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Article 

Gauge Fields & Quantum Dynamics at the Event 
Horizon and Beyond 

Timothy Ganesan  

University of Calgary, AB, Canada; timothy.andrew@ucalgary.ca or tim.ganesan@gmail.com 

Abstract: The field dynamics of neutral and charged matter (treated as gauge fields) beyond the 

event horizon of black holes are investigated. As an extension of the work done in Ganesan (2023) 

[1], the analysis was done using the combined dynamics of the two-dimensional Yang-Mills and 

Liouville gravity fields beyond the event horizon. The quantum interactions and symmetry 

breaking mechanisms of the combined two-dimensional fields are discussed. The second part of this 

paper explores the quantum dynamics occurring at the event horizon. By considering the structure 

of the event horizon as a Möbius strip (embedded in three-dimensional space), a formulation for the 

lower bound of the first energy eigenvalue of a quantum particle (electron) at the event horizon is 

obtained. 
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1. Background 

The aim of this work is to explore the field dynamics of neutral and charged matter (as gauge 

fields) beyond the event horizon of black holes; as an extension to the work done in Ganesan (2023) 

[1]. The second part of this work explores the quantum dynamics at the event horizon. A formulation 

for the lower bound of the first energy eigenvalue of a quantum particle (electron) at the event 

horizon is obtained. Gauge theories and symmetries within the context of black holes have been a 

recent research focus. In Samuel et al., (2022) [2], the authors used theoretical tools from gauge 

theories and geometric phase for polarimetric very long baseline interferometry performed using the 

Event Horizon Telescope. In this view, the multiplicative distortion of polarized signals at the 

individual elements are represented as gauge transformations by general complex matrices. This was 

done to ensure that the closure traces appear as gauge-invariant quantities. Another interesting work 

in this direction is observed in Corrigan and Poisson (2018) [3]. In that work, the authors focus their 

studies on the properties of the EZ gauge from black hole perturbation theory. In Corrigan and 

Poisson (2018) [3], it was proven that the EZ gauge is necessarily singular at the event horizon of 

black holes. Research involving the Couch–Torrence (CT) inversion symmetry at the event horizon is 

seen in the work of Fernandes et al., (2021) [4]. In that work, the probe Maxwell field dynamics was 

studied on the extreme Reissner–Nordström solution; in the context of the Couch–Torrence (CT) 

inversion isometry. In relation to the mentioned isometry, the Newman–Penrose and Aretakis like 

conserved quantities were built along the future null infinity and the future event horizon. In Araújo 

Filho et al., (2023) [5], the thermodynamics and evaporation of a Schwarzschild black hole was 

analyzed using non-commutative gauge theory; using gravitational field potentials. In that research, 

focusing on a static spherically symmetric black hole, the authors determined the thermodynamic 

properties as well as the modified Hawking temperature. A similar approach for studying 

thermodynamics properties of black holes is observed in the work of Touati and Zaim (2023) [6]. In 

that research, the authors employed non-commutative gauge theory to study the thermodynamics 

and evaporation properties of a deformed Schwarzschild black hole. The primary results of their 

work show that the parameters of the non-commutative gauge field play a similar role to the 

thermodynamic variables. In Ogawa and Ishihara, (2023) [7], a gravastar type black hole was studied 
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using a field-theoretic framework. In that work, the authors employed computational methods to 

obtain gravastar solutions as non-topological solitons. These compact gravastar soliton solutions 

were determined within a system of a U(1) gauge-Higgs model with Einstein gravity and a complex 

scalar field. In recent times, the advent of the Event Horizon Telescope has unveiled various 

opportunities in terms of testing theories on black holes. Some tests and analysis on gravitational 

theories (black hole solutions) based on observational data are presented in Vagnozzi et al., (2022) 

[8]. 

This paper is organized as follows: Section 2 provides some background on two-dimensional 

symmetry breaking beyond the event horizon based on the ideas presented in Ganesan (2023) [1]. 

Sections 3 and 4 present the field theory of neutral and charged particles respectively (beyond the 

event horizon). Section 5 discusses the quantum dynamics at the event horizon and the lower bound 

of the first energy eigenvalue of a quantum particle (electron) is obtained. This paper ends with the 

Analysis & Conclusions Section which discusses the central concepts and key findings presented in 

this paper. 

