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Abstract: This paper pioneers a novel exploration of environmental impacts in livestock farming, 
with a focus on pig farming's intersection with climate change and sustainability. It emphasizes the 
transformative potential of data-driven Artificial Intelligence (AI) methodologies, specifically the 
Internet of Things (IoT) and multimodal data analysis, in promoting equitable and sustainable food 
systems. The study observes five pigs, aged 86 to 108 days, using a tripartite sensor that records 
heart rate, respiration rate, and accelerometer data. The unique experimental design alternates 
between periods of isolation during feeding and subsequent pairing, enabling the investigation of 
stress-induced changes. Key inquiries include discerning patterns in heart rate data during isolation 
versus paired settings, fluctuations in respiration rates, and behavioral shifts induced by isolation 
or pairing. The study also explores potential detection of gait abnormalities, correlations between 
pigs' age and their gait or activity patterns, and the evolution of pigs' walking abilities with age. The 
paper scrutinizes accelerometer data to detect activity changes when pigs are paired, potentially 
indicating increased stress or aggression. It also examines the adaptation of pigs to alternating 
isolation and pairing over time, and how their heart rate, respiration rate, and activity data reflect 
this process. The study considers other significant variables, such as time of day and isolation 
duration, affecting the pigs' physiological parameters. Sensor data is further utilized to identify 
behavioral patterns during periods of feeding, isolation, or pairing. In conclusion, this study 
harnesses IoT and multimodal data analysis in a groundbreaking approach to pig welfare research. 
It underscores the compelling potential of technology to inform about overall pig welfare, 
particularly stress levels and gait quality, and the power of data-driven insights in fostering 
equitable, healthy, and environmentally conscious livestock production systems. 

Keywords: Internet of Things (IoT); precision livestock farming (PLF); animal welfare; pig behavior; 
multimodal data; accelerometer sensors; stress analysis; gait analysis; physiological monitoring; 
sustainable farming practices 

 

1. Introduction 

In an era defined by exponential growth in global demand for animal-based products, 
innovatively bolstering livestock production, while concurrently preserving animal welfare and 
promoting sustainable practices, has emerged as a pivotal challenge. This challenge, however, 
simultaneously presents a compelling opportunity. It invites the integration of cutting-edge 
technologies, such as the Internet of Things (IoT), into the realms of livestock management [1, 2], thus 
reshaping traditional farming paradigms. 

IoT, epitomizing the integration of physical entities with digital ecosystems, is catalyzing 
transformative change across diverse sectors, including agriculture. In the realm of precision 
livestock farming (PLF), IoT offers a means to automate and continually monitor animal health [3], 
thus enhancing productivity and animal welfare while mitigating risks. 

One of the most impactful applications of IoT within PLF lies in its capacity to deploy sensors to 
gather multimodal data [4, 5]. Such an approach furnishes a wealth of insights into an extensive array 
of physiological and behavioral parameters of livestock. Consequently, this data-driven strategy 
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enables farmers and veterinarians to proactively respond to emerging health issues, signs of stress, 
or alterations in behavior, thus engendering a proactive, as opposed to reactive, approach to livestock 
welfare [6, 7]. 

Our research venture centers on the comprehensive analysis of heart rate, respiration rate, and 
acceleration data collected from pigs via IoT sensors. The heart and respiration rates are renowned 
for their status as pivotal indicators of physiological stress in pigs, as they fluctuate in response to 
various environmental and physical stimuli [8, 9]. In contrast, accelerometer data offers a window 
into the movements and behaviors of pigs, thereby enabling non-invasive gait analysis [10,11].  

Decoding the physiological responses and behaviors of pigs is crucial to assess their welfare 
accurately. For instance, chronically elevated heart rates or respiration rates may denote the presence 
of chronic stress, while anomalies in gait might signal musculoskeletal issues or discomfort. 
Therefore, the continual real-time monitoring of these parameters, enabled by IoT sensors, can offer 
an early warning system for potential welfare problems [12, 13], thereby allowing timely and 
appropriate interventions. 

The objective of our research is to leverage the multifaceted data derived from IoT to scrutinize 
the physiological and behavioral responses of pigs within varying social contexts. These include 
periods of isolation during feeding and re-pairing post-feeding. These scenarios, common within 
numerous farming systems, are known to elicit variable responses in pigs, thus providing an 
opportunity to explore their adaptability to changing social environments. 

Furthermore, our investigation sought to determine whether correlations exist between pigs' age 
and their activity or gait patterns as inferred from accelerometer data. Given that age-related changes 
in activity or gait could influence animal welfare and productivity, understanding these relationships 
is of paramount importance. 

Our study engaged pigs aged between 86 to 108 days, a critical developmental phase marked by 
significant changes and adaptations. We deployed a sophisticated suite of analysis tools to dissect a 
rich dataset comprising heart rate, respiration rate, and acceleration data, with a focus on identifying 
behavioral patterns, assessing stress levels, and conducting gait analysis. 

To our knowledge, this represents the first study of its kind to exploit the potential of IoT in 
capturing and analyzing such a comprehensive array of physiological and behavioral data in pigs 
across differing age groups and social contexts. We anticipate our findings will significantly enhance 
the understanding of pig behavior and welfare, ultimately serving as a guide to improving 
management practices and steering future research in the burgeoning field of precision livestock 
farming. 

2. Relevant Study 

Recognizing and assessing animal behavior, particularly in livestock like pigs, is fundamental 
to evaluating their welfare, optimizing productivity, and effectively managing farming practices in a 
sustainable and ethical manner. Pigs, distinguished as sentient beings [14, 15] with intricate social 
structures, [16, 17] face numerous stressors [18] in contemporary farming procedures. It is therefore 
critical to gain insights into their behavior and stress responses to enhance their welfare and 
productivity, particularly in a world increasingly attentive to animal rights and ethical farming 
practices. 

Technology has progressively transformed the field of animal behavior studies. Among these 
advancements, accelerometers have emerged as a promising tool, providing multidimensional 
motion data. Their application, combined with other wearable devices, has attracted substantial 
research interest due to their potential to augment animal welfare and productivity. Table 1 provides 
a comparative analysis of how accelerometers have been utilized in conjunction with machine 
learning models to monitor and understand livestock behavior and resilience. The data underscores 
the potential of these technologies to revolutionize the field of animal husbandry, paving the way for 
more efficient and humane farming practices. Our study capitalized on this innovation, utilizing the 
Zephyr BioHarness accelerometer, typically deployed in human health and sports studies, to study 
pig behavior in a minimally intrusive manner. 
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The introduction of accelerometers into behavioral studies has unlocked new dimensions in pig 
welfare research. These devices capture nuanced movements and behaviors, providing 
comprehensive insights into animal welfare. This ability to track diurnal rhythms and activity levels, 
even in the challenging environment of pig rearing, makes accelerometers an indispensable tool in 
these studies. 

However, while the potential of accelerometers in understanding pig behavior is evident, their 
application in livestock studies remains nascent. It is essential to interpret accelerometer data in the 
context of the animal's environment, physiological state, and overall health to unlock this 
technology's full potential. 

The simultaneous collection of heart rate, respiration rate, and accelerometer data using the 
Zephyr BioHarness marks a novel approach in animal physiological data collection. This 
methodology enhances animal welfare by using a single device to monitor three different variables, 
minimizing stress. The automatic, real-time collection of this data requires minimal handling of the 
animals, streamlining data collection. 

However, despite the exciting prospects offered by this technology, there are challenges in pig 
behavior classification using accelerometer sensors. Considerations such as sensor placement, 
durability, battery life, and maintaining minimal disruption to the pig's daily activities are paramount 
to ensuring accurate data collection.  

Our research primarily aims to employ sensor data to delve into the comprehensive welfare of 
pigs, with a particular focus on stress levels and gait quality. Through the analysis of this data, we 
aim to discern intricate patterns relating to heart rate, respiration rate, and activity, allowing us to 
identify irregularities or alterations in gait indicative of lameness and isolate behavioral patterns that 
materialize during distinct periods of feeding, isolation, or pairing. This methodology is projected to 
fill the knowledge gap between pig behavior and welfare, thereby facilitating more effective, ethical, 
and sustainable farming practices.  

Table 1. Comparative Analysis of Wearable Sensors Use and Machine Learning Models in Livestock 
Behavior and Resilience Monitoring. 

Animal 

Species 

Wearable Sensor 

Model 

Collected Data Machine 

Learning 

Models 

Applications References 

Pigs SMARTBOW® Ear 

Tag 

Activity levels RetinaNet 

Object 

Detection 

Algorithm 

Automatically 

detect parts of 

the body of a 

sow and a hay 

rack in a 

farrowing pen 

[19]  

Sheep Zephyr Bioharness 

3.0 

Heart Rate 

Signal 

Artificial 

Neural 

Networks 

Stress 

measurement as 

indicated by 

heart signal 

during herding 

sheep flock 

[20]  

Pigs High Frequency 

Radio Frequency 

Identification (HF 

RFID) Ear Tags 

Visits to water 

drinking stations 

Linear 

Regressions, 

Statistical 

analysis 

Drinking 

behaviour of 

individual pigs 

[21]  
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Beef Cattle 

(Limousin 

Cross 

Breed 

Steer) 

Afimilk Silent 

Herdsman neck-

mounted collar and 

Rumiwatch halter 

3-axis 

accelerometer 

sampled at 10 Hz 

with range of 2 g 

and 12-bit 

resolution 

Hidden Markov 

Model, Linear 

Discriminant 

Analysis 

and Partial 

Least Squares 

Discriminant 

Analysis 

Early detection 

of illness, 

detection of the 

onset of oestrus 

cycles 

[22]  

Beef cattle 

of Angus 

breed 

eGrazor collar tags Distributed over 

the spectral 

range of zero to 

25 Hz, segment 

size of 5.12 s 

Recurrent and 

Convolutional 

Neural 

Network 

models 

Classification of 

animal 

behaviours such 

as grazing, 

walking, 

ruminating, 

resting, drinking 

etc., 

[23] 

Cattle Collar tag made of 

MPU9250 9-axis 

micro-electro-

mechanical system 

(MEMS) inertial 

measurement unit 

(IMU) including a 

tri-axial 

accelerometer 

Accelerometer 

sampling rate 

was 50 Hz for the 

collar tags and 

62.5 Hz for the 

ear tags 

RNN models, 

which feature 

long short-time 

memory 

(LSTM) 

Animal behavior 

classification 

such as grazing, 

resting, 

ruminating and 

others 

[24]  

This study raises several pertinent questions: 

� Are there discernible patterns in heart rate data when comparing pigs in isolated versus paired 
settings? Does a specific setting seem to exacerbate stress, as suggested by variations in heart 
rate? 

� How does the respiration rate fluctuate when pigs are paired in contrast to periods of isolation? 
Can this information serve as a stress level indicator? 

� Are there distinct changes in activity, as measured by accelerometer data, when pigs transition 
between isolation and pairing? Can we identify marked differences in activity levels or patterns 
suggestive of stress-induced behavioral changes? 

� Can we detect anomalies or alterations in gait that might hint at lameness in pigs, based on 
accelerometer data? If so, what specific patterns should we investigate? 

� Is there a correlation between pigs’ age and their gait or activity pattern, as suggested by 
accelerometer data? How does the locomotive ability of the pigs evolve as they age? 

� Does accelerometer data signify significant shifts in activity when pigs are paired, potentially 
indicating escalated aggression or stress? 

� Throughout the study duration (from 86 to 108 days of age), do the pigs seem to adapt to the 
isolation during feeding and the subsequent re-pairing post feeding? How do their heart rate, 
respiration rate, and activity data mirror this adaptation process? 

� Are there additional factors or variables (time of day, duration of isolation, etc.) that notably 
affect the pigs’ heart rate, respiration rate, or activity level? 
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� Can we pinpoint any behavioral patterns that emerge during periods of feeding, isolation, or 
pairing based on the accumulated sensor data? 

� How can the compiled sensor data inform us about the overall welfare of the pigs, particularly 
regarding stress levels and gait quality? 

