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Article 
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Abstract: As a fast and nondestructive spectroscopic analysis technique, Raman spectroscopy has been widely 

applied in chemistry. However, noise is usually unavoidable in Raman spectra. Hence, denoising is an 

important step before Raman spectral analysis. A novel spectral denoising method based on variational mode 

decomposition (VMD) was introduced to solve the above problem. The spectrum is decomposed into a series 

of modes (uk) by VMD. Then, the high frequency noise modes are removed and the remaining modes are 

reconstructed to obtain the denoised spectrum. The proposed method was verified by two artificial noised 

signals and two actual Raman spectra. As comparison, empirical mode decomposition (EMD), Savitzky-Golay 

(SG) smoothing and discrete wavelet transformation (DWT) are also investigated. At the same time, signal-to-

noise ratio (SNR) was introduced as evaluation indicators to verify the performance of the proposed method. 

The results show that compared with EMD, VMD can significantly improve mode mixing and endpoint effect. 

Some information of the small sharp peak is lost after VMD denoising. However, VMD lost fewer information 

than that of EMD, SG smoothing and DWT. Moreover, the Raman spectrum by VMD denoising is more 

excellent than that of EMD, SG smoothing and DWT in terms of visualization and SNR. Therefore, VMD 

provides superior denoising capabilities for Raman spectra. 

Keywords: raman spectrum; denoising; variational mode decomposition; empirical mode 

decomposition; mode mixing 

 

1. Introduction 

Raman spectroscopy is a vibrational spectrum that excites molecular motion by light and used 

to chemical analysis of the sample by interprets the interaction, which is used for non-destructive 

analytical tool [1–3]. It is extensively used for qualitative and quantitative characterization in the field 

of food [4,5], diseases [6–8], biochemistry [9,10] and materials science [11–13]. Such as, Dai et al. [4] 

identified the age of pericarpium citri reticulatae (PCR) products by Raman spectroscopy. Zhang et 

al. [7] recorded the comprehensive molecular information about tumors in situ by Raman 

spectroscopy. However, due to the influence of thermal noise and dark current, noise inevitably exists 

in Raman spectrum. Moreover, Raman signal is inherently weak, making useful information 

susceptible to noise [14]. Therefore, it is important for Raman spectrum to remove noise. 

Several methods have been used for spectral denoising, such as Savitzky-Golay (SG) smoothing 

[15,16], Whittaker smoother (WS) [17], deep learning (DL) [18,19], discrete wavelet transformation 

(DWT) [20,21], and empirical mode decomposition (EMD) [22,23]. SG smoothing, also known as 

convolution smoothing, is a signal smoothing method based on polynomial approximation of local 

least squares proposed by Savitzky and Golay [15]. It is a weighted average method, emphasizing 

the role of center point. The advantage of SG smoothing is that not has delay, and it can handle the 

data missed at a short period of time well. Luo et al. [3] applied SG smoothing to the Raman spectra 

denoising of cefuroxime axetil tablets and mixture of pyrene and cyclodextrin, as well as the Raman 

spectra denoising of cefuroxime axetil and cervical cancer cells. The intensities of the peaks in the 

Raman spectrum denoised by SG smoothing partially decreases with the retention noise. Meanwhile, 
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due to the difference in the change rate of background and Raman spectrum, there is an irregular 

deviation between background and Raman spectrum. For SG smoothing, it is only performed once 

for denoise of signal. Moreover, it is important to choose the window length for the denoising 

performance. The different widths of the moving window could produce different denoising effects 

for SG smoothing. Large window width may result in the loss of valid information while small 

window width may remain noise in spectrum [24]. WS is a signal smoothing method based on least 

squares penalties proposed by Whittaker. The program of WS is very concise and it has the ability of 

adaptive to boundaries automatically. Compared with SG smoothing, WS has fast computation speed 

and easy to implement [25]. However, WS is not widely used because it requires the intervals between 

adjacent collection points of the data must be equal. Due to the highly flexible characteristic, DL has 

become a hot topic and also can be used for signal denoising [18,19,26]. Horgan et al. [18] proposed a 

comprehensive deep learning framework for high-throughput molecular imaging through Raman 

spectroscopy that supports deep learning. It can effectively reconstruct Raman characteristics from 

low signal-to-noise ratio (SNR) Raman spectra. In the denoising process of DL, a model is built 

between the noised signals and the pure signals of the same samples in training set. Then the new 

noised signal is taken as the input to the model and the denoised signal is obtained. Although 

excellent denoising ability was demonstrated, DL denoising requires a lot of training samples. 