2. Symmetry Breaking Beyond the Event Horizon 

The existence of the two-dimensional Yang-Mills field beyond the event horizon provides a 

potential avenue to explore its interactions with another mathematically well-developed two-

dimensional field: the Liouville gravity field [9,10]. It has been shown that Liouville gravity could be 

obtained directly from the Einstein field equations in two-dimensions [11]. This work extends the 

theoretical framework presented in Ganesan (2023) [1] where the following hypothesis was 

developed: there exists a two-dimensional analogue to the Higgs field beyond the event horizon – 

existing in the form of a two-dimensional Yang-Mills field. In this work, the region beyond the event 

horizon of a black hole is assumed to have two-spatial dimensions with no time-dimension. The 

Lagrangian of the combined two-dimensional Yang-Mills and the Liouville fields are as follows: 𝐿 = 𝐿௒ெ + 𝐿ீ   𝐿௒ெ = − 1

4
𝐹ఓఔ𝐹ఓఔ                       (1) 

𝐿ீ = 1

4
𝑔ఓఔ𝜕ఓ𝜑𝜕ఔ𝜑 + 𝑄𝑅𝜑 + 4 ൬௰൫1ି௕2൯௰൫௕2൯ 𝜆௕൰ 𝑒2௕ఝ    

where                              𝑄 = ቀ𝑏 + ଵ௕ቁ                                                (2) 

where 𝐹ఓఔ are the Yang-Mills field strengths, 𝛤()is the gamma function, 𝑏 ∈ (0,1) is the Liouville 

field coupling strength, 𝜑 is the Liouville gravitational real scalar field, Q is the background charge, 

R is the Ricci scalar curvature and 𝜆 is the parameter that appears in the Liouville field correlation 

function. Expanding 𝑒ଶ௕ఝ  to the second order via the Maclaurin series and defining 𝛼 =4𝛤(1 − 𝑏ଶ)/𝛤(𝑏ଶ), the combined Lagrangian, 𝐿 is as follows: 𝐿 = − 1

4
𝐹ఓఔ𝐹ఓఔ + 1

4
𝑔ఓఔ𝜕ఓ𝜑𝜕ఔ𝜑 + 𝑄𝑅𝜑 + 𝛼𝜆௕(1 + 2𝑏𝜑 + 2𝑏2𝜑2) 

= − 1

4
𝐹ఓఔ𝐹ఓఔ + 1

4
𝑔ఓఔ𝜕ఓ𝜑𝜕ఔ𝜑 + 𝑉(𝜑)                           (3) 

The field potential 𝑉(𝜑) is influenced by the balancing of terms 𝑄𝑅𝜑 and 𝛼𝜆௕(1 + 2𝑏𝜑 + 2𝑏ଶ𝜑ଶ). 

As the Liouville gravity field coupling strength vanishes, 𝑏 → 0, the background charge, 𝑄 → ∞ and 𝛼 → 0. On the other hand, if the Liouville gravity field coupling strength, 𝑏 → 1, the background 

charge, 𝑄 → 2 and 𝛼 → ∞.  The maximum potential at 𝑅 > 0 and 𝜑 = 0 is 𝑉(𝜑 = 0) = 𝛼𝜆௕ . To 

access the lower unstable equilibria at 𝑅 < 0 via symmetry breaking, the Liouville gravitational real 

scalar field is defined with respect to its complex components with a new parameter 𝑣 defined as 𝑣2 = 𝑅/𝜆௕: 𝜑 = 𝜑∗𝜑′  𝜑′ = 1√2
(𝑣 + 𝜙1 + 𝑖𝜙2) and  𝜑∗ = 1√2

(𝑣 + 𝜙1 − 𝑖𝜙2)                 (4) 
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where 𝜙ଵ, 𝜙ଶ ∈ 𝑅. The field potential 𝑉(𝜑 = 𝜑∗𝜑ᇱ) → 𝑉(𝜙ଵ, 𝜙ଶ) is obtained as follows: 𝑉(𝜙1, 𝜙2) = 𝑉1(𝜙1, 𝜙2) + 𝑉2(𝜙1, 𝜙2) + 𝑉3(𝜙1, 𝜙2)  𝑉1(𝜙1, 𝜙2) = ൬ቀ1

