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Abstract: A Berry geometrical phase is identified in a strongly metastable system containing dynamically re-
sponsive clathrate hydrate structures within a crystal-fluid material. High energy degeneracy in the associated
chemistry produces local stability and false vacuum conditions that lead to non-extensive and non-additive
contributions in the fundamental thermodynamic relation. The reciprocating action of a piston expander con-
firms a net energy gain despite the crystal-fluid material maintaining almost constant density. The property of
asymptotic freedom is uncovered in the associated condensed matter and quantum mechanical descriptions
providing evidence for scale-invariance that dominates both the macro- and micro-scales of an associated Ginz-
burg-Landau superconducting phase transition. Application of Ginzburg-Landau theory and the scaling laws
reveal a coherence length and a penetration depth for a macro-scale dual superconductor. The coherence length
determines non-extensive volume changes whilst its inverse gives the Higgs mass. The penetration depth de-
termines the extent of QCD vacuum suppression whilst its inverse gives the vector boson mass together with
its indirect manifestation as non-additive hyperbolic curvature. External pressure perturbations of the low-
energy system initiate ‘rolling’ critical responses that see energy and momentum conserved across a synchro-
nized U(2) symmetry group whilst a complex gauge field is also exposed. Simultaneous emergence of the Ginz-
burg-Landau superconducting phase transition is consistent with gauge-invariant coupling of this scalar field
to the Yang-Mills action of QCD. The discovery of an energy gap in the gradient energy term of the system
Lagrangian is associated with a critical correlation length revealed in the transition from a gapped to a gapless
superconducting state. Together with the emergence and absorption of the Higgs-like scalar field, a mechanism
for describing the QCD mass gap arises.

Keywords: Berry geometrical phase; symmetry groups; self-organized criticality; dual
superconductivity; scale- and gauge-invariance; hyperbolic curvature; false vacuum; QCD mass gap

Introduction

The experimental investigation on which the current exposition is based has been previously
reported [1]. This earlier work identifies the emergence of spontaneous diamagnetism and paramag-
netism in the behaviour of clathrate hydrate structures (or water ice cages) as critical phenomena
responsible for work output in a kinetic system. The accompanying analysis centres upon a super-
conducting phase transition where scaling laws reveal the emergence of a critical correlation length
&. The Ginzburg-Landau parameter « (defined in Appendix A) is also uncovered together with top-
ological ordering. It is shown [1] that relativistic length expansion and time contraction on a Lorentz
manifold describe the critical correlation length &. It is also noted that the Ginzburg-Landau theory
of superconductors invokes gauge-invariant coupling of a scalar field @ to the Yang-Mills action in
quantum chromodynamics (QCD). These relativistic and quantum aspects of the findings are exam-
ined here in further detail within the context of the Berry geometrical phase, complex energy band
gaps and the QCD mass gap.

Situations can arise in thermodynamics whereby a physical system is prevented from attaining
its lowest energy and highest entropy state through the existence of an energy barrier. False vacuum
conditions can result from such metastability in the extreme so that on short timescales a positive,
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non-minimum energy density cannot be raised or lowered in response to external interactions. Where
an energy barrier is maintained through dynamic inhomogeneities, a system can be isolated from
external interactions through local stability conditions, as characterized by a non-concave entropy
function [2]. The process of thermodynamic isolation is also described by the characteristic of asymp-
totic freedom in particle physics [3]. Opposition to dynamical change is established through complex
reorganization of individual system components, ie. degenerate hydrogen bonding in dissipative
condensed matter systems [1]; gluon splitting and recombining in the case of colour confinement;
and gluon exchange in quark confinement [3,4]. The experimental results reported in [1] reveal that
water ice cages under negative pressure can give rise to false vacuum behaviour as a result of which
non-extensive and non-additive interactions generate work in a constant energy Hamiltonian oscil-
lator.

The low-energy system reported encompasses both a crystal-fluid material and its embedding
vacuum manifold whereby variable volume V and hyperbolic curvature K of the embedding mani-
fold rather than any fluid mechanical response determine the work performed by the system. The
chemical and physical properties associated with water ice cage structures are also shown to elicit
magnetic and superconducting behaviours that facilitate the Berry phase even though the material
maintains almost constant density.

The crystal-fluid is composed of dissipative, reorganizing, water ice cage structures suspended
within a polar dielectric inhibitor solvent. The formulation results in false vacuum behaviour [5] such
that the material part of the system is effectively isolated from any external thermodynamic interac-
tions. However, despite the presence of strong local stability conditions, it is possible to perturb the
system through an external pressure interaction to induce a ‘rolling” critical response [6]. This, in
turn, imposes a hyperbolic curvature action on the vacuum manifold that combines with a mutually
emergent coupling energy to deliver a net energy gain, ie. an additional source of energy enters the
system.

Hyperbolic curvature originates in the negative potential of the false vacuum established by the
variable effective radius (ie. variable inertia) of the highly degenerate system. Conservation of angu-
lar momentum requires that a reducing effective radius produces an acceleration whilst an increasing
effective radius produces a deceleration. Since the crystal-fluid retains constant total energy, acceler-
ation acts to reduce hyperbolic (or negative) curvature K of the embedding manifold whilst deceler-
ation increases hyperbolic curvature. Quantum interactions leading to non-additivity can be iden-
tified in both instances. The associated changes in swept volume V arising from the condensation of
magnetic charges are non-extensive.

During the ‘rolling’ critical response, the magnetic and superconducting behaviours are quanti-
fied by a distinctive universality class of critical exponents [1]. Formation of a magnetic condensate
induces a phase transition from Type-II superconductivity to a dual of Type-I superconductivity
where the spontaneous magnetic field Hs, as an ‘auxiliary” order parameter, reduces to zero [7]. Fol-
lowing this, ordering is attributed to an emergent complex parameter field, similar to the topological
ordering of spin ices as described by Castelnovo et al. [8].

A definitive theory of quark confinement remains elusive despite experimental and lattice gauge
theory/ computer simulation successes. The QCD large lattice technique is based upon strong cou-
pling conditions so that perturbative techniques are deemed impractical. From a mathematical per-
spective, the confinement problem is known as the mass gap problem. A promising solution origi-
nally proposed by t'Hooft [9] and Mandelstam [10] claims that the ground-state of QCD is a dual
superconductor in which quarks are confined by chromoelectric vortices. These vortices are analo-
gous to the Abrikosov vortices seen in Type-II superconductors. In the current exposition QCD de-
scriptions also become relevant to the macro-scale dual superconducting behaviour uncovered.

In a dual superconductor, the roles of the electric and magnetic fields are exchanged so that in
this case the electric field is excluded. The significance of dual superconductivity in furthering an
understanding of the strong interaction is examined in comprehensive reviews by Ripka [11] and
Kondo et al. [12]. The superconducting phase transition established is consistent with Ginzburg-Lan-
dau theory suggesting gauge-invariant coupling of a scalar field @ to the Yang-Mills action of QCD
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[12]. The emergent gauge field is associated with an apparent broken symmetry with gradient energy
expressed on the hyperbolic surface of the system where the electric field is excluded. However,
gauge symmetry is revealed not to be broken but rather decomposed and synchronized to become
more capacious in extent.

A model for the emergent gauge symmetry is presented here to account for the net energy gain
initiated by the ‘rolling’ critical behaviour (and subsequent geometrical action of the vacuum mani-
fold) in terms of Noether-conserved quantities, ie. energy and angular momentum for the case being
considered. Since a topological phase factor, or Berry phase, reveals gauge structure in quantum me-
chanics [13], the existence of a parity-time (PT) symmetry may account for quantum mechanical in-
teractions manifesting as real energy [14] in the gradient energy term of the Lagrangian describing
the dual superconductor phase [1].

