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Abstract: Sea ice extraction and segmentation of remote sensing images is the basis for sea ice
monitoring. Machine learning-based image segmentation methods rely on manual sampling and
require complex feature extraction. Deep-learning semantic segmentation methods have the
advantages of high efficiency, intelligence, and automation. Sea ice segmentation using deep
learning methods faces the following problems: in terms of datasets, the high cost of sea ice image
label production leads to fewer datasets for sea ice segmentation; in terms of image quality, remote
sensing image noise and Severe weather conditions affects image quality, which affects the accuracy
of sea ice extraction. To address the quantity and quality of the dataset, this study used multiple
data augmentation methods for data expansion. To improve the semantic segmentation accuracy,
the SC-U2-Net network was constructed using multi-scale inflation convolution and a multi-layer
Convolutional Block Attention Module (CBAM) attention mechanism for the U2-Net network. The
experiments showed that (1) data augmentation solved the problem of an insufficient number of
training samples to a certain extent and improved the accuracy of image segmentation. (2) This
study designed a multilevel Gaussian noise data augmentation scheme to improve the network's
ability to resist noise interference and achieve a more accurate segmentation of images with different
degrees of noise pollution. (3) The inclusion of a multi-scale inflation perceptron and multi-layer
CBAM attention mechanism improved the ability of U>-Net network feature extraction and
enhanced the model accuracy and generalization ability.

Keywords: sea ice segmentation; U>-Net; remote sensing images

1. Introduction

Sea ice has a substantial impact on global climate change, geophysical activities such as ocean
surface physical properties and currents, and economic and social activities such as maritime
shipping and transportation [1]. The freezing and thawing of sea ice and sea ice drift in winter
interfere with sea-related engineering, marine trade, and various offshore industrial production
activities to varying degrees. Internationally, the melting of Arctic sea ice is intensifying due to global
warming, and the Arctic shipping route connecting the Atlantic Ocean and the Pacific Ocean will
soon open, shortening the voyage from the eastern coast of China to the east coast of the United States
(instead of the Panama Canal) by at least two thousand nautical miles, and reducing the distance
from the northern port of China to the western and northern coastal ports of Europe by 25-55% [2].
Therefore, sea ice monitoring is important for maritime shipping, environmental changes, and
disaster prevention.

Currently, sea ice segmentation methods can be roughly divided into three types: threshold
segmentation, machine learning, and deep learning. For example, Wang used multiple thresholding
and random forest methods to invert FY-4A Bohai Sea regional images and introduced a seed-filling
algorithm to revise the results, which improved the accuracy of sea ice inversion under non-clear sky
conditions [4]. Li proposed turbid seawater end elements for Bohai Sea ice and water classification,
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used multi-feature binomial tree classification to solve the problem of the difficult distinction
between turbid seawater and sea ice and used mixed-image element decomposition to enter the pixel
interior to analyze its category [5]. Li et al. proposed an AL-TSVM sea ice image classification method
from the perspective of combining active learning with semi-supervised learning by combining a
small amount of labeled, known training data and the overall data feature and spatial distribution
patterns [6]. Han et al. obtained a combination of informative and low-similarity superior bands
using the mutual information similarity metric and classified them using a support vector machine
[7]. Zhou et al. improved the OSSP algorithm in three aspects: training set composition, classification
result output, and tilted image geometry correction, to improve the classification accuracy of ship-
based images [8]. Yu proposed a pixel-level domain relationship context classification method for sea
ice spatial neighborhood relations [9].

In the field of deep learning, Dowden et al. evaluated SegNet and PSPNet101 neural networks
based on self-built training and testing sets. The sea ice classification dataset consisted of 1,090 images
with labels; for the test set of 104 images, the classification accuracy was 98.3% or better for both,
validating the applicability of deep learning methods for sea ice detection [10]. Han et al. proposed a
multilevel, feature-fusion image classification method based on a residual network PCA method to
extract the first principal component of the original image, used a residual network to deepen the
number of network- layer FPN, PAN, and SPP modules to increase the mining between layer and
layer features, merged the features between different layers, and used the hyperspectral image of
Bohai Bay for validation; the method improved the sea ice classification accuracy [11].

Shi proposed using the PCANet network to select adaptive convolutional filter banks to mine
sea ice depth features, adding hash binarization mapping and chunked histograms to enhance feature
separation and reduce feature dimensionality. The author designed a two-branch, multi-source,
remote sensing, deep learning model for optical and SAR images to obtain good classification results
with fewer training samples [12]. The improved SIS-Unet network outperformed the classical Unet
network by adding a residual structure and void space pyramidal pooling structure to the Unet
network 13. Cui et al. used the convolutional neural network (CNN) model for image segmentation
and selected the appropriate cost and activation functions according to the principle of migration
learning. They examined the HJ-1A/B Bohai Sea sea-ice images as the experimental data source
labeled samples and achieved better experimental results [14]. Han et al. proposed a spectral-spatial-
joint feature concept for hyperspectral sea ice image classification and designed a three-dimensional
(3D-CNN) model to extract the deep spectral-spatial features of sea ice by conducting sea ice
classification experiments using two hyperspectral datasets, Baffin Bay and Bohai Bay, with
experimental results based on a single-feature CNN algorithm [15]. Han et al. used the advantage of
a CNN in deep feature extraction to design a deep learning network structure for SAR and optical
images to achieve sea ice image classification by feature extraction and feature-level fusion of
heterogeneous data; the effectiveness of the method was verified using two sets of heterogeneous
satellite data in the Hudson Bay area [16]. Zhang et al. classified the Beaufort Sea and Severnaya
Zemlya based on a Micro Sea Ice Residual Convolution Network (MSI-ResNet); the MSI-ResNet
method performed better than the traditional support vector machine (SVM) classifier for identifying
sea ice [17]. Cheng Wen et al. proposed an automatic LFSI extraction method for the Laptev Sea in
the eastern Arctic Ocean based on the conditional generative adversarial network Pix2Pix and
validated it experimentally using true color images from the Moderate Resolution Imaging
Spectroradiometer (MODIS) [18].

