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Abstract: The land subsidence occurring in goafs after coal mining is a protracted process. The 
accurate prediction of long-term land subsidence in goafs relies heavily on the availability of long-
term monitoring data. However, the scarcity of continuous long-term land subsidence monitoring 
data subsequent to the cessation of mining significantly hinders the accurate prediction of long-term 
land subsidence in goafs. To address this challenge, this study proposes an innovative method based 
on Interferometric Synthetic Aperture Radar (InSAR) for predicting long-term land subsidence of 
goafs following coal mining. The proposed method employs a concatenation approach that 
integrates multiple short-term monitoring data from different coal faces, each with distinct cessation 
times, into a cohesive and uniform long-term sequence by normalizing the subsidence rates. The 
method was verified using actual monitoring data from the Yangquan No.2 mine in Shanxi 
Province, China. Initially, coal faces with same shapes but varying cessation times were selected for 
analysis. Using InSAR monitoring data collected between June and December of 2016, the average 
subsidence rate corresponding to the duration after coal mining cessation of each coal face was back-
calculated. Subsequently, a function relating subsidence rate to the duration after coal mining 
cessation was fitted to the data. Finally, the relationship between cumulative subsidence and the 
duration after coal mining cessation was derived by integrating the function. The results indicated 
that the relationship between subsidence rate and duration after coal mining cessation followed an 
exponential function for a given coal face, whereas the relationship between cumulative subsidence 
and duration after coal mining cessation conformed to the Knothe time function. Notably, after the 
cessation of coal mining, significant land subsidence persisted in the goaf of the Yangquan No.2 
mine for a duration ranging from 5 to 10 years. The cumulative subsidence curve along the long axis 
of the coal face ultimately exhibited an inclined W-shape. The proposed method enables the 
quantitative prediction of residual land subsidence in goafs, even in cases where continuous long-
term monitoring data are insufficient, thus providing valuable guidance for construction decisions 
above the goaf. 

Keywords: InSAR-based method; coal mine goaf; prediction of long-term land subsidence; 
concatenation of multiple short-term monitoring data 

 

1. Introduction 

Coal resources are the basis for economic development and social progress, but coal mining 
often creates large underground cavities that then induce significant land subsidence [1–3], which is 
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a long-term process that poses a great harm to ground structures. The accurate prediction of long-
term land subsidence in the goaf is critical to ensuring the stability of the goaf site’s engineering 
construction [4,5]. 

Methods for predicting residual land subsidence have been proposed since the 1990s [6]. There 
are two main types of methods to predict residual land subsidence in mining areas. First, a 
mathematical or mechanical method can derive the formula of residual subsidence factors based on 
the stress-strain relationship of collapsed rocks, including the limit subsidence prediction method 
[7,8], the numerical simulation prediction method [9], and the nonlinear prediction method [10,11]. 
Subsequently, a time function or a creep model can be employed to establish the long-term 
subsidence prediction model [12–14]. Second, the inversion method can predict long-term subsidence 
based on the analysis of a period of monitoring data [15–17]. As rock movement and land subsidence 
in mining areas are complex problems with many factors implicated, mathematical and mechanical 
methods frequently encounter difficulties in selecting calculation parameters during the residual land 
subsidence prediction [18,19]. The problem becomes more serious when the time factor is considered, 
but this complication can be avoided by using inversion methods through the analysis of monitoring 
data, which allow for a more direct analysis and prediction of long-term land subsidence at a specific 
site, as well as more reliable results derived from actual monitoring data. Site investigations such as 
leveling surveys and the Global Position System (GPS) are an earlier method to monitor the land 
subsidence [20,21]. However, high costs, long observation periods, and complex terrains limit the 
application of such conventional monitoring methods in large areas and long periods of time [22,23]. 
In recent years, a new technology, Interferometric Synthetic Aperture Radar (InSAR), has been widely 
used to predict long-term land subsidence in mining areas, with the advantages of all-weather 
measurement, short monitoring periods, large monitoring areas, and intuitive and reliable data 
[24,25]. Gabriel et al. first demonstrated the possibility of using the Differential InSAR (D-InSAR) 
technique for detecting land subsidence at the centimeter scale [26]. Subsequently, a series of 
comprehensive experiments was carried out to monitor land subsidence over a goaf with SAR 
images, laying the groundwork for future research on land subsidence in mining areas using InSAR 
data [27–29]. The small-baseline subset (SBAS) technique, a kind of InSAR monitoring technique, is 
considered effective for monitoring land micro-subsidence in large mining areas [30]. This method 
effectively increases the temporal resolution of monitoring data, solves the destructive problem 
caused by long baselines between different SAR datasets, and separates the topographic residual 
phase from atmospheric noise, making the subsidence monitoring results more accurate and reliable 
[31,32]. Currently, the SBAS-InSAR technology has been widely used to monitor land subsidence. 
Solaro et al. used this technique to monitor the land subsidence of a Hawaiian volcano. In their study, 
the SBAS-InSAR technique was first applied to the interference processing of SAR data in different 
modes[33]. Liu et al. used the same technique to study the land subsidence induced by coal mining 
in Yangquan, Shanxi Province, China, and assessed its potential damage to ground facilities [34]. 
Some scholars use the short-term monitoring data obtained by InSAR technology for parameter 
inversion and then employ other mathematical methods to carry out prediction studies on long-term 
land subsidence in the goaf. Fan et al. used a probabilistic integral method model in conjunction with 
InSAR to predict land subsidence in mining areas [35]. Yang et al. established a functional model 
between all parameters of the probabilistic integral method and InSAR Line-Oriented Simulation 
(LOS) directional strain, and introduced a Boltzmann function to improve the functional model to 
realize the prediction of full basin subsidence of the mine area under various mining degrees [36,37]. 