2
𝑄 + 3𝑏2𝛼ቁ (𝜆௕𝑣2) + 𝑏𝛼𝜆௕൰ 𝜙1

2 + ൬ቀ1

2
𝑄 + 𝑏2𝛼ቁ (𝜆௕𝑣2) + 𝑏𝛼𝜆௕൰ 𝜙2

2  

𝑉2(𝜙1, 𝜙2) = ቀ(𝑄 + 2𝑏2𝛼)(𝜆௕𝑣3) + (2𝑏𝛼)(𝜆௕𝑣)ቁ 𝜙1 + (2𝑏2𝛼)(𝜆௕𝑣)𝜙1
3 +

(2𝑏2𝛼)(𝜆௕𝑣)𝜙1𝜙2
2  + (𝑏2𝛼𝜆௕)𝜙1

2𝜙2
2 + ቀ1

2
𝑏2𝛼𝜆௕ቁ 𝜙1

4 + ቀ1

2
𝑏2𝛼𝜆௕ቁ 𝜙2

4  

𝑉3(𝜙1, 𝜙2) = 1

2
𝑄𝜆௕𝑣4 + 𝜆௕𝛼 + 1

2
𝑏2𝛼𝜆௕𝑣4 + 𝑏𝛼𝜆௕𝑣2                            (5) 

The field potential in equations (5) is grouped into three terms: 𝑉ଵ(𝜙ଵ, 𝜙ଶ) consists of the scalar 

gravitational bosonic (dilaton) terms, 𝑉ଶ(𝜙ଵ, 𝜙ଶ)  consists of the bosonic coupling terms and 𝑉ଷ(𝜙ଵ, 𝜙ଶ)  represents the constants. The field potential 𝑉(𝜙ଵ, 𝜙ଶ)  describes two bosonic quanta 𝜙ଵand 𝜙ଶ. At Liouville field coupling strength, 𝑏 → 0 (resulting in 𝑄 → ∞ and 𝛼 → 0) the following 

occurs in 𝑉ଵ(𝜙ଵ, 𝜙ଶ): 𝑉1(𝜙1, 𝜙2) → ൬ቀ1

2
𝑄ቁ 𝜆௕𝑣2൰ 𝜙1

2 + ൬ቀ1

2
𝑄ቁ 𝜆௕𝑣2൰ 𝜙2

2                      (6) 

Hence, when the Liouville field coupling strength, 𝑏 → 0 the bosons 𝜙ଵ and 𝜙ଶ have Ricci scalar 

curvature of the magnitude 
ଵଶ 𝑄 . In this formulation, a two-dimensional analogue to the three-

dimensional Higgs mechanism is presented – where instead of mass, the scalar bosons (or dilatons) 𝜙ଵ and 𝜙ଶ have Ricci scalar curvature, 𝑅 = 𝑣ଶ𝜆௕ during symmetry breaking. This occurs due to the 

non-existence of the property of three-dimensional mass in two-dimensional space. Thus, the 

property of mass is replaced by the two-dimensional Ricci scalar curvature. At 𝑏 → 1, the bosons 𝜙ଵ 

and 𝜙ଶ  have the a mixed property of Ricci scalar curvature and 𝜆௕  with the magnitude of ቀଵଶ 𝑄 + 3𝑏ଶ𝛼ቁ 𝑅 + 𝑏𝛼𝜆௕ and ቀଵଶ 𝑄 + 𝑏ଶ𝛼ቁ 𝑅 + 𝑏𝛼𝜆௕ respectively. 

3. Gauge Fields with Neutral Matter 

In Ganesan (2023) [1], the mechanisms in the previous sections were extended to include neutral 

particles with mass crossing the event horizon. The was done by considering the particles as local 

gauge fields with the potentials, 𝐴ఓ . The associated Lagrangian is: 𝐿ᇱ = − 14 𝐹ఓఔ𝐹ఓఔ + 14 𝑔ఓఔ𝐷ఓ𝜑𝐷ఔ𝜑 + 𝑉(𝜑) 

where,   𝜑 = 𝜕ఓ𝜑 + 𝑒𝐴ఓ𝜑   and 𝐷ఔ𝜑 = 𝜕ఔ𝜑 + 𝑒𝐴ఔ𝜑 such that 𝑒 = 𝜆௕ 𝐹ఓఔ = 𝜕ఓ𝐴ఔ + 𝜕ఔ𝐴ఓ            (7) 

Consider Lagrangian invariance under the following local gauge transformations: 𝜑(𝑥) → 𝜑(𝑥)𝑒ఉ(௫) with 𝐴ఓ(𝑥) → 𝐴ఓ(𝑥) − ଵ௘ 𝜕ఓ𝛽(𝑥) and  𝐴ఔ(𝑥) → 𝐴ఔ(𝑥) − ଵ௘ 𝜕ఔ𝛽(𝑥)        (8) 

