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Abstract: Sea ice extraction and segmentation of remote sensing images is the basis for sea ice 

monitoring. Machine learning-based image segmentation methods rely on manual sampling and 

require complex feature extraction. Deep-learning semantic segmentation methods have the 

advantages of high efficiency, intelligence, and automation. Sea ice segmentation using deep 

learning methods faces the following problems: in terms of datasets, the high cost of sea ice image 

label production leads to fewer datasets for sea ice segmentation; in terms of image quality, remote 

sensing image noise and Severe weather conditions affects image quality, which affects the accuracy 

of sea ice extraction. To address the quantity and quality of the dataset, this study used multiple 

data augmentation methods for data expansion. To improve the semantic segmentation accuracy, 

the SC-U2-Net network was constructed using multi-scale inflation convolution and a multi-layer 

Convolutional Block Attention Module (CBAM) attention mechanism for the U2-Net network. The 

experiments showed that (1) data augmentation solved the problem of an insufficient number of 

training samples to a certain extent and improved the accuracy of image segmentation. (2) This 

study designed a multilevel Gaussian noise data augmentation scheme to improve the network's 

ability to resist noise interference and achieve a more accurate segmentation of images with different 

degrees of noise pollution. (3) The inclusion of a multi-scale inflation perceptron and multi-layer 

CBAM attention mechanism improved the ability of U2-Net network feature extraction and 

enhanced the model accuracy and generalization ability. 

Keywords: sea ice segmentation; U2-Net; remote sensing images 

 

1. Introduction 

Sea ice has a substantial impact on global climate change, geophysical activities such as ocean 

surface physical properties and currents, and economic and social activities such as maritime 

shipping and transportation [1]. The freezing and thawing of sea ice and sea ice drift in winter 

interfere with sea-related engineering, marine trade, and various offshore industrial production 

activities to varying degrees. Internationally, the melting of Arctic sea ice is intensifying due to global 

warming, and the Arctic shipping route connecting the Atlantic Ocean and the Pacific Ocean will 

soon open, shortening the voyage from the eastern coast of China to the east coast of the United States 

(instead of the Panama Canal) by at least two thousand nautical miles, and reducing the distance 

from the northern port of China to the western and northern coastal ports of Europe by 25–55% [2]. 

Therefore, sea ice monitoring is important for maritime shipping, environmental changes, and 

disaster prevention. 

Currently, sea ice segmentation methods can be roughly divided into three types: threshold 

segmentation, machine learning, and deep learning. For example, Wang used multiple thresholding 

and random forest methods to invert FY-4A Bohai Sea regional images and introduced a seed-filling 

algorithm to revise the results, which improved the accuracy of sea ice inversion under non-clear sky 

conditions [4]. Li proposed turbid seawater end elements for Bohai Sea ice and water classification, 
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used multi-feature binomial tree classification to solve the problem of the difficult distinction 

between turbid seawater and sea ice and used mixed-image element decomposition to enter the pixel 

interior to analyze its category [5]. Li et al. proposed an AL-TSVM sea ice image classification method 

from the perspective of combining active learning with semi-supervised learning by combining a 

small amount of labeled, known training data and the overall data feature and spatial distribution 

patterns [6]. Han et al. obtained a combination of informative and low-similarity superior bands 

using the mutual information similarity metric and classified them using a support vector machine 

[7]. Zhou et al. improved the OSSP algorithm in three aspects: training set composition, classification 

result output, and tilted image geometry correction, to improve the classification accuracy of ship-

based images [8]. Yu proposed a pixel-level domain relationship context classification method for sea 

ice spatial neighborhood relations [9]. 

In the field of deep learning, Dowden et al. evaluated SegNet and PSPNet101 neural networks 

based on self-built training and testing sets. The sea ice classification dataset consisted of 1,090 images 

with labels; for the test set of 104 images, the classification accuracy was 98.3% or better for both, 

validating the applicability of deep learning methods for sea ice detection [10]. Han et al. proposed a 

multilevel, feature-fusion image classification method based on a residual network PCA method to 

extract the first principal component of the original image, used a residual network to deepen the 

number of network- layer FPN, PAN, and SPP modules to increase the mining between layer and 

layer features, merged the features between different layers, and used the hyperspectral image of 

Bohai Bay for validation; the method improved the sea ice classification accuracy [11]. 