Furthermore, sometimes it is difficult to obtain the pure signals. 

DWT and EMD are both decomposition-based denoising methods, which decompose the 

original signal into a certain number of components with different frequencies. Compared with DL, 

the two methods do not need training samples and pure signals. For DWT denoising, the original 

signal was decomposed into a series of details and approximations. The high frequency details are 

deleted and the denoised signal is reconstructed by inverse wavelet transform [27]. Dou et al. [28] 

applied DWT to the research of intelligent transportation system data denoising and compression. 

However, it is difficult to select the optimal parameters for DWT because the large number of wavelet 

functions and decomposition scales. An adaptive method that does not require a defined basis as 

DWT, EMD was proposed by Huang et al. in 1998 [22,23]. EMD has been applied to Raman spectral 

denoising. Leon-Bejarano et al. [29] applied EMD as an adaptive parameterless signal processing 

method to Raman spectrum denoising of biological samples. However, EMD has mode mixing and 

endpoint effect in the decomposition process. 

To overcome the drawbacks of EMD, variational mode decomposition (VMD) was proposed by 

Dragomiretskiy et al. in 2014 [30]. VMD can determine the relevant frequency band adaptively and 

estimate the correspond modes uk simultaneously in the decomposition process [31]. Compared with 

EMD, VMD has solid mathematical theory and can improve mode mixing and endpoint effect [32]. 

It has been extensively used for bearing fault diagnosis [33–35], pipeline leak detection [36,37], tidal 

analysis [38], and wind speed forecasting [39,40]. However, few research uses VMD for spectral 

denoising in analytical chemistry. 

In this research, VMD is introduced to Raman spectral denoising. The original spectrum is 

decomposed into a series of uk by VMD. The noise modes are deleted and the remaining modes are 

reconstructed to obtain the denoised spectrum. The feasibility and effectiveness of the method are 

verified by two artificial noised signals and two actual Raman spectra. EMD, SG smoothing and DWT 

are used to compare with the proposed method, and the denoising effect is verified by visualization 

and SNR. 

2. Methods 

Denoising by variational mode decomposition (VMD) 

VMD is a decomposition method for adaptive non-recursive signals and a process of solving 

variational problems. The advantage of this method is that it has solid mathematical theory 

foundation and strong noise suppression ability. The original signal is decomposed into a series of 

modes uk, each mode is tight around a central frequency and with limited bandwidth. The sum of 

all modes is equal to the original signal. The bandwidth problem of modes is transformed into a 
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constrained optimization problem for solving each mode. The above problem is solved by 

introducing a quadratic penalty term 𝛼  and Lagrangian multiplier 𝜆 . The saddle point of the 

augmented Lagrangian function is calculated by alternate direction method of multipliers (ADMM). 

Finally, the final mode 𝑢௞  is obtained by Fourier transform of the analysis signal. The detailed 

iteration process is shown in Figure 1. The detailed algorithm please refers to reference [30]. 

 

Figure 1. Schematic of the VMD method. 

In this research, VMD is introduced for denoising of Raman spectra. The spectrum is 

decomposed into a series of uk by VMD, all the frequcencies of the modes are sorted from low to 

high. The high frequency modes represent noise and low frequency modes represent useful 

information. After the high frequency modes are removed, the low frequency modes are 

reconstructed to obtain the denoised spectrum. 

2.2. Denoising by empirical mode decomposition (EMD) 

As comparision, EMD is also used for the two artificial signals and two actual Raman spectra. 

Based on the inherent characteristics of the signal, the original signal is decomposed into a series of 

intrinsic mode functions (IMFs) and a residual (r) by EMD. The oscillation frequencies of the modes 

decrease as the order of IMFs increase. After the decomposition, the high frequency modes are 

removed as noise and the remaining modes are reconstructed to obtain the denoised signal. 

2.3. Denoising by SG smoothing 

SG smoothing is a widely used denoising method in spectra analysis. Thus, the method is also 

used to compare with VMD. SG smoothing is polynomials least square fitting of the data in the 

moving window, which is essentially a weighted average with more emphasis on the role of the 

central point. A symmetric window with length of i=2w+1 is used, where i is window size and w is 

the half window width. The output value of the filter is equal to the value of the polynomial at the 

center point. The next output value of the filter is calculated by shift the window sample and the step 

is repeated to obtain the denoised signal. 