Despite the growing interest in predicting long-term land subsidence in goafs, challenges persist 
and must be addressed. First, the abovementioned applications strongly depend on continuous and 
long-term monitoring data. However, field observations generally end when coal mining stops, and 
it becomes difficult to obtain continuous and long-term monitoring data of the area, limiting the 
application of InSAR-based prediction methods for long-term goaf land subsidence [38–40]. Second, 
when handling long time series of InSAR monitoring data, the iterative calculation process can 
introduce a significant number of errors, leading to reduced accuracy in predicting long-term land 
subsidence [41]. The accumulation of these errors can negatively impact the reliability of the 
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predictions made. Therefore, careful attention must be paid to the error analysis and mitigation 
strategies used during the iterative calculation process to ensure accurate and robust predictions of 
long-term land subsidence. 

The present work introduces a novel approach for predicting long-term land subsidence in 
goafs. By normalizing short-term InSAR monitoring data into a time-series subsidence rate curve, 
this method links land subsidence to the duration after coal mining cessation. This solution addresses 
the challenges of temporal and spatial discontinuity in InSAR monitoring data for mining-area 
subsidence, enhancing accuracy by minimizing the errors involved in prolonged monitoring. 
Consequently, it provides accurate predictions of long-term land subsidence even in cases where 
monitoring duration is limited. 

This paper describes the site characteristics of the study area in detail, presents a thorough 
explanation of the data processing and prediction process, and finally discusses the results of land 
subsidence assessment, as well as the applicable conditions of the proposed method. 

2. Methodology 

A goaf typically comprises multiple coal faces. As the mining depth, coal thickness, overburden 
configuration, and surface topography of each coal face differ, it is not feasible to arbitrarily correlate 
the land subsidence monitoring data of various coal faces. The method proposed in this paper 
addresses these issues by utilizing short-term land monitoring data obtained through the SBAS-
InSAR technology. The land subsidence data obtained from remote sensing images cover the entire 
mining area. Additionally, by obtaining data for the entire mining area in a single monitoring event, 
the potential for errors and inconsistencies that could occur if separate monitoring efforts were 
conducted for each individual coal face is eliminated. Simultaneously, by choosing multiple coal faces 
within a close proximity in the mining area as the subject of analysis, it can significantly ensure that 
the mining depth, coal seam thickness, overburden configuration, and surface form are consistent or 
comparable, thereby avoiding the issue where multiple data cannot be correlated due to the 
confounding effects of various complex conditions. Figure 1 outlines the procedure for predicting 
land residual subsidence in goafs. The proposed approach consists of the following phases: 
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Figure 1. Flowchart showing steps involved in predicting long-term land subsidence in a goaf. 

(1) Site and data requirement. A goaf with a single geological condition was selected as the study 
area. Information regarding the coal seam mining, a coal face arrangement diagram, and a survey 
report of the study area are needed. To ensure the reliability of the monitoring data when applying 
the method proposed in this research, it is crucial to maintain their consistency. By employing the 
same monitoring method, conditions, and accuracy for the goaf formed by each coal face, we can 
guarantee the uniformity of the monitoring data for the goafs formed by different coal faces. When 
using traditional on-site monitoring methods to track the land of the goaf above each coal face, the 
subsidence data obtained can be relatively independent. As a result, errors between monitoring data 
from different positions are inevitable. However, SBAS-InSAR monitoring data offers a solution to 
this issue. With its wide coverage and continuous observation, a single measurement can cover the 
entire mine area, including the surface area above all coal faces. This ability ensures consistency in 
the monitoring data, meeting the abovementioned data requirement. 