Emergence of the gauge field corresponds to a critical correlation length £ that represents long-
range ordering of magnetic spins, ie. a magnetic condensate. This divergence is responsible for an
energy gap in the gradient energy term analogous to complex energy band gaps reported in non-
Hermitian PT symmetric systems [15]. Also, the existence of a mass gap in QCD is necessary to ex-
plain why the strong interaction is strong but only short-ranged. Confirmation of a mass gap would
account for the fact that quantum particles have positive masses even though classical waves travel
at the speed of light [16]. Evidence of a Berry phase and the Ginzburg-Landau parameter «x [1] thus
enables insights into the Yang-Mills action and the mass gap phenomenon in QCD.

Experimental evidence and background material

The temperature and pressure of the crystal-fluid are measured at five-second intervals with
sensors that have direct contact with the crystal-fluid and recorded by a PLC/ PC monitoring system.
All values for energy and thermodynamic potentials are derived from the pressure and temperature
measurements by the NIST REFPROP program/database [17]. The calculations are in accordance with
GERG-2008 modified by the Kunz and Wagner Model 0 (KWO0) [18]. The piston expander is com-
pletely immersed in a heat bath with a temperature of 270K, approx. The schematic arrangement
provided in Figure 1 is reproduced from [1].
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Figure 1. Schematic arrangement of the experimental apparatus in which a negative pressure material
is formulated and manipulated. Dissipative structuring of the crystal-fluid material is controlled with
a view to establishing a power cycle in the piston expander through non-equilibrium, non-extensive
volume displacements.

A negative pressure fluid is established by the Berthelot method [19]. Approx. 3.5 grams of crys-
tal-fluid are transferred into a previously evacuated stainless-steel sample vessel (50ml). A low-en-
ergy, negative pressure regime results in the formation of water ice cages hosting methane molecules.
The sample vessel is completely immersed in a relatively large heat bath (70 litres) where the temper-
ature of the bath is controlled with an electric element and a refrigeration dip cooler. Once the desired
temperature is obtained, the sample is released into the fluid-side of the 0.5 litre retracted piston
expander, also completely immersed in the heat bath, which displaces the piston vertically upwards
to the fully-extended position. The gas-side of the piston is open to atmospheric pressure during this
extension. This action reduces the energy of the system further and is intended to transfer the guest
methane molecules from the host water ice cages to similar structures within the inhibitor solvent.
Negative and positive piston displacements are then induced through pressurized nitrogen
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perturbations to produce negative and positive work outputs where displacement ratios are 1:100
and 100:1, approx.

From completion of the Berthelot mixing process through subsequent positive and negative dis-
placements of the piston expander, REFPROP determines that the crystal-fluid material remains in a
subcooled liquid phase, as recorded in Appendix A of [1]. It is both astonishing and remarkable that
3.5 grams of material does not transition to a vapour or gas, nor produce any methane outgassing,
when contained within the initial sample volume of 50 ml. More remarkable still is that an additional
work-generating positive piston displacement of 0.5 litre also has no effect upon the integrity of the
subcooled liquid phase. Notwithstanding, a conventional interpretation in terms of fluid mechanics
would locate all the crystal-fluid material in the lowest section of stainless-steel tubing connecting
the sample vessel to the piston expander (excluding any capillary action) due to ordinary gravity and
the generation of work would be inconceivable. This perplexing and counterintuitive outcome is ex-
amined in more detail below together with supporting mathematical expressions.

In addition to the temperature and temperature measurements, only the piston position and
mass of the material components are required to calculate all the thermodynamic properties, critical
exponents and scaling relations shown in Appendix A of [1]. Whilst validity of the REFPROP calcu-
lations may be reasonably challenged, it has been demonstrated successfully that the program/ data-
base is very sensitive to outgassing and re-absorption events associated with phase transitions in
similar materials when performing quasi-thermodynamic cycles [5]. In such circumstances methane
outgassing accompanies the formation of low-energy, guest-free water ice cages and is consistent
with the fluctuation-dissipation theorem. With these phase-change processes, long-range interactions
are also established whereby non-additivity in the fundamental thermodynamic relation is revealed.

Figure 2 is reproduced (with some additional annotation) from the recent experimental results
reported in [1] where Points 1-4 identify particular stages of the work cycle in a low-energy system;
Stage 1-2 corresponds to negative displacement of the 0.5 litre piston expander and Stage 3-4 corre-
sponds to positive displacement.
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Figure 2. Excess internal energy potential resulting from excess thermodynamic potentials during
external pressure perturbations. All values for energy, work and thermodynamic potentials are de-
rived by the NIST REFPROP program/database based only upon temperature, pressure and mass
measurements together with the piston position. The calculations are in accordance with GERG-2008
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modified by the Kunz and Wagner Model 0 (KWO0). The piston expander is completely immersed in
a heat bath with a temperature of 270K, approx.

Changes in negative potential energy and internal energy vary in a 1:1 relationship after dis-
counting the Pv work term associated with the walls of the vessel. Thus, a linear oscillator or constant
energy Hamiltonian function is determined. The associated affine non-concave entropy function rep-
resents local stability conditions achieved through dynamically responsive inhomogeneities, ie. the
complex reorganization of dissipative structures composed of water ice cages, such that energy can-
not be minimized and entropy cannot be maximized [2]. Specific volume and internal energy are
shown to be highly constrained intensive parameters.

Loss of homogeneity is characteristic of phase transitions that give rise to critical phenomena.
The discovery of a distinctive universality class of critical exponents that obey the scaling laws of
Fisher, Rushbrooke, Widom and Josephson [20] reveals spontaneous magnetic and superconducting
properties for the crystal-fluid material investigated. A phase transition from Type-II superconduc-
tivity to dual Type-I superconductivity is identified through the Ginzburg-Landau parameter «
where the spontaneous magnetic field Hs transitions from negative to positive [1] and a complex
order parameter field ¥(r) emerges. The associated spontaneous magnetism Ms can be either positive
or negative such that the phase transition increases hyperbolic curvature (positive piston displace-
ment) or reduces hyperbolic curvature (negative piston displacement), respectively.

Derivation of the Gaussian hyperbolic curvature K also gives the Gaussian radius R, as shown
below. This enables the hyperbolic surface area of a hollow, walled sphere having radius R to be
determined (A = 4msinh?(R/2)). The hyperbolic surface area maps almost exactly to the negative in-
verse of the gradient energy where topological defects are introduced. The external pressure pertur-
bations may be interrupted at any point such that both the swept volume V and the hyperbolic cur-
vature K become fixed and stable. This suggests that the non-equilibrium gradient energy is captured
and confined within the hydrogen bonding interactions of the water ice cages and inhibitor solvent
as the system relaxes into a non-critical, stable state.

Inequalities in the associated Maxwell relations together with calculations of the hyperbolic ge-
ometry reveal non-additivity and non-extensivity in the fundamental thermodynamic relation. Ad-
ditivity can be restored through hyperbolic curvature (ie. surface area A) whilst extensivity can be
restored through gradient energy/ coupling energy (ie. volume V) [21]. The coupling energy is related
to the critical correlation length exponent v in 3-dimensions combined with values of a scalar field @
as derived from the gradient energy term -2(V®)? of the Lagrangian such that:

coupling energy o« (e®)3v 1

The critical correlation length & associated with the universality class is linked to volume V
through Lorentz boosts, ie. relativistic velocity and the reference frames associated with acceleration
and deceleration [1]. The critical correlation length ¢ is revealed to be a Lorentz length expansion; a
relativistic phenomenon coinciding with the formation of a magnetic condensate [12]. The relativistic
time contraction conjugate to the critical correlation length is also revealed in Figure 3 where the y-
axis representing scalar field values has units of s, ie. the reciprocal of time.
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Figure 3. Effect of the critical correlation length £ on the magnitude of the scalar field ®. A gradient
energy term -¥2(V®)? as derived from the non-equilibrium Lagrangian function, is equivalent in value
to the coupling energy. From this, scalar field ® values associated with the critical response are deter-
mined. Values of negative gradient energy and positive coupling energy are both equivalent in value
to PV work done by the piston expander which can be either negative or positive.

