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Article

Functional Deutsch Uncertainty Principle

K. MAHESH KRISHNA

Post Doctoral Fellow, Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore Centre, Karnataka

560 059, India; kmaheshak@gmail.com

Abstract: Let { f j}
n
j=1 and {gk}

m
k=1 be Parseval p-frames for a finite dimensional

Banach space X . Then we show that (1) log(nm) ≥ S f (x) + Sg(x) ≥

−p log


 sup

y∈X f ∩Xg ,‖y‖=1

(
max

1≤j≤n,1≤k≤m
| f j(y)gk(y)|

)
 , ∀x ∈ X f ∩ Xg, where X f := {z ∈

X : f j(z) 6= 0, 1 ≤ j ≤ n}, Xg := {w ∈ X : gk(w) 6= 0, 1 ≤ k ≤ m}, S f (x) :=

−∑
n
j=1

∣∣∣ f j

(
x

‖x‖

)∣∣∣
p

log
∣∣∣ f j

(
x

‖x‖

)∣∣∣
p

, Sg(x) := −∑
m
k=1

∣∣∣gk

(
x

‖x‖

)∣∣∣
p

log
∣∣∣gk

(
x

‖x‖

)∣∣∣
p

, ∀x ∈ Xg.

We call Inequality (1) as Functional Deutsch Uncertainty Principle. For Hilbert spaces, we show

that Inequality (1) reduces to the uncertainty principle obtained by Deutsch [Phys. Rev. Lett., 1983].

We also derive a dual of Inequality (1).

Keywords: uncertainty principle; orthonormal basis; parseval frame; hilbert space; banach space

MSC: 42C15

1. Introduction

Let d ∈ N and ̂ : L2(Rd) → L2(Rd) be the unitary Fourier transform obtained by extending

uniquely the bounded linear operator

̂: L1(Rd) ∩ L2(Rd) ∋ f 7→ f̂ ∈ C0(R
d); f̂ : Rd ∋ ξ 7→ f̂ (ξ) :=

∫

Rd

f (x)e−2πi〈x,ξ〉 dx ∈ C.

The Shannon entropy at a function f ∈ L2(Rd) \ {0} is defined as

S( f ) := −
∫

Rd

∣∣∣∣
f (x)

‖ f ‖

∣∣∣∣
2

log

∣∣∣∣
f (x)

‖ f ‖

∣∣∣∣
2

dx

(with the convention 0 log 0 = 0) [1]. In 1957, Hirschman proved the following result [2].

Theorem 1.1. [2] (Hirschman Inequality) For all f ∈ L2(Rd) \ {0},

S( f ) + S( f̂ ) ≥ 0. (2)

In the same paper [2] Hirschman conjectured that Inequality (2) can be improved to

S( f ) + S( f̂ ) ≥ d(1 − log 2), f ∈ L2(Rd) \ {0}. (3)

Inequality (3) was proved independently in 1975 by Beckner [3] and Bialynicki-Birula and Mycielski

[4].

Theorem 1.2. [3,4] (Hirschman-Beckner-Bialynicki-Birula-Mycielski Uncertainty Principle) For all

f ∈ L2(Rd) \ {0},

S( f ) + S( f̂ ) ≥ d(1 − log 2).
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Now one naturally asks whether there is a finite dimensional version of Shannon entropy and

uncertainty principle. Let H be a finite dimensional Hilbert space. Given an orthonormal basis {τj}
n
j=1

for H, the (finite) Shannon entropy at a point h ∈ Hτ is defined as

Sτ(h) := −
n

∑
j=1

∣∣∣∣
〈

h

‖h‖
, τj

〉∣∣∣∣
2

log

∣∣∣∣
〈

h

‖h‖
, τj

〉∣∣∣∣
2

≥ 0,

where Hτ := {h ∈ H : 〈h, τj〉 6= 0, 1 ≤ j ≤ n} [5]. In 1983, Deutsch derived following uncertainty

principle for Shannon entropy which is fundamental to several developments in Mathematics and

Physics [5].

Theorem 1.3. [5] (Deutsch Uncertainty Principle) Let {τj}
n
j=1, {ωj}

n
j=1 be two orthonormal bases for a

finite dimensional Hilbert space H. Then

2 log n ≥ Sτ(h) + Sω(h) ≥ −2 log




1 + max
1≤j,k≤n

|〈τj, ωk〉|

2


 ≥ 0, ∀h ∈ Hτ . (4)

Recently, author derived Banach space versions of Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani

uncertainty principle [6], Donoho-Stark approximate support uncertainty principle [7] and

Ghobber-Jaming uncertainty principle [8]. We then naturally ask what is the Banach space version of

Inequality (4)? In this paper, we are going to answer this question.