2.4. Denoising by DWT 

Discrete wavelet transformation (DWT) implements the wavelet transformation by discrete 

translation factor and telescopic factor. The addition of these wavelets can be regarded as the 

decomposed signal. First, DWT is applied to the original signal, a series of approximations and details 

are obtained. Second, after determining the appropriate threshold, the noise in the signal is removed 
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by processing the details with the hard or soft thresholding strategy. Finally, the processed wavelet 

coefficients are reconstructed to obtain the denoised signal. 

2.5. Evaluation of denoising performance 

In order to evaluate the denoising performance of the method, the figure of spectra before and 

after denoising and SNR are used. SNR is defined as 

SNR = 10lg ൝෍ 𝑓ଶ(𝑥)/௦ ෍ൣ𝑓(෪𝑥) − 𝑓(𝑥)൧ଶ௦ ൡ (1)

where 𝑓(𝑥) is the original signal, 𝑓(෪𝑥) is the denoised signal and s is the number of variable points 

[41]. A larger SNR means less noise mixed into the signal, and a smaller SNR means more noise mixed 

into the signal. Therefore, the SNR should be as high as possible. 

3. Datasets 

In order to verify the effectiveness of the proposed method, two artificial noised signals and two 

actual Raman spectra were employed. 

3.1. The first artificial noised signal 

The first artificial signal was constructed by three different frequency functions to verify the 

effect of VMD in decomposes the signal into different frequencies. It contains three cosine functions 

of different frequencies with a random noise, the three cosine functions are expressed by Eqs. (2), (3) 

and (4). Figure 2 (a), (b), (c), (d) and (e) show the first artificial noised signal, functions of f1, f2, f3 and 

random noise, respectively. fଵ = cos(2π × 2𝑥 − 3) (2) 

fଶ = 14 cos(2π × 20𝑥) (3) 

fଷ = 16 cos(2π × 50𝑥) (4) 

 

Figure 2. The first artificial noised signal (a) and its constituents f1 (b), f2 (c), f3 (d), random noise 

(e). 
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3.2. The second artificial noised signal 

Due to the characteristic peaks in Raman spectra are the Lorentz peaks, the second artificial 

signal is constructed by the Lorentz function. The pure signal of artificial signal is constructed by 

three Lorentz functions which have different peak widths and peak heights and a background 

function. The three Lorentz functions and the background function are expressed by Eqs. (5), (6), (7) 

and (8). The white Gaussian noise with 20dB is added to the pure signal to obtain the second artifical 

signal. Figure 3 (a) and Figure 3 (b) show the curves of f4, f5, f6, f7 and the artificial noised signal, 

respectively. The artificial noised signal can be considered as artificial Raman noised spectrum, which 

is composed of 551 variables with a digitization interval of 0.1. As shown in Figure 3 (b), it is obvious 

that the artificial signal contains a lot of noise. fସ = 2((5𝑥 − 70)ଶ + 3) (5) 

fହ = 5((𝑥 − 3)ଶ + 3) (6) 

f଺ = 4((𝑥 + 2)ଶ + 4) (7) 

f଻ = 0.03 × 𝑥ଵ/ଶ (8) 

 

Figure 3. The second artificial noised signal constituent curves (a) and the second artificial noised 

signal (b). 

3.3. The first actual Raman spectrum 

The first actual Raman spectrum of MnCo single atom catalyst anchored on carbon and nitrogen 

materials (MnCo-ISAs/CN) was measured on a Raman spectrometer (XploRA PLUS, Japan). The 

spectrum was recorded with a digitization interval of 2.9 cm-1 in the range of 750-2600 cm-1, in total 

of 715 variables. Figure 4 shows the original Raman spectrum of MnCo-ISAs/CN, from which a large 

amount of noise can be seen. Hence, it is necessary to remove noise and retain valid information. 
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Figure 4. Original Raman spectrum of MnCo-ISAs/CN catalyst. 

3.4. The second actual Raman spectrum 

The second actual Raman spectrum of the iron-loaded carbon nanotubes (Fe-NCNT) 

synthesized by a convenient thermal treatment method was measured on a Raman 

spectrometer (XploRA PLUS, Japan). The spectrum was recorded with a digitization 

interval of 3.2 cm-1 in the range of 100-3500 cm-1, in total of 1351 variables. The Raman 

spectrum was shown in Figure 5. 