3. Materials and Methods 

3.1. Ethical Declaration 

The empirical data serving as the foundation of this research was generously furnished by my 
esteemed colleagues at Wageningen University & Research, and is associated with an independent, 
prior experiment. The utilization of animals in that referenced study was sanctioned by both the 
Central Committee on Animal Experiments (CCD) and the Animal Experiments Department (IVD) 
of the Netherlands, thereby ensuring the adherence to ethical guidelines and best practices. For the 
current study, any supplemental, non-invasive handling of animals was meticulously scrutinized 
and subsequently approved by the Department of Animal Sciences of the Care of Animals Used for 
Scientific Purposes (CARUS) at Wageningen University & Research. The respective approval number 
for this study is 20210521ADP. This rigorous approval process underscores our unwavering 
commitment to the utmost standard of care in animal research. 

3.2. Study Design and Animal Housing: A Methodological Approach 

The longitudinal study involved 50 male piglets (Tempo x Topigs Norsvin TN70), around nine 
weeks of age and averaging 25 kg. These piglets were housed in rooms 14 and 15 of the CARUS 
facility at Wageningen University & Research, The Netherlands. Out of this cohort, six piglets, aged 
between 86 to 108 days, were singled out for a comprehensive investigation into physiological and 
behavioral adaptations. The initial week was dedicated to acclimatization, allowing the piglets to 
adjust to their new environment, diet, and management procedures. Each pen, measuring 2.86 x 1.16 
m, comfortably housed two piglets and was well-equipped with essential facilities and play 
materials. The room temperature was regulated as per the piglets’ needs, and lights were kept on 
from 7:00 to 19:00. A specific feeding regimen was followed, with water always available. 

3.3. Adaptive Monitoring: Implementing Zephyr BioHarness Belts for Precision Tracking 

In the following weeks, each pen was partitioned to individually accommodate the piglets for 
five consecutive days. During this phase, the selected subjects were outfitted with Zephyr BioHarness 
belts (Figure 1), state-of-the-art wearable sensors. These devices facilitated the precise monitoring of 
crucial physiological parameters such as respiration and heart rates, while also capturing 
accelerometer data, yielding comprehensive insights into the pigs' physical exertions. 

 
  

(a) (b) (c) 

Figure 1. Detailed demonstration of the Zephyr BioHarness belt application on a Topigs Norsvin 
TN70 piglet. (a) Diagram illustrating the axis orientation. (b) Overhead view portraying the Zephyr 
BioHarness 3.0 strap’s arrangement around the piglet’s chest, reinforced with a Vetrap bandage. (c) 
Side perspective showcasing the piglet adorned with the Zephyr BioHarness. 
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3.4. Investigating the Physiological Impact of Social Conditions: Pairing vs Isolation 

The study's structure pivoted around the impact of social interaction and isolation on the tracked 
physiological parameters. Non-feeding periods promoted social interaction among the pigs as they 
were kept in pairs. Conversely, feeding times saw the pigs in isolation, offering an unrivaled 
opportunity to observe their physiological and behavioral responses to solitude. This approach 
yielded a holistic understanding of the pigs' adaptability to varying social conditions and feeding 
schedules, ultimately driving improved welfare and management strategies. 

3.5. In-Depth Examination of Accelerometer and Physiological Metrics: A Concise Approach 

This research endeavor utilized an in-depth analysis of three-dimensional acceleration data, 
captured along vertical, lateral, and sagittal axes, with a sampling rate of 100 Hz. The collected 
acceleration signals were refined via a pre-processing stage that utilized a Butterworth bandpass 
filter, specifically with defined cut-off frequencies of 0.05 and 10 Hz. Subsequently, the total 
horizontal displacement for each pig was quantified, factoring in the resultant of lateral and sagittal 
displacement based on the prescribed formulas. 

The study further incorporated heart rate variability (HRV) analysis. Electrocardiogram (ECG) 
data, gathered at a sampling rate of 250 Hz, were scrutinized to detect R-peaks and ascertain R-R 
intervals, leveraging a wavelet method. This led to the computation of key parameters including 
cumulative R-R, RMSSD (root mean square of successive differences), HRV, and SDSD (standard 
deviation of successive differences). These data points were then plotted over time, enabling a visual 
comparison of different scenarios. Heart rate (bpm) was computed based on the R-peaks and 
juxtaposed with HRV over time. 

The respiration rate (RR), a critical physiological signal, was non-invasively captured using the 
BioHarness belt. This signal was subjected to pre-processing to eradicate noise and baseline wander. 
This process made use of a low pass filter (with cut-off frequencies set at 20 Hz for RR) and high pass 
filters (with cut-off frequencies of 0.1 Hz) for RR and HR, respectively. Following this, the average R-
R intervals or the time period of the cardiac cycle in the ECG signal were computed. Subsequently, 
heart rate, expressed in beats per minute, was calculated using the provided formula. 

3.6. Thermal Video Data Acquisition and Analysis 

Thermal video data were meticulously obtained utilizing a Flir1020 thermal camera, offering an 
impressive resolution of 1024x768 and a precision accuracy of +/- 1°C with an emissivity set at 0.95. 
The analytical process was facilitated using the robust FLIR ResearchIR (64bit) software platform, 
ensuring the efficient examination and interpretation of the captured data. 

Frame selection was done judiciously based on the clarity of the Regions of Interest (ROIs) and 
the overall focus of the frame. ROIs were demarcated on a pair of frames per video - one from the 
start and another near the end of the video. This method ensured an encompassing understanding of 
the thermal changes observed throughout the video duration. Furthermore, thermal video data were 
collected both prior to and subsequent to feeding activities, enabling a comprehensive assessment of 
potential variations linked to feeding. 

3.7. Physiological Data Collection and Processing 

On the onset of the fourth week, physiological data, namely rectal temperature and saliva 
samples, were collected meticulously from the pig subjects. Rectal temperature was measured during 
isolation periods, both before and after feeding. The temperature was gauged using a highly precise 
microlife vet-temp VT1831 thermometer, ensuring accurate physiological temperature readings. 

Saliva samples were collected by encouraging the piglets to chew on a Q-tip for a brief duration, 
ranging from a few seconds to a minute, until the cotton was thoroughly saturated with saliva. The 
saliva-infused Q-tip was then placed in a Salivette®, the cotton swab was removed, and the tip was 
cut off. To ensure sample integrity, the saliva samples were refrigerated at 4 ⁰C for a maximum of 
two days. Post this, the samples underwent centrifugation at 3000 x g for 10 minutes, followed by 
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pipetting into a 96-Wells plate for preservation at -18 degrees Celsius. Subsequently, Cortisol Saliva 
ELISA (Tecan) analysis was conducted according to standard instructions, and the optical density 
was measured using a photometer at 450 nm. 

For the initial day of collection, saliva samples were obtained during two different situations, 
while on the subsequent collection days, saliva was procured during four distinct situations. This 
methodological approach facilitated a broad-based understanding of physiological changes under 
various conditions.  

3.8. Employing Data Analytics for Unraveling Stress Levels and Adaptation Physiology in Pigs: A Detailed 

Examination of Techniques, Methodologies, and Consequential Insights 

This study has made extensive use of sophisticated data analytics approaches, marrying these 
techniques with meticulously designed methodologies. This powerful combination provided a 
gateway to explore and deeply understand the intricate interplay of stress levels, behavior, and 
physiological adaptations in pigs under diverse conditions. Applying this rigorous, data-driven 
approach, invaluable insights into the welfare and behavior of these animals were extracted. This 
enlightening information sets the foundation for substantial enhancements to livestock management 
practices, contributing to the animal welfare, productivity, and overall sustainability of livestock 
operations. Table 2 showcases the assortment of analytical methods used to probe the pertinent 
research questions about pig stress and adaptation physiology. Each associated methodology is 
detailed, demonstrating how these techniques were skillfully employed to garner significant insights. 
The findings underscore the immense potential of data analytics in animal behavioral and 
physiological studies. This powerful, modern approach is instrumental in the development of 
improved livestock management strategies that promote the welfare of the animals while optimizing 
productivity. 

Table 2. Comprehensive Analysis of Pig Stress Levels and Adaptation Physiology: A Study of 
Techniques, Methodologies, and Outcomes in Data-Driven Animal Behavioral Science. 

Question 

Number 

Question 

Description 

Analysis Techniques 

Used 
Methodology Insights Gained 

1 

How do heart rate 

patterns differ in 

pigs in isolation vs 

paired settings? 

EDA, time and 

frequency domain 

analyses, correlation 

analysis, spectral and 

Poincaré plot 

analyses 

Sensor data was 

visualized and 

subjected to time and 

frequency analyses to 

discern patterns. 

Correlations between 

heart rates and 

environmental 

conditions were also 

explored. 

Identified 

differences in heart 

rate patterns under 

varying settings, 

offering insights 

into stress levels. 

2 

How does 

respiration rate 

change when pigs 

are paired vs in 

isolation? 

Statistical testing, 

ANOVA tests, 

correlation analysis, 

time-series analysis 

Respiration rates were 

compared under 

different social contexts 

using t-tests and 

ANOVA. Correlations 

and time-series analyses 

were also performed to 

study the trend. 

Found changes in 

respiration rates 

based on social 

context, serving as 

a potential stress 

indicator. 
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3 

How does activity 

change in isolation 

vs pairing 

conditions? 

Visualization, change 

point detection, k-

means clustering, 

random forest 

classification. 

Activity patterns were 

visualized, and change 

points detected. 

Clustering and 

classification were 

applied on 

accelerometer data to 

categorize behaviors. 

Noted significant 

changes in activity 

under isolation and 

pairing, hinting at 

behavioral changes 

linked to stress. 

4 

Can we detect 

changes in gait 

linked to lameness? 

K-means clustering, 

Fourier analysis, 

temporal parameter 

calculation 

Gait data was clustered 

to identify distinct 

patterns. Fourier 

analysis and temporal 

parameters were 

calculated to detect 

abnormalities. 

Detected 

abnormalities in 

gait, aiding in early 

detection of 

potential health 

issues. 

5 

Does pigs' age 

correlate with their 

gait or activity 

pattern? 

Statistical analyses, 

linear regression 

modeling, time series 

analysis 

Correlations between 

age and gait or activity 

patterns were 

investigated using 

statistical analyses and 

linear regression 

models. Time series 

analyses were also 

performed to study 

trends. 

Revealed that gait 

and activity 

patterns evolve 

with age, reflecting 

physical 

capabilities and 

comfort levels 

6 

Are there significant 

activity changes 

when pigs are 

paired? 

Outlier removal, box 

plotting, time series 

analysis, statistical 

testing, feature 

engineering, anomaly 

detection, 

classification 

Data outliers were 

removed, and data 

visualized. Statistical 

tests were conducted, 

and machine learning 

models were trained to 

detect anomalies and 

classify behaviors. 

Discovered pairing 

has an impact on 

pigs' activity levels, 

possibly indicating 

aggression or 

stress. 

7 

Do pigs adapt to the 

isolation during 

feeding and 

subsequent re-

pairing? 

Activity 

segmentation, 

statistical analyses, 

machine learning 

models 

Activities were 

segmented based on 

conditions. Statistical 

analyses were 

performed, and 

machine learning 

models were used to 

study the adaptation 

process. 

Found evidence of 

adaptation to 

repeated isolation 

and pairing, using 

changes in 

physiological 

parameters. 
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8 

What other factors 

affect the pigs' heart 

rate, respiration rate, 

or activity level? 

Time segmentation, 

statistical analyses, 

correlation analysis, 

contingency table, 

machine learning 

models 

The day was segmented 

into periods. Statistical 

analyses, correlation 

studies, and machine 

learning models were 

used to investigate the 

effects of various factors 

on physiological 

parameters. 

Identified factors 

like time of day 

and duration of 

isolation 

significantly 

influencing 

physiological 

parameters. 

9 

Can we identify 

behavioral patterns 

during feeding, 

isolation, or pairing? 

Visualization, 

statistical analyses, 

clustering 

Behaviors were 

visualized and 

statistically analysed. 

Clustering was 

performed to identify 

distinct patterns during 

different activities. 

Detected distinct 

behavioral patterns 

during different 

activities, offering 

deeper insights into 

pig behavior. 