The terms  
ଵସ 𝑔ఓజ𝐷ఓ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ) in the Lagrangian, 𝐿ᇱ → 𝐿ᇱ(𝜙ଵ, 𝜙ଶ) would then become: 𝐿ᇱ = − 14 𝐹ఓజ𝐹ఓఓ + 14 𝑔ఓజ𝐷ఓ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ) + 𝑉(𝜙ଵ, 𝜙ଶ) 𝑔ఓజ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ)=  𝑔ఓజ ൬12 𝜕ఓ𝜙ଵଶ + 12 𝜕ఓ𝜙ଶଶ + 12 𝑒𝑣ଶ𝐴ఓ + 𝑒𝑣𝐴ఓ𝜙ଵ + 12 𝑒𝐴ఓ𝜙ଵଶ + 12 𝑒𝐴ఓ𝜙ଶଶ+ 𝑣𝜕ఓ𝜙ଵ൰ ൬12 𝜕ఔ𝜙ଵଶ + 12 𝜕ఔ𝜙ଶଶ + 12 𝑒𝑣ଶ𝐴ఔ + 𝑒𝑣𝐴ఔ𝜙ଵ + 12 𝑒𝐴ఔ𝜙ଵଶ + 12 𝑒𝐴ఔ𝜙ଶଶ+ 𝑣𝜕ఔ𝜙ଵ൰ 
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𝑔ఓజ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ)=  14 𝑔ఓజ𝑒ଶ𝑣ସ𝐴ఓ𝐴ఔ + 𝑔ఓజ𝑒ଶ𝑣ଶ𝐴ఓ𝐴ఔ𝜙ଵଶ + 14 𝑔ఓజ𝑒ଶ𝐴ఓ𝐴ఔ𝜙ଵସ+ 14 𝑔ఓజ𝑒ଶ𝐴ఓ𝐴ఔ𝜙ଶସ + 14 𝑔ఓజ𝑒ଶ𝐴ఓ𝐴ఔ𝜙ଵଶ𝜙ଶଶ 

                                                                    (9) 

In equations (9), it can be observed that the gauge fields, 𝐴ఓ𝐴ఔ (representing neutral mass) acquire 

Ricci scalar curvature by the magnitude of 𝑅ଶ = 𝑒ଶ𝑣ସ . The bosonic term, 𝜙ଵଶ acquires Ricci scalar 

curvature as well 𝑅 = 𝑒𝑣ଶ. The bosonic interaction term, 𝜙ଵଶ𝜙ଶଶ as well as the self-interaction terms, 𝜙ଵସ and 𝜙ଶସ exists in equation (9). Considering the case where the Liouville field coupling strength is 

weakened, 𝑏 → 0, then the parameter, 𝑒 → 1. This then corresponds to the curvature,  𝑅 = 𝑣ଶ. The ଵସ 𝑔ఓజ𝐷ఓ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ) of the Lagrangian would then take the following form: 𝑔ఓజ𝐷ఓ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ)= 𝑔ఓజ 𝑣ସ4 𝐴ఓ𝐴ఔ + 𝑔ఓజ𝑣ଶ𝐴ఓ𝐴ఔ𝜙ଵଶ + 14 𝑔ఓజ𝐴ఓ𝐴ఔ𝜙ଵସ + 14 𝑔ఓజ𝐴ఓ𝐴ఔ𝜙ଶସ+ 14 𝑔ఓజ𝐴ఓ𝐴ఔ𝜙ଵଶ𝜙ଶଶ …                                =  𝑅ଶ4  𝑔ఓజ𝐴ఓ𝐴ఔ + 𝑅𝑔ఓజ𝐴ఓ𝐴ఔ𝜙ଵଶ + 14 𝑔ఓజ𝐴ఓ𝐴ఔ𝜙ଵସ + 14 𝑔ఓజ𝐴ఓ𝐴ఔ𝜙ଶସ+ 14 𝑔ఓజ𝐴ఓ𝐴ఔ𝜙ଵଶ𝜙ଶଶ … 

        (10) 

 

In the scenario when the Liouville field coupling strength is weakened, the acquisition of Ricci scalar 

curvature by the bosonic term, 𝜙ଵଶ becomes significant. In addition, the bosonic interaction and self-

interaction terms acquire the local gauge fields, 𝐴ఓ𝐴ఔ. Since the local gauge fields represent particle 

mass, therefore the interacting bosonic terms acquire mass. 