Again, the correlation length & is associated with a superconducting phase transition and related
to a Lorentz boost in 3-dimesional space [1]. Its value reveals the presence of self-organized criticality
responsible for a ‘rolling’ critical response in accordance with:

§~|r— 1|7 @

where T is the system temperature and T is the critical temperature. Both temperatures are dynamic
under external pressure perturbation to reveal sustained anisotropy in the water ice cage structures
in either direction. £ corresponds to a gap in gradient energy and increasing values of the gauge field
O are associated with relativistic length expansion and time contraction [1].

The gradient energy term -%4(V®)? equates with PV work (ie. it is described by the least action
principle of the Lagrangian) whilst the hyperbolic surface area is a function of the Gaussian radius of
hyperbolic curvature R;. Both properties are calculated from experimental results [1]. In order for the
gradient energy to be fully expressed on the surface of the system, it is necessary to introduce topo-
logical defects at the superconducting phase transition where the spontaneous magnetic field Hs
moves from negative to positive through zero.

Application of the scaling laws to the experimental results [1] reveals that pressure perturbation
induces low susceptibility x leading to spontaneous magnetism Ms with associated spontaneous mag-
netic field Hs. For positive Hs, ordering is attributed to the emergence of the complex parameter field
Y(r) and the topology associated with magnetic frustration and charge fractionalization. Condensa-
tion of fractionalized magnetic charges into a monopole condensate [11,12] would act to exclude mag-
netic current from the embedding vacuum manifold resulting in the spontaneous magnetism that
also excludes the electric field E to establish dual superconducting behaviour.
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Analysis and discussion

Gauge symmetry

The exponential function for the coupling energy 3%, as derived from experiment (1), represents
a capturing of the magnetic condensate wavefunction through the energy degeneracy of the water
ice cage structures such that it becomes real and observable. It also expresses the scale-invariant and
gauge-invariant properties of the system. Conservation of angular momentum requires the existence
of a sink/ source for the associated changes in inertia (variable effective radius) together with a cor-
responding symmetry relation.

Scale-invariance is attributed to the hyperbolic curvature of Lorentz boosts that impose a con-
formal symmetry on the embedding vacuum manifold [22]. Conformal symmetry is able to describe
the tetrahedral, hydrogen bonded, 3-dimensional spatial geometry of the crystal-fluid under non-
extensive volume changes whilst its variable hyperbolic surface area maps to the gradient energy
term of the Lagrangian (see below). Since a universality class of topologically invariant critical expo-
nents has been determined for the continuous (second order) phase transition, the system can be
modelled through conformal field theory in 4-spacetime dimensions, ie. it is describable by a renor-
malizable quantum field theory in which the non-perturbative conformal bootstrap is irrelevant [23].

Yang-Mills theory is a strongly coupled quantum field theory [16], ie. a gauge theory in which
the low-energy dynamics are far removed from any classical description [24]. It is represented
through the mathematical structure of Lie groups that provide for intricate topologies. The compact,
simple Lie group SU(3) describes the strong interaction in QCD, ie. the binding of quarks and gluons
through confinement mechanisms. The mechanical action of the piston expander can be described by
the emergence of a gauge field @ and the critical length exponent v (as Equation (4) below). In QCD
such gauge fields are collectively known as gluon fields. The field strength, or curvature Fy, has the
general form:

Ey = 0,4, — 0,4, —i[A,A,] (3)

where Ay provides for Lorentz invariance and Ay is the gauge connection.

The gauge connection depends upon a complex scaling symmetry that is exact but not directly
observable [25]. In the quantum state ¥ > ¢, which could be interpreted as a potential sink/ source
for the "hidden” inertia of the false vacuum system (although later this is revealed not to be the case).
It also represents the complex order parameter field of the Ginzburg-Landau superconducting phase
transition included in Equation (7) below.

Experimental results lead to a relativistic manifestation of length expansion and time contraction
arising from false vacuum behaviour in a thermodynamically constrained condensed matter system.
The local stability conditions maintained through dynamically responsive inhomogeneities in this
soft matter are deemed equivalent to the property of asymptotic freedom, or antiscreening, which
accounts for the mechanism of colour confinement in particle physics, ie. scale-invariance is effective
across the micro- and macro-scales. In QCD it is the emergence of clouds of virtual gluons that estab-
lish the antiscreening phenomenon [3]. In both mechanisms, increasing kinetic energy is mirrored by
an increasing negative energy potential such that total energy remains constant.

Whilst the crystal-fluid material displays high stability in total energy and density, the embed-
ding manifold always remains on the threshold of instability. Small positive or negative pressure
perturbations produce divergent critical behaviour manifesting as large variations in swept volume
V. However, this is not the specific volume of the material system (density remaining almost constant)
but rather the non-extensive volume change associated with the condensation of magnetic charges
and simultaneous emergence of a gradient energy term.

The ‘rolling’ critical response initiated by anisotropy in water ice cage structures facilitates net
energy gain for the duration of external pressure perturbations, either positive or negative, in a dis-
play of self-organized criticality [26]. The angular momentum of the material is transferred to or from
the embedding vacuum manifold through self-organizing behaviour and high energy degeneracy of
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the water ice cage structures. However, this brief statement does not provide a full description and a
more detailed hypothesis follows.

Work derived from the piston expander can be expressed in terms of an electromagnetic pseudo-
scalar gauge-invariantly coupled to the gauge field @ and the critical length exponent v. The relation-
ship is in agreement with the cosmological inflation model proposed by Ratra [27]:

1
f PdV = - F*E,,e3? )

where the covariant vector Fu» and contravariant gradient potential F** combine to produce Lorentz
invariance for the pseudo-scalar field when rotated on a hyperbolic manifold, ie. the electromagnetic
field pseudo-scalar enables a non-additive energy contribution to enter the non-equilibrium system
in the form of hyperbolic curvature.

In the quasi-micro-canonical ensemble [1], the electromagnetic field pseudo-scalar is involved
in the coupling mechanism but contributes no work in itself. It expresses the Berry curvature of the
vacuum manifold whilst hosting the magnetic exchange pathways that facilitate energy transfers ei-
ther to or from the vacuum manifold. The inner-product of the E and B fields remains the same
viewed in all relativistic frames [28] with the pseudo-scalar field remaining Lorentz invariant such
that:

2
% FWE, = B? — E_Z = constant )
where c is the speed of light.

Ginzburg-Landau theory states that the free energy of a superconductor near a phase transition
can be expressed in terms of a complex order parameter field [29]:

Y(r) = |¥(r)|e*™ (6)
Then a complex rendering of the coupling energy term e3** maps to a complex wavefunction of
the Berry phase:
. 3 . 3
(e'?) N ¥ ()](e’*™) v ?)

where the quantity |¥(r)|2reflects the density of superconducting charge carriers; electrons for Type-
II and the magnetic counterpart arising from gauge monopole charges for dual Type-1[11]. Appendix
A provides a summary of the Ginzburg-Landau theory of superconductors.

In the dual superconductor model of confinement [9,10], the Yang-Mills vacuum is based on the
condensate of a magnetically charged Higgs field. In this situation, the critical correlation length &
also represents the coherence length &’ of the magnetic monopole condensate [12] which diverges to
encompass total hyperbolic volume V of the system at the superconducting phase transition [29]. In
this case the monopole condensate &’ becomes exceptionally large under relativistic Lorentz rotation
and expands effectively even further due to the ‘rolling’ critical response [1]. £ also gives the distance
over which the dual superconductor can be represented by a wavefunction.