10 

How can we assess 

the overall welfare of 

the pigs? 

Descriptive statistics, 

visualizations, feature 

engineering, 

correlation analysis, 

time series analysis, 

sequence mining, 

Gaussian Hidden 

Markov Model 

Descriptive statistics 

were calculated, and 

data visualized. 

Features were 

engineered to measure 

stress and gait quality. 

Time series analyses, 

sequence mining, and 

Gaussian Hidden 

Markov Models were 

employed for trend 

analysis and state 

prediction. 

Provided an overall 

assessment of pigs' 

welfare in terms of 

stress levels and 

gait quality, 

enhancing livestock 

management.  

4. Results and Discussions 

Stress in pigs can be evaluated by detecting physiological changes such as those recorded by the 
3-in-1 sensor and alterations in behaviors inferred from accelerometer data. Some potential stress 
indicators include heart rate (HR), heart rate variability (HRV), breathing rate (BR), and changes in 
activity and posture [25, 26, 27, 28]. Furthermore, parameters such as ECG amplitude, ECG noise, and 
galvanic skin response (GSR) can also signify increased stress levels. However, it's important to 
acknowledge that these changes need to be substantial and sustained to reliably attribute to stress as 
short-term fluctuations can occur for various reasons. 

4.1. Q1. Unveiling the Complexity of Heart Rate Variations: Solo vs. Paired Pigs 

The study embarked on a journey to unravel the intricate dynamics of heart rate (HR) and heart 
rate variability (HRV) in pigs under varying conditions, specifically in isolation versus paired 
settings. Stress typically leads to increased heart rate. Therefore, an upward trend in HR data may 
suggest increased stress. HRV is commonly used as a non-invasive measure of autonomic nervous 
system activity and can provide insights into the overall health and physiological condition of the 
animal. Furthermore, heart rate variability (HRV), which is the fluctuation in the time intervals 
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between heartbeats, can be a potent indicator of stress. High HRV usually suggests less stress, while 
low HRV may indicate higher stress levels. 

Table 3. Comparative Analysis of Mean, Median, and Standard Deviation for Heart Rate and Heart 
Rate Variability Among Pigs. 

Animal HR Mean HR Median HR Std HRV Mean HRV Median HRV Std 

Pig11 134.050 138.000 36.185 24339.519 22.000 31654.858 

Pig13 134.978 136.000 34.869 20468.156 28.000 30353.554 

Pig15 137.898 139.000 31.670 16583.735 26.000 28472.199 

Pig21 134.396 137.000 40.453 25021.694 28.000 31825.314 

Pig22 137.109 136.000 31.948 31597.587 50.000 32733.994 

The mean heart rate (HR) value peaks for Pig15 and dips to its lowest for Pig11. Conversely, the 
standard deviation for heart rate is at its maximum for Pig21. A higher standard deviation signifies 
greater fluctuation in heart rate. However, a higher standard deviation does not necessarily indicate 
elevated stress levels over time. The mean value, which is more closely tied to stress levels, suggests 
that Pig15 may experience higher stress levels than the other pigs. However, heart rate is not the sole 
determinant of stress, and a comprehensive analysis of multiple factors is required before drawing 
definitive conclusions. 

Turning to heart rate variability (HRV), the mean HRV is lowest for Pig15 and highest for Pig22. 
The standard deviation of HRV is at its maximum for Pig22 and lowest for Pig15. It's important to 
remember that higher HRV can be an indicator of low stress levels, while lower HRV may suggest 
higher stress levels. 

In summary, Pig15 exhibits the highest mean HR and the lowest mean HRV, both conditions 
associated with higher stress levels, suggesting that Pig15 may experience the highest stress levels. 
Pig21, on the other hand, shows the highest standard deviation, indicating greater fluctuation in heart 
rate, which could be attributed to various factors. The statistics for all other pigs show variability and 
can be higher or lower at different instances, underscoring the need for a comprehensive, multi-
factorial approach to assessing stress levels.  

4.1.1. Frequency Domain Analysis: A Deep Dive into Heart Rate Variability 

Frequency domain analysis of heart rate variability (HRV) is a sophisticated method used to 
examine the distribution of power within the HRV signal across distinct frequency bands. HRV, 
defined as the variation in time intervals between consecutive heartbeats, mirrors the intricate 
interplay between the sympathetic and parasympathetic nervous systems. 

For a detailed analysis, individual graphs are plotted for each pig, allowing for a separate 
examination of the frequency bands. The x-axis of these graphs represents multiple bands, each 
corresponding to specific activities associated with the sympathetic and parasympathetic systems. 

The frequency bands for HRV are as follows: 
Low Frequency (LF): This band represents a blend of sympathetic and parasympathetic activity. 

An increase in LF power is indicative of heightened sympathetic activity. 
High Frequency (HF): This band primarily reflects parasympathetic activity. A decrease in HF 

power levels suggests reduced parasympathetic activity. 
LF/HF Ratio: This ratio illustrates the balance between the sympathetic and parasympathetic 

nervous systems. A higher LF/HF ratio indicates a dominance of sympathetic activity. 
Figure 2 presents a bar chart illustrating the power distribution across different frequency bands 

for Pig13 and Pig21. The frequency domain features of heart rate variability (HRV) are computed, 
including high-frequency (HF) power, low-frequency to high-frequency (LF/HF) ratio, total power, 
and very low-frequency (VLF) power. The X-axis represents these frequency bands, while the Y-axis 
indicates the power values. The chart provides insights into the autonomic nervous system activity 
of the pigs and potential health conditions.  
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The analysis of frequency bands for five pigs (Pig13, Pig21, Pig22, Pig15, and Pig11) provides a 
comprehensive understanding of their heart rate variability (HRV) and potential stress levels. 

Starting with Pig13, the total power of the frequency bands reaches up to 175, a sum of various 
smaller bands. The higher LF bands suggest a dominance of the sympathetic nervous system, often 
associated with stress. The LF/HF ratio is notably low, while the HF band is below 25, indicating a 
lower parasympathetic activity.  

In the case of Pig21, the vLF band power is lower compared to Pig13, while the overall power 
remains similar. All other bands show typical behavior, with a slight increase in the HF band 
compared to Pig13, suggesting a slightly higher parasympathetic activity. For Pig22, the total power 
increases to 200, with the vLF band showing a significant rise to a power of 125. This increase in vLF 
levels, indicative of heightened sympathetic dominance, suggests a higher likelihood of stress for 
Pig22. 

Observing Pig15, the overall power does not exceed 160, with all other bands falling within the 
normal range, similar to Pig13 and Pig21. The total power, representing the overall variability in HRV 
over time, is dependent on the other frequency bands. As previously discussed, low HRV can also be 
an indicator of stress. 

Lastly, for Pig11, the total power band is at a power of 300, a value remarkably higher compared 
to the other pigs. This elevated total power is due to variations in other bands. The average HF band 
is at 25, however, for Pig11, the value is close to 50. This higher HF indicates a heightened sympathetic 
response associated with relaxation. Conversely, the LFnu is within the normal range and the LF/HF 
ratio is also behaving normally, indicating high parasympathetic activity, which is associated with 
relaxation. 

The analysis of frequency bands provides valuable insights into the balance between the 
sympathetic and parasympathetic nervous systems in pigs, offering potential indicators of stress 
levels. 

  
(a) (b) 

Figure 2. Power Distribution in Frequency Bands for Pig13 and Pig21 - Insights into Autonomic 
Nervous System Activity and Potential Health Conditions. The power distribution across frequency 
bands for the remaining pigs can be found in the supplementary information (Supplementary file 
S3Q1). 

4.1.2. Comparative Analysis of Heart Rate and Heart Rate Variability Under Different Conditions 

To delve deeper into the effects of social conditions on the autonomic regulation of pigs, the 
animals were placed in varying environments. Given the social nature of pigs, isolation can 
significantly impact their behavior and autonomic responses. This study investigated the variations 
in heart rate (HR) and heart rate variability (HRV) under different conditions such as isolation and 
in pairing. 

For Pig13, the mean HR is higher in isolation than in paired conditions, while the HRV is lower 
in isolation (Table S3Q1). The standard deviation for HR is also high, indicating more significant 
fluctuations in heart rate in isolation. Contrarily, for Pig15, Pig21, and Pig22, the HR is higher in 
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paired conditions than in isolation, and the HRV is lower in paired conditions. This suggests that 
these pigs may experience more stress in paired conditions than in isolation, a deviation from the 
pattern observed in Pig13.  

Individual variations in HR and HRV can be influenced by factors such as diet, behavioral 
patterns, environmental parameters, and health status in different housing settings. This leads to the 
conclusion that stress levels in pigs may vary significantly depending on their individual dynamics. 
Elevated heart rate and reduced heart rate variability are potential indicators of stress, often 
associated with a dominant sympathetic response, which is more frequently observed in isolated 
conditions. 

4.1.3. Autocorrelation Analysis of ECG Amplitude Time Series Across Different Pigs 

The autocorrelation function (ACF) plot is a crucial tool for understanding the correlation 
structure and patterns within the ECG amplitude time series in pigs. The ACF plot, with 
autocorrelation values on the y-axis and corresponding lag values on the x-axis, visualizes the 
correlation coefficients for each lag, indicating the strength of correlation in either a positive or 
negative direction. 

In this analysis, we focus on the autocorrelation at longer lag periods to interpret patterns and 
trends over extended durations. The autocorrelation plot reveals the correlation between the ECG 
amplitude at a given point in time and its lagged versions. 

For Pig11, a positive correlation is observed between the ECG amplitude at a given time and its 
lagged versions (Figure 3). The correlation varies over the lag period, indicating similar patterns 
observed in ECG amplitude. For Pig13, a stronger positive correlation is observed, indicating 
remarkably consistent patterns of ECG amplitude over a given period. When analyzing Pigs 15, 21, 
and 22, a positive correlation is observed for all, indicating similar patterns of ECG amplitude at a 
given time. Pig15 exhibits a stronger positive correlation than Pigs 21 and 22. For Pig22, the 
correlation varies more over the lagged versions, indicating greater fluctuation in ECG amplitude. 

These findings provide valuable insights into the temporal patterns of ECG amplitude in pigs, 
contributing to our understanding of their physiological responses under different conditions. 
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Figure 3. Autocorrelation Plot Analysis of ECG Amplitude Time Series in Pigs. 

4.1.4. Time Domain Analysis: Unraveling the Heart Rate Characteristics 

In the time domain analysis, various metrics are calculated for each pig and activity. These 
metrics, such as Mean RR, SDRR, RMSSD, pNN50, and others, aid in comparing the heart rate 
characteristics of pigs in isolated vs. paired settings. They help us identify patterns and differences 
that indicate variations in heart rate variability and potential stress levels between the two settings. 

In the time domain analysis of the collected data, we computed various metrics for each pig and 
activity, providing a rich and detailed examination of heart rate variability and potential indicators 
of stress levels. 

For instance, the mean RR interval (the average duration between consecutive heartbeats) was 
calculated. In general, higher mean RR values were suggestive of lower stress levels. The standard 
deviation of these RR intervals (SDRR) was also calculated, with higher values indicating greater 
heart rate variability and potentially lower stress levels. Other metrics such as RMSSD (the root mean 
square of successive RR interval differences), pNN50 (the percentage of successive RR intervals that 
differ by more than 50 milliseconds), and NN50 (the number of successive RR intervals that differ by 
more than 50 milliseconds) were computed, which further enriched our understanding of heart rate 
variability and its potential correlation with stress levels. 

For example, pig11, when in isolation, exhibited a mean RR of 121.78 ms and an average heart 
rate of 134.05 beats/min. Similarly, pig22, when paired, displayed a mean RR of 151.33 ms and an 
average heart rate of 139.28 beats/min. Comparison of these metrics provided an opportunity to 
explore variations in heart rate variability and potential stress levels between the different settings. 

For frequency domain analysis, metrics like power spectral density (PSD) were calculated using 
Fast Fourier Transform (FFT). This enabled us to examine the frequency distribution of heart rate 
variability. By analyzing the power distribution across different frequency bands (e.g., high-
frequency (HF), low-frequency (LF), very-low-frequency (VLF)), we gained insights into the 
autonomic regulation of the heart and potential stress-related changes. 