4. Gauge Fields with Charged Matter 

In this section, the case where particles entering the event horizon have mass and charge is 

considered. In such cases, the field electrodynamics of a fermion could be obtained using Dirac 

equation – where the action of the Dirac field is: 𝑆 = ׬ ψഥ ൫𝑖ℏ𝑐𝛾ఓ𝜕ఓ − 𝑚𝑐ଶ൯ψ𝑑ସ𝑥               (11) 

The associated gauge group for the field is 𝑈(1) which is the rotation of the phase angle, 𝜃 of the 

field. Localizing the global symmetry of the system, ψ ⟼ 𝑒௜ఏψ by defining 𝜃 = 𝜃(𝑥), the covariant 

derivative is obtained: 𝐷ఓ = 𝜕ఓ − 𝑖 ௤ℏ 𝐴ఓ  and  𝐷௩ = 𝜕௩ − 𝑖 ௤ℏ 𝐴௩             (12) 

To incorporate the curvature parameter, 𝑒 = 𝜆௕ into equation (12), the parameter, 𝑘଴ in units (C/J.s) 

(electric current per unit energy) is defined and the covariant derivative takes the following form: 𝐷ఓ = 𝜕ఓ + ቀ𝑒 − 𝑖𝑘଴ ௤ℏቁ 𝐴ఓ and  𝐷௩ = 𝜕௩ + ቀ𝑒 − 𝑖𝑘଴ ௤ℏቁ 𝐴௩         (13) 

The introduction of the parameter, 𝑘଴ is necessary to maintain the non-dimensional nature of the 

curvature expression in equation (13).  Then under local gauge transformations as in equation (8), 

The obtained gauge field terms when the operation 𝐷ఓ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ) in the Lagrangian, 𝐿ᇱ →𝐿ᇱ(𝜙ଵ, 𝜙ଶ)  (see equation (7)) is performed for charged massive gauge fields. The  ଵସ 𝑔ఓజ𝐷ఓ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ) part of the Lagrangian is obtained as follows: 
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𝑔ఓజ4 𝐷ఓ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ)= 𝑔ఓజ16 ቆ𝑒ଶ𝑣ସ − 𝑞𝑘଴𝑣ସℏ − 2𝑖𝑞𝑘଴𝑣ସℏ ቇ 𝐴ఓ𝐴ఔ+ 𝑔ఓజ4 ቆ𝑒ଶ𝑣ଶ − 𝑞𝑘଴𝑣ଶℏ − 2𝑖𝑞𝑘଴𝑣ଶℏ ቇ 𝐴ఓ𝐴ఔ𝜙ଵଶ+ 𝑔ఓజ16 ൬𝑒ଶ − 𝑞𝑘଴ℏ − 2𝑖𝑞𝑘଴ℏ ൰ 𝐴ఓ𝐴ఔ𝜙ଵସ + 𝑔ఓజ16 ൬𝑒ଶ − 𝑞𝑘଴ℏ − 2𝑖𝑞𝑘଴ℏ ൰ 𝐴ఓ𝐴ఔ𝜙ଶସ+ + 𝑔ఓజ16 ൬𝑒ଶ − 𝑞𝑘଴ℏ − 2𝑖𝑞𝑘଴ℏ ൰ 𝐴ఓ𝐴ఔ𝜙ଵଶ𝜙ଶଶ                                                                                                (14) 

Similar to the neutral mass case, in equations (14), it can be seen that the gauge field term, 𝐴ఓ𝐴ఔ 

representing charged mass acquires Ricci scalar curvature on the real part by the magnitude of 𝑅ଶ =𝑒ଶ𝑣ସ . If the Liouville field coupling strength is weakened, 𝑏 → 0, then the parameter, 𝑒 → 1. This 

would then correspond to the Ricci scalar curvature, 𝑅 = 𝑣ଶ . Equation (14) is then expressed as 

