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Abstract:  Let { fj}}“zl and {gc}}'; be Parseval p-frames for a finite dimensional

Banach space X. Then we show that (1) log(nm) > Sg(x) + Sg(x) >
—plog sup ( max |f(y)gk(y)|) , Vx € XrnN X, where Xy = {z €
(yeXfﬂXg,||y|=1 1<j<nisksm fo !

X f](z) # 0,p1 < j < ni, X, = {w € X : g(w) 7?0,1 < k gp m}, Sf(x) =
—o |6 ()] sl () S = —mi e (7)) [ log e ()| vx € A

We call Inequality (1) as Functional Deutsch Uncertainty Principle. For Hilbert spaces, we show
that Inequality (1) reduces to the uncertainty principle obtained by Deutsch [Phys. Rev. Lett., 1983].
We also derive a dual of Inequality (1).
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1. Introduction

Letd € Nand ~: £2(R?) — L%(RY) be the unitary Fourier transform obtained by extending
uniquely the bounded linear operator

~ LY RY N L2RY) S fs fe CoRY);  FiRY S & s F(E) /f Je~27it58) gy € C.
R4

The Shannon entropy at a function f € £2(R%)\ {0} is defined as

fX)

81T

(with the convention 0log 0 = 0) [1]. In 1957, Hirschman proved the following result [2].
Theorem 1.1. [2] (Hirschman Inequality) For all f € £?(R)\ {0},

S(f) +S(f) > 0. 2)

In the same paper [2] Hirschman conjectured that Inequality (2) can be improved to

S(f)+S(f) = d(1-1og2), fe L*(RY)\{0}. 3)

Inequality (3) was proved independently in 1975 by Beckner [3] and Bialynicki-Birula and Mycielski
[4].

Theorem 1.2. [3,4] (Hirschman-Beckner-Bialynicki-Birula-Mycielski Uncertainty Principle) For all
fe L2(RY)\ {0},

~

S(f)+S(f) >d(1—1og2).
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Now one naturally asks whether there is a finite dimensional version of Shannon entropy and
uncertainty principle. Let H be a finite dimensional Hilbert space. Given an orthonormal basis {rj};?:l
for H, the (finite) Shannon entropy at a point 1 € H; is defined as

Sc(h) ==Y
j

(i) i)
|\ T I

where Hr = {h € H : (h,7;) # 0,1 < j < n} [5]. In 1983, Deutsch derived following uncertainty
principle for Shannon entropy which is fundamental to several developments in Mathematics and
Physics [5].

2
>0,

n

Theorem 1.3. [5] (Deutsch Uncertainty Principle) Let {T;}" =1 {w;i}? j—1 be two orthonormal bases for a
finite dimensional Hilbert space H. Then
1 T, W
+1;n],33§n|< i wi)|
2

2logn > Sr(h) 4 Sw(h) > —2log ( ) >0, VhéeH, 4)

Recently, author derived Banach space versions of Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani
uncertainty principle [6], Donoho-Stark approximate support uncertainty principle [7] and
Ghobber-Jaming uncertainty principle [8]. We then naturally ask what is the Banach space version of
Inequality (4)? In this paper, we are going to answer this question.

2. Functional Deutsch Uncertainty Principle

In the paper, K denotes C or R and X’ denotes a finite dimensional Banach space over K. Dual of
X is denoted by X*. We need the notion of Parseval p-frames for Banach spaces.

Definition 2.1. [9,10] Let X be a finite dimensional Banach space over K. A collection { f] ' in X" is said
to be a Parseval p-frame (1 < p < oo) for X if

x[|P =) 1fi(x)[F, VxeX. @)
i=1

Note that (5) says that [|fj|| < 1forall1 < j < n. Given a Parseval p-frame { f]‘};lzl for X, we
define the (finite) p-Shannon entropy at a point x € X as

5 ()| sl ()| 2

where Xy := {x € X': fj(x) # 0,1 < j < n}. Following is the fundamental result of this paper.

p

Sp(x) = Z

Theorem 2.2. (Functional Deutsch Uncertainty Principle) Let {f;}7_, and {gi }}', be Parseval p-frames
for a finite dimensional Banach space X. Then

yeX [ly|=1

(nnt)%g " ( max Ifj(y)gk(y)l>
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and

(6)

log(nm) > S¢(x) + Sg(x) > —plog ( sup < max Ifj(y)gk(y)|>) >0,

yeXNAy[lyl=1
Vx € Xf M Xg.