Shi proposed using the PCANet network to select adaptive convolutional filter banks to mine 

sea ice depth features, adding hash binarization mapping and chunked histograms to enhance feature 

separation and reduce feature dimensionality. The author designed a two-branch, multi-source, 

remote sensing, deep learning model for optical and SAR images to obtain good classification results 

with fewer training samples [12]. The improved SIS-Unet network outperformed the classical Unet 

network by adding a residual structure and void space pyramidal pooling structure to the Unet 

network 13. Cui et al. used the convolutional neural network (CNN) model for image segmentation 

and selected the appropriate cost and activation functions according to the principle of migration 

learning. They examined the HJ-1A/B Bohai Sea sea-ice images as the experimental data source 

labeled samples and achieved better experimental results [14]. Han et al. proposed a spectral-spatial-

joint feature concept for hyperspectral sea ice image classification and designed a three-dimensional 

(3D-CNN) model to extract the deep spectral-spatial features of sea ice by conducting sea ice 

classification experiments using two hyperspectral datasets, Baffin Bay and Bohai Bay, with 

experimental results based on a single-feature CNN algorithm [15]. Han et al. used the advantage of 

a CNN in deep feature extraction to design a deep learning network structure for SAR and optical 

images to achieve sea ice image classification by feature extraction and feature-level fusion of 

heterogeneous data; the effectiveness of the method was verified using two sets of heterogeneous 

satellite data in the Hudson Bay area [16]. Zhang et al. classified the Beaufort Sea and Severnaya 

Zemlya based on a Micro Sea Ice Residual Convolution Network (MSI-ResNet); the MSI-ResNet 

method performed better than the traditional support vector machine (SVM) classifier for identifying 

sea ice [17]. Cheng Wen et al. proposed an automatic LFSI extraction method for the Laptev Sea in 

the eastern Arctic Ocean based on the conditional generative adversarial network Pix2Pix and 

validated it experimentally using true color images from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) [18]. 

In terms of data augmentation, Liu et al. proposed a data augmentation method based on image 

gradients, which can freely choose the number of expansions and image sizes to effectively expand 

the dataset, and demonstrated through comparison experiments that the accuracy of the network 

model was improved after expanding the dataset by this method; the improvement was more 

obvious when the dataset was small, and the model accuracy could be improved by effectively 

reducing overfitting. The improvement is more obvious in the case of small datasets and can 

effectively reduce overfitting to improve the model accuracy. Ziqi et al. fused random probability 

resampling with adaptive scale equalization, added the fusion expansion algorithm to different target 
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detection algorithms for experiments, and verified that the expansion algorithm can effectively 

reduce misdetection and false detection of small targets in road scenes. By improving the generator 

and the discriminator of the Wasserstein–Generative Adversarial Network (W-GAN) and 

introducing reconstruction and perceptual style loss to enhance the ability of generating remote 

sensing images by ship, Yang et al. used the remote sensing images generated by ship-WGAN to 

train the image recognition model, and the recognition accuracy was substantially improved by 

sample expansion of the generated samples to achieve the effect of data augmentation. The 

recognition accuracy was substantially improved by expanding the generated samples, and data 

enhancement was achieved. 

Sea ice dataset labeling requires manual interpretation and mapping, and relies on ship-based 

and shore-based observations, which are costly. In this context, to obtain the segmentation of sea ice 

remote sensing images under limited sample conditions and achieve good generalization of the 

semantic segmentation model, this study improved two aspects of data augmentation and network 

structure, and used a test set to check the accuracy of the improved model. 

2. Materials and Methods 

2.1. Data Augmentation 

Difficulty in acquiring optical images of sea ice, the high cost of labeling, and an insufficient 

number of samples are obstacles to sea ice segmentation, classification, and detection. Owing to 

complex sensor factors and special weather conditions, image noise and cloud occlusion are major 

obstacles to the inversion of optical sea ice images. Image augmentation is an effective method for 

solving data limitations in deep-learning model training. Data augmentation not only increases the 

number of samples in the dataset but also improves the generalization ability of neural networks. The 

main data augmentation methods used in this study were affine transform, fuzzy, mirror image, 

noise, and optical spatial transform augmentations.  

In noisy data augmentation experiments, the Gaussian random noise is representative of noise 

type in image processing. In this study, we used the Box–Muller transform method to generate 

Gaussian random noise and studied the effects of noise with different parameters on the model 

accuracy and generalization ability. The principle is: the joint two-dimensional distribution of two 

mutually independent Gaussian random numbers with zero mean and the same variance is radially 

symmetrical, and the Gaussian random number output by the algorithm can be considered to be the 

coordinates of a random point in the two-dimensional plane, the amplitude of which is transformed 

from a random number obeying a uniform distribution on the interval. Its phase is obtained by 

multiplying a uniform random number on the interval, and the random point is mapped onto the 

Cartesian coordinate axis. The corresponding coordinate point is a random number that follows a 

Gaussian distribution.  