(2) Coal seam selection. Based on the available information, the coal seam mining situation in 
the study area was assessed, and the coal seams that had the most significant impact on the goaf were 
identified. Specifically, the most recently mined coal seam was selected as the main focus of the 
research. The study aimed to investigate the arrangement of coal faces in the studied seam, and to 
determine whether the goaf in the area could be classified as a repeated mining situation if other coal 
seams had been excavated above it.  

(3) Coal face selection. Previous studies have identified several main factors that influence 
mining operations [42]. Therefore, when selecting multiple coal faces under the same seam, it is 
essential to consider the thickness of the coal seam, mining depth, seam inclination, overburden 
configuration, mining width, and coal mining method for each face. To ensure the methodological 
reliability of the data transformation process, we selected several coal faces that shared the factors 
mentioned above. Specifically, if the selected coal faces had similar shapes and sizes, and were in 
close proximity, it was possible to unify the above factors to a certain extent, which helped to 
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minimize their influence on the results. Meanwhile, each coal face was numbered based on the order 
in which coal mining ceased, from the most recently active coal face to the oldest. It is important to 
note that if other coal faces are being mined or have recently been stopped near the selected coal faces, 
their land subsidence may overlap with the studied subsidence, which could impact the accuracy of 
the results. To determine the scope of land subsidence caused by mining coal faces in this mine, an 
empirical formula can be used [43]. It is crucial to choose a coal face that is not near other active or 
recently stopped mining operations to ensure accurate monitoring results. It is also essential to ensure 
that the thickness and number of coal seams mined in the study area are consistent. The selected 
series of coal faces should be in the same coal seam, and the upper mined coal seam should be in a 
similar condition (e.g., similar physical characteristics and geological features), as this will help to 
ensure that the study results are reliable and can be compared accurately. 

(4) Layout of sampling lines and points. The sampling line passed through the center of the 
selected coal face and was perpendicular to the boundary, with equivalent spacing between adjacent 
sampling points. Meanwhile, the sampling points were numbered sequentially, and those in the same 
location on each coal face were numbered consistently. 

(5) Calculation of subsidence rate. The data from the selected sampling points were extracted 
from the short-term InSAR monitoring data of the study area and then used to calculate the average 
subsidence rate at each sampling point. 

(6) Establishment of the relationship between subsidence rate and duration after coal mining 
cessation. The duration after coal mining cessation for each coal face was calculated based on the 
previous step, and a rectangular plane coordinate system was established for each point using 
duration after coal mining cessation as the horizontal coordinate and average subsidence rate as the 
vertical coordinate. The data from the sampling points with same identification number in each coal 
face were then input into the corresponding coordinate system. To obtain the curve representing the 
relationship between subsidence rate and duration after coal mining cessation, the data points in each 
coordinate system were fitted to a time function. 

(7) Establishment of the relationship between subsidence and duration after coal mining 
cessation. The subsidence rate was then integrated over time to determine the relationship between 
subsidence and duration after coal mining cessation. By combining this information with the position 
of each sampling point, the cumulative subsidence change of the profile along sampling line was 
obtained. 

3. Application 

In this section, we evaluate the method using an example from the mining area of Yangquan 
No.2 mine, which is situated in the Qinshui coalfield, the largest coal-producing Carboniferous 
Triassic coalfield in China. We performed the following steps to complete the evaluation process, 
with each step discussed in detail below. 

3.1. Study area 

The study area is located at the northeastern part of the Qinshui coalfield, approximately 5 km 
southwest of Yangquan, eastern Shanxi Province (Figure 2). The study area is characterized by deeply 
incised valleys and high mountains, with an elevation ranging from 700 m to 1246.9 m above sea-
level (Figure 2) and a maximum relative elevation difference of more than 540 m. The surface is 
exposed bedrock with little vegetation in most areas. Two rivers, the Taohe river and the Xiaohe river, 
pass through the Yangquan area, which are distributed as dendritic drainages (Figure 3). 
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Figure 2. Location of the study area. 

The exposed strata in the study area have an age that varies from the Lower Triassic (T1) to the 
Lower Permian (P1). These strata include sandy mudstone interspersed with feldspathic sandstone 
of the Heshanggou Formation, felsic sandstone intercalated with sandy mudstone of the Liujiagou 
Formation, and sandstones, shales, muddy sandstones, sandy mudstones, and mudstones of the 
Upper Shihezi and Lower Shihezi formations, as shown in Figure 3. 

 

Figure 3. Geological map of the study area. 