Proof. Letz € X be such that ||z|| = 1. Then
1—(2m )(ng ):iif]z)gk
nom ] P
<Ly ( sup (| max m(y)gkw)r))

j=1k=1 \ye& |y[=1

p
max |f-<y>gk<y>|)> n
<y€X|y| _q \1gj<ni<ksm

which gives

P
1
mns( sup (l<]<r;g§k<m|ﬁ<y>gk<y>|)> .

yeX [ly|l=1

p
since 1 = 1y |f; () Pforallx € X\ {0},1 = ¥, g ()| forall x € X\ {0} and log
function is concave, using Jensen’s inequality (see [11]) we get

n p m
syt0)-+55(5) = 1|5 (g )| 1w Wlx)y’ =

B

(|x|)‘pm *los égk

K]

=logn +logm =log(nm), Vx € Xfn Xy

() | ey
Wl e

<log

Letx € Xf N X;. Then

() + 55 (x) = —/ﬁl:Zl ()| e (5 )| s (5 )|+ e (50) ]
=L &b ()l o G voels ()= ()|
B2 ) el () )
- p]ilkil Ji %) p ‘gk (ﬁ) plog (yexfr?;g}?yll ( 5]5}’%%"’ f'(y)gk(y))>

p

50 >y

g )
exfmx HyH 1 1§JS”r1§k5"’ j=1k=1

yeXfﬂX HyH 1 1§]Sn,1§k§m fiW)skly N))-

e ()

\
=
—
o

()
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Corollary 2.3. Theorem 1.3 follows from Theorem 2.2.
Proof. Let {Tj};’:l, {wj};’:l be two orthonormal bases for a finite dimensional Hilbert space . Define
firHoh—= (h7) €K, g :H3h— (hw)eK, VI<j<n

Now by using Buzano inequality (see [12,13]) we get

sup ((max 7)) = sup(max 10,1 0h o))

hett,||h||=1 1<jksn heH, ||| =1 1<jk<n
Tl llwkll + (T, w
< sup (mm<wwmnm|m m»
het,|[h]|=1 \1Siksn 2
L max {7, @)l
2

O

Theorem 2.2 brings the following question.

Question 2.4. Given p, m, n and a Banach space X, for which pairs of Parseval p-frames { jfj};?zl and {gx 14
for X, we have equality in Inequality (6)?

Next we derive a dual inequality of (6). For this we need dual of Definition 2.1.

Definition 2.5. [14-16] Let X be a finite dimensional Banach space over K. A collection {'L']-}]’.‘:1 in X is said
to be a Parseval p-frame (1 < p < oo) for X* if

wwzimmw Vf e X", %
L

Note that (7) says that

1
n P
gl = sup [f(m)l <  sup (ZIf(w)l”) = sup  [f[=1 Vi<j<n
fexifI=1 fexslifl=1 \j=1 fexs|fl=1

Given a Parseval p-frame {Tj};?:l for X'*, we define the (finite) p-Shannon entropy at a point f € &7}
as

p
>0,

n

Sc(f) ==Y

j=1

f(T)
A1

P f(T)
o8| 7]

where X7 = {f € X" : f(7;) # 0,1 < j < n}. We now have the following dual to Theorem 2.2.

Theorem 2.6. (Functional Deutsch Uncertainty Principle) Let {T; iy and {wi}i, be two Parseval
p-frames for the dual X* of a finite dimensional Banach space X. Then

Lo< sup ( max _|g(7)g(w )|>
(nm)7  gea =1 \I=iEnizkem =

do0i:10.20944/preprints202307.1084.v1
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and

log(nm) > S (f) + Sw(f) > —plo su (
’ A= s e X g1 ISTnISkm

Vfe XNz,

|g<rj>g<wk>|)) S0

Proof. Leth € X* be such that ||| = 1. Then

- (z |h<rj>|P) (f |h<wk>|P> — Y Y Ih(m)h(w)l?
=1 k=1 j=1k=1

m 14

Z( sup (| max |g<rj>g<wk>|)>

geX™ |Igll=1

p
= sup ( max |(Tz)g(wk)|) mn
(geX*,llgll 1<j<nisksm =

IN
u M:

which gives

1o w ( max |g(T)g(w)|> '
< )8 (wr :
mn gEX*,HI;H:l 1<]<n,1<k<m J

3P
% forall f € X%\ {0},1 =37, flwy)

concave, using Jensen’s inequality we get

3 _ n
Since1 =3,

X*\ {0} and log function is

) f(g) ) 1 (wi) [P 1
ST(f)JFSw(f):‘ log (P @) |P
=1 i 1 ‘fl(\fl\)
oo | Y fm P 1 oo | v flwi)|”
<vs\ L1l ey | e\ BV rpp
! 71 71
=logn +logm =log(nm), Vfe X! NAX}.
Let f € X N A}. Then
BB @ @ [ @) |l ]
S5 == L 4 | [ ll TN 1
_ v @ f@d |, D) flwd |
S L T T BT
S @) P @) P [ f(TG) flewr)
PLAATAT A | A
B @ e
>R LT i 1g<gex*,|§|_1 <1<J<n,1<k<m'g(”)g<“’k))>
= — (o] su max H ; f(wk) ’
L] S S <1<,<n,1<k<m'g(”)g(“”‘)o)E,E AR

——plog( sup (| max |g<rj>g<wk>|)).

ZEXFNAG [I8]=1

do0i:10.20944/preprints202307.1084.v1
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O

Theorem 2.6 again gives the following question.

Question 2.7. Given p, m, n and a Banach space X, for which pairs of Parseval p-frames {t; ;7:1 and {wi 4
for X*, we have equality in Inequality (8)?

Author is aware of the improvement of Theorem 1.3 by Maassen and Uffink [17] (cf. [18])
(motivated from a conjecture of Kraus [19]) but unable to derive Maassen-Uffink uncertainty principle
from Theorem 2.2.
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