X and Y are assumed to obey normal distributions and the random variables, X and Y, are 

transformed as (Equations (1) and (2)): 

cos( )X R θ=   (1) 

sin( )Y R θ=   (2) 

The distribution functions are described by Equations (3)–(5): 
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Retrieved from RP  inverse function
1(1 ) 2 ln(1 )RR F z z−= − = − −   (5) 

When z  follows a uniform distribution in [0, 1], the distribution function of R is RP . Thus, two 

random variables, U1 and U2, which obey a uniform distribution on [0,1], can be selected such that 

1 2 22 ,1 , 2 lnU z U R Uθ π= − = −=   (6) 

By substituting this into equations 1 and 2, the normally distributed random quantities, X and 

Y, were constructed. In this study, based on this principle, Gaussian random numbers were generated 

from uniformly distributed, pseudo-random numbers to approximately obey a normal distribution 

[23]. 

To intuitively understand the strength of the noise, this study used the following strategy to 

generate the noise: first, the image grayscale value was divided by 255 to normalize to the interval 

[0,1]. Then a noisy image was generated with a mean value of 0 and a variance of a given value of σ

. The noise and image were superimposed and set to 1 if the pixel value was greater than 1, and set 

to 0 if the pixel value was less than 0. Finally, the value was multiplied by 255 to map the pixel 

grayscale value back to 0–255. The "0.1 noise" mentioned in this paper indicates that "0.1" is the value 

of the parameter, σ , in the noise generation process. 

The study area was the Bohai Sea ice monitoring dataset, and the dataset was the sea ice target 

monitoring dataset from the visible image of Ocean One. The sea ice tag images were obtained from 

manual mapping. The pixel depth of the images was 24 bits, the original images were in red, green, 

and blue channels, the tag images were 8-bit grayscale images, the sea ice area was marked as 255, 

and the non-sea ice area was marked as 0. 

The original training set has a total of 1200 images, and the 1200 images are used as the basic 

unit for augmentation using image rotation, brightness variation, and noise injection, respectively, 

before the experiment. The training set numbers and compositions are listed in Table 1. To more 

accurately measure the accuracy of each model, the test set (300 frames) was expanded (90-degree 

rotation, 180-degree rotation, blurring, and brightening) to obtain an expanded test set (1500 frames). 

Table 1. Training set composition. 

Training Set Number

Training Set 

Composition 

Training Set 

1 

Training 

Set 2 
Training Set 3 Training Set 4 

Training 

Set 5 

Original training set 

(1200) 
√  √ √ √ 

90 Rotation (1200)    √ √ 

180 Rotation (1200)    √ √ 

Horizontal mirroring 

(1200) 
   √ √ 

Brightness Enhancement 

(1200) 
   √ √ 

Brightness reduction 

(1200) 
   √ √ 

Random noise (1200)    √ √ 

Gaussian Blur (1200)    √ √ 

0.1 (1200)  √ √  √ 

0.15 noise (1200)   √  √ 

0.20 noise (1200)   √  √ 

Total number of images 1200 1200 4800 9600 13200 

Note: A checkmark indicates that the dataset used a type of augmentation; "0.1 noise" means 1200 images of 

the training set with 0.1 level of noise added). 
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2.2. U2-Net Retrofit 

2.2.1. U2-Net Network and Convolutional Block Attention Module (CBAM) 

The U2-Net network has the following advantages: firstly, the network is a two-layer, nested, U-

shaped structure that does not use a pre-trained backbone model for image classification, and the 

model weights are trained from the training set; secondly, the new architecture allows the network 

to go deeper and obtain high-resolution features without substantially increasing memory and 

computational costs. In the bottom layer, a new RSU is designed to extract intra-stage, multi-scale 

features without reducing the feature mapping resolution. In the top layer, there is a U-Net-like 

structure, where each stage is populated by a ReSidual U-block. The feature map is down-sampled 

twice after each Encoder and up-sampled before passing through each Decoder twice before passing 

through each decoder. The ReSidual U-blocks in the network can be divided into two categories: 

Encoder1–Encoder4 and Decoder1–Decoder4. They use the same modular structure of RSU-L, only 

the depth (L) is different. Taking L = 7 as an example, the maximum downsampling time was 32 

times. When Encoder5–6 and Decoder 6 used the module RSU-F, the main difference between the 

RSU-L and RSU-F structures was that there was no more downsampling (purple part). Because the 

image size has been sufficiently downsampled, much contextual information will be lost when the 

image size is decreased again, which affects image segmentation. Therefore, RSU-4F is used in the 

deep layer, and the module decreases the downsampling part and uses multi-layer expansion 

convolution to enlarge the receptive field. The right side shows the output of the fusion of the features 

of each layer after upsampling to obtain the segmented image as large as the original image, and the 

feature map of each layer is then convolved by channel number 1 to obtain the final output. 