In terms of data augmentation, Liu et al. proposed a data augmentation method based on image
gradients, which can freely choose the number of expansions and image sizes to effectively expand
the dataset, and demonstrated through comparison experiments that the accuracy of the network
model was improved after expanding the dataset by this method; the improvement was more
obvious when the dataset was small, and the model accuracy could be improved by effectively
reducing overfitting. The improvement is more obvious in the case of small datasets and can
effectively reduce overfitting to improve the model accuracy. Ziqi et al. fused random probability
resampling with adaptive scale equalization, added the fusion expansion algorithm to different target
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detection algorithms for experiments, and verified that the expansion algorithm can effectively
reduce misdetection and false detection of small targets in road scenes. By improving the generator
and the discriminator of the Wasserstein—-Generative Adversarial Network (W-GAN) and
introducing reconstruction and perceptual style loss to enhance the ability of generating remote
sensing images by ship, Yang et al. used the remote sensing images generated by ship-WGAN to
train the image recognition model, and the recognition accuracy was substantially improved by
sample expansion of the generated samples to achieve the effect of data augmentation. The
recognition accuracy was substantially improved by expanding the generated samples, and data
enhancement was achieved.

Sea ice dataset labeling requires manual interpretation and mapping, and relies on ship-based
and shore-based observations, which are costly. In this context, to obtain the segmentation of sea ice
remote sensing images under limited sample conditions and achieve good generalization of the
semantic segmentation model, this study improved two aspects of data augmentation and network
structure, and used a test set to check the accuracy of the improved model.

2. Materials and Methods

2.1. Data Augmentation

Difficulty in acquiring optical images of sea ice, the high cost of labeling, and an insufficient
number of samples are obstacles to sea ice segmentation, classification, and detection. Owing to
complex sensor factors and special weather conditions, image noise and cloud occlusion are major
obstacles to the inversion of optical sea ice images. Image augmentation is an effective method for
solving data limitations in deep-learning model training. Data augmentation not only increases the
number of samples in the dataset but also improves the generalization ability of neural networks. The
main data augmentation methods used in this study were affine transform, fuzzy, mirror image,
noise, and optical spatial transform augmentations.

In noisy data augmentation experiments, the Gaussian random noise is representative of noise
type in image processing. In this study, we used the Box—Muller transform method to generate
Gaussian random noise and studied the effects of noise with different parameters on the model
accuracy and generalization ability. The principle is: the joint two-dimensional distribution of two
mutually independent Gaussian random numbers with zero mean and the same variance is radially
symmetrical, and the Gaussian random number output by the algorithm can be considered to be the
coordinates of a random point in the two-dimensional plane, the amplitude of which is transformed
from a random number obeying a uniform distribution on the interval. Its phase is obtained by
multiplying a uniform random number on the interval, and the random point is mapped onto the
Cartesian coordinate axis. The corresponding coordinate point is a random number that follows a
Gaussian distribution.

X and Y are assumed to obey normal distributions and the random variables, X and Y, are
transformed as (Equations (1) and (2)):

X =Rcos(0) 1)
Y = Rsin(0) (2)

The distribution functions are described by Equations (3)—(5):
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Retrieved from P, inverse function R = F,,'(1—z) =/-2In(1-z) ()

When Z follows a uniform distribution in [0, 1], the distribution function of R is PR. Thus, two
random variables, Ui and Uz, which obey a uniform distribution on [0,1], can be selected such that

6=27U,1-z=U,,R=/-2InU, ©)

By substituting this into equations 1 and 2, the normally distributed random quantities, X and
Y, were constructed. In this study, based on this principle, Gaussian random numbers were generated
from uniformly distributed, pseudo-random numbers to approximately obey a normal distribution
[23].

To intuitively understand the strength of the noise, this study used the following strategy to
generate the noise: first, the image grayscale value was divided by 255 to normalize to the interval
[0,1]. Then a noisy image was generated with a mean value of 0 and a variance of a given value of O
. The noise and image were superimposed and set to 1 if the pixel value was greater than 1, and set
to 0 if the pixel value was less than 0. Finally, the value was multiplied by 255 to map the pixel
grayscale value back to 0-255. The "0.1 noise" mentioned in this paper indicates that "0.1" is the value
of the parameter, O, in the noise generation process.

The study area was the Bohai Sea ice monitoring dataset, and the dataset was the sea ice target
monitoring dataset from the visible image of Ocean One. The sea ice tag images were obtained from
manual mapping. The pixel depth of the images was 24 bits, the original images were in red, green,
and blue channels, the tag images were 8-bit grayscale images, the sea ice area was marked as 255,
and the non-sea ice area was marked as 0.