2. Functional Deutsch Uncertainty Principle

In the paper, K denotes C or R and X denotes a finite dimensional Banach space over K. Dual of

X is denoted by X ∗. We need the notion of Parseval p-frames for Banach spaces.

Definition 2.1. [9,10] Let X be a finite dimensional Banach space over K. A collection { f j}
n
j=1 in X ∗ is said

to be a Parseval p-frame (1 ≤ p < ∞) for X if

‖x‖p =
n

∑
j=1

| f j(x)|p, ∀x ∈ X . (5)

Note that (5) says that ‖ f j‖ ≤ 1 for all 1 ≤ j ≤ n. Given a Parseval p-frame { f j}
n
j=1 for X , we

define the (finite) p-Shannon entropy at a point x ∈ X f as

S f (x) := −
n

∑
j=1

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p

log

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p

≥ 0,

where X f := {x ∈ X : f j(x) 6= 0, 1 ≤ j ≤ n}. Following is the fundamental result of this paper.

Theorem 2.2. (Functional Deutsch Uncertainty Principle) Let { f j}
n
j=1 and {gk}

m
k=1 be Parseval p-frames

for a finite dimensional Banach space X . Then

1

(nm)
1
p

≤ sup
y∈X ,‖y‖=1

(
max

1≤j≤n,1≤k≤m
| f j(y)gk(y)|

)
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and

log(nm) ≥ S f (x) + Sg(x) ≥ −p log


 sup

y∈X f ∩Xg ,‖y‖=1

(
max

1≤j≤n,1≤k≤m
| f j(y)gk(y)|

)
 > 0,

∀x ∈ X f ∩ Xg.

(6)

Proof. Let z ∈ X be such that ‖z‖ = 1. Then

1 =

(
n

∑
j=1

| f j(z)|
p

)(
m

∑
k=1

|gk(z)|
p

)
=

n

∑
j=1

m

∑
k=1

| f j(z)gk(z)|
p

≤
n

∑
j=1

m

∑
k=1

(
sup

y∈X ,‖y‖=1

(
max

1≤j≤n,1≤k≤m
| f j(y)gk(y)|

))p

=

(
sup

y∈X ,‖y‖=1

(
max

1≤j≤n,1≤k≤m
| f j(y)gk(y)|

))p

mn

which gives

1

mn
≤

(
sup

y∈X ,‖y‖=1

(
max

1≤j≤n,1≤k≤m
| f j(y)gk(y)|

))p

.

Since 1 = ∑
n
j=1

∣∣∣ f j

(
x

‖x‖

)∣∣∣
p

for all x ∈ X \ {0}, 1 = ∑
m
k=1

∣∣∣gk

(
x

‖x‖

)∣∣∣
p

for all x ∈ X \ {0} and log

function is concave, using Jensen’s inequality (see [11]) we get

S f (x) + Sg(x) =
n

∑
j=1

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p

log




1∣∣∣ f j

(
x

‖x‖

)∣∣∣
p


+

m

∑
k=1

∣∣∣∣gk

(
x

‖x‖

)∣∣∣∣
p

log




1∣∣∣gk

(
x

‖x‖

)∣∣∣
p




≤ log




n

∑
j=1

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p 1∣∣∣ f j

(
x

‖x‖

)∣∣∣
p


+ log




m

∑
k=1

∣∣∣∣gk

(
x

‖x‖

)∣∣∣∣
p 1∣∣∣gk

(
x

‖x‖

)∣∣∣
p




= log n + log m = log(nm), ∀x ∈ X f ∩ Xg.