For instance, pig11, when isolated, exhibited a total power of 605530.74, with VLF, LF, and HF 
powers of 78413.02, 55994.48, and 53143.34 respectively, and an LF/HF ratio of 1.05. In contrast, pig22, 
when paired, displayed a total power of 1349284.61, with VLF, LF, and HF powers of 93236.78, 
191955.11, and 172817.98 respectively, and an LF/HF ratio of 1.11. Such analysis and comparison of 
the power spectral densities across different activities allowed us to identify differences in autonomic 
balance and potential stress-induced alterations. 

Taken together, findings from both time and frequency domain analyses provided a 
comprehensive understanding of the heart rate patterns and heart rate variability related to stress in 
pigs under different conditions. Please refer to Supplementary File S3Q4 for further details, including 
the complete set of calculated metrics and relevant visualizations. 
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4.1.5. Poincaré Plot Analysis: A Nonlinear Perspective on Heart Rate Variability 

The Poincaré plot provides a nonlinear graphical representation of the dynamic properties of RR 
interval data, offering insights into the autonomic control and regulatory mechanisms of the 
cardiovascular system. By analyzing the Poincaré plots, we can understand the complex interactions 
of the autonomic nervous system on heart rate modulation. 

In our analysis, we observed that the value of sd2 was more pronounced across all pigs and their 
respective activities. In a Poincaré plot, sd2 signifies the standard deviation of the points deviating 
from the line of identity. It typifies the dispersal of successive RR intervals along the line of identity 
- the diagonal line presented in the plot. 

The sd2 value encapsulates the long-term variability in heart rate, explicitly elucidating 
variations between successive heartbeats. It imparts information about fluctuations in heart rate on a 
beat-to-beat basis, correlating with the parasympathetic (vagal) regulation of the heart. 

 
Figure 4. Poincaré Plot for Pig 11 during 'bfandaf_sio' Activity: This figure depicts the scatterplot of 
RR intervals (RRn) against the next RR intervals (RRn+1), serving as a graphical representation of 
heart rate variability. The x-axis represents the current RR interval (RRn) in milliseconds (ms), while 
the y-axis represents the following RR interval (RRn+1) also in milliseconds (ms). This plot allows the 
visualization of the correlation between successive RR intervals, providing insights into the dynamics 
of the heart rate under different activities. 

A larger sd2 designates a heightened variability between successive RR intervals, indicative of 
a more intricate and flexible heart rate pattern. This might serve as a marker of a robust autonomic 
nervous system and commendable cardiovascular adaptability. On the contrary, a reduced sd2 infers 
diminished variability, which might be associated with an increased cardiovascular risk and 
decreased autonomic function. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2023                   doi:10.20944/preprints202307.1059.v1

https://doi.org/10.20944/preprints202307.1059.v1


 15 

 

To summarize, in a Poincaré plot, sd2 quantifies the dispersal of consecutive RR intervals 
perpendicular to the line of identity, offering valuable insights into heart rate variability and 
autonomic nervous system activity. 

4.1.6. A Multifaceted Approach to Understanding Heart Rate Patterns 

This multifaceted approach that combines both time and frequency domain analyses, along with 
Poincaré plot analysis, provides a comprehensive understanding of the heart rate patterns and heart 
rate variability related to stress in pigs in isolated vs. paired settings. 

In this study, I also computed a variety of heart rate variability (HRV) metrics derived from RR 
interval data for each pig. HRV metrics offer pivotal insights into heart rate patterns and fluctuations, 
mirroring the dynamic interaction between the sympathetic and parasympathetic branches of the 
autonomic nervous system. 

Utilizing the hrvanalysis library, I calculated HRV metrics across different domains, 
encompassing time domain (including metrics like mean RR interval, SDNN, RMSSD, pNN50), 
frequency domain (with metrics like LF power, HF power, LF/HF ratio), and Poincaré plot features 
(SD1 and SD2). These metrics facilitated the assessment of overall variability, autonomic balance, and 
complexity of heart rate dynamics for each pig. 

By grouping the data based on the animal and activity, I computed HRV metrics for every 
combination of pig and activity. The outcomes were stored in a DataFrame, results_df, where each 
row corresponded to a pig's data, and each column signified an HRV metric. The resulting DataFrame 
could then be further analyzed, visualized, or used for comparative studies and statistical analyses. 

Our intention was to extract and calculate HRV metrics from RR interval data, providing 
quantitative measures of heart rate variability for different pigs and activities. The analysis revealed 
that periods when the animals experienced the highest stress, presumably as indicated by the 
maximum values of LF and SDNN, produced similar results across the different pigs. This suggests 
a consistent physiological response to stress across the animals studied, offering valuable insights 
into stress-related changes in heart rate dynamics." 

4.1.6.1. Individual Variability: A Key Factor in Heart Rate Dynamics 

The results revealed that the average HR and HRV differed significantly among the pigs, 
suggesting individual variability. For instance, pig13 exhibited a higher average HR in isolation than 
in pair, with a lower HRV in isolation than in pair. This suggests that pig13 experienced more stress 
when isolated. In contrast, pigs15, 21, and 22 showed higher HR in pair conditions than in isolation, 
indicating more stress in pair conditions. 

4.1.6.2. The Influence of External Factors on Heart Rate Variability 

The study also revealed that factors such as diet, behavioral patterns, environmental parameters, 
and health status in different housing settings could influence individual variation in HR and HRV. 
It was concluded that pigs are more likely to experience greater stress depending on their individual 
dynamics. 

4.1.6.3. Beyond Heart Rate: Other Indicators of Stress 

In addition to HR and HRV, other factors such as breathing rate (BR), posture, electrocardiogram 
(ECG) noise, galvanic skin response (GSR), movement directions, and stress score were examined 
under isolated and paired conditions. It was observed that HR and BR were higher in isolated 
conditions, potentially indicating elevated stress levels. 

4.1.6.4. The Role of Age in Heart Rate Variability 

Interestingly, the average age of pigs in isolated conditions was 101, while in paired conditions, 
it was 89. This age difference might have contributed to the higher stress signs detected in isolated 
pigs. The study also considered age as a crucial component when interpreting HR and HRV data. It 
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was observed that older pigs had a higher HR compared to younger ones and a lower HRV, 
potentially indicating elevated stress levels as they aged. 

4.1.6.5. A Step Towards Better Understanding of Stress in Pigs 

This specific objective of this study provides valuable insights into the effects of social conditions 
on the heart rate and heart rate variability in pigs. It highlights the importance of considering 
individual variability and other factors such as age and environmental conditions when assessing the 
stress levels in pigs. Further research is needed to explore these factors in more depth and to develop 
strategies to manage and mitigate stress in pigs in different housing settings. 

4.2. Q2. Respiration Rate Changes in Paired vs. Isolation Conditions: Assessing Stress Levels 

We delved into an exploration of variations in the respiration rates of pigs during isolation and 
pairing periods, with an intention to unearth potential stress indicators. A meticulous analysis of the 
'BR' (Breathing Rate) variable was carried out during these periods to decode potential manifestations 
of stress. 

The cornerstone of our investigation rested on the calculation of key summary statistics such as 
the mean, median, and standard deviation of respiration rates for both isolation and pairing periods. 
These statistical measures were instrumental in understanding the central tendency and variability 
of respiration rates under each condition. To aid visual interpretation, we employed histograms to 
display the distribution of respiration rates in both settings. 

Insights derived from the comparison of these summary statistics, along with the inspection of 
the histograms, led us to infer a perceptible difference in the respiration rates between the two 
conditions. While respiration rate offers a crucial piece of the puzzle, it's essential to consider that it 
alone may not provide a holistic view of stress levels, given the potential influence of various other 
factors. Consequently, our comprehensive assessment of stress levels involved taking into account 
other physiological and behavioral indicators in conjunction with the respiration rate. 

Figure 5 delineates the variation in the respiration rate of Pig 22, with respect to age. As an 
essential physiological parameter, the respiration rate is portrayed in a box plot format against 
different age stages, offering a clear visual representation of the central tendency, dispersion, and 
outliers within each age group. It is noteworthy that any observed trends or age-related differences 
could potentially illuminate the physiological changes that transpire as pigs age. For instance, if an 
increase in respiration rate with age was observed, it could imply age-related changes in the pigs' 
metabolism or overall health status. 

To validate our findings statistically, we employed the Mann-Whitney U test, which compares 
the ranks of respiration rates between the isolation and pairing conditions. The p-value derived from 
the test served as a decisive factor in establishing whether there was a statistically significant 
difference in the respiration rates between the two conditions. A p-value below the set significance 
level (typically 0.05) indicated a significant difference, suggesting that the state of pairing might have 
had an impact on respiration rates, and thereby, stress levels. 
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Figure 5. Age-based Variation in Respiration Rate for Pig 22 - The box plot illustrates the respiration 
rate for Pig 22 plotted against different age stages. The central tendency and dispersion of respiration 
rates across ages can provide insights into the physiological changes associated with pig aging. 

In Figure 6, we present a comparative analysis of the Mean Normal-to-Normal interval (NNI), a 
key parameter in heart rate variability (HRV), for Pig 21 in isolation and pair settings. This 
comparison was conducted with a view to unearthing changes in heart rate variability, which is 
known to be influenced by the interplay of the parasympathetic and sympathetic branches of the 
autonomic nervous system. The bar chart distinctly displays the Mean NNI for the two different 
social environments. If a significant divergence in the Mean NNI between the isolation and pair 
settings was discerned, it could be indicative of variances in the physiological stress experienced by 
the pig in these distinct contexts. For example, higher variability (and thus, higher Mean NNI) in one 
of the conditions could suggest a healthier autonomic nervous system response in that particular 
setting. 

 
Figure 6. Comparative Analysis of Mean NNI Between Isolation and Pair Settings for Pig 21 - The bar 
chart delineates the Mean NNI (Normal-to-Normal interval, an HRV parameter) for Pig 21 during 
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isolation and pair settings. Any significant differences observed could suggest changes in the heart 
rate variability and associated physiological stress between different social environments. 

Our results demonstrated an intriguing trend where isolation appeared to induce more stress, 
as evidenced by a higher SDNN/LF ratio. Conversely, the paired setting was characterized by 
increased LF values, pointing towards elevated stress levels. Furthermore, the SDNN metric 
underscored heightened stress levels in the paired condition. 

Upon examining the detailed results, it was observed that during isolation, the mean respiration 
rate varied across pigs, ranging approximately between 13.36 to 17.16 breaths per minute. In contrast, 
during the paired setting, the mean respiration rate ranged roughly from 15.97 to 20.42 breaths per 
minute. The standard deviation, which measures the variability in respiration rate, was noticeably 
higher in the paired setting across all pigs, indicating a more varied and dynamic respiratory 
response in this condition. 

Additional, more advanced analytical techniques were also employed, which involved 
autocorrelation plots and time-series decomposition. Autocorrelation plots shed light on the 
temporal persistence of patterns in respiration rates. For instance, a high autocorrelation at a lag of 
one indicates a strong relationship between the respiration rate at any point and the rate in the 
preceding period. Time-series decomposition, on the other hand, helps segregate trends, seasonality, 
and residual components in the respiration rate data, providing an understanding of systematic 
patterns or cycles over time, which could be indicative of underlying biological or environmental 
processes. 

4.3. Q3. Comparison of Activity Levels (Measured by Accelerometer Data) in Pigs During Isolation vs 

Paired Settings: Insights into Stress-Related Behavioral Changes 

How does the activity, as measured by accelerometer data, change when pigs are isolated versus 
when they are paired? Is there a discernible difference in activity levels or patterns that might suggest 
behavioral changes related to stress? 

In addressing this question, we conducted a comprehensive analysis of the collected data, with 
a specific focus on the accelerometer data. The dataset included variables such as 'PeakAccel', 
'VerticalMin', 'VerticalPeak', 'LateralMin', 'LateralPeak', 'SagittalMin', and 'SagittalPeak', which 
provide valuable insights into the movement patterns of the pigs. 