 

Figure 5. Original Raman spectrum of Fe-NCNT. 
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4. Results and Discussion 

4.1. Denoising of the first artificial signal 

Figure 6 (a) shows the decomposition result of VMD for the first artificial noised signal, which 

is decomposed into five modes u1-u5. It can be seen from Figure 6 (a) that the frequency distribution 

of modes increases from low to high. The decomposition of VMD starts at the coarsest level. With the 

mode order increases, the oscillation frequencies of the modes also increase. The curve shapes of the 

three modes are almost as same as the three curves in Figure 2 (b), respectively. Obviously, the modes 

u1, u2 and u3 obtained by VMD correspond to the three functions f1, f2 and f3 that constitute the first 

artificial signal in Figure 2 (a). The modes u4 and u5 are random noise. Hence, the different frequency 

modes in the first artificial signal is separated completely by VMD. 

As comparison, the first artificial noised signal is also denoised by EMD, SG smoothing and 

DWT. For the decomposition result of EMD, IMF1-IMF5 and a r are obtained, which are shown in 

Figure 6 (b). It is clear that the oscillation frequencies of the modes decrease as the order of IMFs 

increase. IMF2 and IMF3 are high frequency in the middle and low frequency at both ends, which 

are both high frequency mixing modes. The pure signal of first artificial signal is consisted by three 

different frequency curves. However, it is decomposed to four low frequency modes by EMD. 

Therefore, mode mixing and over-decomposition are produced for the first artificial signal by EMD. 

 

Figure 6. Decomposition results of VMD (a) and EMD (b) for the first artificial noised signal. 

Figure 7 shows the denoised signals by SG smoothing, DWT, EMD and VMD. For SG smoothing, 

with window size 16, most noise has been removed. However, some peaks of the SG smoothing signal 

are deviated or lower than those of the original signal. For the result of DWT, the signal still contains 

noise, which makes each peak not smooth enough. Visual inspection the decomposition result of 

EMD for the first artificial noised signal, IMF1 and IMF2 are the high frequency modes, which are 

removed as noise. IMF3-IMF5 and r are low frequency modes, which are reconstructed to obtain the 

denoised signal. Due to IMF2 is a mixing mode, the signal denoised by EMD has endpoint effect 

when IMF2 is removed, resulting in signal distortion at both ends. Furthermore, some information of 

the signal after denoising is lost due to mode mixing. For VMD, it is obvious that u1-u3 are low 

frequency modes with useful information, u4 and u5 are high frequency modes with little useful 

information. Hence, the artificial denoised signal is obtained by reconstruct u1-u3, while u4 and u5 

are removed as noise. Obviously, the denoising result of VMD improves mode mixing and endpoint 
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effects generated by EMD. The denoised signal by VMD almost overlaps with the original signal. 

Hence, the denoising effect of VMD is ideal. The SNR values of SG smoothing, DWT, EMD and VMD 

are 22.11, 23.11, 19.95 and 23.31, respectively. Therefore, for the first artificial signal, VMD has 

superiority in visual inspection and SNR compared with SG smoothing, DWT and EMD. 

 

Figure 7. Denoised signals by different methods for the first artificial signal. 

4.2. Denoising of the second artificial signal 

Figure 8 (a) shows the decomposition result of VMD for the second artificial noised signal, which 

is decomposed into five modes u1-u5. It can be seen from Figure 8 (a) that u1 and u2 are low 

frequency modes, u3-u5 are the high frequency modes. The first artificial signal is effectively 

decomposed into different frequencies without mode mixing by VMD. 

As comparison, the second artificial noised signal was also denoised by SG smoothing, DWT 

and EMD. Figure 8 (b) shows the decomposition result of EMD, obtaining IMF1-IMF7 and a r. IMF1-

IMF3 are the high frequency modes. IMF5-r are the low frequency modes. However, IMF4 is low 

frequency in the middle and high frequency at both ends. Thus, it indicates that IMF4 is a mixing 

mode. Hence, mode mixing is produced in the decomposition result of EMD. 
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Figure 8. Decomposition results of VMD (a) and EMD (b) for the second artificial noised signal 