follows: 𝑔ఓజ4 𝐷ఓ(𝜙ଵ, 𝜙ଶ)𝐷ఔ(𝜙ଵ, 𝜙ଶ)= 𝑔ఓజ16 𝑅ଶ ൬1 − 𝑞𝑘଴ℏ − 2𝑖𝑞𝑘଴ℏ ൰ 𝐴ఓ𝐴ఔ + 𝑔ఓజ4 𝑅 ൬1 − 2𝑖𝑞𝑘଴ℏ − 𝑞𝑘଴ℏ ൰ 𝐴ఓ𝐴ఔ𝜙ଵଶ+ 𝑔ఓజ16 ൬1 − 𝑞𝑘଴ℏ − 2𝑖𝑞𝑘଴ℏ ൰ 𝐴ఓ𝐴ఔ𝜙ଵସ + 𝑔ఓజ16 ൬1 − 𝑞𝑘଴ℏ − 2𝑖𝑞𝑘଴ℏ ൰ 𝐴ఓ𝐴ఔ𝜙ଶସ+ + 𝑔ఓజ16 ൬1 − 𝑞𝑘଴ℏ − 2𝑖𝑞𝑘଴ℏ ൰ 𝐴ఓ𝐴ఔ𝜙ଵଶ𝜙ଶଶ                                                                                                                    (15) 

The overall mass term represented by the gauge fields, 𝐴ఓ𝐴ఔ is split into individual real and complex 

terms. It can be observed that there are two real field terms with Ricci curvature, 
௚ഋഔଵ଺ 𝑅ଶ𝐴ఓ𝐴ఔ and − ௚ഋഔ௤௞బଵ଺ℏ 𝑅ଶ𝐴ఓ𝐴ఔ as well as a complex term (with Ricci curvature): − ௚ഋഔ௜௤௞బ଼ℏ 𝑅ଶ𝐴ఓ𝐴ఔ. One of the real 

field terms do not acquire charge and hence is a neutral particle: 
௚ഋഔଵ଺ 𝑅ଶ𝐴ఓ𝐴ఔ as opposed to the other 

two terms. This can be observed in the bosonic terms, 𝜙ଵଶ as well as the bosonic interaction terms: 𝜙ଵସ, 𝜙ଶସ and 𝜙ଵଶ𝜙ଶଶ. A possible interpretation of this result is that the real part of the terms contributes 

directly to the acquired Ricci curvature, 𝑅 and charge 𝑞, while the contribution of the complex term 

is solely dependent and proportional to the magnitude of the electric charge, 𝑞 of the particle.  

In current and previous sections, the region beyond the event horizon of black holes is assumed 

to have two-spatial dimensions with no time-dimension. In this picture, matter and energy pass the 

event horizon travel to a zone of ‘no return’ becoming non-measurable to an external observer. 

Additionally with the assumption no time dimension, the field dynamics beyond the event horizon 

exists in a complicated ‘frozen’ state with respect to the external observer. The event horizon acts as 

a boundary between this two-dimensional region and conventional three-dimensional space. The 

next section theoretically discusses the quantum dynamics at this boundary. 

5. Quantum Dynamics at the Event Horizon 

The previous sections describe symmetry breaking mechanisms occurring beyond the event 

horizon. In this section, the quantum dynamics occurring exactly at the at the event horizon is 

theoretically explored. Thus far the region beyond the event horizon is considered as a two-

dimensional surface (spatial dimensions) with no time-dimension. One possible two-dimensional 

structure that can exist and be embedded into three-dimensional space is the Möbius strip. The idea 

of a spatial two-dimensional framework existing beyond the event horizon is extended to the event 

horizon itself. The event horizon is then assumed to be an Möbius strip with two spatial dimensions 

and one parametric time dimension. In addition, it is conjectured that this Möbius strip structure has 

multiple twists. It is important to note that at this boundary, matter or energy has not yet crossed the 

event horizon – i.e., it has not entered the zone of ‘no return’. Hence unlike the previous sections, the 

effects of the quantum dynamics exactly at the event horizon are theoretically measurable (since this 
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boundary has not been passed). The following projection of formulas is formulated for the event 

horizon parametrized as a Möbius strip with multiple twists in three-dimensional space: 𝑥(𝑠, 𝑡) = ൬𝑟 + 𝑠 cos ൬𝑡2൰൰ cos 𝑡 𝑦(𝑠, 𝑡) =  ൬𝑟 + 𝑠 cos ൬𝑡2൰൰ sin 𝑡 𝑧(𝑠, 𝑡) =  𝑠 sin ቀ௧ଶቁ             (16) 

where 𝑥, 𝑦, 𝑧  represent three-dimensional space, 𝑡 ∈ [0, 2𝑛𝜋]  and 𝑠 ∈ [−𝑑, 𝑑]  are the parametric 