To evaluate activity changes during isolation versus pairing periods, it is crucial to consider 
variables like 'Activity' and 'Posture'. These variables can offer indications of overall activity levels 
and potential behavioral changes when pigs are isolated compared to when they are paired. 

For a more nuanced analysis, we utilized the 'Time' and 'Date (Age of pigs)' variables to 
contextualize the data within isolation and pairing periods. This allowed us to identify potential 
temporal patterns and variations in activity levels. 

To examine if changes in activity patterns suggest behavioral changes related to stress, we 
simultaneously analyzed variables such as 'HR' (Heart Rate), 'BR' (Breathing Rate), and 'HRV' (Heart 
Rate Variability). These physiological markers can serve as indicators of stress responses and provide 
insights into the pigs' well-being. 

To identify significant changes or deviations in the time series data, we employed change point 
detection techniques. The process involved variable selection based on mutual information scores, 
encoding the target variable numerically, and applying CUSUM analysis to detect change points in 
the selected variables. This approach allowed us to pinpoint the specific time points where significant 
changes occurred in the accelerometer data. 

Furthermore, we visualized the time series data for each pig and activity group, highlighting the 
detected change points. This visual representation facilitated a thorough examination of the 
identified deviations in the data, enabling us to gain a better understanding of the patterns and 
potential stress-related behavioral changes. 

To explore the clustering of accelerometer data and gain further insights into activity patterns, 
we applied K-means clustering. By clustering the data based on selected variables, we were able to 
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identify distinct clusters and visualize the relationships between accelerometer measurements. This 
analysis provided valuable information about the different activity levels or patterns exhibited by the 
pigs during isolation and pairing periods. 

To analyze the changes in activity levels for Pig 22 during isolation and pairing periods, we 
conducted change point detection analysis. Figure 7 presents the results of this analysis, focusing on 
the 'PeakAccel' variable. The x-axis represents the dates of data collection, while the y-axis represents 
the 'PeakAccel' values. 

The line plot clearly depicts the variations in 'PeakAccel' over time. Notably, change points are 
identified as significant deviations from the usual activity pattern. These change points indicate shifts 
in activity levels during different social contexts, namely isolation and pairing periods. By visualizing 
the detected change points, we gain valuable insights into the dynamic nature of pig activity and how 
it is influenced by the social environment. This analysis highlights the potential behavioral changes 
that pigs may exhibit when transitioning from isolation to pairing, or vice versa. 

These findings suggest that the presence or absence of social interaction can significantly impact 
the activity levels of pigs, which could be indicative of changes in their behavioral response and 
potential stress levels. Understanding these activity patterns and their relationship with stress can 
contribute to enhancing the welfare and well-being of pigs in various management settings. 

 
Figure 7. Change Point Detection for Pig 22 - Isolation and Pairing Periods - The line plot illustrates 
the changes in the 'PeakAccel' variable for Pig 22 during isolation and pairing periods. The x-axis 
represents the dates of data collection, while the y-axis represents the 'PeakAccel' values. Change 
points, indicated by significant deviations in the data, are identified and visualized, providing 
insights into the shifts in activity levels during different social contexts. 

Figure 8 displays the results of applying K-means clustering to accelerometer variables, 
specifically VerticalMin on the X-axis and VerticalPeak on the Y-axis. The data points are labeled with 
cluster assignments (Cluster 0, Cluster 1, and Cluster 2) obtained from the clustering algorithm. The 
cluster labels have been added to the dataset for easy interpretation and analysis. This visualization 
allows for the exploration of distinct patterns and relationships between VerticalMin and 
VerticalPeak measurements within each cluster. 
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Figure 8. Cluster Analysis of VerticalMin and VerticalPeak: Visualization of K-means Clustering 
Results with Cluster 0, Cluster 1, and Cluster 2 Assignments. 

Overall, our analysis of accelerometer data, including change point detection and K-means 
clustering, yielded important insights into the activity changes and potential behavioral alterations 
related to stress in pigs. These findings contribute to our understanding of the pigs' welfare and can 
inform future research and interventions aimed at improving their well-being in different social 
contexts. 

4.4. Q4 Detecting Abnormalities in Pig Gait using Accelerometer Data: Unraveling Patterns Associated with 

Lameness 

In order to investigate the presence of abnormalities or changes in gait that may be associated 
with lameness in pigs, we conducted an analysis of the accelerometer data. The data encompassed 
several key accelerometer variables, including 'PeakAccel', 'VerticalMin', 'VerticalPeak', 'LateralMin', 
'LateralPeak', 'SagittalMin', and 'SagittalPeak'. These variables provided valuable insights into the 
pigs' movement patterns in various directions, enabling a comprehensive examination of their gait. 

To identify specific patterns indicative of lameness, we focused on significant changes or 
inconsistencies within the accelerometer variables. For instance, a pig experiencing lameness might 
exhibit an irregular or asymmetrical movement pattern, which could manifest as erratic readings 
within the accelerometer data. Additionally, we might observe a decrease in 'PeakAccel' when a pig 
moves more slowly due to lameness, or alterations in the 'Vertical', 'Lateral', and 'Sagittal' measures 
if the pig is favoring one side or limping. 

To further explore these patterns and detect any anomalies, we employed unsupervised learning 
techniques, such as clustering or anomaly detection. These methods allowed us to capture the 
temporal patterns within the accelerometer data and classify them as either normal or abnormal. 

Specifically, we performed k-means clustering analysis on the accelerometer data, using the 
selected variables mentioned earlier. This analysis helped to identify distinct clusters based on 
activity ('bfandaf_isoandpair') and cluster assignments. For example, for Pig ID 'pig13' in Cluster 0 of 
the 'bfandaf_isoandpair' activity, the mean values for the accelerometer variables were as follows: 
Mean PeakAccel: 0.148, Mean VerticalMin: -0.143, Mean VerticalPeak: 0.040, Mean LateralMin: -0.573, 
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Mean LateralPeak: -0.374, Mean SagittalMin: -0.859, and Mean SagittalPeak: -0.645. Similar mean 
values were calculated for other clusters and pigs. 

Furthermore, we calculated various temporal parameters related to gait, such as step duration, 
stride length, stance duration, and swing duration. Step duration was computed as the time 
difference between consecutive peaks in a specific accelerometer variable, while stride length was 
determined by averaging the vertical and sagittal peaks. Stance duration was calculated as the time 
difference between consecutive peaks in the vertical variable, and swing duration was derived from 
the time difference between consecutive peaks in the vertical variable. For instance, within the 
'af_isoandpair' activity, Cluster 2 exhibited a mean PeakAccel of 2.319, VerticalMin of -1.246, 
VerticalPeak of 1.139, LateralMin of -1.393, LateralPeak of 1.082, SagittalMin of -2.443, and 
SagittalPeak of 0.939 for Pig ID 'pig22'. These values indicated significant differences in gait 
characteristics compared to healthy pigs.  

The scatter plot (Figure 9) illustrates the clustering analysis of accelerometer data, with 
VerticalMin on the y-axis and PeakAccel on the x-axis. The data points are grouped into distinct 
clusters, highlighting patterns and relationships between these variables. Clustering enables the 
identification of common behavioral patterns and abnormalities in pig gait. 

By comparing these temporal parameters across different pigs, activities, or time points, we were 
able to identify variations in gait characteristics. For instance, we analyzed the average stride length 
and stance duration (Figure 10) for each unique combination of 'Animal', 'Activity', and 'Age'. The 
results revealed distinct patterns in gait characteristics, allowing for comparisons between different 
activities and age groups for each pig. 

Our analysis of accelerometer data provided valuable insights into the detection of abnormalities 
or changes in gait associated with lameness in pigs. By focusing on specific accelerometer variables 
and conducting statistical analyses, we were able to identify patterns indicative of lameness and 
extract relevant temporal parameters for comprehensive gait assessment. These findings contribute 
to our understanding of the relationship between accelerometer data and lameness in pigs, providing 
a foundation for future research and potential interventions to improve animal welfare. 

 
Figure 9. Clustering Analysis of Accelerometer Data: VerticalMin vs. PeakAccel for Pig 13. 
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Figure 10. Trends of Stride Length and Stance Duration Over Time. This line graph depicts the trends 
of stride length and stance duration over time. The x-axis represents the trend, while the y-axis 
represents the dates of data collection. The graph provides insights into the changes and patterns in 
stride length and stance duration, allowing for the analysis of gait dynamics and potential 
abnormalities in pigs. 

4.5. Q5 Correlation Between Age and Gait/Activity Patterns in Pigs: Insights from Accelerometer Data   

This specific objective of this study embarks on an exploration of the correlation between age 
and gait/activity patterns in pigs, employing accelerometer data as a primary tool. The accelerometer 
variables, including 'PeakAccel', 'VerticalMin', 'VerticalPeak', 'LateralMin', 'LateralPeak', and 
'SagittalMin', were meticulously analyzed to assess the pigs' movement patterns and overall activity 
levels. 

The research methodology involved the use of statistical analyses, visualization techniques, and 
regression models. These tools were instrumental in exploring the relationships between age, 
accelerometer variables, and walking ability. The findings from this specific objective provide 
valuable insights into the walking ability of pigs as they age, contributing to a broader understanding 
of the factors affecting their gait patterns and physical activity levels. 

A comparative analysis was conducted among selected pigs to highlight variations in step count 
and cadence. These variations imply differences in their activity levels and potential walking abilities. 
Regression models and machine learning algorithms were employed to delve deeper into the 
relationships between age, accelerometer variables, and walking ability. These models, by accounting 
for individual differences between pigs and controlling for confounding factors, offer a more 
comprehensive understanding of the influence of age on gait patterns and activity levels. 

The correlation analysis revealed significant associations between age and accelerometer 
variables. Notably, the variables 'VerticalMin', 'VerticalPeak', 'LateralMin', 'LateralPeak', 
'SagittalMin', and 'SagittalPeak' showed p-values less than 0.05, indicating their significance in 
assessing walking ability. These findings suggest that changes in these accelerometer variables may 
reflect alterations in gait patterns as pigs age. 

Furthermore, the step count and cadence, calculated from accelerometer data, served as 
indicators of physical activity levels and walking ability. The step count of Pig 22 was significantly 
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lower compared to Pigs 15, 21, and 13. These results suggest that Pig 22 had a lower number of steps 
during the observation period, indicating relatively lower activity levels. Additionally, the cadence 
of Pig 22 was slightly lower than that of Pigs 15, 21, and 13. This indicates a potentially slower walking 
pace for Pig 22 in comparison to the other pigs. 

Time series analysis was performed on the accelerometer data to investigate how gait/activity 
patterns change over time within individuals. Smoothing techniques were applied, and the data were 
visualized over age to identify trends, patterns, or abnormalities in the gait/activity patterns of the 
pigs. This detailed analysis of the temporal dynamics of gait/activity patterns can provide further 
insights into age-related changes or anomalies in movement patterns. 

Regression models and machine learning algorithms were employed to analyze the relationship 
between age, accelerometer variables, and walking ability. By controlling for other factors and 
accounting for individual differences between pigs, these models allowed for a more comprehensive 
understanding of the influence of age on gait patterns and activity levels. 

The box plot is grouped by age, allowing for a comparative analysis of the vertical peak values 
within each age group. The box represents the interquartile range (IQR) of the data, with the 
horizontal line inside the box indicating the median. The whiskers extend to the minimum and 
maximum values within 1.5 times the IQR, while any data points outside this range are considered 
outliers and marked as individual points. By examining the box plot, we can observe variations in 
the vertical peak of the breathing waveform across different age groups, providing insights into 
potential age-related differences in respiratory patterns among the pigs. 

Furthermore, the step count and cadence, calculated from accelerometer data, served as 
indicators of physical activity levels and walking ability. Comparative analysis of selected pigs (e.g., 
Pig 22 compared to Pigs 15, 21, and 13) demonstrated variations in step count and cadence, implying 
differences in their activity levels and potential walking abilities. Pig 22 exhibited a lower step count 
and slightly lower cadence compared to the other pigs, indicating relatively lower activity levels. The 
correlation analysis between age and accelerometer variables provided valuable insights into the 
relationship between age and gait/activity patterns in pigs. Table 4 presents the correlation 
coefficients and p-values for each variable. 