The original training set has a total of 1200 images, and the 1200 images are used as the basic
unit for augmentation using image rotation, brightness variation, and noise injection, respectively,
before the experiment. The training set numbers and compositions are listed in Table 1. To more
accurately measure the accuracy of each model, the test set (300 frames) was expanded (90-degree
rotation, 180-degree rotation, blurring, and brightening) to obtain an expanded test set (1500 frames).

Table 1. Training set composition.

Training
Set5

Training Se
Composition

Original training set
(1200) v v v
90 Rotation (1200) \
180 Rotation (1200) \
Horizontal mirroring J
(1200)
Brightness Enhancement N
(1200)
Brightness reduction N
(1200)
Random noise (1200)
Gaussian Blur (1200)
0.1 (1200) \ «/
0.15 noise (1200) V
0.20 noise (1200) \
Total number of images 1200 1200 4800 9600 13200
Note: A checkmark indicates that the dataset used a type of augmentation; "0.1 noise" means 1200 images of

<. 2 22 2

< 2
2.2 2 =2 2 2

the training set with 0.1 level of noise added).
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2.2. U2-Net Retrofit

2.2.1. U2-Net Network and Convolutional Block Attention Module (CBAM)

The U2-Net network has the following advantages: firstly, the network is a two-layer, nested, U-
shaped structure that does not use a pre-trained backbone model for image classification, and the
model weights are trained from the training set; secondly, the new architecture allows the network
to go deeper and obtain high-resolution features without substantially increasing memory and
computational costs. In the bottom layer, a new RSU is designed to extract intra-stage, multi-scale
features without reducing the feature mapping resolution. In the top layer, there is a U-Net-like
structure, where each stage is populated by a ReSidual U-block. The feature map is down-sampled
twice after each Encoder and up-sampled before passing through each Decoder twice before passing
through each decoder. The ReSidual U-blocks in the network can be divided into two categories:
Encoderl-Encoder4 and Decoderl-Decoder4. They use the same modular structure of RSU-L, only
the depth (L) is different. Taking L = 7 as an example, the maximum downsampling time was 32
times. When Encoder5-6 and Decoder 6 used the module RSU-F, the main difference between the
RSU-L and RSU-F structures was that there was no more downsampling (purple part). Because the
image size has been sufficiently downsampled, much contextual information will be lost when the
image size is decreased again, which affects image segmentation. Therefore, RSU-4F is used in the
deep layer, and the module decreases the downsampling part and uses multi-layer expansion
convolution to enlarge the receptive field. The right side shows the output of the fusion of the features
of each layer after upsampling to obtain the segmented image as large as the original image, and the
feature map of each layer is then convolved by channel number 1 to obtain the final output.

The CBAM contains the Channel Attention Mechanism (Channel Attention Module, CAM) and
Spatial Attention Mechanism (Spatial Attention Module, SAM), with two sub-modules, (Figures 1
and 2, respectively). The Channel Attention Mechanism is a one-dimensional vector obtained by
compressing a feature map in the spatial dimension. Mean and maximum pooling operations were
used to compress the spatial and channel dimensions. The mean and maximum pooling aggregate
the spatial information of the feature map, which is then mapped to the weights of each channel
through the convolutional layer or fully connected layer. The original features are multiplied with
this vector in the channel dimension to obtain the weighted feature map, and the size of the weights
reflects the degree of relevance and importance of the features in the layer (channel) for the key
information. CBAM contains a spatial attention mechanism and a channel attention mechanism, and
the structure is shown in Figure 3. The CBAM is a simple yet effective attention module for
feedforward CNNs. The module sequentially infers attention maps along two separate dimensions,
channel and spatial, and then multiplies the attention maps with the input feature map for adaptive
feature refinement. It can be seamlessly integrated into any CNN architecture with negligible
overhead and is end-to-end trainable along with the base CNNs to improve the accuracy of the CNN
[25].

Li et al. proposed an improved YOLOv4-based pavement damage detection model. The model
improves the saliency of pavement damage by introducing a convolutional block attention module
(CBAM) to suppress background noise and explores the influence of the embedding position of the
CBAM module in the YOLOv4 model on detection accuracy. The results indicate that embedding
CBAM into the neck and head modules can effectively improve the detection accuracy of the YOLOv4
model [26].

Sun et al. proposed an attention-based feature pyramid module (AFPM), which integrates the
attention mechanism based on a multi-level feature pyramid network to efficiently and pertinently
extract high-level semantic features and low-level spatial structure features, thus improving the
accuracy of instance segmentation [27]. According to the above findings, the Convolutional Block
Attention Module (CBAM) can independently learn the importance of each channel and space
feature, recalibrate the channel and space features, and improve image classification performance
[28]. Therefore, in this study, CBAM was added to multiple locations of U2-Net.
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Figure 1. CAM structure.
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Figure 2. SAM network structure.
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Figure 3. CABM network structure.