We drilled a borehole to investigate the stratigraphic profile from the mining area surface to a 
depth of 413.95 m. The observed strata encompass various geological ages, ranging from the Upper 
Permian to the Upper Carboniferous periods. Specifically, from the surface down to 246.38 m, the 
strata comprise the Shiqianfeng Formation, the Upper Shihezi Formation, and the Lower Shihezi 
Formation. At depths between 307.48 m and 413.95 m, the strata transition into the Shanxi Formation 
and the Taiyuan Formation with increasing depth, as seen in Figure 4. 
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Figure 4. Borehole diagram. The location of the borehole is shown in Figure 3. 

3.2 Selection of coal faces and layout of sampling lines and points 

The Yangquan No.2 mine has three coal seams, 3#, 8#, and 15#, with average thicknesses of 1.96 
m, 2.26 m, and 6.42 m, respectively. The comprehensive mechanized roof release coal mining method 
is used for these coal seams, which involves a backward coal mining method toward the long wall, 
and the fully caving method is used for roof management. Currently, the 3#, 8#, and 15# coal seams 
have been mined in the study area, with the 8# coal seam only distributed in a small area in the 
southwestern part of the study area. Most of the study area is a two-layer mining area. The 15# coal 
seam was mined later than the upper 3# coal seam, which meets the requirement of the re-mining 
condition. Therefore, we selected coal faces based on the area of the 15# coal seam. The selected coal 
faces are rectangles concentrated in the northeast of the study area. The long axis of the rectangle is 
parallel to the mining direction, whereas the short axis is perpendicular to the mining direction. The 
location and subsidence rate of the selected coal faces within the study area are shown in Figure 5a. 
As all the coal mining operations were stopped after the monitoring data were collected, our analysis 
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and research are facilitated. Table 1 shows the time interval between monitoring and the cessation of 
coal mining for the selected coal face. 

To study long-term land subsidence in the study area, we used the SBAS-InSAR technique to 
process eight-view RADARSAT-2 images from June to December of 2016 34, resulting in a raster map 
of land subsidence rates. InSAR data were collected from multiple monitoring points above the 
selected coal face, and we arranged sampling lines to study the subsidence characteristics of 
representative locations. Two sampling lines were set in each roughly rectangular coal face, one 
parallel to the long axis and one parallel to the short axis, with sampling points arranged along the 
lines (Figure 5b). 

For each coal face, we first set the intersection of the two sampling lines as point 0 (S0). We placed 
10 additional sampling points along the mining direction, numbered from 1 to 10 (S1–S10), with S1 
and S10 on the boundary of the long axis (Figure 5b). We also placed eight additional points 
perpendicular to the mining direction, numbered from 11 to 18 (S11–S18), with S11 and S18 on the 
boundary of the short axis (Figure 5b). This arrangement was used consistently across all coal faces, 
with the sampling points equally spaced and numbered for consistency. The sampling points at the 
same relative locations in the different coal faces were numbered consistently and can be considered 
to have same conditions. This arrangement allows for the precise and consistent sampling of the coal 
face to ensure accurate measurements. 

 

Figure 5. Map showing the average subsidence rate of the study area and the location of selected coal 
faces: (a) average subsidence rate of the study area based on InSAR data from June to December of 
2016; (b) schematic diagram of the sampling lines and points in each coal face. 

Table 1. Information on the selected coal faces. 

Number 
The cessation year of coal 

mining 

Time interval between mon-

itoring and cessation of coal 

mining (yr) 

1 2016 0.5 
2 2014 3 
3 2012 5 
4 2010 7 
5 2009 8 
6 2008 9 
7 2006 11 
8 2004 13 

3.3 Relationship between subsidence rate and duration after coal mining cessation 

We extracted the monitoring data at each sampling point and identified the corresponding 
duration after coal mining cessation based on Table 1. Using these data, we obtained the average 
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subsidence rate for each sampling point from eight different coal faces (Table 1). As the duration after 
coal mining cessation corresponds to the number of coal faces, we then established a rate-time 
coordinate system to show the relationship between subsidence rate and duration after coal mining 
cessation. For each time interval between monitoring and cessation of coal mining, the subsidence 
rate of each point is plotted as a dot (Figure 6). 

As the sampling points in the same relative locations on each coal face were consistently 
numbered, those with the same label numbers were grouped for further research such that all 
sampling points with number S0 were grouped into the first group, those with number S1 were 
grouped into the second group, and so on. The sampling points were grouped into 19 groups, from 
S0 to S18. In each group, the sampling points came from eight different coal faces, with eight different 
durations after coal mining cessation from 0.5 yr to 13 yr (Table 1). An exponential function was used 
to fit the data from each group, as seen in Figure 6. The functional form is as follows: 𝑣(𝑡) = 𝑣0𝑒−𝑐𝑡, (1) 

where 𝑣(𝑡)  is the average subsidence rate, which depends on the duration after coal mining 
cessation, 𝑣0 is the initial subsidence rate after the cessation of coal mining, 𝑐 is the amplitude curve 
variation, and 𝑡 is the duration after coal mining cessation. 