Since the coherence length £’ and maximum value for the Ginzburg-Landau parameter « for the
Type-I dual superconductor are known [1], the London penetration depth A can be derived (see Ap-
pendix A). £’ and A are equal to the inverse Higgs mass mu and inverse vector boson mass mv, re-
spectively [11]. In normal metallic superconductors A is the distance within which an externally ap-
plied magnetic field disappears inside the superconductor. However, for the dual superconductor A
represents a distance beyond the developing QCD flux tubes within which the magnetic current and
electric field are expelled as a result of the dual Meissner effect.

So, mu determines the extent of QCD vacuum, which manifests in the embedding vacuum man-
ifold volume V and mv determines the Gaussian hyperbolic curvature K of the embedding vacuum
manifold.

Appendix A includes supporting quantitative analysis.

The complex form of the coupling energy term resembles a quantum mechanical wavefunction
in which the energy spectrum is made entirely real and observable through dissipative structuring
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of water ice cages. Wo(r) corresponds to the emergence of the gauge field @ at the Type-II to dual
Type-I superconducting phase transition. Dissipation of either the scalar field or the critical correla-
tion length & would represent a collapse in the wavefunction.

Application of de Moivre’s formula and isomorphic mapping of the complex field to rotational
matrix form gives:

cos 3vd i sin3v®
= 8
i sin3v® cos3v® v ®)

and similarly expressing electromagnetic duality as rotations in the 2-dimensional real plane:

(e”’)Bv = cos 3v® + isin3vd - [_

1 v [.co.s 3v@  —i sin3v®] _ yu )
2 W li sin3v®  cos3vd

Then the conjugate transpose of (8) is (9) and VVH =1 suggesting that PV work of the piston
expander is contingent upon the decomposition of a Hermitian unitary matrix A into two 2 x 2 non-
Hermitian unitary matrices (ie. two complex matrices V and VH containing both real and imaginary
components such that V¥ V) [30]. The gauge field and the electromagnetic pseudo-scalar are thereby
coupled through a marginal interaction.

Although this interpretation appears at odds with the expression for PV work stated in (4), in
fact any 2 x 2 complex symmetric matrix A can be eigendecomposed into a diagonal matrix D sand-
wiched between two complex unitary matrices, ie. VDVH in this case. Minkowski spacetime vectors
can be represented by 2 x 2 orthogonally diagonalizable matrices and incorporated into the extended
physical VDVH decomposition to reveal the coupling energy source:

@\3v
D = [(e ) 0 ] (10)
0 ( ed’) 3v

These Hermitian matrices exhibit basic 3-dimensional rotation as well as 4-dimensional Lorentz
transformation properties consistent with the relativistic length expansion and time contraction as-
sociated with the non-extensive element of PV work, as revealed through the experimental results
[1]. Thus, the 2 x 2 unitary matrix A as a member of the U(2) symmetry group is decomposed into
factors identifiable as both Hermitian and non-Hermitian.

When represented in terms of gauge symmetry groups [30], the U(1) group of electromagnetism
(via its mapping to SO(2) in the 2-dimensional real plane) and the SU(2) group of the complex order
parameter W(r), are in fact subgroups of the U(2) group such that:

U(1) ®SU(2)/Z, » U(2) (11

which describes a mapping to a Yang-Mills electroweak symmetry group [31] where Z2 represents
the topology associated with the condensation of gauge monopoles [32]. Formation of the U(2) group
is accompanied by critical behaviour and emergence of the gauge field @ as predicted by the Yang-
Mills theory.

The dual superconductor model has several interpretations that require condensation of gauge
monopoles, just as normal superconductivity results from the condensation of electric charges (or
Cooper pairs — see Appendix A) [11,12]. Theoretical frameworks for the condensation of gauge mon-
opoles have been structured in terms of Abelian gauge-invariance (the SU(2) gauge symmetry group)
or non-Abelian gauge-invariance (the SU(3) gauge symmetry group). Recent efforts [12] have sought
to extract the Abelian component responsible for gauge-independent quark confinement from non-
Abelian gauge-invariance required for gauge monopole condensation without losing the essential
characteristic of asymptotic freedom. From the experimental findings [1] such a solution emerges out
of an electroweak interaction that preserves asymptotic freedom, as described below.

In the vacuum of a dual superconductor, the dual Meissner effect compresses the chromoelectric
flux between a quark and antiquark into a thin flux tube to form the hadronic string [11,33]. As the
distance between quark and antiquark increases, the flux tube becomes longer whilst maintaining a
minimal thickness. This geometry ensures that the energy increases linearly with length to create a
linear confining potential between the quark and antiquark that bears a similarity to the linear oscil-
lating Hamiltonian of the system. The flux tube determines the extent of QCD vacuum suppression,
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ie. positions where the colour-electric field is maximally expelled to leave a residual dual supercon-
ductivity [34].

Yang-Mills theory requires the existence of both chromomagnetic monopole condensation
(given by a coherence length) and the dual Meissner effect (given by a penetration depth) [11,12]. The
force carrying gauge bosons of QCD are gluons which perform a similar role to photons in electro-
magnetism. Since the gluon field represents a local expulsion of the QCD vacuum, the absorption of
physical gluon emissions into the QCD vacuum would tend to reduce local ‘space density” and effec-
tive magnetic permeability wo. The net effect is to reduce the hyperbolic curvature of the embedding
manifold, ie. a quantum mechanical process manifests as ‘strong gravity’ [35].

Berry phase and parity-time (PT) symmetry

The foundations of Berry phase physics lie in the adiabatic theorem of quantum mechanics [36]
which provides a formal description for a system coupled to a slowly changing environment. If the
system Hamiltonian H(t) varies adiabatically and | ¥(#)) is an associated eigenstate then, following
cyclic evolution of the environmental parameters where H(T) = H(0), the state returns to itself but
gains an additional phase factor [36,37]:

| v (1)) = e« | ¥(0)) (12)

where a represents the angular momentum of the wavefunction. It originates from the exclusion of
momentum resulting from chromomagnetic monopole condensation which is effectively stored in
the electromagnetic field pseudo-scalar [24].

The adiabatic theorem is based upon a single, non-degenerate eigenstate to which the system
‘clings’ as the environment is slowly changed [38]. However, for the pressure-perturbed system being
examined, asymptotic freedom constrains innumerable, degenerate and excited eigenstates to a sin-
gular value of total energy in the oscillating Hamiltonian function. External pressure perturbations
applied to the crystal-fluid material see changes in kinetic/ internal energy mirrored by changes in
negative energy potential such that total energy remains constant. When perturbations cease, the
negative energy potential dissipates but internal energy becomes fixed close to the final resting value.
So, in this case, a positive or negative perturbation of any duration is responsible for a single linear
oscillation, or cycle, that is imposed upon a linear, sliding-scale of discrete values. Integration of the
scalar potential V& over a Hamiltonian cycle reveals the gradient energy term -%2(V®)? that becomes
observable in the PV work extracted from the piston expander (see Equation (22) below).

The transient negative energy potential responsible for the phase factor ¥(T) exists only for the
duration of the pressure perturbation. Whilst the Hamiltonian remains constant under perturbation
(as Figure 2), it resolves to a different, stable value once the perturbation ceases. The final value of
internal energy is then ‘propped” and stabilized through dissipative structuring of water ice cages,
subject to limited dielectric relaxation, as quantified by Stage 2-3 and Stage 4-1 (Figure 2).

For acceleration (Stage 1-2) the effective radius decreases, and for deceleration (Stage 3-4) the
effective radius decreases. However, the resulting “hidden’ inertia is deemed not to be responsible
for the Berry curvature term within the geometrical phase (7) since the externally-induced momen-
tum manifests entirely in non-additivity of the hyperbolic curvature. Instead, the Berry curvature is
linked to the condensation of magnetic charges whereby the resulting exclusion of charge momentum
manifests in the energy potential of the electromagnetic field pseudo-scalar (5). The Berry curvature
is subsequently captured to be made real and observable in the variable hyperbolic volume of the
embedding vacuum manifold. Again, this hyperbolic volume is stabilized by the dissipative struc-
turing of water ice cages within the crystal-fluid material so that the complex Berry phase is trans-
formed into real work done.