2.2.2. SCM-RSU and SC-U2-Net Network

The SC-U?-Net improvement was divided into two parts. First, the SCM-RSU was used instead
of the RSU (Figure 4). In the downsampling stage, SCM-RSU used the residual structure, and the
output of the upper layer skipped the intermediate convolution as the input of the lower convolution
directly to reduce the loss of features in the downsampling process. The U2-Net network used multi-
scale expansion convolution only in RSU-4F, which was located in the deep layer of the network, to
extract richer features at different scales. The SCM-RSU deep perception module was changed to
multi-scale expansion convolution, where the input feature maps were subjected to 1x1 convolution
with an expansion factor (d) of 1, 3x3 convolution with a d of 1, and 3x3 expansion with a d of 2,
respectively. Subsequently, the outputs of the three convolutions were stitched in the channel
dimension, and finally, channel fusion was performed using a 1x1 convolution. In the decoding stage,
the output of the same depth encoding and that of the previous decoding depth were processed by
the CBAM attention mechanism and inputted.

Secondly, in the overall framework, multiple attention mechanisms were added (Figure 5). The
feature map of the encoder output feature map decoder upsampling after using CBAM processing
and then input to the corresponding Decoder; the Decoder output feature map enables CBAM
processing and then convolution operation to obtain the feature map with channel number 1; each
feature map upsampled to the input image. After upsampling each feature map to the size of the
input image, stitching was performed to obtain an output with a channel number of 6 and the same
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size as the original image, and then CBAM was used to process the output. Finally, the output with
a channel number of 1 was obtained using 1x1 convolution.

oI

[%]
e

Figure 5. Improving the U?-Net network.

2.3. Sea Ice Image Segmentation Experimental Setup

In order to improve the accuracy of sea ice image segmentation, this paper improves two aspects
of data augmentation and the U2-Net network structure. In terms of data augmentation, five data sets
were constructed using various data augmentation methods (such as noisy data augmentation), and
the model weights were obtained by training the U2-Net network with the five data sets respectively,
and the accuracy was checked using the test set. In terms of network structure improvement, a multi-
layer CBAM attention mechanism and multi-scale expanded convolution were added to U%-Net to
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enhance the network feature extraction ability, and the accuracy and generalization ability of the
improved model were checked using the test set. The SC-U2-Net network model was constructed by
adding a multi-layer, CBAM attention mechanism and multi-scale inflation convolution to enhance
the network feature extraction ability. The accuracy and generalization ability of the improved model
were tested using test data (Figure 6).

’ HY-1C Training set data

v l

‘ Data Augmentation | L

Multi-scale expansion

ti-layer CBA Residual connection
| Multi-layer CBAM comvelition

C,.3%3.C,,

\¥{ da \
3x3,d =1,) o M1 2 | XM |

attention mechanism |

Other data enhancement

Noise data augmentation ‘ methods ‘ ﬁ @

Blur Mirror  brighten up

Original image Gaussian noise New Images
—

[ v v

SC-U2-Net |

L

[ Datasetl. 2. 3. 4. 5 | >
[

. A 4
U2-Net weights SC-U2-Net weights

4—{ HY-1C Test set data

\4
| Accuracy evaluation and analysis

Figure 6. Flow chart of sea ice segmentation.

The initial learning rate was set to 0.001, and this study used the learning rate warmup. The
learning rate warmup [29] and cosine annealing [30] were used to combine the learning rate change
strategy. The weights of the neural network were randomly initialized at the beginning of training,
and the warmup gradually increased the learning rate from low to high to ensure a good convergence
of the network. When the gradient descent algorithm was used to optimize the objective function,
cosine annealing reduced the learning rate of the cosine function as it approached the global
minimum of the loss value, making the model as close to the optimal value as possible. The loss
function is a binary cross-entropy loss function (Equation (7)), where

A

Y is the result of the model prediction sample and y is the sample label.

The loss function of U2-Net is calculated in Equation 8, which contains two parts:

N (m) 7 (m)

zwsidelside .

m=1 represents the sum of the cross-entropy of the output results of different depth
Decoder and GT images, and

Wl
Juse“fuse " ig the cross-entropy loss of the final output and GT images after multichannel fusion.

Loss =—(y-log(y) +(1- y)-log(1- y) ?)
M

L= Z Witrgls(tge) + qusel use (8)
m=1

The validation accuracy of the model increased with an increase in epochs, and the model started
to converge when the epoch reached 360 when the U2-Net network was trained using training set 1.
To balance model accuracy and training efficiency, the epoch was set to 360 in this study. Five test
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sets were used for training, in which the epochs of training datasets 1 and 2 were set to 360, the epochs
of datasets 3, 4, and 5 were set to 90, and the epochs of datasets 3, 4, and 5 were set to 90.

The accuracy evaluation metrics selected in this study are the Intersection over Union (lou), F1-
Score, and recall. If sea ice is called a positive case (Positive), non-sea ice is called a negative case
(Negative), and the classifier predicts correctly is noted as True (True) and incorrectly predicts as
False (False), and the four basic terms are combined with each other to form the four basic elements
of the confusion matrix, true case (TP), false positive case (FP), false negative case (FN), and true
negative case (TN), then Iou, F1-Score, Recall are calculated by Equations (9)—(11).

TP

Usre——— )
TP+ FP+FN
2TP
1= (10)
2TP+ FN + FP
Recall:L (11)
TP+ FN

To distinguish the network model from the dataset used for training, the naming rules for the
network and model weights were as follows: The U2-Net network was trained using dataset i, and
the names of the model weights were obtained as U2-Net-i.