The CBAM contains the Channel Attention Mechanism (Channel Attention Module, CAM) and 

Spatial Attention Mechanism (Spatial Attention Module, SAM), with two sub-modules, (Figures 1 

and 2, respectively). The Channel Attention Mechanism is a one-dimensional vector obtained by 

compressing a feature map in the spatial dimension. Mean and maximum pooling operations were 

used to compress the spatial and channel dimensions. The mean and maximum pooling aggregate 

the spatial information of the feature map, which is then mapped to the weights of each channel 

through the convolutional layer or fully connected layer. The original features are multiplied with 

this vector in the channel dimension to obtain the weighted feature map, and the size of the weights 

reflects the degree of relevance and importance of the features in the layer (channel) for the key 

information. CBAM contains a spatial attention mechanism and a channel attention mechanism, and 

the structure is shown in Figure 3. The CBAM is a simple yet effective attention module for 

feedforward CNNs. The module sequentially infers attention maps along two separate dimensions, 

channel and spatial, and then multiplies the attention maps with the input feature map for adaptive 

feature refinement. It can be seamlessly integrated into any CNN architecture with negligible 

overhead and is end-to-end trainable along with the base CNNs to improve the accuracy of the CNN 

[25].  

Li et al. proposed an improved YOLOv4-based pavement damage detection model. The model 

improves the saliency of pavement damage by introducing a convolutional block attention module 

(CBAM) to suppress background noise and explores the influence of the embedding position of the 

CBAM module in the YOLOv4 model on detection accuracy. The results indicate that embedding 

CBAM into the neck and head modules can effectively improve the detection accuracy of the YOLOv4 

model [26].  

Sun et al. proposed an attention-based feature pyramid module (AFPM), which integrates the 

attention mechanism based on a multi-level feature pyramid network to efficiently and pertinently 

extract high-level semantic features and low-level spatial structure features, thus improving the 

accuracy of instance segmentation [27]. According to the above findings, the Convolutional Block 

Attention Module (CBAM) can independently learn the importance of each channel and space 

feature, recalibrate the channel and space features, and improve image classification performance 

[28]. Therefore, in this study, CBAM was added to multiple locations of U2-Net. 
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Figure 1. CAM structure. 

 

Figure 2. SAM network structure. 

 

Figure 3. CABM network structure. 

2.2.2. SCM-RSU and SC-U2-Net Network  

The SC-U2-Net improvement was divided into two parts. First, the SCM-RSU was used instead 

of the RSU (Figure 4). In the downsampling stage, SCM-RSU used the residual structure, and the 

output of the upper layer skipped the intermediate convolution as the input of the lower convolution 

directly to reduce the loss of features in the downsampling process. The U2-Net network used multi-

scale expansion convolution only in RSU-4F, which was located in the deep layer of the network, to 

extract richer features at different scales. The SCM-RSU deep perception module was changed to 

multi-scale expansion convolution, where the input feature maps were subjected to 1×1 convolution 

with an expansion factor (d) of 1, 3×3 convolution with a d of 1, and 3×3 expansion with a d of 2, 

respectively. Subsequently, the outputs of the three convolutions were stitched in the channel 

dimension, and finally, channel fusion was performed using a 1×1 convolution. In the decoding stage, 

the output of the same depth encoding and that of the previous decoding depth were processed by 

the CBAM attention mechanism and inputted.  

Secondly, in the overall framework, multiple attention mechanisms were added (Figure 5). The 

feature map of the encoder output feature map decoder upsampling after using CBAM processing 

and then input to the corresponding Decoder; the Decoder output feature map enables CBAM 

processing and then convolution operation to obtain the feature map with channel number 1; each 

feature map upsampled to the input image. After upsampling each feature map to the size of the 

input image, stitching was performed to obtain an output with a channel number of 6 and the same 
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size as the original image, and then CBAM was used to process the output. Finally, the output with 

a channel number of 1 was obtained using 1×1 convolution. 

 

Figure 4. SCM-RSU structure. 

 

Figure 5. Improving the U2-Net network. 