Figure 9 shows the denoised signals by SG smoothing, DWT, EMD and VMD. For SG smoothing, 

the window size is selected as 33. Visual inspection the decomposition result of EMD for the second 

artificial noised signal, IMF3-r are used to reconstruct the denoised signal. For the result of VMD, u1 

and u2 are reconstructed to obtain the artificial denoised signal and u3-u5 are removed as noise. It is 

obvious that most noise has been removed by SG smoothing, DWT, EMD and VMD. The signal 

denoised by VMD is smoother than that of SG smoothing and EMD. For EMD, some useful 

information of the signal after denoising is lost due to mode mixing, resulting in signal distortion in 

the range of 110th-190th points. As shown in Figure 9, the denoised signal has endpoint effect at left 

end. Furthermore, the peaks at 120th and 190th points of the signal denoised by SG smoothing, EMD 

and VMD are basically coincident. However, the signal after SG smoothing still contains noise at the 

two peaks mentioned above. For the second artificial signal denoised by DWT, the peaks located at 

120th and 190th points are lower than those of the original signal. Moreover, the valley around 150th 

point after SG smoothing, DWT and EMD deviate significantly from the original signal position. For 

the small sharp peak in the range of 290-310 points, some information is lost after denoising by the 

four denoising methods. However, SG smoothing, DWT and EMD lost more information than that 

of VMD denoising. Thus, VMD shows better denoising performance than that of SG smoothing, DWT 

and EMD. 

In order to evaluate the denoising performance of the four methods more intuitively, the SNR 

as a criterion is calculated. The SNR values of SG smoothing, DWT, EMD and VMD are 15.43, 15.36, 

16.3 and 16.8, respectively. Thus, VMD has superiority in SNR compared with SG smoothing, DWT 

and EMD. 
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Figure 9. Denoised signals by different methods for the second artificial signal 

4.3. Denoising of the Raman spectrum of MnCo-ISAs/CN 

To evaluate the denoising effect of the proposed method on the actual spectrum, the Raman 

spectrum of material MnCo-ISAs/CN was used for denoising. Figure 10 (a) shows the decomposition 

result of VMD, which composes of six modes u1-u6. Obviously, u1 and u2 are the low frequency 

modes and u3-u6 are the high frequency modes by visual inspection. Furthermore, the decomposition 

result of Raman spectrum by VMD is easier to distinguish the boundary of noise modes and useful 

information modes. 

For comparison, SG smoothing, DWT and EMD are also applied to the Raman spectrum 

denoising. The decomposition result of EMD is shown in Figure 10 (b), IMF1-IMF8 and a r are 

obtained. It is clear that IMF1-IMF3 are the high frequency modes and IMF5-r are the low frequency 

modes. However, IMF4 is low frequency in the range of 1400-1700 cm-1 and high frequency in other 

ranges. Thus, IMF4 is a mixing mode. Hence, mode mixing is produced in the decomposition result 

of EMD. 
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Figure 10. Decomposition results of VMD (a) and EMD (b) for the Raman spectrum of MnCo-

ISAs/CN. 

Figure 11 shows the denoised signals by SG smoothing, DWT, EMD and VMD. For SG 

smoothing, the window size is selected as 33. The spectrum located at 1500cm-1 still contains noise. 

For the denoising result of DWT, the denoised spectrum is smoother than that of SG smoothing. 

However, the peak located at 1350cm-1 is not smooth enough. Moreover, the spectrum located at 

1500cm-1 still contains noise after DWT denoising. For the result of EMD, IMF5-IMF8 and r are 

reconstructed to obtain the Raman denoised spectrum and IMF1-IMF3 are removed as noise. 

However, IMF4 can be served as noise mode and also be served as useful information mode due to 

it is a mixing mode. If IMF4 is used to reconstruct the denoised spectrum as a useful information 

mode, the result is labeled as EMD1 and shown in Figure 11. The denoised spectrum still contains 

much noise and the endpoint effect has appeared at the right end. Moreover, for the result of EMD2, 

the peaks at 1350cm-1 and 1600cm-1 of the denoised spectrum are higher than that of other methods. 

If IMF4 is removed as noise mode, IMF5-r are used to reconstruct the denoised spectrum for EMD 

and labeled as EMD2 in Figure 11. It is obvious that the denoised spectrum is smoother than that of 

when IMF4 is reserved as useful information mode. However, the weak peak in the range of 1400-

1700 cm-1 is removed. As shown in Figure 11, the spectrum denoised by EMD has endpoint effect, 

resulting in spectrum distortion at right end. Furthermore, some useful information after denoising 

is lost due to mode mixing. For the result of VMD, u1 and u2 are reconstructed to obtain the Raman 

denoised spectrum, u3-u6 are removed as noise. VMD shows excellent denoising capability and 

almost all useful information is retained. Moreover, the spectrum denoised by VMD is smoother than 

that of EMD. Hence, it can be concluded that the denoising effect of VMD is better than that of SG 

smoothing, DWT, and EMD for the Raman spectrum. 
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Figure 11. Denoised signals by different methods for the Raman spectrum of MnCo-ISAs/CN 