3. Results

3.1. Data Augmentation Experiments

The average cross-merge ratio of U2-Net-1 tested on the test set was 0.842, the average recall was
0.897, and the average F1-Score was 0.889. U?-Net-1 predicted noise-free sea ice images well, but there
was overfitting of the network weights, and weak noise interfered with the segmentation, as shown
in Figure 7d. The recall distribution curves of U2-Net-1 predicting noise-free images and weakly noisy
test set images are shown in Figure 8.

(a) Original image (b) Sea ice GT value (c) Noiseless image (d) 0.05 noise image
prediction prediction

Figure 7. U?-Net-1 predicted noise image.
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Figure 8. U2-Net-1 recall distribution probability curve.

To further study the effect of noise, we trained U2-Net using different training sets to obtain the
corresponding model weights (U2-Net-1 was the weight obtained by training U?>-Net on training set
1). We performed a segmentation of the test set containing different noise levels using U?-net trained
from different training sets.The average IoU, average recall, and average F1-Score of the test set with
different noise levels were counted (Table 2). The curves of average IoU, average recall average F1-
Score with noise level of the test set were made according to Table 2, as shown in Figure 9, Figure 10
and Figure 11 respectively.

Table 2. U2-Net predicts the average metrics of the test set with different noise levels.

Noise

U2-Net-1 U2-Net-2 U2-Net-3 U2-Net-4 U2-Net-5
level

imou F1 recall imou F1 recall imou F1 recall imou F1 recall imou F1 recall

0 0.842 0.897 0.889 0.802 0.87 0.882 0.811 0.877 0.889 0.879 0.926 0918 0.849 0.903 0.9
0.05 0421 049 0442 0.802 0.871 0895 08 0.868 0.884 0.856 0909 0.9 0.85 0.906 0.906
0.10 0.146 0.172 0.154 0.792 086 0.862 0.811 0.877 0.889 0.812 0.878 0.872 0.834 0.895 0.899

0.11 0.786 0.853 0.864 0.794 0864 0.885 0.76 0.831 0.822 0.823 0.887 0.895
0.13 0.776 0.847 0.856 0.79 0.861 0.886 0.722 0.792 0.787 0.821 0.885 0.897
0.15 0.77 0.844 0.849 0.784 0.857 0.883 0.553 0.619 0.599 0.799 0.869 0.877
0.16 0.714 0.801 0.769 0.777 0.851 0.877 0.765 0.837 0.85
0.17 0.57 0.657 0.613 0.774 0.849 0.878 0.720 0.796 0.804
0.20 0.346 0427 0357 0.771 0.85 0.885 0.628 0.701 0.697
0.25 0.131 0.158 0.144 0.732 0.811 0.85 0.484 0.553 0.535
0.30 0.713 0.795 0.841 0.305 0.349 0.337
0.45 0.615 0.706 0.735 0.125 0.145 0.134
0.55 0.510 0.599 0.612

0.60 0.462 0.544 0.553
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Figure 9. Mean value of IoU of U?-Net
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Figure 11. Mean value of Recall of U?-Net versus noise level.

Figures 12 and 13 show the results of U2-Net-2 and model U2-Net-3 predicting different levels of
test set. Model 2 could predict images with low noise, but the predicted noise limit was approximately
0.15; U%-Net-3 had a stronger generalization ability than model U2-Net-2 and was able to segment
images with more severe noise pollution.
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Figure 12. U?-Net-2 predicted noise images.
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Figure 13. U2-Net-3 predicted noise images.

To further verify the usefulness of multiple data augmentation methods, the transformations
(e.g., rotation and mirroring) were performed on the test set simultaneously to obtain a test set with
different geometric and radiometric characteristics from the original test set in this study. The
experimental accuracies are shown in Table 3 using the transformed test sets for U>-Net-3, U>-Net-4,
and U?-Net-5.

Table 3. Accuracy of U?-Net on different test sets.

Models U2-Net-3 U2-Net-4 Uz2-Net-5

ndicators imou  F1 Recall imou F1 Recall imou F1 Recall
Test Set

Original test set 0.811 0.877  0.889  0.859 0916 0.91 0.849  0.903 0.9
90°rotation 0.693 0.776  0.764 0.828 0.896 0.894 0818 0.884 0.878
180°rotation 0.665 0.749  0.731  0.843  0.908 0.91 0.831 0.896  0.882
Blur 0.862 0902 0933 0923 0951 0954 0911 0937 0.941
Brighten 0690 0770 0789 0836 0893 0911 0.831 0.892  0.897
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The accuracy evaluation indices of U2-Net-4 were higher than those of U>-Net-1 when predicting
the noiseless test set (Figure 14). The accuracy evaluation indices of U2-Net-5 were higher than those
of U>-Net-3 when predicting the test set with 0.2 noise level (Figure 15).

U2-Net-1 U?-Net-4 U2-Net-1 U2-Net-5

T T ( T T
loU F1-Score Recall loU F1-Score Recall

Figure 14. U>-Net-1 and U?-Net-4 Figure 15. U>-Net-3 and U?-Net-5
predicted noise-free test sets. predicted 0.2 noise test set.

3.2. SC-U2-Net Network

The SC-U2-Net-1 and U2-Net-1 network was trained using the same dataset(Training dataset 1).
The accuracies of SC-U?-Net-1 and U2-Net-1 were tested using the test set, and the accuracy of SC-Uz2-
Net-1 and U2-Net-1 tests are shown in Table 4.

Table 4. SC-U2-Net-1 vs. U2-Net-1 Test Accuracy.