  
(a)                                            (b) 

Figure 6. Subsidence rate versus duration after coal mining cessation for each sampling point: (a) 
along the long axis of the coal face; (b) along the short axis of the coal face. 

Figure 6 shows that the sampling points in each group can be fitted with Eq. (1). The regression 
parameters of each group are listed in Table 2. For each group, the overall subsidence rate exhibits a 
rapid initial decrease followed by a slower one. The subsidence rate declines notably during the first 
5 years after the cessation of coal mining, whereas the decreasing trend appears to level off after 5 
years (Figure 6). Along the long axis of the coal face, the subsidence rate curve shows two distinct 
patterns (Figure 6a). Taking S2, near the upper boundary (Figure 5b), as an example. The overall 
subsidence rate of S2 shows a slow decreasing trend. The subsidence rate gradually declines at a 
roughly uniform pace during the first 5 years following the cessation of coal mining. It remains stable 
for the next 5 years before experiencing a slight increase after 13 years (Figure 6a). The maximum 
subsidence rate occurred at half a year after the cessation of coal mining with a value of 28.9 mm/yr, 
whereas the minimum subsidence rate occurred at the 10th year after the cessation of coal mining with 
a value of 5.5 mm/yr (Figure 6a). The variation trend of subsidence rate at S1, S3, and S4 is similar to 
that at S2. Taking S9 near the lower boundary (Figure 5b) as another example, its subsidence rate 
sharply decreases during the first 5 years after the cessation of coal mining, following a slower decline 
during the 5–13 years after the cessation of coal mining (Figure 6a). The maximum subsidence rate 
occurred at half a year after the cessation of coal mining with a value of 58.1 mm/yr, whereas the 
minimum subsidence rate occurred at the 9th year after the cessation of coal mining with a value of 
0.28 mm/yr (Figure 6a). The variation trend of subsidence rate at S7, S8, and S10 was similar to that 
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at S9. The subsidence rate of S0 gradually decreases after the cessation of coal mining until the 13th 
year, and the points next to it have similar variation trends. Along the short axis of the coal face, the 
subsidence rate patterns at these sampling points were similar, with fitting curves indicating a 
consistent subsidence rate over time (Figure 6b). Each sampling point on this line shows a subsidence 
rate similar to the central point (S0), with little variation over time (Figure 6b). 

Table 2. Regression parameters of the function modeling subsidence rate and cumulative subsidence 
over time. 

Point v-t function W-t function v0 c Wm R2 (%) 
0 0.403

59.474
t

v e
  0.403

147.612(1 )
t

W e
   59.474 0.403 147.612 96.9 

1 0.188
24.784

t
v e

  0.188
131.809(1 )

t
W e

   24.784 0.188 131.809 65.9 
2 0.170

28.131
t

v e
  0.170

165.507(1 )
t

W e
   28.131 0.170 165.507 80.6 

3 0.258
32.830

t
v e

  0.258
127.261(1 )

t
W e

   32.830 0.258 127.261 81.5 
4 0.316

36.495
t

v e
  0.316

115.539(1 )
t

W e
   36.495 0.316 115.539 80.6 

5 0.460
56.310

t
v e

  0.460
122.309(1 )

t
W e

   56.310 0.460 122.309 97.7 
6 0.435

70.860
t

v e
  0.435

162.994(1 )
t

W e
   70.860 0.435 162.994 99.7 

7 0.446
81.562

t
v e

  0.446
182.919(1 )

t
W e

   81.562 0.446 182.919 98.9 
8 0.385

80.975
t

v e
  0.385

210.373(1 )
t

W e
   80.975 0.385 210.373 99.1 

9 0.301
69.678

t
v e

  0.301
231.842(1 )

t
W e

   69.678 0.301 231.842 95.5 
10 0.274

49.958
t

v e
  0.274

182.281(1 )
t

W e
   49.958 0.274 182.281 90.9 

11 0.544
56.152

t
v e

  0.544
103.222(1 )

t
W e

   56.152 0.544 103.222 90.9 
12 0.548

57.035
t

v e
  0.548

103.994(1 )
t

W e
   57.035 0.548 103.994 94.0 

13 0.574
=67.484

t
v e

  0.574
117.528(1 )

t
W e

   67.484 0.574 117.528 98.4 
14 0.460

64.033
t

v e
  0.460

139.256(1 )
t

W e
   64.033 0.460 139.256 98.9 

15 0.421
=58.353

t
v e

  0.421
138.536(1 )