Table 4. Correlation Coefficients between Age and Accelerometer Variables. 

 Age PeakAccel VerticalMin VerticalPeak LateralMin LateralPeak SagittalMin SagittalPeak 

Age 1.000 -0.082 -0.157 -0.098 0.025 -0.043 -0.116 -0.098 

PeakAccel -0.082 1.000 0.315 0.406 0.152 0.235 0.272 0.339 

VerticalMin -0.157 0.315 1.000 0.697 0.201 0.238 0.470 0.532 

VerticalPeak -0.098 0.406 0.697 1.000 0.189 0.303 0.541 0.694 

LateralMin 0.025 0.152 0.201 0.189 1.000 0.484 0.431 0.536 

LateralPeak -0.043 0.235 0.238 0.303 0.484 1.000 0.420 0.559 

SagittalMin -0.116 0.272 0.470 0.541 0.431 0.420 1.000 0.736 

SagittalPeak -0.098 0.339 0.532 0.694 0.536 0.559 0.736 1.000 

The results indicate various degrees of correlation between age and the accelerometer variables. 
Notably, 'VerticalMin', 'VerticalPeak', 'LateralMin', 'LateralPeak', 'SagittalMin', and 'SagittalPeak' 
show moderate negative correlations with age, ranging from -0.157 to -0.116. On the other hand, 
'PeakAccel' exhibits a weak negative correlation (-0.082) with age. These findings suggest that as pigs 
age, there may be a tendency for certain accelerometer variables to decrease. 

Step Count and Cadence Analysis: To assess the walking ability of pigs, step count and cadence 
were calculated based on accelerometer data. A comparative analysis was performed to highlight 
differences among selected pigs, specifically Pig 22 compared to Pigs 15, 21, and 13.  The step count 
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of Pig 22 (8,240) is significantly lower compared to Pigs 15, 21, and 13, which recorded step counts of 
11,281, 12,521, and 12,422, respectively. These results suggest that Pig 22 had a lower number of steps 
during the observation period, indicating relatively lower activity levels. Additionally, the cadence 
of Pig 22 (393.4300993124523 steps per minute) was slightly lower than that of Pigs 15, 21, and 13. 
This indicates a potentially slower walking pace for Pig 22 in comparison to the other pigs. 

 
Figure 11. Box Plot of Vertical Peak Breathing Waveform by Age Group. The box plot visualizes the 
distribution of vertical peak breathing waveform values across different age groups of pigs. The age 
of pigs is plotted on the x-axis, while the vertical peak of the breathing waveform is represented on 
the y-axis. 

While the current analysis provides valuable insights, it is important to acknowledge certain 
limitations. The relationship between age and gait/activity patterns can be influenced by various 
factors such as pig health, fitness level, and environmental conditions. Therefore, future research 
should consider incorporating additional data and investigating these factors to gain a more 
comprehensive understanding of the observed correlations. 

In conclusion, this study successfully explored the correlation between age and gait/activity 
patterns in pigs using accelerometer data. The correlation analysis revealed significant associations 
between age and accelerometer variables, indicating potential age-related changes in gait patterns. 
The step count and cadence analysis highlighted differences in activity levels and potential walking 
abilities among selected pigs. Moreover, time series analysis and regression models provided insights 
into the temporal dynamics of gait/activity patterns and the influence of age on walking ability. 

These findings contribute to the assessment of pig well-being, early detection of potential health 
issues, and the optimization of living conditions. Further research and comprehensive analyses 
considering additional factors are necessary to establish definitive conclusions and enhance our 
understanding of the complex relationship between age, accelerometer variables, and walking ability 
in pigs. 

4.6. Q6 Assessing Stress and Aggression in Paired Pigs: An Accelerometer Data Analysis.  

The central objective of this scientific endeavor was to investigate whether accelerometer data - 
specifically variables such as 'PeakAccel', 'VerticalMin', 'VerticalPeak', 'LateralMin', 'LateralPeak', 
'SagittalMin', and 'SagittalPeak' - signified noteworthy modifications in the activity when pigs are 
paired, potentially suggesting increased aggression or stress. These measures collectively offer an 
inclusive picture of the movement patterns in pigs, enabling a comprehensive analysis of their 
activity levels under varied conditions.  
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As part of our analytical strategy, we examined the pigs in three specific behavioral states: 
feeding, isolation, and pairing. The 'Activity' variable, in combination with the aforementioned 
accelerometer variables, served as the foundation of our investigation. An initial understanding of 
the data and the emergent patterns was derived from an Exploratory Data Analysis (EDA). This 
involved the deployment of descriptive statistical measures, such as the mean, median, and variance, 
as well as data visualization techniques, including histograms and box plots. 

Our objective was to compare activity levels across the states and discern whether any 
observable differences were statistically significant. Given the non-normal distribution of the data for 
most variables, as suggested by Kernel Density Estimation (KDE) plots, we employed non-parametric 
statistical testing methods, such as the Mann-Whitney U test. This test was critical to ascertain 
whether the observed differences in activity, when pigs were paired versus when they were alone, 
reached a level of statistical significance. 

The evaluation of physiological measures, specifically 'HR' (Heart Rate) and 'BR' (Breathing 
Rate), were integral to our study. Both measures are established indicators of stress levels, offering 
insights into the autonomic responses of pigs under different conditions. Our analysis revealed that 
both HR and BR were elevated during the isolation state compared to the paired state. This 
observation suggests that isolation might induce increased stress levels in pigs. 

Anomalies in accelerometer data, indicative of unusual activity patterns, were identified using 
unsupervised learning methods such as clustering and anomaly detection. Anomalies could 
represent outliers or data points deviating from the expected pattern, thus signaling potential 
behavioral changes. Notably, our analysis revealed a lower proportion of anomalies in the paired 
state compared to isolation. This pattern suggests reduced activity during pairing, possibly indicative 
of heightened stress or aggression in the paired state.  

In our attempt to understand the variations in pig activity under different conditions, we 
developed a comprehensive boxplot (Figure 20) representing the accelerometer variables 'PeakAccel', 
'VerticalMin', 'VerticalPeak', 'LateralMin', 'LateralPeak', 'SagittalMin', and 'SagittalPeak' for both 
isolated and paired pigs. 

Figure 12 offers an insightful comparison between the two states of activity, distinctly 
delineating the dispersion and skewness of the accelerometer variables in each scenario. This 
graphical representation allows us to visualize the central tendency and variability in pig activity 
across the two conditions, thereby providing a more robust understanding of the behavioral changes 
associated with isolation and pairing. 

Notably, the boxplot reveals apparent differences in the distributions of each variable when 
comparing isolation to pairing, suggesting a marked shift in pig activity depending on their social 
environment. Careful examination of these distributional disparities could yield valuable insights 
into the potential influence of social conditions on stress and aggression in pigs. Consequently, Figure 
12 serves as a vital tool in our analytical approach, providing the visual clarity required to better 
comprehend and interpret the complex data gathered through our accelerometer readings. 

To enhance our understanding of pigs' activity patterns, we created three new variables: 
'AccelerometerRange', 'MeanAccel', and 'ActivityRatio' through feature engineering. These 
engineered features offered additional dimensions to our analysis. 'AccelerometerRange' 
encapsulated the range of acceleration values across the three axes (vertical, lateral, sagittal). It was 
calculated by identifying the maximum value among the peak values and subtracting the minimum 
value among the corresponding minimum values. The 'MeanAccel' represented the average 
acceleration across the three axes, computed by taking the average of the peak values for vertical, 
lateral, and sagittal directions. Lastly, the 'ActivityRatio' variable denoted the ratio of mean 
acceleration to heart rate (HR), offering a unique perspective on the pigs' physical activity relative to 
their physiological state. 
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Figure 12. Boxplot Comparisons of 'PeakAccel', 'VerticalMin', 'VerticalPeak', 'LateralMin', 
'LateralPeak', 'SagittalMin', and 'SagittalPeak' Accelerometer Variables for Pigs in Isolation vs Paired 
Activity. 

Anomaly detection performed on these engineered features mirrored the results obtained from 
the original data, further substantiating our findings. This consistency between the original 
accelerometer data and the engineered features lent credibility to our methodology and reinforced 
the reliability of our results. 

Further detailed analysis comparing HRV mean and mean acceleration between isolation and 
pair settings for specific animals (pig 11 and pig 22, respectively) revealed that isolation induced a 
higher mean heart rate. This observation is in alignment with established research that links increased 
heart rate with a stress response, suggesting potential stress during isolation. The pattern of lower 
activity during pairing was again confirmed in these comparisons. Refer to Figure 13 for a 
comparative analysis demonstrating the variations in mean acceleration for Pig 21 across isolation 
and pair settings, providing insightful data on activity patterns under different social conditions. 
Detailed comparisons for other pigs can be accessed in Supplementary File S3Q6.  

Collectively, these findings suggest a significant association between the pairing of pigs and a 
decrease in activity, potentially indicative of increased stress or aggression. The observed changes in 
activity were found to be statistically significant according to both the t-test and the Mann-Whitney 
U test, adding weight to the findings. These observations highlight the potential of accelerometer 
data to provide valuable insights into swine behavior and well-being under different conditions. 
Refer to supplementary file S3Q6 for additional graphs and relevant data visualizations. 

These findings offer preliminary evidence that pairing pigs might lead to a reduction in physical 
activity, potentially signaling an increase in stress or aggression. While these findings provide 
valuable insights into the potential impact of social conditions on pig behavior, additional research 
is required to further explore and validate these initial observations and to fully comprehend their 
implications for animal welfare. Furthermore, these findings underscore the utility of non-invasive 
measures like accelerometer data in studying animal behavior, opening new avenues for research in 
this field. 
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Figure 13. Age-Dependent Mean Acceleration of Pigs: An Invisibility of Isolation Data Up to Day 91. 

4.7. Q7. Assessing Adaptive Responses in Pigs to Feeding Isolation and Post-Feeding Re-Pairing: Insights 

from Cardiorespiratory and Activity Data 

4.7.1. Temporal Adaptation of Pigs to Isolation and Re-pairing 

The study encompassed a period from the 86th to the 108th day of age, providing an opportunity 
to evaluate whether the pigs adapt to the circumstances of isolation during feeding, followed by the 
subsequent re-pairing post-feeding. Essential physiological parameters such as heart rate, respiration 
rate, and activity data were diligently collected and analyzed to unravel this adaptation process. 
Summary statistics for these variables were computed for different phases: during isolation, before 
isolation, and after isolation, to provide a comprehensive view of the physiological alterations and 
behavioural adaptations across these varied states. Refer to Table in Supplementary File S3Q7, which 
delineates an in-depth comparative examination of various physiological and behavioral indicators 
in pigs during different times of the day, notably evening, morning, and afternoon. The observed 
variations across these periods furnish critical insights into the diurnal dynamics of a multitude of 
parameters such as heart rate, breathing rate, posture, and activity, to name a few. 

4.7.2. Correlational Insights and Heatmap Analysis 

In an effort to discern the potential influence of time on heart rate (HR) and breathing rate (BR), 
a correlational analysis was performed. The results yielded weak correlations between HR and BR 
(0.016), and between HR and activity under different conditions, specifically, 'bfandaf_isoandpair' (-
0.15), 'bfandaf_iso' (0.02), and 'Activity_af_isoandpair' (0.12). Consequently, we concluded that there 
may not be a linear or non-linear relationship between activity and BR/HR for the considered 
activities. To visualize these correlations, a heatmap (Figure 14) was constructed, elucidating the 
interrelationships between time, heart rate (HR), and breathing rate (BR). 
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Figure 14. Correlation Matrix Heatmap illustrating associations between Time, Heart Rate (HR), and 
Breathing Rate (BR). 

4.7.3. Unraveling the Potentials of LSTM and Random Forest Models 

In the quest to better understand and predict the overall behavior and environmental responses 
of pigs, we employed two distinct models - the Long Short-Term Memory (LSTM) model and the 
Random Forest model. 

