161,162,192,220]
M-health [48,71,76,107,164,180]
Patient tele-Monitoring [26,33,112,210]
Liver diseases [89,95,102]
Orthopedic [90,122,133]
Arterial Disease [44,45,73]
Trauma [70,168]
Other [14,36–40,49,51,64,65,177,194,200,203]

[22,32,72,74,75,86–88,178,181,205,208]
[96–98,101,108,111,114–117,189,190,209]
[118–120,136–142,183,212,213,218]
[30,163,166,167,170,171,221–223]
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Arterial Disease
1,4%
Orthopedic
1,4%
Liver diseases
1,4%
Patient tele-Monitoring
1,9%
M-health (other)
2,8%
Surgery related
3,7%
Other types of cancer
4,2%

Other
29,0%

Voice releated pathologies
0,9%

Alzheimer's Disease
2,8%

Autism Spectrum Disorders 
0,9%

Brain Tumors
1,4%

Breast cancer
7,0%

Cardiovascular disease
2,3%

Chronic Kidney Disease
1,4%

Dementia
1,9%

Diabetes
3,3%

Exposure to extremely low frequency waves
0,9%

Glioblastoma
0,9%

Heart Failure
2,3%

kidney disease
0,9%

Lung Cancer
2,3%

Melanoma
0,9%

Multiple Sclerosis
1,4%

Parkinson's Disease
3,7%

Prostate Cancer
0,9%

Rectal cancer
1,4%

SARS-CoV-2
11,2%

Sepsis
1,4%

Distribution by Topic

Figure 9. Medical topics considered in the papers.

Figure 10 shows the distribution of the type of data used in the paper we analyzed. The most

used type of data is E.H.R. and the second one is Clinical images. Let us point out that the class

Other reaches the value of 15.7%, that is higher than Biomedicine and Biosignal category. This fact can

indicate that several medical topics and diseases involve the need of managing a lot of different types

of data to assess and characterize their complex features.

Table 3. Number of data types used.

Number of data types Number of Papers

1 176
2 32
3 6

Biomedicine
9,2%

Other
15,7%

Clinical Images
28,6%

Biosignals
9,7%

EHR
36,9%

Figure 10. Distribution of data types used.
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For what concerns the pre-processing category, Table 4 shows that the majority of the papers (i.e.,

128, about 60%) indicate that the authors applied at least one pre-processing technique.

Table 4. The number of pre-processing methods.used

Number of pre-processing methods Number of Papers

0 86
1 87
2 29
3 10
4 2

Figure 11 shows the distribution of the principal pre-processing techniques. We can see that the

features selection and features extraction are the most used techniques, covering about the 50% of cases.

Undersampling
1,1%
Other
11,1%

Missing data management
7,9%

Feature selection
28,6%

Image processing 
12,7%

Oversampling
5,8%

Data Filtering
4,8%

Data normalization
2,6%

Feature extraction
21,2%

Feature reduction
3,7%

Figure 11. Distribution of pre-processing types used.

Figure 12 shows the distribution of ML/DL methodologies adopted, and Table 1 presents the

papers categorization by methodology. As described in Section 2.3, we cataloged the approaches used

in 8 macro-categories. The majority of the papers (i.e., 171, about 80%) use one or more approaches

belonging to only one of these categories, whereas the remaining papers (i.e., 43, about 20%) use two

or more approaches belonging to two categories. It is quite interesting to note that the ML approaches

(i.e., 72.8%) are more used than DL approaches, and the most used approach belongs to the ML

supervised category (i.e., 62.5%). In general, supervised approaches, including both ML and DL,

are largely adopted (i.e., 86.3%). These facts underline how ML approaches still represent the most

used approaches in the medical field in Italy, probably due to the scarcity of data needed to train DL

approaches, that are however widely applied for image-related data. Furthermore, most learning

methodologies are supervised, and thus focused towards a specific outcome that is already present in

the training data and that clearly determines the medical question that the model should address.
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DL: reinforcement learning
0,8%

DL: supervised
23,8%

DL: unsupervised
2,3%
DL: semi-supervised
0,4%
ML: reinforcement learning
1,1%
ML: semi-supervised
1,5%

ML: unsupervised
7,7%

ML: supervised
62,5%

Figure 12. Distribution of the used ML/DL approaches.

We also analyzed the evaluation methodology employed in the papers. Our findings revealed a

significant heterogeneity among the techniques and statistical measures used, underlining the absence

of a standardized approach within the research community for this aspect. However, we observed that

the validation phase is predominantly (though not exclusively) performed using two main methods: a

fixed split of the dataset into a training set and a test set, and k-fold cross-validation. The fixed split

method was employed in 49 papers, accounting for approximately 22.9% . The most commonly used

split values were 90%-10%, 80%-20%, and 70%-30%. On the other hand, the k-fold cross-validation

method was used in 99 papers, representing about 46% of the sample. Various values of k were utilized,

but the most frequently used were 10, 5, and 3. Regarding the statistical measures employed, we

observed a wide variety of measures. However, we observed that three measures stood out as the most

commonly used: accuracy, ROC-AUC, and F1-score. Accuracy was used in about 112 papers (about

52.3%), ROC-AUC in 81 papers (about 37.6%), and F1-score in 66 papers (about 31%). Once again,

the absence of standardization in the selection of statistical measures for evaluating trained ML/DL

models becomes apparent.

In conclusion, our analysis highlights the lack of consensus in the research community regarding

the choice of evaluation techniques and statistical measures for assessing ML/DL models. However,

this finding highlights the prevalence of specific evaluation methods, which could be considered as

potential best practices within the research community.

4. Discussion

The analysis of the state of the art in scientific papers focusing on ML and DL for medicine over

the last five years has uncovered a rapidly expanding research area with substantial potential for

applications in healthcare (see Figure 1).

First, we proposed a methodological analysis for the papers indexed in SCOPUS identifying

a common set of dimensions. Our analysis encompassed a total of 2,742 papers, out of which we

conducted a detailed methodological examination of 516 papers. Among these, 214 are studied using

the dimension we proposed. The findings provided a comprehensive overview of the Italian research

landscape in this field (see Figure 2). Furthermore, they highlighted how the community has worked

on a very heterogeneous range of medical problems.

It is important to acknowledge that the utilization of ML and DL methodologies raises several

legal and ethical concerns, the analysis and discussion on these topics are out of the scope of this

paper. But, let us point out that the growing interest in and the adoption of ML/DL systems in the
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medical field, along with the positive results obtained, indicate the potential for these systems to serve

as valuable tools in laboratory settings in the coming years.
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