2.3. Sea Ice Image Segmentation Experimental Setup 

In order to improve the accuracy of sea ice image segmentation, this paper improves two aspects 

of data augmentation and the U2-Net network structure. In terms of data augmentation, five data sets 

were constructed using various data augmentation methods (such as noisy data augmentation), and 

the model weights were obtained by training the U2-Net network with the five data sets respectively, 

and the accuracy was checked using the test set. In terms of network structure improvement, a multi-

layer CBAM attention mechanism and multi-scale expanded convolution were added to U2-Net to 
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enhance the network feature extraction ability, and the accuracy and generalization ability of the 

improved model were checked using the test set. The SC-U2-Net network model was constructed by 

adding a multi-layer, CBAM attention mechanism and multi-scale inflation convolution to enhance 

the network feature extraction ability. The accuracy and generalization ability of the improved model 

were tested using test data (Figure 6). 

 

Figure 6. Flow chart of sea ice segmentation. 

The initial learning rate was set to 0.001, and this study used the learning rate warmup. The 

learning rate warmup [29] and cosine annealing [30] were used to combine the learning rate change 

strategy. The weights of the neural network were randomly initialized at the beginning of training, 

and the warmup gradually increased the learning rate from low to high to ensure a good convergence 

of the network. When the gradient descent algorithm was used to optimize the objective function, 

cosine annealing reduced the learning rate of the cosine function as it approached the global 

minimum of the loss value, making the model as close to the optimal value as possible. The loss 

function is a binary cross-entropy loss function (Equation (7)), where  

y
∧

 is the result of the model prediction sample and y  is the sample label.  

The loss function of U2-Net is calculated in Equation 8, which contains two parts: 

( ) ( )

1

M
m m

side side

m

w l
=


 represents the sum of the cross-entropy of the output results of different depth 

Decoder and GT images, and 

fuse fusew l
 is the cross-entropy loss of the final output and GT images after multichannel fusion. 

( log( ) (1 ) log(1 )Loss y y y y
∧ ∧

= − ⋅ + − ⋅ −
  

(7) 

( ) ( )

1

M
m m

side side fuse fuse

m

L w l w l
=

= +
  

(8) 

The validation accuracy of the model increased with an increase in epochs, and the model started 

to converge when the epoch reached 360 when the U2-Net network was trained using training set 1. 

To balance model accuracy and training efficiency, the epoch was set to 360 in this study. Five test 
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sets were used for training, in which the epochs of training datasets 1 and 2 were set to 360, the epochs 

of datasets 3, 4, and 5 were set to 90, and the epochs of datasets 3, 4, and 5 were set to 90. 

The accuracy evaluation metrics selected in this study are the Intersection over Union (Iou), F1-

Score, and recall. If sea ice is called a positive case (Positive), non-sea ice is called a negative case 

(Negative), and the classifier predicts correctly is noted as True (True) and incorrectly predicts as 

False (False), and the four basic terms are combined with each other to form the four basic elements 

of the confusion matrix, true case (TP), false positive case (FP), false negative case (FN), and true 

negative case (TN), then Iou, F1-Score, Recall are calculated by Equations (9)–(11). 

TP
IoU

TP FP FN
=

+ +   
(9) 

1
2

2
TP

F
TP FN FP

=
+ +   

(10) 

Re TP
call

TP FN
=

+   
(11) 

To distinguish the network model from the dataset used for training, the naming rules for the 

network and model weights were as follows: The U2-Net network was trained using dataset i, and 

the names of the model weights were obtained as U2-Net-i. 

3. Results 

3.1. Data Augmentation Experiments 

The average cross-merge ratio of U2-Net-1 tested on the test set was 0.842, the average recall was 

0.897, and the average F1-Score was 0.889. U2-Net-1 predicted noise-free sea ice images well, but there 

was overfitting of the network weights, and weak noise interfered with the segmentation, as shown 

in Figure 7d. The recall distribution curves of U2-Net-1 predicting noise-free images and weakly noisy 

test set images are shown in Figure 8. 

 

   

(a) Original image (b) Sea ice GT value (c) Noiseless image 

prediction 

(d) 0.05 noise image 

prediction 

Figure 7. U2-Net-1 predicted noise image. 
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Figure 8. U2-Net-1 recall distribution probability curve. 

To further study the effect of noise, we trained U2-Net using different training sets to obtain the 

corresponding model weights (U2-Net-1 was the weight obtained by training U2-Net on training set 

1). We performed a segmentation of the test set containing different noise levels using U2-net trained 

from different training sets.The average IoU, average recall, and average F1-Score of the test set with 

different noise levels were counted (Table 2). The curves of average IoU, average recall average F1-

Score with noise level of the test set were made according to Table 2, as shown in Figure 9, Figure 10 

and Figure 11 respectively. 

Table 2. U2-Net predicts the average metrics of the test set with different noise levels. 