The LSTM model, designed for analyzing sequential data, was trained to capture temporal 
patterns and dependencies in the pigs' physiological responses and activity levels over time. The 
Random Forest model, renowned for its versatility in handling both categorical and numerical data, 
provided us with a ranked feature importance list, thereby highlighting the variables with the most 
substantial impact on the pigs' physiological responses and activity levels. Figure 23 depicts the 
Random Forest Feature Importance specifically for Pig 15 and Pig 21. Comprehensive Random Forest 
Feature Importance for the remaining animals can be found in Supplementary File Figure S3Q7. 

Both LSTM and Random Forest models were valuable in identifying essential variables, 
detecting patterns, and providing predictions or classifications. Yet, the choice between LSTM and 
Random Forest depended on the specific characteristics of the data. Therefore, we evaluated both 
models and compared their performance, providing a comprehensive understanding of the pigs' 
behavior and environment. 

4.7.4. Understanding the Cross-Validation Results from LSTM Model 

The LSTM model, inclusive of all variables we created, such as age, animal (all animals as 
different columns), aimed to make predictions for the 'Activity' column. The cross-validation scores 
derived from the LSTM model offered valuable insights into the pigs' behavior and environment. 

A higher cross-validation score implied the model's adeptness in capturing the patterns and 
trends in the heart rate data to predict overall activities. The mean cross-validation score served as 
an assessment of how well the LSTM model captured the relationship between heart rate and activity 
for all pigs. A high mean score suggested that heart rate is a reliable indicator of activity levels across 
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the pig population. Conversely, a low mean score indicated that heart rate alone may not be sufficient 
to accurately predict activity, pointing to the need for considering additional factors or features. 

In essence, the cross-validation results from the LSTM model provided us with valuable insights 
into the relationship between heart rate and activity of the pigs, enabling us to understand the pigs' 
behavior patterns, identify influential environmental factors, and inform strategies for monitoring 
and managing the overall well-being of pigs in their specific environment.  

By juxtaposing the outcomes from both the LSTM and the Random Forest models, we could 
discern the similarity in results, with the primary difference being the variables we created for the 
period (isolation, feeding, pair) and for time segmentation. The Animal behavior specialist could then 
select the most suitable model based on these insights. 

An integral aspect of our analysis, as depicted in Figure 24, involved conducting class 
predictions on the testing set and subsequently mapping the results in a visually insightful heatmap. 
This graphical representation facilitated the discernment of patterns and correlations in the data, 
thereby providing a comprehensive understanding of the distinct categories under investigation, 
namely 'bfandaf_isoandpair', 'bfandaf_iso', and 'af_isoandpair'. In addition to the heatmap, Figure 15 
also incorporates a confusion matrix. This tool offered an effective means of visualizing the 
performance of our prediction algorithm by contrasting the predicted classifications against the 
actual ones. The confusion matrix thus played a pivotal role in the assessment of our model's accuracy 
and its propensity for misclassification. 

Furthermore, Figure 16 provides an illustration of the training and validation loss over multiple 
epochs. The X-axis represents the successive epochs, while the Y-axis denotes the loss values. This 
graphical depiction served as a valuable aid in evaluating the performance and efficiency of our 
predictive model over time, enabling us to monitor the model's learning process and its convergence 
towards an optimal solution. 
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Figure 15. Illustration of Random Forest Feature importance for Pig 15 and Pig 21. 

 
 

(a) (b) 

Figure 16. Visual Representation of Class Predictions on the Testing Set and the Associated Confusion 
Matrix for 'bfandaf_isoandpair', 'bfandaf_iso', 'af_isoandpair' Conditions, along with a depiction of 
train and validation loss over epochs. 

4.8. Q8. Influence of External Factors on Pigs' Heart Rate, Respiration Rate, and Activity Level: Exploring 

Time of Day and Isolation Duration Effects 

The broader question that was addressed through this objective pertains to the behavioral and 
physiological adaptability of pigs within the span of 86 to 108 days of age. Specifically, we sought to 
understand whether pigs exhibited signs of acclimatization to a cycle of isolation during feeding and 
subsequent re-pairing. We examined key physiological variables such as heart rate, respiration rate, 
and general activity to understand this adaptation process. 

In the course of this specific objective, we encountered several variables, both temporal and 
environmental, that could potentially influence the pigs' heart rate, respiration rate, or activity level. 
The variable 'Time' was significant as it helped account for the inherent diurnal rhythms or day-to-
day variations in the physiological responses of the pigs. Similarly, environmental factors like 
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'DeviceTemp' or 'SkinTemp' were also taken into consideration as temperature variances could 
directly influence the pigs' physiological responses and activity levels. 

A robust correlation analysis was undertaken to discern any strong linear relationships between 
these variables and the physiological parameters - 'HR' (Heart Rate), 'BR' (Breathing Rate), and 
'Activity'. Post this, an in-depth regression analysis was conducted, supplemented with machine 
learning models such as decision trees, random forest, or gradient boosting, which facilitated in 
modeling the relationship between these variables and the pigs' physiological responses or activity 
levels. These models furnished crucial insights into the contribution of each variable to changes in 
heart rate, respiration rate, or activity level. 

Considering 'Time' and 'Date' as significant variables, we implemented time-series analysis 
techniques to capture any existing temporal patterns or trends in the data. For instance, we employed 
ARIMA (Autoregressive Integrated Moving Average) and LSTM (Long Short-Term Memory) models 
to detect these patterns. Moreover, to ensure the reliability of these models, validation was carried 
out using appropriate methods like cross-validation or out-of-sample testing. The results were then 
contextualized in accordance with the pigs' overall behavior and environment. 

Analysis of Heart Rate and Breath Rate: Our F-statistics for heart rate and breath rate showed 
substantial and insignificant differences across different time periods, respectively. The 
corresponding p-values corroborated these results, indicating a significant difference in heart rate 
across time periods but no significant difference in breath rate. The implications of these results led 
us to conduct further analysis, such as post-hoc tests, to determine which specific time periods 
significantly differ from each other. 

The Examination of Activity Level: The chi-square test indicated a strong association between 
time periods and activity level, thereby suggesting that the distribution of activity levels varied 
significantly across different time periods. 

In terms of modeling, the LSTM and Random Forest models were particularly beneficial in 
comprehending the pigs' overall behavior and environment. These models, adept in identifying 
important variables, detecting patterns, and providing predictions or classifications, were central to 
our understanding. Nonetheless, the choice between LSTM and Random Forest depended on the 
specific characteristics of the data, and thus, both models were employed and their performance 
compared to derive a comprehensive understanding of the pigs' behavior and environment. 

Our results from the LSTM model provided valuable insights into the relationship between heart 
rate and the activity of the pigs. These insights facilitated understanding of the pigs' behavioral 
patterns, identification of influential environmental factors, and informed strategies for monitoring 
and managing the overall pigs' well-being in their specific environment. 

From this specific objective, our analyses underscored the significant effects of various factors 
or variables on the pigs' physiological responses and activity levels. Furthermore, our investigation 
highlighted the critical role of time-series analysis techniques in understanding the temporal 
dynamics of these effects. Lastly, our use of machine learning models such as LSTM and Random 
Forest effectively captured the intricate relationship between various variables and physiological 
responses in pigs. Figure 17 presents two boxplots depicting the variations in heart rate (Figure 25a) 
and breathing rate (Figure 25b) during different times of the day: morning, afternoon, and evening. 
The y-axis represents the rate measurements, while the x-axis indicates the corresponding time 
period. Figure 25a and 25b, representing heart and breathing rates respectively, reveal insightful 
temporal patterns in the physiological responses of the pigs. In Figure 17, the heart rate distribution 
shows discernible differences across morning, afternoon, and evening. For instance, we can observe 
that the median heart rate tends to be higher in the afternoon compared to the morning and evening, 
suggesting that pigs may be more active in the afternoons. However, the broad range of heart rates 
indicated by the length of the boxes and whiskers, particularly in the morning, implies significant 
variability in heart rate within each time period.  

It's important to note that while boxplots are effective in visualizing the central tendency and 
dispersion of data, further statistical analyses would be needed to confirm these observed trends and 
to determine whether the differences across the time periods are statistically significant. Also, these 
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plots only provide a general trend and might not capture certain anomalies or specific periods of 
unusual activity, which could be essential in understanding the pig's behavior. Thus, from these 
boxplots, it seems that time of day may have an effect on the pigs' physiological responses, with 
potential increased activity in the morning. 

  

Figure 17. (a) Diurnal Heart Patterns in Pigs: A Boxplot Analysis of Morning, Afternoon, and Evening 
Readings. (b) Correlation Heatmap of Heart Rate vs. Breathing Rate Across Different Time Periods: 
Morning, Afternoon, and Evening. 

Figure 18 shows a contingency heatmap that visualizes the distribution of different pig activity 
states - 'af_isoandpair', 'bfandaf_iso', and 'bfandaf_isoandpair', across various time periods: morning, 
afternoon, and evening. The x-axis delineates the activity states, and the y-axis represents the 
respective time periods. 

 
Figure 18. Time-of-Day Impact on Pig Activity Levels: A Contingency Heatmap Analysis. 

4.9. Q9. Behavioral Pattern Recognition during Feeding, Isolation, and Pairing Periods: Insights from Sensor 

Data 

In striving to understand the behavioral patterns of pigs during periods of feeding, isolation, or 
pairing, we utilized sensor data collection techniques. Predominant variables under scrutiny 
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included activity, posture, as well as accelerometer data, which encompassed peak acceleration and 
various motion measurements in three planes of movement. As supplementary physiological context, 
heart rate and breathing rate were also taken into account. 

To visualize potential disparities across these periods, we utilized graphical representations 
such as box plots, scatter plots, and time series plots. These offered a compelling visual narrative of 
data distribution, revealing potential variations worth further investigation. To assert the statistical 
significance of these observed differences, we employed statistical tests like the Analysis of Variance 
(ANOVA) or, in cases of non-normal data distribution, the Kruskal-Wallis test. These tests permitted 
us to understand if the variability in these metrics during feeding, isolation, and pairing periods was 
indeed statistically significant. 

Turning to machine learning techniques, we found unsupervised learning methods, such as 
clustering, exceptionally insightful for identifying common behavioral patterns. Such methods 
permit the grouping of similar data points, thus helping to identify behavioral patterns including 
resting, feeding, or interactions with other pigs. In addition, sequential pattern mining, a data mining 
technique to identify frequent sequences of events or behaviors, proved instrumental in providing 
further clarity. 

For a more visually intuitive comprehension of the data, we plotted box plots for each variable 
across feeding, isolation, and pairing periods using Python's Matplotlib and Seaborn libraries. In 
cases where data included timestamps, line plots of activity or accelerometer data for each period 
proved helpful, with color-coded delineations to represent feeding, isolation, or pairing periods. We 
also created scatter plots to visualize relationships between variables during these specific periods, 
which proved instrumental in detecting correlations and patterns of scatter. 

Figure 19 provides a visual exploration of posture variations across the distinct periods of 
feeding, isolation, and pairing. As observed in this figure, the distribution of posture - represented 
by the median, interquartile range, and outliers - appears to vary across these periods. The boxplots 
provide a comprehensive overview of these variations, granting us a broader understanding of how 
the posture of pig’s changes in response to these different scenarios. 

The posture, inferred from sensor data, may reflect an animal's comfort, stress level, or 
engagement in specific behaviors such as resting or feeding. Consequently, this offers a non-invasive 
measure to evaluate the pigs' welfare during these different periods. Understanding such patterns is 
paramount in ensuring optimal living conditions and welfare for the animals. 

This analysis, together with the statistical and machine learning techniques mentioned earlier, 
provides a robust framework for dissecting the intricate dynamics of pig behavior in varying 
circumstances. The data underscore the potential to identify specific behavioral patterns using 
posture and other sensor-based measurements, thus enhancing our ability to monitor and respond 
to the animals' needs effectively. 

Figure 20 delineates the temporal dynamics of peak acceleration throughout the feeding, 
isolation, and pairing periods. The x-axis denotes the time frame, which includes both the age of the 
pigs and the specific experimental collection periods, while the y-axis denotes the peak acceleration, 
a vital measure of physical activity. This plot provides a detailed temporal perspective on how peak 
acceleration, and hence the physical activity of pigs, varies in response to these distinct periods. 