For a classical thermodynamic system, changes in inertia %2mr? represent changes in kinetic/ in-
ternal energy. However, since both internal energy and specific volume are highly constrained pa-
rameters within a false vacuum system, the energy of acceleration/ deceleration is prevented from
manifesting in the crystal-fluid material. Thus, Pv work is limited to interactions with the walls of the
vessel. For the synchronized U(2) symmetry group identified below, angular momentum is instead
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conserved in the acceleration/ deceleration of quarks that results in the emission/ absorption of glu-
ons, ie. changes in negative energy potential. Gluons emitted by quarks are absorbed by the QCD
vacuum manifold whilst the gluons absorbed by quarks emerge from the QCD manifold, thereby
tending to effect local ‘space density” and effective permeability pio.

Pv is insignificant in comparison to PV such that it represents the negative energy potential of
the crystal-fluid material only. Therefore, for a constant Hamiltonian oscillator of constant mass 1,
Y12 « 1/Pv, as described in Appendix B of [1]. The average 1-dimensional radius rx of the stable, non-
critical system is then found:

2

= (13)
Pv

e X

The Gaussian curvature K for the 2-dimensional, hyperbolic surface of the non-critical system
(ie. with no topological defects) for the principal curvature relationship of 7x=-r,, can then be deter-

mined:
1
K= — (14)
Ty
or
K (Pv> (15)
m — —
2
Then, the average Gaussian radius of hyperbolic curvature (1/K or Ry) is given by:
R ( - ) (16)
9 \Pv

Principal curvature K has units of m?s? that map directly to the vector boson mass mv as the
inverse of the penetration depth A (as described in Appendix A). Through this mechanism, the neg-
ative energy potential of gluons is conserved through indirect hyperbolic curvature quantifiable by
the non-equilibrium values of pressure P and specific volume v. Thereby, a quantum mechanical
action can be tuned thermodynamically under false vacuum conditions.

Decomposition of the complex gauge connection (e®)? in equations (8) and (9) suggests that
complex Berry curvature is necessary for emergence of real coupling energy (1). It also determines
the phase of electromagnetic duality, which in the extreme leads to dual superconducting behaviour,
ie. condensation of magnetic charges resulting in the exclusion of magnetic current and the electric
field’. The cyclic evolution of the gauge connection results from the effective adiabatic property of
the constrained false vacuum system (as revealed in the constant Hamiltonian oscillator of Figure 2)
to establish a novel form of the Berry phase [36], one responsible for topological ordering in the dual
Type-I superconductor [8]. As with the conventional ground-state Berry phase, this ‘excited-states’
variant exposes the gauge structure in quantum mechanics [13,39].

In addition to describing the emergence of a gauge field @, the gradient energy term -%2(V®)? of
the Lagrangian also maps to the complex order parameter field ¥(r) in accordance with Ginzburg-
Landau theory. The PV work generated in the piston expander suggests that the associated quantum
mechanical wavefunction is made real and observable, a phenomenon recently uncovered by Gu et
al. [13]. More precisely, the VDVH decomposition reveals that the wavefunction becomes entirely real
as the coupling energy is exposed through the diagonal matrix D in the VDVH decomposition.

Since the system can be described through a combination of Hermitian and non-Hermitian ma-
trices, it resembles a PT symmetric system [14]. Such systems are characterized as not being isolated
from the environment (ie. non-adiabatic) but subject to highly constrained interactions. This descrip-
tion is consistent with the false vacuum behaviour of the crystal-fluid material where both specific
volume and internal energy are highly constrained. Energy and entropy gains and losses to the envi-
ronment (including the embedding vacuum manifold in this case) are exactly balanced, ie. a
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renormalized, scale-invariant interaction between condensed matter and quantum wavefunction be-
comes evident in the constant energy Hamiltonian.

PT symmetry requires both space reflection and time reversal symmetries. The upside-down
potential of the quartic term as identified by Bender [14] is consistent with the marginal interaction
and negative gradient energy term derived from experiment [1]. However, the results presented here
reveal the symmetry of Lorentz boosts, ie. symmetries in the expansion and contraction of both space
and time, which may represent a more generalized form of PT symmetry.

1In this case hyperbolic curvature of the vacuum manifold establishes dual superconductivity rather than
the hydrogen bonding induced curvature of the crystal-fluid lattice initiating the superconducting phase tran-
sition, as suggested in [1], ie. the causality is reversed.

Symmetry synchronization and conserved quantities

Quark acceleration produces gluon emissions since a lower binding potential is necessary to
maintain the momentum and energy of any given quark colour configuration [40]. This results from
a gluon recombination process whereby a quark and antiquark pair are annihilated. The emergence
and absorption of physical gluons represents an exchange between the non-Abelian gauge symmetry
of QCD and the Abelian gauge symmetry of the vacuum manifold, ie. an electroweak interaction.

The following non-Abelian Faddeev-Niemi decomposition is considered [41]:

SUN) ® U(1)
—_
Ly
This decomposition is a restricted one since splitting and recombining gluons in SU(3) represents
a limited interaction with a U(2) spacetime manifold rather than full symmetry breaking to SU(2).

The requirement for a Higgs-type scalar field is satisfied by the emergent gauge field @ [12]. So:
SU(2 ul SU(2 u@l
SU(3) - ( )z® @ UQ2) ~ ( )z® @ SU(3) (18)
2 2

Asymptotic freedom is thereby maintained through the dominant SU(3) group. Again, U(2) ap-

SU(N +1) ~ U(N) (17)

pears as an electroweak symmetry group [31] with Z2 representing a topology consistent with the
condensation of gauge monopoles [32].

A U(2) gauge symmetry that provides for the condensation of gauge monopoles has so far been
identified in both the condensed matter system and the underlying QCD particle physics. However,
it is also possible to determine a U(2) gauge symmetry for the vacuum manifold of local spacetime
through which hyperbolic curvature and scalar field potential are effected. That is, where the splitting
and recombining of force-carrying gluons are associated with fictitious forces in non-inertial refer-
ence frames.

The Lorentz group SO(4) provides for the conservation of energy and angular momentum in 4-
dimensions (R*) through two continuous symmetries; rotations in 3-dimensional Euclidean space and
Lorentz boosts which influence both space and time [42]. The 4 x 4 orthogonal matrix representation
of the metric tensor can also be cast in terms of a 2 x 2 unitary matrix operating on a complex 2-
component spinor. The complete unitary 2 x 2 transformation matrix for spinor rotations and boosts
can be expressed as:

1. 1
U — ezla.e—fa.(p (19)
or
1. 1
U — ele’.e'l' EO'(p (20)

where #is the Lorentz rotation angle, ¢ is the Pauli spin matrix, and ¢ is the angle associated with the
Lorentz boost (or rapidity) [43]. Equation (19) represents a ‘right-handed’ spinor ¢r and (20) represents
a‘left-handed’ spinor ¢, ie. the Weyl spinors. Later insights by Diracled to the concept of the bispinor
which, unlike (19) and (20), preserves parity of the wavefunction under the sign reversal operation
W(x,t) — WY(-x,t) thereby maintaining a positive gauge field and positive energy (whilst also predicting
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the existence of antimatter). However, retaining the 2 x 2 unitary matrix whilst acknowledging parity
preservation requirements produces the following spacetime group representation [44]:

S0(4) - SU2) ®SU(2) (21)

The symmetry group decompositions in (11), (18) and (21) are then amalgamated to describe a
consolidated ‘symmetry synchronization’ that establishes common scale- and gauge-invariance in

U(2), as shown schematically in Figure 4:
u2)
gluon emission/ ab-
sorption

U(2) U(2)

dual superconduc- hyperbolic

tivity spacetime
7, e o L

SP

SUM) ..

SUQ)

Figure 4. Decomposition of symmetry groups to establish common U(2) scale- and gauge-invariance.