t
W e

   58.353 0.421 138.536 97.4 
16 0.461

56.574
t

v e
  0.461

122.639(1 )
t

W e
   56.574 0.461 122.639 95.1 

17 0.408
49.485

t
v e

  0.408
121.197(1 )

t
W e

   49.485 0.408 121.197 96.2 
18 0.387

42.968
t

v e
  0.387

110.963(1 )
t

W e
   42.968 0.387 110.963 94.1 

3.4 Relationship between subsidence and duration after coal mining cessation 

Integrating the relationship between subsidence rate and duration after coal mining cessation, 
we can obtain the relationship between cumulative residual subsidence amount and duration after 
coal mining cessation by integrating Eq. (1) (Figure 7). The function’s form after integration is shown 
in Eq. (2). The regression parameters of each group are listed in Table 2. From Figure 7, the surface of 
the mining area continued to experience significant subsidence after the coal mining ceased. During 
the long-term subsidence in the mining area, the maximum residual land subsidence recorded was 
232 mm at S9 (Figure 7). After the cessation of coal mining, significant subsidence of the mining area’s 
surface persisted for 5 to 10 years (Figure 7). Within 15 years, 90% of the surface had completed its 
residual subsidence for all sampling points across the mining area (Figure 7). Subsequently, the 
subsidence movement stabilized, exhibiting a more consistent and stable growth pattern. 𝑊(𝑡) = 𝑊m(1 − 𝑒−𝑐𝑡), (2) 

where 𝑊(𝑡) is the subsidence, which depends on the duration after coal mining cessation, 𝑊m is the 
maximum accumulated subsidence after the cessation of coal mining, and 𝑊m = 𝑣0/𝑐. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 July 2023                   doi:10.20944/preprints202307.1115.v1

https://doi.org/10.20944/preprints202307.1115.v1


 11 

 

  
(a)                                         (b) 

Figure 7. Subsidence profile obtained by integrating the subsidence rate over time: (a) along the long 
axis of the coal face; (b) along the short axis of the coal face. 

Figure 7 shows that the subsidence trend over time varies at different locations along the mining 
direction in the coal face. Subsidence activity near the boundary can persist for over 15 years, whereas 
sampling points closer to the center point, including those on the sampling line perpendicular to the 
mining direction, tend to level off 5 years after the cessation of coal mining. 

Referring to the spatial location relationship of each point shown in Figure 5b, we established 
the section of cumulative long-term subsidence with time at the sampling lines based on the 
relationship between cumulative long-term subsidence and duration after coal mining cessation 
(Figure 7), as shown in Figure 8. The variation in cumulative subsidence along the mining direction 
(S1–S10) of the extraction area showed significant differences among the sampling points. In the short 
term after the cessation of coal mining, subsidence was more pronounced closer to the central 
sampling point (S0). However, over a longer period of time, subsidence movements became more 
apparent near the boundary locations (Figure 8a), and the subsidence curve exhibits an inclined W-
shape. Perpendicular to the mining direction (S11–S18), the cumulative subsidence was relatively 
consistent in the short term after the cessation of coal mining. However, over time, the cumulative 
subsidence at the center of the mining area became more pronounced (Figure 8b). 

  
(a)                                         (b) 

Figure 8. Cumulative subsidence curve: (a) along the long axis of the coal face; (b) along the short axis 
of the coal face. 

4. Discussion 

4.1 Reliability of the proposed method 

To verify the reliability of the proposed method in this paper, a spatially independent coal face 
numbered 81218 was selected. This coal face was located in the northwestern part of the study area 
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and ceased mining operations in November 2017 (Figure 5a). As subsidence increases sharply within 
4 to 5 years after the cessation of coal mining, we processed 50 Single Look Complex (SLC) images 
obtained from Sentinel-1 using SBAS-InSAR technology to obtain the land subsidence above coal face 
81218 from November 2017 to November 2021. To address the monitoring errors caused by the 
increased processing timespan of radar images, we segmented the long-term radar images into four 
groups, each comprising 50 views with a timespan of one year. Additionally, we marked the location 
of coal face 81218 and the contrast reference point in the subsidence cloud diagram, as shown in 
Figure 9.  

 

Figure 9. Location of coal face 81218 and subsidence contours (a) from November 2017 to November 
2018; (b) from November 2018 to November 2019; (c) from November 2019 to November 2020; and 
(d) from November 2020 to November 2021. 