Patterns discernible from this plot may represent the pigs' adaptation to these different 
conditions, thereby providing valuable insights into their behavioral responses to feeding, isolation, 
and re-pairing scenarios. Such visual analytics, complemented with rigorous statistical assessments, 
contribute significantly to understanding the complexities of pig behavior and welfare. 

Following the graphical representation of data, we engaged in statistical analysis to quantify the 
observed relationships and differences. T-tests, ANOVA, or correlation analyses were conducted, 
contingent on the nature of the data and the research question at hand. 

We employed K-means clustering on our dataset, leading to the discovery of distinct behavioral 
patterns. Each pattern represents a cluster of observations that exhibit similar behavioral 
characteristics. Upon deeper examination of these patterns, insights can be gleaned into specific 
behaviors, such as resting, feeding, or interacting with other pigs. 
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Figure 19. Comparative Boxplots Depicting Posture Variations across Feeding, Isolation, and Pairing 
Periods. 

The emergence of three distinct behavioral patterns is represented in the supplementary tables. 
These outcomes highlight the capability of clustering techniques in uncovering underlying patterns 
in the data, providing a more profound understanding of pig behavior. Furthermore, these findings 
point towards the significant impact these variables exert on each other, supported by a p-value 
below 0.005. 

 

Figure 20. Temporal Dynamics of Peak Acceleration: Comparative Analysis across Feeding, Isolation, 
and Pairing Periods. 
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4.10. Q10. Assessing Pig Welfare through Sensor Data Analysis: Insights into Stress Levels and Gait 

Quality 

The sensor data gathered in this study was invaluable for advancing our understanding of the 
overall welfare of the pigs, especially in terms of stress levels and gait quality. 

Physiological markers such as 'HR' (Heart Rate) and 'BR' (Breathing Rate) functioned as 
indicators of stress responses, with increases in these values potentially denoting elevated stress 
levels. 'HRV' (Heart Rate Variability) also served as a significant determinant of stress levels. 

Behavioural variables including 'Activity', 'Posture', and accelerometer data ('PeakAccel', 
'VerticalMin', 'VerticalPeak', 'LateralMin', 'LateralPeak', 'SagittalMin', 'SagittalPeak') provided 
insights into the pigs' behavioural engagement and activity levels. Fluctuations in these metrics 
possibly suggested discomfort, stress, or health-related issues. 

The accelerometer data was instrumental in assessing the quality of gait. Aberrant patterns 
within these variables could indicate problems such as lameness. 

A diverse array of analysis techniques were utilized: 
Descriptive Statistics and Visualizations: This initial stage involved understanding the 

distribution of these variables and identifying pronounced patterns or outliers. 
Time-Series Analysis: Owing to the time-series nature of the data, methods like ARIMA or state-

space models were beneficial for modelling temporal changes. 
Machine Learning Models: The application of regression models, classification algorithms, or 

clustering facilitated prediction or categorization of welfare states. Clustering techniques helped in 
identifying common patterns or states in the data. 

Sequential Analysis: When appropriate, techniques like sequence mining or Markov models 
were instrumental in identifying frequent sequences of behaviours, which were relevant for a 
comprehensive understanding of welfare. 

The findings were contextualized within the scope of the pigs' overall behaviour and 
environment, and individual differences among pigs were accounted for, as indicated by the 'Animal' 
variable. 

Figure 21 provides a comprehensive correlation heatmap, portraying the interrelationships 
among physiological parameters like heart rate and breathing rate, accelerometer-based 
measurements, postural dynamics, activity levels, and stress indicators across the study's pig 
population. This heatmap aids in discerning potential patterns and associations that might have 
crucial implications for understanding the overall welfare of the pigs. Particularly noteworthy are the 
associations between stress levels, activity intensity, and the quality of gait as depicted through 
postural metrics. Each correlation color-codes the strength and direction of the relationship between 
two variables, thereby offering a high-level view of the interconnectedness within our dataset. By 
scrutinizing this map, researchers can identify key variables of interest that appear to be closely tied 
to the welfare indicators of interest, forming the basis for more focused, hypothesis-driven analyses. 

Please refer to Supplementary File S3Q10 for a comprehensive collection of visual aids including 
graphs, tables, and histograms. Additionally, it includes ARIMA modeling plots which illustrate 
temporal changes across our data, further elucidating the findings discussed in this section of the 
paper. These resources provide a more detailed visual representation of the data analyses, 
underpinning our discussion on the welfare of pigs in terms of stress levels and gait quality. In the 
table as shown in Supplementary file S3Q10 it was observed that all association rules featured a 
confidence and lift value of 1.0, a leverage value of 0.0, and a conviction value of infinity. These values 
implied perfect confidence and lift, no leverage, and infinite conviction. 

A confidence value of 1.0 indicated that the occurrence of the consequent (right-hand side) of 
the rule was certain when the antecedent (left-hand side) was present. Similarly, a lift value of 1.0 
suggested that the occurrence of the antecedent and consequent were independent events. 

The leverage value of 0.0 suggested no deviation from independence, signifying that the 
presence of the antecedent did not impact the occurrence of the consequent. 
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Figure 21. Correlation Heatmap Displaying Interrelationships among Physiological Parameters, 
Activity, Posture, and Stress Levels across Individual Pigs. 

The conviction value of infinity implied a perfect relationship between the antecedent and 
consequent, suggesting that there was no chance of the consequent occurring without the presence 
of the antecedent. These values indicated robust relationships between the antecedents and 
consequents, suggesting that the behaviors encapsulated in the frequent sequential patterns were 
strongly associated with the pigs' stress levels. 

According to the regression evaluation metrics, the sequence of pig stress levels generated 
carried a relatively high Mean Squared Error (MSE) and Mean Absolute Error (MAE), indicating a 
significant disparity between the generated and observed sequences. The negative R-squared (R2) 
score suggested that the generated sequence did not account for a significant portion of the variation 
in the observed sequence. 

These results implied that the Hidden Markov Model (HMM) used to generate the stress levels 
might not have accurately encapsulated the patterns and characteristics of pig stress levels within the 
dataset. The HMM might not have been the most suitable model for predicting or generating 
continuous stress levels in this context. 

Given the MSE, MAE, and R2 score, it was recommended to explore alternative modelling 
approaches or consider refining the existing model to enhance its performance in capturing the pigs' 
stress levels more accurately. 

5. Summary and Conclusions 

This comprehensive study delves into the profound impact of pair housing on the physiological 
and behavioral characteristics of swine, with a particular emphasis on the fluctuations in heart rate 
variability, respiration rate, and activity data. Furthermore, the research explores the potential of 
accelerometer data in detecting lameness and age-related alterations in walking ability. The findings 
gleaned from this study offer critical insights into the adaptability of pigs to diverse social 
environments and the potential applications of these measurements in enhancing pig welfare. 

Upon the commencement of cohabitation, pigs exhibited a marked increase in heart rate, 
indicative of heightened cardiovascular activity due to the novelty and potential stress of the 
situation. Simultaneously, certain rhythmic patterns or data points from heart rate measurements 
disappeared, suggesting a disruption of normal heart rate behavior. 

Respiration rates also experienced an initial surge during the pairing phase, reflecting an 
autonomic response to the new living conditions. However, as pigs gradually acclimatized to their 
shared environment, both heart rate and respiration rate parameters stabilized, returning to baseline 
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levels. This stabilization indicated a reduction in initial stress and a possible adaptation to the altered 
social dynamics. 

The study also examined the response to isolation post-cohabitation, a crucial aspect of the pigs' 
social experience. Pigs exhibited elevated heart rate and respiration rates upon isolation, possibly due 
to the abrupt change in environment and the stress associated with the sudden loss of social 
interaction. However, these parameters often returned to normal levels after an adaptation period, 
indicating pigs' ability to acclimate to solitude. 

In addition to accelerometer data, the study explored the use of heart rate and respiration rate 
measurements in understanding pigs' physiological responses. These measurements provided 
valuable insights into pigs' immediate stress levels and their adaptability to changing social 
conditions. 

Moreover, the study underscored the potential of accelerometer data for detecting lameness in 
pigs. Lameness, characterized by irregular walking patterns and evident discomfort during 
movement, can lead to distinct alterations in a pig's gait. By analyzing accelerometer parameters and 
employing detection methodologies such as Recurrent Neural Network Long Short-Term Memory 
(RNN-LSTM) and multi-layer classifiers, researchers can potentially identify changes indicative of 
lameness. 

The influence of age on walking ability was also investigated, as age-related changes could 
impact pigs' gait and overall mobility. By analyzing accelerometer parameters such as 'Posture', 'Peak 
Accel', 'VerticalMin', 'VerticalPeak', 'LateralMin', 'LateralPeak', 'SagittalMin', and 'SagittalPeak', 
researchers were able to identify correlations between these parameters and age, providing insights 
into age-related changes in walking ability. 

The study emphasized the importance of the social context in which pigs operate, as it 
significantly influenced their behavior, including activity levels and gait patterns. Pair housing 
induced heightened activity levels and variable activity patterns, reflecting increased social 
interaction and potential competitive behavior. In contrast, isolation often led to decreased or stable 
activity levels. 

In summary, this study unveiled the considerable physiological and behavioral plasticity of pigs 
in response to changes in their social environment. The findings underscored the need to understand 
these changes to optimize welfare practices in pig farming. The utilization of accelerometer data, in 
conjunction with heart rate and respiration rate measurements, provided valuable insights into pig 
welfare, potential lameness detection, and age-related changes in walking ability. 

Overall, this research contributes to enhancing pig welfare, optimizing living conditions, and 
refining care practices in the swine industry. Further investigations are necessary to deepen our 
understanding of pigs' physiological and behavioral responses to varying social environments, refine 
the use of accelerometer data for pig monitoring, and promote overall well-being and welfare in pig 
farming. 

The utilization of the Internet of Things (IoT) 3-in-1 sensor in this study underscores the 
transformative potential of technology in livestock farming. This sensor, recording heart rate, 
respiration rate, and accelerometer data, serves as a powerful tool for monitoring and assessing the 
welfare of pigs. It enables the capture of real-time, continuous data, providing a comprehensive 
picture of the pigs' physiological and behavioral states. This data-driven approach allows for the 
detection of subtle changes and patterns that might otherwise go unnoticed, facilitating early 
intervention and improved care. 

The lessons learned from this study, while focused on pigs, have broader implications for 
livestock farming. The methodologies and insights could potentially be extended to other species 
such as sheep, dairy cows, and horses. Each of these animals has unique physiological and behavioral 
characteristics, and the use of sensor technology could provide valuable insights into their health and 
welfare. 

Moreover, the integration of sensor technology with artificial intelligence (AI) opens up new 
possibilities for livestock farming. AI algorithms can analyze the vast amounts of data generated by 
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sensors, identifying patterns and making predictions. This combination of IoT and AI can lead to 
more precise and proactive management practices, improving animal welfare and productivity. 

In conclusion, the use of IoT sensors, coupled with the power of AI, paves the way for a future 
where livestock farming is more data-driven, efficient, and humane. This study represents a 
significant step in that direction, demonstrating the potential of technology to enhance our 
understanding of animal behavior and welfare, and to transform livestock farming practices. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org. S1. Comprehensive Raw Data for Pig Experiment - Includes Timestamp, Animal 
ID, Age, Activity Class, Physiological and Heart Rate, Respiration Rate, Accelerometer Parameters, and Device 
Metrics. S2. The folder includes select frames extracted from the video footage captured over the 8-week 
experimental period. The images provide visual insights into four specific scenarios - pigs paired before feeding, 
pigs paired after feeding, isolated pigs after feeding, and isolated pigs before feeding. S3. The provided zip file 
contains all the necessary supplementary materials for this journal article, including Python codes, tables, plots, 
and graphs. The supplementary files consist of 10 HTML files, each corresponding to one of the ten objectives 
addressed in the study (Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10). These files offer detailed insights and visual 
representations for each of the research questions, enhancing the understanding and reproducibility of the 
study's findings. 
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