Indicators imou F1 Recall
U2-Net-1 0.842 0.897 0.889
SC-U2-Net-1 0.857 0.913 0.920

Figure 16 shows some experimental results, where figures (a) to (h) show the sea ice images of
different regions, and (1) to (4) show the original image, labeled image, U2-Net segmentation result,
and SC-U2-Net segmentation result, respectively. U2-Net was less effective in segmenting some sea
ice, such as the broken ice area at the land edge. SC-U?-Net performed better and could extract the
outline and some details of sea ice as shown in (a) of Figure 16.
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Figure 16. Comparison of SC-U?-Net and U2-Net segmentation results.

The accuracy of SC-U2-Net-5 was examined using an extended test set (1500 images) and
compared to U2-Net-5. The IoU, F1-Score and recall of U2-Net-5 and SC-U2-Net-5 on the extended test
set are shown in Table 5.

Table 5. Accuracy of U? -Net and SC-U? -Net on Augmented Test Set.

Indicators imou F1 Recall
U2-Net-5 0.834 0.886 0.884
SC-U2-Net-5 0.836 0.897 0.898

Using the transformed test sets to test U2-Net-1 and SC-U2-Net-5, the statistics of IoU, F1-Score,
and recall per image for each test set were calculated (Table 3; Figure 17). SC-U2-Net-5 had a much
better segmentation effect than U2-Net-1 on each test set (Table 6). The results in Table 6 show that
the simultaneous use of data augmentation and network improvements can improve the accuracy
and generalization of the model.

Table 6. Accuracy of U?-Net-1 and SC-U?-Net-5 on the Augmented Test Set.

Models U2-Net-1 SC-Uz-Net-5

ilidicators
Test Set IoU F1 Recall IoU F1 Recall

Original image  0.812 0.865 0.857 0.847 0.907 0.911

90° Rotation 0.793 0.857 0.845 0.827 0.894 0.898

180° Rotation 0.786 0.855 0.840 0.817 0.887 0.886

Blur 0.807 0.866 0.853 0.838 0.900 0.901
Brighten 0.797 0.856 0.843 0.836 0.897 0.898
Meansoeft:H test 799 0.860 0.848 0.832 0.896 0.897
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Figure 17. U2-Net-1 and SC-U?-Net-5 accuracy rating box line diagram.
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4. Discussion

4.1. Data Augmentation Experiments

U2-Net-1 is very sensitive to noise, and the low intensity of Gaussian noise makes it difficult for
Model 1 to achieve the semantic segmentation of sea ice images. When the test set did not contain
noise, the recall was mainly concentrated at 0.8-1.0, and when the noise level was 0.05, the recall was
bimodal (partly concentrated in 0.8-1.0 and partly concentrated in 0-0.2, which indicates that the weak
noise interfered with the prediction of the model and can only achieve more accurate segmentation
for a part of the images, while the segmentation accuracy of another part of the images was close to
0; the noise level was 0.1, and the recall of all predicted images was concentrated around 0. This
shows that noise reduces the accuracy of U?-net semantic segmentation.

To enhance the generalization ability of U2-net, different levels of noise are added to the training
set for augmentation. The training training set after adding noise has a minimal loss of accuracy, but
the generalization ability of the model is enhanced.The comparative analysis led to the following
conclusions: first, for the noise-free dataset, U>-Net-1 had the best segmentation effect; second, in
terms of noise resistance, U2-Net-3 was better than U?2-Net-2, which was better than U2-Net-1.
Especially in U2-Net-1 (no noise was added to the training set), the noise made the prediction accu-
racy decay rapidly. Third, in terms of generalization, the model with the noisy training set resisted
the interference of noise; the richer the noise level was, the stronger its noise resistance was.U?-Net-2
could predict images with low noise, but the predicted noise limit was approximately 0.15; U-Net-3
had a stronger generalization ability than model U?-Net-2 and was able to segment images with more
severe noise pollution.

U-Net-4 was obtained using training set 4, and the accuracy evaluation indices of U>-Net-4 were
higher than those of U>-Net-1 when predicting the noiseless test set. U2-Net-5 was obtained by
training U>-Net network with data set 5, and the accuracy evaluation indices of U2-Net-5 were higher
than those of U2-Net-3 when predicting the test set with 0.2 noise level. multiple data augmentation
methods not only improves the model's ability to cope with complex scene transformations but also
improves the accuracy of semantic segmentation. We also constructed additional test sets with affine
transformation, mirror flip and blurring. The augmented training set images in the training of U?-
Net-4 and U2-Net-5 enabled the network to learn multi-perspective and multi-scale semantic features,
making U2-Net-4 and U2-Net-5 cope well with complex scenarios. We also constructed additional test
sets with affine transformation, mirror flip and blurring. U2-Net-4 and U2-Net-5 performed better on
these test sets.

Data augmentation experiments showed that U>-Net-1, which was trained using only the
original data, was very sensitive to noise and that adding a small perturbation to the grayscale values
of the original images caused U2-Net-1 to fail. This was because the number of images in the training
set was small, and the scene was single, which results in U2-Net overfitting. Noisy data augmentation
expanded the sample size and improved the generalization ability of the model. U>-Net-2 and U?-
Net-3 showed a more stable prediction ability when predicting images with noise.The semantic
segmentation accuracies of U>-Net-4 and U?-Net-5 were close to that of U2-Net-3 tested on the test set,
and the new test set was obtained by subjecting the test set to affine transformation, mirror flipping,
and blurring. The semantic segmentation accuracy of U2-Net-4 and U?>-Net-5 was much better than
that of U2-Net-3 on the new test set because the training sets of U?-Net-4 and U2-Net-5 used a variety
of data augmentation in the training. The augmented training set images in the training of U?-Net-4
and U2?-Net-5 enabled the network to learn multi-perspective and multi-scale semantic features,
making U -Net-4 and U -Net-5 cope well with complex scenarios.