The layout of sampling lines and points was set consistently across coal face 81218. Considering 
the different subsidence characteristics of the sampling points shown in Figs. 6, 7, and 8, we selected 
S2, S4, S0, S7, and S9 along the mining direction to compare the subsidence obtained from the actual 
monitoring data and predicted the results using the proposed method in this paper. As shown in 
Figure 10, the actual monitoring data fluctuate slightly along the predicated curve, and the overall 
change trend is consistent with the predicated curve. In addition, we utilized both correlation analysis 
and analysis of variance (ANOVA) to evaluate the similarity between the actual monitoring data and 
the predicted curve. Correlation analysis measures the strength and direction of the relationship 
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between two variables. The correlation coefficient ranges between −1 and 1, with a result close to 1 
indicating a stronger positive correlation, a result close to −1 indicating a stronger negative 
correlation, and a result close to 0 indicating little to no correlation between the two variables [44]. 
After conducting a correlation analysis on the two sets of data, we can determine whether the data 
from both sets show similar change trends. However, correlation analysis alone does not provide 
information on the significance of any differences between the two datasets. To address this problem, 
we performed an additional ANOVA step. The ANOVA method is a statistical test that determines 
whether there are significant differences between the means of two or more groups of data. In the 
context of comparing two datasets, ANOVA can be used to test for significant differences in their 
overall values [45]. Table 3 displays the correlation coefficients for each point, all of which are greater 
than 0.9, indicating a strong correlation between the predicted subsidence results and the monitoring 
results at each point. Additionally, the ANOVA test performed on each point shows that the F value 
of the data between sets was much smaller than the critical F value at α=0.05, indicating no significant 
difference between the values of the two sets at each comparison point. Overall, the proposed method 
demonstrated reliable and accurate long-term subsidence predictions for the surface of the mined-
out collapse area, as evidenced by the close match between the predicted and monitored results. 
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Figure 10. Comparison of predicted results and actual monitoring data. 

Table 3. Correlation analysis and ANOVA results of the predicted and monitored datasets. 

Point 
Correlation 

Coefficients 

ANOVA (α=0.05) 
F Fcrit 

S0 0.955135 0.187691 

3.938111 
S2 0.913511 0.721422 
S4 0.963451 0.037546 
S7 0.95684 0.187504 
S9 0.978571 0.172836 

4.2 Regression parameters of the fitting curve 
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As indicated by Eq. (1) and Eq. (2), 𝑣0 represents the initial subsidence rate of the sampling 
points after the cessation of coal mining, which determines the initial subsidence intensity of the 
sampling points. 𝑊𝑚 represents the maximum cumulative subsidence of the sampling points after 
the cessation of coal mining, which determines the final cumulative subsidence value of the sampling 
points. 𝑐 is the time influence factor, which affects the trend of 𝑣 and 𝑊 for the sampling points 
over time. As shown in Figs. 6 and 7, a high value of 𝑐 leads to a rapid decrease in the velocity (𝑣) of 
the sampling point during the initial stage following the cessation of coal mining, whereas the 
parameter 𝑊 reaches a relatively stable state within a short period of time. 

Table 2 shows that the parameters of the sampling points vary with the location of coal face axes. 
For the sampling points (S1–S10) on the long axis, both 𝑣0 and 𝑐 show a similar trend of increasing 
and then decreasing, with maximum value occurring at S7. This regularity can be attributed to two 
factors: (1) The mining sequence of the coal face. Mining activities follow a certain sequence, and 
when monitoring land subsidence at the same time, the start time of subsidence differs across 
different locations. Compared to sampling points with lower numbers (S1–S5), those with higher 
numbers (S6–S10) experience a shorter timespan and more intense subsidence in the early stages of 
monitoring. (2) The boundary effect. Due to the influence of the unmined rock layers outside the 
mining boundary, those near the boundary may produce more cavities that cannot be closed 
immediately [46], resulting in less significant subsidence at sampling points near the boundary in the 
initial stages after the cessation of coal mining, compared to those in the middle of the mining area. 
In contrast, sampling points (S11–S18) along the short axis of the coal face are perpendicular to the 
mining direction and are not affected by the mining sequence. Due to the short span of the short axis, 
the distance between each sampling point is relatively short. Therefore, each sampling point is more 
significantly affected by the boundary, and the changes in the parameters of each sampling point are 
not significant. Meanwhile, the sampling points close to the center (S0) are less affected by the 
boundary effect and have a larger 𝑣0 value. 