positions along he Möbius strip. 𝑟 > 0 is the radius of the Möbius strip and 𝑛 ∈ ℝ[1, ∞) is the 

parameter for the number of twists. The configuration of the Möbius strip could be modified using 

the two parameters: 𝑟 and 𝑛. In this viewpoint, 𝑟 is the Schwarzschild radius (i.e., radius of the 

event horizon (Möbius strip) determined using: 𝑟 = 2𝐺𝑀/𝑐ଶ; where 𝐺 is the gravitational constant, 𝑀 is the mass of the black hole and 𝑐 is the speed of light. The expression for the Gaussian and mean 

curvatures of the event horizon are [12]: 𝐾 = ିସ௥మቂସ௥మାଷ௦మାଶ௦ቀସ௥ ୡ୭ୱቀభమ௧ቁା௦ ୡ୭ୱ ௧ቁቃమ   

𝐻 = ଶൣଶ(௥మା௦మ൯ାସ௥௦ ୡ୭ୱቀభమ௧ቁା௦మ ୡ୭ୱ ௧] ୱ୧୬ቀభమ௧ቁቂସ௥మାଷ௦మାଶ௦ቀସ௥ ୡ୭ୱቀభమ௧ቁା௦ ୡ୭ୱ ௧ቁቃమ                                  (17) 

Using the Lichnerowicz–Obata theorem, the curvatures are then employed to obtain the first energy 

eigenvalue, 𝜆ଵ for a quantum particle (electron) at the event horizon [13,14]. In this scenario, the 

gravitational potential of the black hole presents itself as space-time curvature at the event horizon. 

Hence, the electron’s interactions with potentials other than this gravitational field are deemed 

insignificant in comparison (i.e., considered negligible).  Thus, an electron on the event horizon can 

be treated as a free particle. Considered as a Möbius strip, the structure of the event horizon is defined 

as a compact Riemannian manifold without boundary, 𝑀. Taking the electron as a free particle, the 

dimensionless Schrödinger equation with zero potential is considered for this analysis: − ℏଶ௠ 𝜕௫ଶ𝜓 =  𝑖𝜕௧𝜓                                           (18) 

where ℏ is the reduced Planck constant and 𝑚 is the electron mass. Using the Laplace-Beltrami 

operator, equation (18) is represented as an eigenvalue equation: −Δ𝜓 = 𝜆𝜓  with the Laplace-Beltrami operator:  Δ =  ଵඥ|௚| பப௫ೕ  ቀඥ|𝑔| பப௫ೕቁ                                        (19) 

with the spatial dimensions, 𝑥௝: 𝑗 ∈ [1,3] and real-valued the energy eigenvalue, 𝜆. Therefore, the 

energy eigenvalue, 𝜆 ∈ ℝ is represented as follows: 𝜆 =  2𝑚𝑖𝜆ᇱℏିଵ. The auxiliary wavelength, 𝜆′ ∈ℂ is a complex term to enable real-valued energy eigenvalues, 𝜆. The energy eigenvalues, 𝜆 could 

be proved to be real valued using the self-adjointness property and the compactness of the manifold, 𝑀 could be employed to prove the discreet and finite nature of the eigenvalues. Using integration by 

parts in consideration of the Laplace-Beltrami operator, −Δ, it could be shown that the eigenvalue, 𝜆 ≥ 0: − ׬ Δ𝜓 𝜓ெ 𝑑𝑉 = 𝜆 ׬  𝜓ଶெ 𝑑𝑉 = ׬  |∇𝜓|ଶெ 𝑑𝑉    

where  

 𝑑𝑉 = vol௡ ,  ∴ 𝜆 ≥ 0                                  (20) 

For a given compact 𝑛-dimensional manifold with no boundary where 𝑛 ≥ 2, the Ricci curvature is 

assumed to satisfy the lower bound for a tangent vector, 𝑋, a metric tensor, 𝑔(. , . ) and the curvature, 𝜅 :  𝑅(𝑋, 𝑋) ≥ 𝜅𝑔(𝑋, 𝑋)  where 𝜅 ≥ 0  [13]. Following this assumption, the first positive energy 

eigenvalue with respect to equations (18) and (19) for a Möbius strip: 𝜆ଵ ≥  ௡௡ିଵ 𝜅                  where         𝑛 = 2                            (21) 
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The expressions if the curvature is taken as the Gaussian curvature, 𝜅 = 𝐾 and the mean curvature, 𝜅 = 𝐻 are respectively as follows:  𝜆ᇱଵ ≥  4𝑖ℏ𝑟ଶ𝑚 ቂ4𝑟ଶ + 3𝑠ଶ + 2𝑠 ቀ4𝑟 cos ቀ12 𝑡ቁ + 𝑠 cos 𝑡ቁቃଶ 