4.2. SC-U2-Net Network

In the comparison experiments of U>-Net and SC-U?-Net, we use the same training set to train
U2-Net and SC-U?-Net, so as to exclude the accuracy improvement brought by the increase of data
set, and the experiments show that Using the same training and test sets, the IoU, F1-Score, and recall
of SC-U2-Net were higher than those of U-Net. SC-U?-Net is more effective for sea ice segmentation
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on remote sensing images. We also compare U2-Net-1 (U2-Net trained without data augmentation)
and SC-U2-Net-5 (SC-U2-Net trained with data augmentation), and the results show that the
simultaneous use of data augmentation and network improvement can improve the accuracy and
generalization of the model. SC-U2-Net was able to segment the narrowly shaped sea ice with a
smaller area, and the segmentation results are basically consistent with the labeled images. U2-Net is
effective in segmenting sea ice over a large area on the sea surface, while narrowly shaped sea ice
extending into the land interior is ignored. Compared with U2-Net, the improved SC-U2-Net was able
to pay more attention to the details of the target and segmented the discontinuous sea ice better.

5. Conclusions

Based on the U2-Net semantic segmentation network, this study expanded the training set using
a data augmentation method and investigated the effect of data augmentation on the accuracy and
generalization ability of U2-Net. In the case of poor segmentation of some sea ice images, the SC-U2-
Net network was constructed by adding a multi-scale, inflation convolution and multi-layer CBAM
attention mechanism on top of U%-Net, and its accuracy was compared with that of the U2-Net
network. The study concluded the following: (1) U2-Net could segment the original test set images
well, but the model generalization was poor. (2) The multilevel Gaussian noise data enhancement
scheme designed in this study improved the noise interference resistance of the network, considered
the generalization performance and accuracy of the model, and achieved more accurate segmentation
of images with different degrees of noise pollution. (3) In SC-U2-Net, the residual structure reduced
the loss of features during downsampling, multi-scale inflation convolution increased the perceptual
field of deep convolution, and the multi-layer CBAM attention mechanism improved the recognition
ability of the network for local features. SC-U2-Net had a higher average IoU, average F1-Score, and
average recall rate than U>-Net for each test set, especially for fragmented sea ice regions.

The limitations of the experiments were as follows:(1) From the experimental data, the amount
of training and test data were relatively small, which affects the reliability of the network training
effect and test accuracy. (2) In the experimental setup, only U2-Net and SC-U2-Net were compared,
and the other networks were not used as references in the accuracy assessment. (3) The experimental
results indicated that, although both data augmentation and network improvement could improve
the accuracy of semantic segmentation, the improvement was not substantial enough.

Author Contributions: Conceptualization, Y.L. H.L.and S.J.; methodology, Y.L.; software, S.J.; validation, Z.L.
and D.F.; formal analysis, S.J.; investigation, S.J.; resources, H.L.; data curation, H.L.; writing—original draft
preparation, Y.L.; writing—review and editing, S.J.; visualization, Y.L.; supervision, S.J.; project administration,
S.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, M. Research on the Sea Ice Classification and Thickness Detection with High-Resolution and
Polarimetric SAR Data. College of Information and Control Engineering China University of Petroleum
(EastChina), 2016.

2. Liang, J. Maritime Strategic Game in Arctic Region: China and India. S. Asian Stud. Q. 2019, 24-33.

3. Cheng, X.; Chen, Z,; Hui, F. Current Status and Outlook of Space-Based Remote Sensing Observation in
Polar Regions of China. Sci. Technol. Foresight 2022, 1, 183-197.

4.  Wang, L. Research on Sea Ice Inversion Algorithm Based on Satellite Remote Sensing Data. Nanjing
University of Information Engineering, 2021.

5. Li, Y. Research on Sea Ice Detection Method Based on the Decomposition of Mixed Pixels; Wuhan
University, 2020.

6.  Li, P. Combining Active Learning and Semi-supervised Learning for Sea Ice Image Classification; Shanghai
Ocean University, 2018.

7. Han, Y, Li, ]; Zhang, Y.; Hong, Z. Hyperspectral Sea Ice Detection Using Improved Similarity Metric.
Remote Sens. Inf. 2018, 33, 76-85.


https://doi.org/10.20944/preprints202307.1082.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2023 do0i:10.20944/preprints202307.1082.v1

17

8. Zhou, ].; Lu, P.; Wang, Q.; Xie, F.; Li, R. Research on Automatic Detection Algorithm Based on Video Image
Acquisition for Ice Surface Features. Hydro Science Cold Zone Eng. 2021, 4, 60-65.