This model of invariance provides a mechanism through which the pressure-induced ‘rolling’ critical
response results in PV work that is either positive or negative. The complex reorganization of water
ice cages produces variable inertia which, through the conservation of angular momentum, is respon-
sible for either an acceleration or deceleration of quarks. In the case of acceleration, this leads to the
emission of physical gluons that are absorbed into the QCD vacuum manifold. A corresponding ten-
dency to reduce local ‘space density’ and effective magnetic permeability po manifests as reduced
hyperbolic curvature. Conservation of magnetic charge imposes a superconducting phase transition
on the crystal-fluid material which reduces swept volume V.

When a symmetry is broken, a corresponding order parameter that diminishes to zero can often
be identified. However, in this case the complex order parameter ¥(r) emerges where symmetry is
synchronized.

Both energy and angular momentum are conserved within the common U(2) group to reveal the
time and space symmetries of a Lorentz boost in agreement with Noether’s theorem (see below).
Since there is a gluon field for each colour charge, it follows that each gluon field can be composed
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of a time-like component and three space-like components. These components relate to the electric
potential and the magnetic potential, respectively, and will interact with the vacuum manifold to
determine the values of effective permittivity €0 and effective permeability po.

Variations in effective uo require that a spontaneous magnetic flux Ms, with associated sponta-
neous magnetic field Hs, emerges to conserve magnetic charge. Fractionalized magnetic charges aris-
ing from the geometrically frustrated crystal-fluid material can be interpreted as condensing into a
gauge monopole topology that excludes magnetic current to provide magnetic exchange pathways.
The correlation length & of the magnetic monopole condensate produces divergent critical behaviour
that is shown to have a distinctive universality class of critical exponents. The gauge monopole top-
ological defects act as both convergent sinks (under acceleration) and divergent sources (under de-
celeration) of the magnetic flux Ms [8]. The nature of these defects is speculated in Appendix A.

Similar principles apply to variations in vacuum energy determined by the local ‘space density’
(which determines the embedding manifold curvature). Conservation of energy requires that nega-
tive PV work is performed under false vacuum acceleration (energy is transferred to the vacuum
manifold) whilst positive PV work is performed under deceleration (energy is transferred from the
vacuum manifold). Work is related to the gauge/ scalar field @ as follows [1]:

1
j PdV = — > (V)2 (22)

The right-side of Equation (22) represents the gradient energy term of the Lagrangian function
resulting from the scalar potential VO developed across the gauge monopole topology to give the
integral of the scalar potential V®. The Lagrangian action of the left-side, ie. mechanical work, is also
related to the critical response function revealed in the coupling relationship (1) to confirm renormal-
ization in the synchronized U(2) group complex parameter field W(r). That is, energy equivalence
between the long-range dissipative structuring of water ice cages and the short-range confinement
mechanisms of sub-atomic particles, as illustrated in Figure 4. This outcome aligns with Anderson’s
speculative prediction [45]:

‘Physics in the 20" century solved the problems of constructing hierarchical levels which obeyed

clear-cut generalizations within themselves [...]. In the 21st century one revolution which can take

place is the construction of generalizations which jump and jumble the hierarchies, or generalizations
which allow scale-free or scale transcending phenomena. The paradigm for the first is broken sym-
metry, for the second self-organized criticality.’

With U(2) scale- and gauge-invariance spanning the asymptotically-free behaviour of both the
macro-scale dual superconducting system and the quark-gluon system via interactions with the em-
bedding vacuum manifold, a physical correspondence between non-equilibrium thermodynamics
and quantum mechanics is established. Since the superconducting phase transition is represented by
Ginzburg-Landau theory (ie. gauge-invariant coupling of a scalar field to the Yang-Mills action is
predicted) it seems reasonable to link the gradient energy gap of Figure 3 to the mass gap problem
in QCD.

Gapped and gapless topologies

The results in Figure 3 show emergence of the gauge field @ as a gap between Type-II supercon-
ductivity on the left and dual Type-I superconductivity on the right. This represents a transition be-
tween the gapped state of the magnetically ordered Type-II superconductor and gapless state of the
topologically ordered dual Type-I superconductor. At this point, the gauge monopole charges con-
dense and the electric field is excluded to be confined on the surface of the system, ie. prior to the
emergence of topological defects that penetrate the magnetic condensate. That is, a gapless surface is
established so that the Berry phase manifests as a non-trivial topological insulator [36].

The gapless surface may be protected from external perturbations tending to re-open the gap
through non-Abelian topology, as represented by the Z> Chern number in the symmetry group de-
compositions of (11) and (18). In a review of topological superconductors [46], Sato and Ando explore
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the connection between 72 and time reversal symmetry that is consistent with the symmetry of Lo-
rentz boosts described above. The Z> Chern number can be interpreted as a U(2) group that fibres
over a circle as a 3-sphere bundle, ie. a Hopf fibration results [47].

Typically, a topological insulator is characterized by a non-robust, non-degenerate ground-state
in which energy bands coincide and exceptional, or ‘diabolical’, points occur. However, the Berry
phase variant identified above displays the following features: asymptotic behaviour (robustness
against perturbations); a critical correlation length &£ (long-range entanglement); conformal geometry
(describable through quantum field theory); and degeneracy in non-trivial topology on a hyperbolic
manifold [47]. Thus, the system also appears to be topologically ordered and so describable by an
effective, low-energy topological quantum field theory (TQFT) in which many-body states have top-
ological ground-state degeneracy [48]. In TQFT the critical correlation length £ is topologically invar-
iant and therefore insensitive to the geometry of the embedding manifold, ie. the critical exponents
within the universality class remain constant under Lorentz boosts.

Within the research field of topological phases of matter, as investigated to date, all the topolog-
ically ordered states realized experimentally or investigated theoretically are established through
strong electron-electron interactions. The coinciding valence bands of gapless ‘diabolical” points al-
low for degenerate electron movements between the bands. In a crystal structure, the electronic band
structures are described by Bloch’s theorem as expressed by:

Y(r) =e®*u(r) (23)

where W is the wavefunction, r is position, u is a periodic function, and k is the crystal momentum
vector.

However, the original formulation of the Berry phase was not specifically related to Bloch elec-
trons. Instead, it was based on the general idea that quantum adiabatic transport of particles in slowly
varying fields (eg. electric, magnetic, or strain) could in principle modify the wavefunction by terms
other than just the dynamical phase. So, Equation (23) is seen to map to the experimentally derived
Equation (7) where variable electromagnetic duality of the pseudo-scalar field gives the periodic
function u(r) and (e/*™)* represents the angular momentum of magnetic charges that become effec-
tively stored in the pseudo-scalar field as the magnetic monopole condensate forms [24].

Since the degeneracy associated with the crystal-fluid material occurs in metastable excited-
states (with non-zero temperatures), the gapless degeneracy of the crystal-fluid material cannot be
attributed to Bloch electrons. So, whilst the gapless surface of the dual superconductor is protected
through Z: topology, an additional mechanism is necessary to supress excited-state fluctuations such
that Bloch-wave behaviour can emerge.

A potential solution is presented in Figure 4 where the synchronized continuous symmetry
group U(2) leads to descriptions of asymptotic freedom in both quantum and condensed matter sys-
tems. As conservation of angular momentum extends into the microscopic quantum realm, so con-
finement mechanisms extend out into the macroscopic condensed matter of the dual superconductor
under a renormalized Noether symmetry. The non-Abelian SU(3) group of QCD remains dominant
so that excited-state fluctuations due to changes in momentum are suppressed through confinement
mechanisms and the constant Hamiltonian function is preserved. Topological defects may represent
the penetration of the dual superconductor by the excluded electric field in the form chromoelectric
flux tubes, so enabling the formation of quark-antiquark pairs together with an inherent confinement
mechanism.