4.4. Denoising of the Raman spectrum of Fe-NCNT 

The Raman spectrum of Fe-NCNT was denoised by VMD. For the decomposition result of VMD, 

u1-u6 are obtained, which are shown in Figure 12 (a). It is clear that u1 and u2 are the low frequency 

modes and u3-u6 are the high frequency modes. The different frequency modes are obtained without 

mode mixing by VMD. Hence, it is easier to distinguish the boundary between noise modes and 

useful information modes. 

In order to compare the denoising effect of the proposed method, SG smoothing, DWT and EMD 

are also used for the Raman spectrum denoising. For the decomposition result of EMD, IMF1-IMF9 

and a r are obtained by EMD, which are shown in Figure 12 (b). IMF1-IMF3 are high frequency modes 

obviously and IMF5-r are low frequency modes. IMF4 is low frequency in the range of 1100-1700 cm-

1 and high frequency in other ranges. Thus IMF4 is a mixing mode. Therefor, the modes obtained by 

EMD have mode mixing obviously. 
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Figure 12. Decomposition results of VMD (a) and EMD (b) for the Raman spectrum of Fe-NCNT. 

The denoised spectra by SG smoothing, DWT, EMD and VMD are shown in Figure 13. 

For SG smoothing, the window size is selected as 41. For EMD, since IMF4 is a mixing mode, 

it can be regarded as noise mode and also be regarded as useful information mode. If IMF4 

is used to reconstruct the denoised spectrum, the result is labeled as EMD1 and shown in 

Figure 13. If IMF4 is removed as noise, the result is labeled as EMD2 in Figure 13. For the 

decomposition result of VMD, u1 and u2 are used to reconstruct the denoised spectrum and 

u3-u6 are removed as noise. It is obvious that most noise has been removed by SG 

smoothing, DWT, EMD1, EMD2 and VMD. The spectrum denoised by VMD is smoother 

than that of SG smoothing and EMD1. Morever, the denoising result of VMD improves 

mode mixing generated by EMD. For the result of EMD2, the denoised spectrum is 

distorted in the range of 1100-1750cm-1 since the existence of mode mixing. For the denoised 

spectrum of DWT, the valley around 1500cm-1 still contains noise. For the small peak located 

at 400 cm-1, the spectrum retains the shape of the peak after VMD, EMD1 and EMD2. 

However, the small peak deviates from the original position after SG smoothing and DWT. 

Although the peak after VMD denoising is slightly wider than that of the original signal, 

the peak after DWT is wider than that of other denoising methods. The peaks at 1300cm-1 

and 1600cm-1 of the spectrum by SG smoothing, DWT and VMD are basically coincident. 

However, for the denoising results of EMD1, the above two peaks are significantly higher 

than other methods. Therefore, the denoising effect of the proposed method is more ideal 

than that of SG smoothing, DWT and EMD. 
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Figure 13. Denoised signals by different methods for the Raman spectrum of Fe-NCNT. 

5. Conclusions 

VMD method was firstly introduced for denoising of Raman spectrum with noise. Two artificial 

noised signals and two actual Raman spectra were used to verify the denoising performance of the 

proposed method. The spectrum is decomposed by VMD into a series of modes, which are sorted 

from low frequency to high frequency. The high frequency modes are removed and the low frequency 

modes are reconstructed to obtained denoised spectrum. In order to verify the denoising effect of this 

method, SG smoothing, DWT and EMD are used as comparisons. Results show that VMD has highest 

SNR among the four denoising methods for the artificial denoised signal. Compared with the 

denoised result of EMD, VMD can decompose the signal into different modes with different 

frequencies, which improves the mode mixing and endpoint effects. Moreover, it is easier to 

distinguish the noise modes and useful information modes by VMD than that of EMD. The peaks of 

the spectrum denoised by VMD are smoother than that of the denoising spectra by SG smoothing 

and DWT. For the small sharp peaks, some information is lost after VMD denoising. However, SG 

smoothing, DWT and EMD lost more information than that of VMD. Hence, the proposed methods 

shows effectiveness both in SNR and denoising performance compared with SG smoothing, DWT 

and EMD. Therefore, VMD shows a high potential for signal denoising for Raman spectral analysis. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
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