𝜆ᇱଵ ≥  − ଶℏ௜ൣଶ(௥మା௦మ൯ାସ௥௦ ୡ୭ୱቀభమ௧ቁା௦మ ୡ୭ୱ ௧] ୱ୧୬ቀభమ௧ቁ௠ቂସ௥మାଷ௦మାଶ௦ቀସ௥ ୡ୭ୱቀభమ௧ቁା௦ ୡ୭ୱ ௧ቁቃమ                        (22) 

where 𝑟 = 2𝐺𝑀/𝑐ଶ is the Schwarzschild radius. 

6. Analysis & Conclusions 

This manuscript investigates quantum fields at regions beyond the event horizon and quantum 

dynamics at the event horizon. Figure 1 presents a schematic diagram of the regions around the black 

hole discussed in this work: 

 

Figure 1. Schematic diagram of the regions around the black hole. 

The first part of this work concerns the physics of fields in the region beyond the event horizon 

of black holes. The mathematical framework presented in Ganesan (2023) [1] was extended to 

describe the field dynamics of neutral and charged matter (as gauge fields) beyond the event horizon. 

This is carried out by studying the two-dimensional symmetry breaking outcomes. In can be 

observed for the case of neutral matter, Ricci scalar curvature is acquired by the bosonic term while 

the interacting bosonic terms acquire mass (equation (10)). As for the scenario involving charged 

matter, three massive field terms with Ricci curvature are obtained. In each group of terms: massive 

field, bosonic (and bosonic interaction terms), one real field term is a neutral particle where all the 

other terms acquire charge by the magnitude of 𝑞 . These results may help elucidate the field 

mechanisms involving particle dynamics beyond the event horizon of black holes.   

The second part of this work explores the quantum dynamics at the event horizon by treating it 

as a Möbius strip with multiple twists, 𝑛. As mentioned in the previous section, exactly at this region 

certain physical properties are measurable to the external observer. The central outcome of this 

analysis is the expressions for the Gaussian and mean curvatures of the event horizon. This then 

results in the formulation for determining the lower bound of the first energy eigenvalue of a 

quantum particle (electron) at the event horizon. Due to intense gravitational forces and high 

temperatures, material in the form of plasma exists as an accretion disk at the event horizon and 

regions surrounding it [15,16]. This plasma emits radiation in a wide range of wavelengths including 

X-rays and gamma rays. In plasma phase, the electrons are stripped away from their nucleus and 

completely under the influence of the gravitational field (representing as space-time curvature). The 

first energy eigenvalue solution to the Schrödinger equation with zero potential (and the Laplace-

Beltrami operator) within the context of the Lichnerowicz–Obata theorem provides a theoretical 
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estimate of plasma characteristics near the event horizon (accretion disk). Considering the event 

horizon as a Möbius strip, two parameters come into play: the width of the strip, 𝑑 (where 𝑠 ∈[−𝑑, 𝑑]) and the number of twists, 𝑛. The Schwarzschild radius, 𝑟 is determined by the mass of the 

black hole, 𝑀 . It may be conjectured that the width of the strip, 𝑑  (where 𝑠 ∈ [−𝑑, 𝑑]) and the 

number of twists, 𝑛 are respectively correlated to the linear momentum and angular momentum of 

a rotating black hole. This conjecture would require further empirical validation with observatory 

data. If such a correlation is established, then the angular momentum and linear momentum of 

rotating black holes could be computed by obtaining observatory data related to wavelength ranges 

of radiation emission (X-rays and gamma rays) of the plasma at the accretion disk near the event 

horizon. Future research work in this direction will be carried out by the author of this work. In 

addition, considering the event horizon as an Möbius strip may also provide a possible explanation 

as to the non-existence of magnetic fields at black holes due to the no-hair theorem [17]. Conductive 

material around the event horizon in this view causes it to act as Möbius resistor – where it cancels 

its own self-inductance. Therefore, despite having electrical charge, the region around the event 

horizon of black holes has no measurable magnetic property. 
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