Acceleration and deceleration of the crystal-fluid material thereby become confined interactions
responsible for the splitting and recombining of gluons. Gluons are either absorbed by or emerge
from the QCD vacuum manifold. The Higgs-like gauge field @ also emerges in the transition from
gapped Type-II superconductivity to gapless dual Type-I superconductivity to establish a reciprocal
gap in the gradient energy, as revealed in Figure 3. For the gapless state, the spin-1 vector gluons are
the force-carrying SU(3) gauge bosons/ quasiparticles that generate the Bloch-wave description [49].
Gluon interactions with the embedding QCD vacuum manifold enable fictitious forces to emerge in
non-inertial reference frames that lead to PV work in the piston expander.
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Whilst the massless gluons either emitted or absorbed by accelerating or decelerating quarks act
as gauge particles, gauge invariance is only established where the associated gauge field can emerge
under U(2) ‘symmetry synchronization” at a critical correlation length & in the low-energy system.
That is, gauge monopole charges are required to condense such that the scalar field potential induces
a flow of magnetic charge.

By extension, the lower bound of the QCD mass gap can be attributed to a symmetry-breaking
of U(2) and the evaporation of a gauge monopole condensate from below in the low-energy, infrared
limit. In this event, the conservation pathway between the condensed matter and quantum systems
no longer exists since the systems are effectively isolated except for weak residual gravitational in-
teractions, ie. the systems are decoupled. With this spontaneous breaking of U(2) gauge symmetry
into isolated sub-groups, and the collapse of any critical magnetic correlation length &, there is no
mechanism through which non-equilibrium angular momentum can be conserved through gluon
interactions and the corresponding curvature imposed on the embedding manifold, ie. conservation
of energy and momentum becomes limited to the individual symmetry groups and the condensed
matter system becomes describable by classical thermodynamics and discontinuous (first order)
phase transitions. Thus, in this interpretation of broken gauge symmetry, a strong gravitational in-
teraction [35] is replaced by a far weaker one essentially limited to gluon interactions arising from
quantum fluctuations and other irrelevant interactions.

Cosmological analogy

The same principle may be applied to the high-energy bound of the QCD mass gap from above.
Guth’s model of cosmological inflation [50,51] is also founded upon false vacuum and negative pres-
sure conditions. The associated deceleration of inflationary expansion within a false vacuum would
result in gluon splitting where conservation of energy and momentum are mediated by a synchro-
nized order parameter field/ symmetry group together with the corresponding cosmic monopole
condensate necessary to facilitate a critical coherence length and penetration depth. The splitting of
gluons and the emergence of quark-antiquark pairs act to increase the strong interaction through
confinement mechanisms.

The non-extensive inflationary volume expansion model is [1]:

V=T - T|™% (24)

where V: is the reduced volume | V-V Ve | at the critical temperature T. with a correlation length
exponent v in 3-dimensions. Critical volume V. and critical temperature T are not absolute values
but rather ‘rolling” dynamical values determined by structural anisotropy and dissipative false vac-
uum restructuring of elementary particles under non-equilibrium conditions. V- can also be deter-
mined by the Higgs mass mu which is the inverse of the coherence length &’. At the collapse of critical
behaviour, Vr =1 and non-extensive inflationary volume expansion ceases.

The critical length exponent v represents the dimensionless group parameter of rapidity such
that its emergence on a Lorentz hyperbolic manifold (ie. a Lorentz boost) is associated with a relativ-
istic length expansion to describe non-extensive inflationary volume expansion [1]. Increasing the
effective radius of structural elements under false vacuum conditions produces deceleration such
that angular momentum is removed from the sub-atomic quarks. The counteracting emergence of
quark- antiquark pairs gq plus gluons from the QCD vacuum, the associated gluon splitting, to-
gether with subsequent integration of the emergent particles into complex binding arrangements,
establishes the colour and quark confinement mechanisms. These tend to increase local ‘space den-
sity” and effective magnetic permeability uo. The resultant effect sees hyperbolic curvature of the em-
bedding vacuum manifold increase leading to inflationary expansion. The process is shown as an
analogue of the experimental findings in Figure 5.
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Figure 5. Deceleration of dissipative water ice cage structures under critical false vacuum conditions
results in the transfer of momentum away from sub-atomic quarks. The processes of colour and quark
confinement see compensating quark-antiquark pairs qq and gluons emerge from the quantum vac-
uum to enable gluon splitting. The corresponding tendency to increase local ‘space density’ increases
the hyperbolic curvature of the vacuum manifold to facilitate positive expansion work. The external
pressure perturbations may be interrupted at any point such that gradient energy is captured and
confined through water ice cage structuring where the system relaxes into a non-critical, stable state.

At the collapse of critical behaviour, the synchronized gauge symmetry is broken, the cosmic
monopole condensate with associated topology evaporates, and critical correlation length is de-
stroyed. Absorption of the gauge field into the QCD colour field attributes mass to the emergent
quark and antiquark pairs gq  of the confinement process under a Higgs-like mechanism associated
with an electroweak interaction, whilst volume and internal energy are ‘propped’ and stabilized by
reorganizing dissipative structural elements. Again, under such an interpretation, classical thermo-
dynamics essentially separates from quantum mechanics to leave only weak residual gravitational
interactions, ie. the strong interaction becomes short-ranged. The energy and mass of the strong in-
teraction are thereby effectively fixed at the point where the common symmetry group associated
with cosmological inflation is broken, the cosmic monopole condensate evaporates, and the critical
correlation length is destroyed.

Conclusion

The complex reorganization of systems with high energy degeneracy is responsible for asymp-
totic freedom, as characterized by the emergence of variable negative potential that maintains con-
stant total energy. In these systems, the excess negative potential imposes variable hyperbolic curva-
ture on the embedding manifold to create strong local gravitational effects that combine with the
mutually emergent coupling energy to produce mechanical work. This ‘strong gravity’ emerges only
when quantum interactions are coupled to non-equilibrium thermodynamics through a critical cor-
relation length.
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Experimental investigations based upon external pressure perturbations uncover a macro-scale
dual superconducting phase linked to the emergence of a gauge field and the associated synchroni-
zation of a common U(2) symmetry group that encompasses the dual superconductivity, Minkowski
spacetime and quantum interactions. Combining Ginzburg-Landau theory with the scaling laws re-
veals a coherence length and a penetration depth associated for the macro-scale dual superconductor.
The coherence length determines non-extensive volume changes whilst its inverse gives the Higgs
mass. The penetration depth determines the extent of QCD vacuum suppression whilst its inverse
gives the vector boson mass and resulting indirect hyperbolic curvature.

Conservation of energy and angular momentum across the condensed matter and quantum do-
mains is linked to time and rotational space symmetries in agreement with Noether’s theorem. It is
widely conjectured that gauge monopoles are associated with the U(2) group and Z: topology, which
enables a critical correlation length to be established. For the synchronized U(2) group, the gauge
vector bosons are represented by the quark emission/ vacuum absorption of gluons from acceleration,
and vacuum emission/ quark absorption of gluons from deceleration.

The emergent gauge structure combines with the effective adiabatic property of the constrained
false vacuum system to establish an ‘excited-states’, degenerate Berry phase. This geometrical phase
is responsible for topological ordering in the dual Type-I superconductor. The excluded electric
field represents the gapless surface of a topological insulator that is protected from external pertur-
bations through Z: topology.

In complex form the gradient energy term of the Lagrangian strongly resembles a quantum me-
chanical wavefunction in which the energy spectrum becomes entirely real and observable. Such be-
haviour is also found in PT symmetric systems that are not isolated from the environment (ie. non-
adiabatic) but subject to highly constrained interactions. Conservation of energy and momentum are
determined through the symmetry of Lorentz boosts, ie. symmetries in both time and space, in a
system containing both Hermitian and non-Hermitian elements.