As seen in Figure 8, it is evident that the cumulative subsidence curve along the long axis of the 
coal face evolves from a subsidence basin into an inclined W-shaped over time. The initial basin shape 
is consistent with the land subsidence shape after the cessation of coal mining [13]. However, the 
subsequent inclined W-shape differs from the residual land subsidence prediction results and is the 
result of the combined effects of the two factors previously mentioned. Traditional prediction 
methods do not consider the influence of mining sequence [47]. By considering the parameters of the 
sampling points (Table 2), it is evident that S7 has the largest 𝑣0, whereas S9 has the largest 𝑊𝑚. 
Meanwhile, S2, which is on the opposite side corresponding to S9, exhibits a local peak in the 
cumulative subsidence curve. Despite the fact that S7 experienced a significant cumulative 
subsidence in the initial stages after mining cessation, its subsidence trend slowed down considerably 
over time. In contrast, S2 and S9 did not undergo significant subsidence during the early stages after 
mining cessation, but their subsidence rate decreased slowly, resulting in a more substantial final 
cumulative subsidence (𝑊𝑚). In terms of the relative horizontal position of the sampling points to the 
coal face, S7 is close to the center of the coal face, whereas S2 and S9 are close to the edge. Upon 
ceasing mining, the overlying strata in the center of the coal face underwent more substantial 
compaction, whereas inadequate compaction can still be observed near the boundary of the coal face. 
Consequently, the sampling points near the boundary (S2 and S9) exhibited a higher subsidence 
potential [48]. Moreover, S7 and S9 are in close proximity to each other and have higher serial 
numbers. Due to the mining sequence of the coal face, the higher-numbered sampling points on the 
long axis experienced a shorter subsidence time before monitoring, resulting in more pronounced 
subsidence compared to the smaller-numbered sampling points. 

Based on the above analysis, it can be inferred that the cumulative subsidence of the surface near 
the boundary of the coal face is more significant during long-term subsidence after mining cessation. 
Therefore, it is recommended to pay more attention to the treatment of the overlying strata and 
surface above the boundary of the coal face after mining in practical engineering to minimize the 
post-subsidence impact on the project. 
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4.3 Applicability of the proposed method  

The proposed method for predicting long-term land subsidence in subsidence areas is based on 
the normalizing, merging, and fitting of short-term InSAR monitoring data obtained from multiple 
coal faces with different durations after coal mining cessation. This method demonstrates certain 
advantages in predicting long-term land subsidence in goafs. First, it addresses the difficulty in 
acquiring continuous and long-term data on surface movement and subsidence in goafs, as 
monitoring activities in field observation stations often end after the cessation of coal mining to save 
costs. Second, it avoids increasing the errors incurred when using SBAS-InSAR technology to process 
long-time-series images, which may lead to significant errors due to the limitations of radar image 
data, such as atmospheric conditions, vegetation cover, terrain slope, orbit errors, and subsidence 
gradients. Although the SBAS-InSAR technology is more effective in mitigating the impact of 
temporal and spatial mismatches on the results, it can also capture surface displacements caused by 
human activities as monitoring time increases, which may be confused with land subsidence induced 
by mining. In contrast, the proposed method of using short-term monitoring results to fit land 
subsidence can effectively avoid these adverse factors, thus improving the accuracy of the prediction 
results. 

Based on the above discussion, we recognize that the proposed method for predicting long-term 
land subsidence in goafs is advantageous and competitive in some aspects. This prediction method 
has potential application prospects in situations where there are missing or short monitoring data 
within a wide range. Meanwhile, this method can effectively eliminate the interference of land 
subsidence caused by human activities when coal mines stop operation for some time. However, it 
should be noted that the geological and topographic conditions of different mining areas vary, and 
the parameters of the prediction model may change due to differences in geological, topographic, 
and mining conditions. Furthermore, as the values of subsidence parameters are influenced by 
various factors, future research could explore additional potential influencing factors and refine the 
prediction models. 

5. Conclusions 

In this paper, we proposed a method for predicting long-term land subsidence in goafs based 
on short-term InSAR monitoring data. Using the Yangquan No.2 mine in Shanxi Province, China, as 
a case study, we provided a detailed description of the application process and investigated the long-
term subsidence patterns of the mined-out area. The main conclusions are presented as follows: 

(1) The relationship between subsidence rate and duration after coal mining cessation of a coal 
face conformed to an exponential function, whereas that between the cumulative subsidence and 
duration after coal mining cessation of a coal face conformed to the Knothe time function; 

(2) After the cessation of coal mining, significant land subsidence of the mining area persisted 
for 5 to 10 years, followed by a trend of stabilization, where the subsidence rate decreased over time. 
Within the first 5 years, a notable land subsidence was observed in areas situated nearer to the center 
of the coal face. Subsequently, this area moved towards the boundary of the coal face; 

(3) The cumulative subsidence curve along the long axis of the coal face ultimately displays an 
inclined W-shape, with the peak occurring near the boundary, which might be attributed to the 
boundary effect. The curve is not symmetrical, with the section closer to the cessation line exhibiting 
greater subsidence, which might be attributed to the mining sequence of the coal face; 

(4) After mining cessation, sustained and significant subsidence motion occurred above the 
boundary of the coal face, with a large cumulative subsidence. Particular attention should be paid to 
subsidence motion in this area. 
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