Let x ∈ X f ∩ Xg. Then

S f (x) + Sg(x) = −
n

∑
j=1

m

∑
k=1

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p ∣∣∣∣gk

(
x

‖x‖

)∣∣∣∣
p [

log

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p

+ log

∣∣∣∣gk

(
x

‖x‖

)∣∣∣∣
p]

= −
n

∑
j=1

m

∑
k=1

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p ∣∣∣∣gk

(
x

‖x‖

)∣∣∣∣
p

log

∣∣∣∣ f j

(
x

‖x‖

)
gk

(
x

‖x‖

)∣∣∣∣
p

= −p
n

∑
j=1

m

∑
k=1

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p ∣∣∣∣gk

(
x

‖x‖

)∣∣∣∣
p

log

∣∣∣∣ f j

(
x

‖x‖

)
gk

(
x

‖x‖

)∣∣∣∣

≥ −p
n

∑
j=1

m

∑
k=1

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p ∣∣∣∣gk

(
x

‖x‖

)∣∣∣∣
p

log


 sup

y∈X f ∩Xg ,‖y‖=1

(
max

1≤j≤n,1≤k≤m
| f j(y)gk(y)|

)


= −p log


 sup

y∈X f ∩Xg ,‖y‖=1

(
max

1≤j≤n,1≤k≤m
| f j(y)gk(y)|

)


n

∑
j=1

m

∑
k=1

∣∣∣∣ f j

(
x

‖x‖

)∣∣∣∣
p ∣∣∣∣gk

(
x

‖x‖

)∣∣∣∣
p

= −p log


 sup

y∈X f ∩Xg ,‖y‖=1

(
max

1≤j≤n,1≤k≤m
| f j(y)gk(y)|

)
 .
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Corollary 2.3. Theorem 1.3 follows from Theorem 2.2.

Proof. Let {τj}
n
j=1, {ωj}

n
j=1 be two orthonormal bases for a finite dimensional Hilbert space H. Define

f j : H ∋ h 7→ 〈h, τj〉 ∈ K; gj : H ∋ h 7→ 〈h, ωj〉 ∈ K, ∀1 ≤ j ≤ n.

Now by using Buzano inequality (see [12,13]) we get

sup
h∈H,‖h‖=1

(
max

1≤j,k≤n
| f j(h)gk(h)|

)
= sup

h∈H,‖h‖=1

(
max

1≤j,k≤n
|〈h, τj〉||〈h, ωk〉|

)

≤ sup
h∈H,‖h‖=1

(
max

1≤j,k≤n

(
‖h‖2 ‖τj‖‖ωk‖+ |〈τj, ωk〉|

2

))

=

1 + max
1≤j,k≤n

|〈τj, ωk〉|

2
.

Theorem 2.2 brings the following question.

Question 2.4. Given p, m, n and a Banach space X , for which pairs of Parseval p-frames { f j}
n
j=1 and {gk}

m
k=1

for X , we have equality in Inequality (6)?

Next we derive a dual inequality of (6). For this we need dual of Definition 2.1.

Definition 2.5. [14–16] Let X be a finite dimensional Banach space over K. A collection {τj}
n
j=1 in X is said

to be a Parseval p-frame (1 ≤ p < ∞) for X ∗ if

‖ f ‖p =
n

∑
j=1

| f (τj)|
p, ∀ f ∈ X ∗. (7)

Note that (7) says that

‖τj‖ = sup
f∈X ∗ ,‖ f ‖=1

| f (τj)| ≤ sup
f∈X ∗ ,‖ f ‖=1

(
n

∑
j=1

| f (τj)|
p

) 1
p

= sup
f∈X ∗ ,‖ f ‖=1

‖ f ‖ = 1, ∀1 ≤ j ≤ n.

Given a Parseval p-frame {τj}
n
j=1 for X ∗, we define the (finite) p-Shannon entropy at a point f ∈ X ∗

τ

as

Sτ( f ) := −
n

∑
j=1

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p

log

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p

≥ 0,

where X ∗
τ := { f ∈ X ∗ : f (τj) 6= 0, 1 ≤ j ≤ n}. We now have the following dual to Theorem 2.2.

Theorem 2.6. (Functional Deutsch Uncertainty Principle) Let {τj}
n
j=1 and {ωk}

m
k=1 be two Parseval

p-frames for the dual X ∗ of a finite dimensional Banach space X . Then

1

(nm)
1
p

≤ sup
g∈X ∗ ,‖g‖=1

(
max

1≤j≤n,1≤k≤m
|g(τj)g(ωk)|

)
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and

log(nm) ≥ Sτ( f ) + Sω( f ) ≥ −p log

(
sup

g∈X ∗
τ ∩X

∗
ω ,‖g‖=1

(
max

1≤j≤n,1≤k≤m
|g(τj)g(ωk)|

))
> 0,

∀ f ∈ X ∗
τ ∩ X ∗

ω .