The complex parameter field is revealed as the order parameter that emerges to signify a super-
conducting phase transition from Type-II to a dual of Type-I. The phase transition is consistent with
Ginzburg-Landau theory that describes gauge-invariant coupling of a scalar field to the Yang-Mills
action in QCD. The Higgs-like gauge field emerges out of the transition from gapped Type-II super-
conductivity to gapless dual Type-I superconductivity to establish a reciprocal gap in the gradient
energy. The point at which the critical coherence length and penetration depth emerge in the macro-
scale dual superconductor is postulated as the low-energy, infrared bound of the QCD mass gap.

Appendix A: Ginzburg-Landau theory

The Ginzburg-Landau (GL) theory of superconductors is founded upon a general approach to
continuous phase transitions that are accompanied by a change in symmetry [52]. Landau proposed
that these phase transitions are characterized by an order parameter that is zero in the disordered
state above Tc but obtains a non-zero value below T.. For the relatively simple case of a magnet, its
magnetization M(r) provides a suitable order parameter.

For a superconducting system, GL postulates the existence of a complex order parameter ¥, as-
sumed to be an unspecified physical quantity that characterizes the state of the system. For the normal
metallic state above the superconductor T it is zero, whilst for the superconducting state below T it
is non-zero, such that:

W = { 0 T>T, (A1)
Y((T)=+0 T<T,

However, for the non-metallic dual superconducting state observed experimentally, the system

is instead characterized by:

lp_{o |T—T,|#0 -1<Mg< 1

A2
Y(T)+0 |T—T,|+0 -1>M;> 1 (A2)
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where M is the spontaneous magnetism and ¥ represents the complex form of the coupling energy
(e'®y%. For -1 < Ms < 1 the system is characterized by an ‘auxiliary” order parameter Hs, the spontane-
ous magnetic field.

GL assumes that the real free energy of the superconductor varies smoothly and can only depend
upon the complex value of || so that the free energy density is given by:

fi(T) = fu(T) + a(D|¥|? + BMDIP|* + - (A3)

where:

f«(T) and f«(T) are the superconducting state and normal state free energy densities, respectively
and

a(T) and B(T) are generally phenomenological, temperature dependent parameters.

The order parameter ¥(r) is found by minimizing the free energy of the system which, through
further mathematical manipulation, yields an effective non-linear Schrodinger equation:

2
5 V2UY(r)+ (a+BI¥YMIIHPE) =0 (A4)
where:
/21s the reduced Planck's constant,
and

m* determines the energy cost associated with gradients in the order parameter (r) to define an
effective mass for the quantum system where m* = 2m. and me. is the bare electron mass in the normal
metallic state.

The non-linearity introduced by the second term in the bracket of (A4) ensures that the quantum
mechanical principle of superposition does not apply, ie. it cannot be normalized to zero.

GL theory is developed further to incorporate: inhomogeneous systems introducing a gradient
into the order parameter; the effect of external perturbations; and the effect of a magnetic field. The
free energy density of the superconductor then takes the form [52]:

h S X
£(T) = f,(T) + |(— v+2eA>lP + —+ a|¥|* + £|lp|4 (A5)
[ 2m* 2
where:
2e is the net charge for a Cooper pair of electrons with positive sign convention
and

A is the electromagnetic vector potential

The full GL equations (not included here) are obtained by minimizing the free energy with re-
spect to fluctuations in the order parameter and the vector potential A. These equations predict the
existence of two characteristic lengths in a superconductor [52]:
the coherence length £'(T):

g(T) = _ (A6)
2m* [a(T)|

(the distinction between coherence length £'(T) and correlation length £(T) is explained in [29])
and the London penetration depth A(T):

mef
Zﬂoezle - Tcl

A(T) = (A7)

where:
o(T) = d|T T

Both lengths diverge as Tc > T.

The ratio x = A(T)/&(T) is known as the Ginzburg-Landau parameter where x > 1/42 identifies a
Type-II superconductor whilst x < 1/¥2 identifies a Type-I superconductor. The ratio is dimensionless
and independent of temperature within GL theory.

doi:10.20944/preprints202307.1051.v5
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The transition from Type-II to Type-I and the effect of Abrikosov vortices is related to the exper-
imental results described in [1] from which Figure A1 is updated to reflect the latest findings:

2.0

15 /

1.0 -

0.5

0.0 R T T T S N T TR N S-S N TR SO B

spontaneous external field H; [Amkg™]

-0.5

spontaneous magnetism M, [Am™ kg]

Figure Al. Critical exponents reveal a magnetic phase transition and superconductor-like behaviour
for a negative pressure perturbation. The initial response between 0 < Ms < 0.5 appears as diamag-
netism (Hs < 0) and peaks at a lower critical field point Me, a result of high susceptibility x such that
M:s >> Bs. Diamagnetism is then completely destroyed at Ms = 1, which represents an upper critical
field point M. For Ms > 1 both Ma and M< become ‘rolling’ critical values.

For Hs < 0, the profile resembles Type-II superconductor behaviour, although it is large rather
than negative values of susceptibility x that are held responsible for the diamagnetic effect. The dia-
magnetism peaks at M, the lower critical field, corresponding to minimal magnetic flux density Bs.
Moving beyond Ma towards Mea the upper critical field, Bs increases until all superconducting be-
haviour is destroyed at Ms=1, Hs=0. For 0 < Ms < 1, the Ginzburg-Landau parameter « is determined:

_ M : 1
K= oM to give k> N (A8)

ie. a Type-II superconductor classification.

For Ms > 1, Hs takes positive values as the susceptibility x falls below unity. A new value for the
critical field M<" is deemed to be established at or to the right of the M« value. Both M« and M
become ‘rolling’ critical values such that 0.9 < M'/M« < 1.0 as determined by calculations of x below.
For this region x < 1/¥2 which is consistent with Type-I superconducting behaviour. Here, large val-
ues of excluded Bs coincide with exclusion of the electric field E to establish dual superconducting
behaviour.

If M’ has a minimum value of 1.0 Am-kg then at the positive displacement phase transition x
=0.707

Since £'(T) is equal to 3.05 m, the penetration depth A(T) =2.2m

to give the vector boson mass mv (1/ A(T)) < 0.46 kg

in the constant energy Hamiltonian, kg « m?s? as derived through dimensional analysis with E
= mc2

so that mv can be expressed in units of principal curvature m?s2

then comparing to the principal curvature calculations using Equation (14):
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K o - Pv/2 which at Point 3 gives - (610 x 0.0015)/ 2 =- 0.46 m?s2 [1]
and at Point 1 gives - (290 x 0.0015)/ 2 = - 0.22 m?2s2 [1]

0.22 m2s2 < A(T)) < 0.46 m?s2

and 0.65<x<0.707

The Higgs mass mu (1/ £'(T)) = 0.33 kg

which determines the non-extensive volume V (mm./ p)

where p is the density of the crystal-fluid material with an approximate value of 664 kg m=[1]

to give V=0.33/ 664 x 103 = 0.5 litre, ie. the swept volume of the piston expander.

For spontaneous diamagnetism seen where Hs < 0, and below the critical correlation length & in
Figure 3, the system appears to be in a gapped superconducting state with Hs acting as an ‘auxiliary’
order parameter. The effects of topological defects in the dual superconductor seem to reflect those
of magnetic impurity states in conventional superconductors that fill in the energy gap. Topological
defects may represent the penetration of the dual superconductor by the excluded electric field in the
form chromoelectric flux tubes that enable the formation of quark-antiquark pairs in the confinement
mechanism. Where Hs > 0, and above the critical correlation length &, the system can be described as
being in a protected gapless superconducting state with ¥(r) as the complex order parameter. Simi-
larly, it has been shown [53,54] that the transition between the gapped and gapless superconducting
states in the Abrikosov-Gor’kov theory of a superconducting alloy with paramagnetic impurities is
of the Lifshitz type, ie a topological phase transition where the number of the components of topo-
logical connectivity on the Fermi surface undergoes changes under the influence of different factors;
pressure, magnetic field, doping, etc.
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