9. Yu, Z. Sea Ice Classification of Remote Sensing Image Based on Neighborhood Relationships; CUPB (East
China),2019.

10. Dowden, B.; De Silva, O.; Huang, W.; Oldford, D. Sea Ice Classification via Deep Neural Network Semantic
Segmentation. LE.E.E. Sens. J. 2021, 21 (10), 11879-11888. DOI: 10.1109/JSEN.2020.3031475

11. Han, Y,; Cui, P.; Zhang, Y.; Zhou, R.; Yang, S.; Wang, ]. Remote Sensing Sea Ice Image Classification Based
on Multilevel Feature Fusion and Residual Network. Math. Probl. Eng. 2021, 2021, 1-10. DOI
10.1155/2021/9928351

12.  Shi, Q. Homologous and Heterologous Remote Sensing Sea Ice Classification Based on Deep Learning;
Shanghai Ocean University, 2022.

13. Fang, Y. Research on Sea Ice Area Identification Based on MODIS Satellite Remote Sensing Images;
Qingdao University of Science and Technology, 2021.

14. Cui, Y; Zou, B;; Han, Z; Shi, L.; Liu, S. Application of Convolutional Neural Networks in Satellite Remote
Sensing Sea Ice Image Classification: A Case Study of Sea Ice in the Bohai Sea. Acta Oceanol. Sin. 2020, 42,
100-109.

15. Han, Y.; Gao, Y.; Zhang, Y.; Wang, ].; Yang, S. Hyperspectral Sea Ice Image Classification Based on the
Spectral-Spatial-Joint Feature with Deep Learning. Remote Sens. 2019, 11 (18), 2170. DOLI
10.3390/rs11182170

16. Han, Y,; Liu, Y; Hong, Z; Zhang, Y., Yang, S.; Wang, ]. Sea Ice Image Classification Based on
Heterogeneous Data Fusion and Deep Learning. Remote Sens. 2021, 13 (4), 592. DOI: 10.3390/rs13040592

17.  Zhang, T.; Yang, Y.; Shokr, M.; Mi, C.; Li, X.; Cheng, X.; Hui, F. Deep Learning Based Sea Ice Classification
with Gaofen-3 Fully Polarimetric SAR Data. Remote Sens. 2019, 13 (8), 1452. DOI: 10.3390/rs13081452

18. Wen, C; Zhai, M,; Lei, R;; Xie, T.; Zhu, ]. Automated Identification of Landfast Sea Ice in the Laptev Sea
from the True-Color MODIS Images Using the Method of Deep Learning. Remote Sens. 2023, 15 (6), 1610.
DOI: 10.3390/rs15061610

19. Liu, Z; Zhang, S.; Liu, Y.; Luo, C.; Li, M. Data Augmentation Method Based on Image Gradient. J. Appl.
Sci. 2023, 39, 302-311.

20. Huang, Z,; Liu, X,; Shi, y.; Lin, C. Small Object Detection in Road Science Base on Data Augmenttation.
Journeal Wuhan Univ. Technol. 2022, 44, 79-87.

21. Yang, Z; Yang, Y.; Cang, S; Li, Y.; H;; Y,; Zhang, F.; Wu, G. Data Augmentation Method of Ship Remote
Sensing Images Based on GAN. Appl. Sci. Technol. 2022, 49, 8.

22. Lin, C; Shan, C.; Zhao, G.; Yang, Z; Peng, J.; Chen, S.; Huang, R; Li, Z; Yi, X;; Du, J.; Li, S;; Luo, H.; Fan,
X.; Chen, B. Review of Image Data Augmentation in Computer Vision. J. Front. Comput. Sci. Technol. 2021,
15, 583-611.

23. Lee, D.-U,; Villasenor, J. D.; Luk, W.; Leong, P. H. W. A Hardware Gaussian Noise Generator Using the
Box-Muller Method and Its Error Analysis. In LE.E.E. Trans. Comput. 2006, 55 (6), 659-671. DOI:
10.1109/TC.2006.81

24. Qin, X,; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O. R.; Jagersand, M. U2-Net: Going Deeper with Nested
U-Structure for Salient Object Detection. Pattern Recognit. 2020, 106, 107404. DOI:
10.1016/j.patcog.2020.107404

25. Woo, S.; Park, J.; Lee, J.; Kweon, I. S. Cbam: Convolutional Block Attention Module. In Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp 3-19. DOI: 10.1007/978-3-030-01234-2_1

26. Li, L,; Fang, B.; Zhu, J. Performance Analysis of the YOLOv4 Algorithm for Pavement Damage Image
Detection with Different Embedding Positions of CBAM Modules. Appl. Sci. 2022, 12 (19), 10180. DOI:
10.3390/app121910180

27. Sun,Y.; Gao, W.; Pan, S,; Zhao, T.; Peng, Y. An Efficient Module for Instance Segmentation Based on Multi-
level Features and Attention Mechanisms. Appl. Sci. 2021, 11 (3), 968. DOI: 10.3390/app11030968

28. Zhang, L.; Duan, L. Cross-Scenario Transfer Diagnosis of Reciprocating Compressor Based on CBAM and
ResNet. J. Intell. Fuzzy Syst. 2022, 43 (5), 5929-5943. DOI: 10.3233/JIFS-213340

29. Xiong, R; Yang, Y.; Di He; Zheng, K.; Zheng, S.; Xing, C.; Zhang, H.; Lan, Y.; Wang, L.; Liu, T. On Layer
Normalization in the Transformer Architecture. ICML 2020.

30. Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. ICLR 2017, 1-16.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202307.1082.v1