Noise 

level 
U2-Net-1 U2-Net-2 U2-Net-3 U2-Net-4 U2-Net-5 

 imou F1 recall imou F1 recall imou F1 recall imou F1 recall imou F1 recall 

0 0.842 0.897 0.889 0.802 0.87 0.882 0.811 0.877 0.889 0.879 0.926 0.918 0.849 0.903 0.9 

0.05 0.421 0.49 0.442 0.802 0.871 0.895 0.8 0.868 0.884 0.856 0.909 0.9 0.85 0.906 0.906 

0.10 0.146 0.172 0.154 0.792 0.86 0.862 0.811 0.877 0.889 0.812 0.878 0.872 0.834 0.895 0.899 

0.11    0.786 0.853 0.864 0.794 0.864 0.885 0.76 0.831 0.822 0.823 0.887 0.895 

0.13    0.776 0.847 0.856 0.79 0.861 0.886 0.722 0.792 0.787 0.821 0.885 0.897 

0.15    0.77 0.844 0.849 0.784 0.857 0.883 0.553 0.619 0.599 0.799 0.869 0.877 

0.16    0.714 0.801 0.769 0.777 0.851 0.877    0.765 0.837 0.85 

0.17    0.57 0.657 0.613 0.774 0.849 0.878    0.720 0.796 0.804 

0.20    0.346 0.427 0.357 0.771 0.85 0.885    0.628 0.701 0.697 

0.25    0.131 0.158 0.144 0.732 0.811 0.85    0.484 0.553 0.535 

0.30       0.713 0.795 0.841    0.305 0.349 0.337 

0.45       0.615 0.706 0.735    0.125 0.145 0.134 

0.55       0.510 0.599 0.612       

0.60       0.462 0.544 0.553       
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Figure 9. Mean value of IoU of U2-Net 

versus noise level. 
Figure 10. Mean value of F1-score of 

U2-Net versus noise level. 

 

Figure 11. Mean value of Recall of U2-Net versus noise level. 

Figures 12 and 13 show the results of U2-Net-2 and model U2-Net-3 predicting different levels of 

test set. Model 2 could predict images with low noise, but the predicted noise limit was approximately 

0.15; U2-Net-3 had a stronger generalization ability than model U2-Net-2 and was able to segment 

images with more severe noise pollution. 

 
   

(a) Original image (b) Sea ice GT value (c) Noiseless image 

segmentation 

(d) 0.1 noise image 

segmentation 
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To further verify the usefulness of multiple data augmentation methods, the transformations 

(e.g., rotation and mirroring) were performed on the test set simultaneously to obtain a test set with 

different geometric and radiometric characteristics from the original test set in this study. The 

experimental accuracies are shown in Table 3 using the transformed test sets for U2-Net-3, U2-Net-4, 

and U2-Net-5.  

Table 3. Accuracy of U2-Net on different test sets. 

Models U2-Net-3 U2-Net-4 U2-Net-5 

Indicators

Test Set 
imou F1 Recall imou F1 Recall imou F1 Recall 

Original test set 0.811 0.877 0.889 0.859 0.916 0.91 0.849 0.903 0.9 

90°rotation 0.693 0.776 0.764 0.828 0.896 0.894 0.818 0.884 0.878 

180°rotation 0.665 0.749 0.731 0.843 0.908 0.91 0.831 0.896 0.882 

Blur 0.862 0.902 0.933 0.923 0.951 0.954 0.911 0.937 0.941 

Brighten 0.690 0.770 0.789 0.836 0.893 0.911 0.831 0.892 0.897 

    

(e) 0.11 noise image 

segmentation 

(f) 0.15 noise image 

segmentation 

(g) 0.16 noise image 

segmentation 

(h) 0.17 noise image 

segmentation 

Figure 12. U2-Net-2 predicted noise images. 

    

(a) Original image (b) Sea ice GT value (c) Noiseless image 

segmentation 

(d) 0.15 noise image 

segmentation 

   

(e) 0.25 noise image 

segmentation 

(f) 0.30 noise image 

segmentation 

(g) 0.40 noise image 

segmentation 

(h) 0.55 noise image 

segmentation 

Figure 13. U2-Net-3 predicted noise images. 
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The accuracy evaluation indices of U2-Net-4 were higher than those of U2-Net-1 when predicting 

the noiseless test set (Figure 14). The accuracy evaluation indices of U2-Net-5 were higher than those 

of U2-Net-3 when predicting the test set with 0.2 noise level (Figure 15). 

  

Figure 14. U2-Net-1 and U2-Net-4 

predicted noise-free test sets. 

Figure 15. U2-Net-3 and U2-Net-5 

predicted 0.2 noise test set. 