(8)

Proof. Let h ∈ X ∗ be such that ‖h‖ = 1. Then

1 =

(
n

∑
j=1

|h(τj)|
p

)(
m

∑
k=1

|h(ωk)|
p

)
=

n

∑
j=1

m

∑
k=1

|h(τj)h(ωk)|
p

≤
n

∑
j=1

m

∑
k=1

(
sup

g∈X ∗ ,‖g‖=1

(
max

1≤j≤n,1≤k≤m
|g(τj)g(ωk)|

))p

=

(
sup

g∈X ∗ ,‖g‖=1

(
max

1≤j≤n,1≤k≤m
|g(τj)g(ωk)|

))p

mn

which gives

1

mn
≤

(
sup

g∈X ∗ ,‖g‖=1

(
max

1≤j≤n,1≤k≤m
|g(τj)g(ωk)|

))p

.

Since 1 = ∑
n
j=1

∣∣∣ f (τj)

‖ f ‖

∣∣∣
p

for all f ∈ X ∗ \ {0}, 1 = ∑
m
k=1

∣∣∣ f (ωk)
‖ f ‖

∣∣∣
p

for all f ∈ X ∗ \ {0} and log function is

concave, using Jensen’s inequality we get

Sτ( f ) + Sω( f ) =
n

∑
j=1

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p

log




1∣∣∣ f (τj)

‖ f ‖

∣∣∣
p


+

m

∑
k=1

∣∣∣∣
f (ωk)

‖ f ‖

∣∣∣∣
p

log




1∣∣∣ f (ωk)
‖ f ‖

∣∣∣
p




≤ log




n

∑
j=1

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p

1∣∣∣ f (τj)

‖ f ‖

∣∣∣
p


+ log




m

∑
k=1

∣∣∣∣
f (ωk)

‖ f ‖

∣∣∣∣
p 1∣∣∣ f (ωk)

‖ f ‖

∣∣∣
p




= log n + log m = log(nm), ∀ f ∈ X ∗
τ ∩ X ∗

ω.

Let f ∈ X ∗
τ ∩ X ∗

ω. Then

Sτ( f ) + Sω( f ) = −
n

∑
j=1

m

∑
k=1

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p ∣∣∣∣

f (ωk)

‖ f ‖

∣∣∣∣
p
[

log

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p

+ log

∣∣∣∣
f (ωk)

‖ f ‖

∣∣∣∣
p
]

= −
n

∑
j=1

m

∑
k=1

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p ∣∣∣∣

f (ωk)

‖ f ‖

∣∣∣∣
p

log

∣∣∣∣
f (τj)

‖ f ‖

f (ωk)

‖ f ‖

∣∣∣∣
p

= −p
n

∑
j=1

m

∑
k=1

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p ∣∣∣∣

f (ωk)

‖ f ‖

∣∣∣∣
p

log

∣∣∣∣
f (τj)

‖ f ‖

f (ωk)

‖ f ‖

∣∣∣∣

≥ −p
n

∑
j=1

m

∑
k=1

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p ∣∣∣∣

f (ωk)

‖ f ‖

∣∣∣∣
p

log

(
sup

g∈X ∗ ,‖g‖=1

(
max

1≤j≤n,1≤k≤m
|g(τj)g(ωk)|

))

= −p log

(
sup

g∈X ∗
τ ∩X

∗
ω ,‖g‖=1

(
max

1≤j≤n,1≤k≤m
|g(τj)g(ωk)|

)) n

∑
j=1

m

∑
k=1

∣∣∣∣
f (τj)

‖ f ‖

∣∣∣∣
p ∣∣∣∣

f (ωk)

‖ f ‖

∣∣∣∣
p

= −p log

(
sup

g∈X ∗
τ ∩X

∗
ω ,‖g‖=1

(
max

1≤j≤n,1≤k≤m
|g(τj)g(ωk)|

))
.
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Theorem 2.6 again gives the following question.

Question 2.7. Given p, m, n and a Banach space X , for which pairs of Parseval p-frames {τj}
n
j=1 and {ωk}

m
k=1

for X ∗, we have equality in Inequality (8)?

Author is aware of the improvement of Theorem 1.3 by Maassen and Uffink [17] (cf. [18])

(motivated from a conjecture of Kraus [19]) but unable to derive Maassen-Uffink uncertainty principle

from Theorem 2.2.
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