3.2. SC-U2-Net Network 

The SC-U2-Net-1 and U2-Net-1 network was trained using the same dataset(Training dataset 1). 

The accuracies of SC-U2-Net-1 and U2-Net-1 were tested using the test set, and the accuracy of SC-U2-

Net-1 and U2-Net-1 tests are shown in Table 4. 

Table 4. SC-U2-Net-1 vs. U2-Net-1 Test Accuracy. 

Indicators imou F1 Recall 

U2-Net-1 0.842 0.897 0.889 

SC-U2-Net-1 0.857 0.913 0.920 

Figure 16 shows some experimental results, where figures (a) to (h) show the sea ice images of 

different regions, and (1) to (4) show the original image, labeled image, U2-Net segmentation result, 

and SC-U2-Net segmentation result, respectively. U2-Net was less effective in segmenting some sea 

ice, such as the broken ice area at the land edge. SC-U2-Net performed better and could extract the 

outline and some details of sea ice as shown in (a) of Figure 16. 
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Figure 16. Comparison of SC-U2-Net and U2-Net segmentation results. 

The accuracy of SC-U2-Net-5 was examined using an extended test set (1500 images) and 

compared to U2-Net-5. The IoU, F1-Score and recall of U2-Net-5 and SC-U2-Net-5 on the extended test 

set are shown in Table 5. 

Table 5. Accuracy of U2 -Net and SC-U2 -Net on Augmented Test Set. 

Indicators imou F1 Recall 

U2-Net-5 0.834 0.886 0.884 

SC-U2-Net-5 0.836 0.897 0.898 

Using the transformed test sets to test U2-Net-1 and SC-U2-Net-5, the statistics of IoU, F1-Score, 

and recall per image for each test set were calculated (Table 3; Figure 17). SC-U2-Net-5 had a much 

better segmentation effect than U2-Net-1 on each test set (Table 6). The results in Table 6 show that 

the simultaneous use of data augmentation and network improvements can improve the accuracy 

and generalization of the model. 

Table 6. Accuracy of U2-Net-1 and SC-U2-Net-5 on the Augmented Test Set. 

Models U2-Net-1 SC-U2-Net-5 

 Indicators

Test Set 
IoU F1 Recall IoU F1 Recall 

Original image 0.812 0.865 0.857 0.847 0.907 0.911 

90° Rotation 0.793 0.857 0.845 0.827 0.894 0.898 

180° Rotation 0.786 0.855 0.840 0.817 0.887 0.886 

Blur 0.807 0.866 0.853 0.838 0.900 0.901 

Brighten 0.797 0.856 0.843 0.836 0.897 0.898 

Mean of all test 

sets 
0.799 0.860 0.848 0.832 0.896 0.897 

 

 

Figure 17. U2-Net-1 and SC-U2-Net-5 accuracy rating box line diagram. 
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4. Discussion 

4.1. Data Augmentation Experiments 

U2-Net-1 is very sensitive to noise, and the low intensity of Gaussian noise makes it difficult for 

Model 1 to achieve the semantic segmentation of sea ice images. When the test set did not contain 

noise, the recall was mainly concentrated at 0.8–1.0, and when the noise level was 0.05, the recall was 

bimodal (partly concentrated in 0.8-1.0 and partly concentrated in 0-0.2, which indicates that the weak 

noise interfered with the prediction of the model and can only achieve more accurate segmentation 

for a part of the images, while the segmentation accuracy of another part of the images was close to 

0; the noise level was 0.1, and the recall of all predicted images was concentrated around 0. This 

shows that noise reduces the accuracy of U2-net semantic segmentation. 

To enhance the generalization ability of U2-net, different levels of noise are added to the training 

set for augmentation. The training training set after adding noise has a minimal loss of accuracy, but 

the generalization ability of the model is enhanced.The comparative analysis led to the following 

conclusions: first, for the noise-free dataset, U2-Net-1 had the best segmentation effect; second, in 

terms of noise resistance, U2-Net-3 was better than U2-Net-2, which was better than U2-Net-1. 

Especially in U2-Net-1 (no noise was added to the training set), the noise made the prediction accu-

racy decay rapidly. Third, in terms of generalization, the model with the noisy training set resisted 

the interference of noise; the richer the noise level was, the stronger its noise resistance was.U2-Net-2 

could predict images with low noise, but the predicted noise limit was approximately 0.15; U2-Net-3 

had a stronger generalization ability than model U2-Net-2 and was able to segment images with more 

severe noise pollution. 

U-Net-4 was obtained using training set 4, and the accuracy evaluation indices of U2-Net-4 were 

higher than those of U2-Net-1 when predicting the noiseless test set. U2-Net-5 was obtained by 

training U2-Net network with data set 5, and the accuracy evaluation indices of U2-Net-5 were higher 

than those of U2-Net-3 when predicting the test set with 0.2 noise level. multiple data augmentation 

methods not only improves the model's ability to cope with complex scene transformations but also 

improves the accuracy of semantic segmentation. We also constructed additional test sets with affine 

transformation, mirror flip and blurring. The augmented training set images in the training of U2-

Net-4 and U2-Net-5 enabled the network to learn multi-perspective and multi-scale semantic features, 

making U2-Net-4 and U2-Net-5 cope well with complex scenarios. We also constructed additional test 

sets with affine transformation, mirror flip and blurring. U2-Net-4 and U2-Net-5 performed better on 

these test sets. 

Data augmentation experiments showed that U2-Net-1, which was trained using only the 

original data, was very sensitive to noise and that adding a small perturbation to the grayscale values 

of the original images caused U2-Net-1 to fail. This was because the number of images in the training 

set was small, and the scene was single, which results in U2-Net overfitting. Noisy data augmentation 

expanded the sample size and improved the generalization ability of the model. U2-Net-2 and U2-

Net-3 showed a more stable prediction ability when predicting images with noise.The semantic 

segmentation accuracies of U2-Net-4 and U2-Net-5 were close to that of U2-Net-3 tested on the test set, 

and the new test set was obtained by subjecting the test set to affine transformation, mirror flipping, 

and blurring. The semantic segmentation accuracy of U2-Net-4 and U2-Net-5 was much better than 

that of U2-Net-3 on the new test set because the training sets of U2-Net-4 and U2-Net-5 used a variety 

of data augmentation in the training. The augmented training set images in the training of U2-Net-4 

and U2-Net-5 enabled the network to learn multi-perspective and multi-scale semantic features, 

making U -Net-4 and U -Net-5 cope well with complex scenarios. 

4.2. SC-U2-Net Network 

In the comparison experiments of U2-Net and SC-U2-Net, we use the same training set to train 

U2-Net and SC-U2-Net, so as to exclude the accuracy improvement brought by the increase of data 

set, and the experiments show that Using the same training and test sets, the IoU, F1-Score, and recall 

of SC-U2-Net were higher than those of U2-Net. SC-U2-Net is more effective for sea ice segmentation 
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on remote sensing images. We also compare U2-Net-1 (U2-Net trained without data augmentation) 

and SC-U2-Net-5 (SC-U2-Net trained with data augmentation), and the results show that the 

simultaneous use of data augmentation and network improvement can improve the accuracy and 

generalization of the model. SC-U2-Net was able to segment the narrowly shaped sea ice with a 

smaller area, and the segmentation results are basically consistent with the labeled images. U2-Net is 

effective in segmenting sea ice over a large area on the sea surface, while narrowly shaped sea ice 

extending into the land interior is ignored. Compared with U2-Net, the improved SC-U2-Net was able 

to pay more attention to the details of the target and segmented the discontinuous sea ice better. 

5. Conclusions 

Based on the U2-Net semantic segmentation network, this study expanded the training set using 

a data augmentation method and investigated the effect of data augmentation on the accuracy and 

generalization ability of U2-Net. In the case of poor segmentation of some sea ice images, the SC-U2-

Net network was constructed by adding a multi-scale, inflation convolution and multi-layer CBAM 

attention mechanism on top of U2-Net, and its accuracy was compared with that of the U2-Net 

network. The study concluded the following: (1) U2-Net could segment the original test set images 

well, but the model generalization was poor. (2) The multilevel Gaussian noise data enhancement 

scheme designed in this study improved the noise interference resistance of the network, considered 

the generalization performance and accuracy of the model, and achieved more accurate segmentation 

of images with different degrees of noise pollution. (3) In SC-U2-Net, the residual structure reduced 

the loss of features during downsampling, multi-scale inflation convolution increased the perceptual 

field of deep convolution, and the multi-layer CBAM attention mechanism improved the recognition 

ability of the network for local features. SC-U2-Net had a higher average IoU, average F1-Score, and 

average recall rate than U2-Net for each test set, especially for fragmented sea ice regions. 

The limitations of the experiments were as follows:(1) From the experimental data, the amount 

of training and test data were relatively small, which affects the reliability of the network training 

effect and test accuracy. (2) In the experimental setup, only U2-Net and SC-U2-Net were compared, 

and the other networks were not used as references in the accuracy assessment. (3) The experimental 

results indicated that, although both data augmentation and network improvement could improve 

the accuracy of semantic segmentation, the improvement was not substantial enough. 
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