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Article 

Net Energy Gain from a Berry Geometrical Phase: 
Low-Energy Perturbations of the Strong Interaction 
and the QCD Mass Gap 

Mark Gibbons 

Target Carbon Limited, 271 Coppice Road, Poynton, Stockport, Cheshire, SK12 1SP, United Kingdom; Email: 
markgibbons@targetcarbon.co.uk 

Abstract: A Berry geometrical phase is identified in a strongly metastable system containing dynamically re-

sponsive clathrate hydrate structures within a crystal-fluid material. High energy degeneracy in the associated 

chemistry produces local stability and false vacuum conditions that lead to non-extensive and non-additive 

contributions in the fundamental thermodynamic relation. The reciprocating action of a piston expander con-

firms a net energy gain despite the crystal-fluid material maintaining almost constant density. The property of 

asymptotic freedom is uncovered in the associated condensed matter and quantum mechanical descriptions 

providing evidence for scale-invariance that dominates both the macro- and micro-scales of an associated Ginz-

burg-Landau superconducting phase transition. Application of Ginzburg-Landau theory and the scaling laws 

reveal a coherence length and a penetration depth for a macro-scale dual superconductor. The coherence length 

determines non-extensive volume changes whilst its inverse gives the Higgs mass. The penetration depth de-

termines the extent of QCD vacuum suppression whilst its inverse gives the vector boson mass together with 

its indirect manifestation as non-additive hyperbolic curvature. External pressure perturbations of the low-

energy system initiate ‘rolling’ critical responses that see energy and momentum conserved across a synchro-

nized U(2) symmetry group whilst a complex gauge field is also exposed. Simultaneous emergence of the Ginz-

burg-Landau superconducting phase transition is consistent with gauge-invariant coupling of this scalar field 

to the Yang-Mills action of QCD. The discovery of an energy gap in the gradient energy term of the system 

Lagrangian is associated with a critical correlation length revealed in the transition from a gapped to a gapless 

superconducting state. Together with the emergence and absorption of the Higgs-like scalar field, a mechanism 

for describing the QCD mass gap arises. 

Keywords: Berry geometrical phase; symmetry groups; self-organized criticality; dual  

superconductivity; scale- and gauge-invariance; hyperbolic curvature; false vacuum; QCD mass gap 

 

Introduction 

The experimental investigation on which the current exposition is based has been previously 

reported [1]. This earlier work identifies the emergence of spontaneous diamagnetism and paramag-

netism in the behaviour of clathrate hydrate structures (or water ice cages) as critical phenomena 

responsible for work output in a kinetic system. The accompanying analysis centres upon a super-

conducting phase transition where scaling laws reveal the emergence of a critical correlation length 

ξ. The Ginzburg-Landau parameter κ (defined in Appendix A) is also uncovered together with top-

ological ordering. It is shown [1] that relativistic length expansion and time contraction on a Lorentz 

manifold describe the critical correlation length ξ. It is also noted that the Ginzburg-Landau theory 

of superconductors invokes gauge-invariant coupling of a scalar field Φ to the Yang-Mills action in 

quantum chromodynamics (QCD). These relativistic and quantum aspects of the findings are exam-

ined here in further detail within the context of the Berry geometrical phase, complex energy band 

gaps and the QCD mass gap. 

Situations can arise in thermodynamics whereby a physical system is prevented from attaining 

its lowest energy and highest entropy state through the existence of an energy barrier. False vacuum 

conditions can result from such metastability in the extreme so that on short timescales a positive, 
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non-minimum energy density cannot be raised or lowered in response to external interactions. Where 

an energy barrier is maintained through dynamic inhomogeneities, a system can be isolated from 

external interactions through local stability conditions, as characterized by a non-concave entropy 

function [2]. The process of thermodynamic isolation is also described by the characteristic of asymp-

totic freedom in particle physics [3]. Opposition to dynamical change is established through complex 

reorganization of individual system components, ie. degenerate hydrogen bonding in dissipative 

condensed matter systems [1]; gluon splitting and recombining in the case of colour confinement; 

and gluon exchange in quark confinement [3,4]. The experimental results reported in [1] reveal that 

water ice cages under negative pressure can give rise to false vacuum behaviour as a result of which 

non-extensive and non-additive interactions generate work in a constant energy Hamiltonian oscil-

lator. 

The low-energy system reported encompasses both a crystal-fluid material and its embedding 

vacuum manifold whereby variable volume V and hyperbolic curvature K of the embedding mani-

fold rather than any fluid mechanical response determine the work performed by the system. The 

chemical and physical properties associated with water ice cage structures are also shown to elicit 

magnetic and superconducting behaviours that facilitate the Berry phase even though the material 

maintains almost constant density. 

The crystal-fluid is composed of dissipative, reorganizing, water ice cage structures suspended 

within a polar dielectric inhibitor solvent. The formulation results in false vacuum behaviour [5] such 

that the material part of the system is effectively isolated from any external thermodynamic interac-

tions. However, despite the presence of strong local stability conditions, it is possible to perturb the 

system through an external pressure interaction to induce a ‘rolling’ critical response [6].  This, in 

turn, imposes a hyperbolic curvature action on the vacuum manifold that combines with a mutually 

emergent coupling energy to deliver a net energy gain, ie. an additional source of energy enters the 

system. 

Hyperbolic curvature originates in the negative potential of the false vacuum established by the 

variable effective radius (ie. variable inertia) of the highly degenerate system. Conservation of angu-

lar momentum requires that a reducing effective radius produces an acceleration whilst an increasing 

effective radius produces a deceleration. Since the crystal-fluid retains constant total energy, acceler-

ation acts to reduce hyperbolic (or negative) curvature K of the embedding manifold whilst deceler-

ation increases hyperbolic curvature.  Quantum interactions leading to non-additivity can be iden-

tified in both instances. The associated changes in swept volume V arising from the condensation of 

magnetic charges are non-extensive. 

During the ‘rolling’ critical response, the magnetic and superconducting behaviours are quanti-

fied by a distinctive universality class of critical exponents [1]. Formation of a magnetic condensate 

induces a phase transition from Type-II superconductivity to a dual of Type-I superconductivity 

where the spontaneous magnetic field Hs, as an ‘auxiliary’ order parameter, reduces to zero [7]. Fol-

lowing this, ordering is attributed to an emergent complex parameter field, similar to the topological 

ordering of spin ices as described by Castelnovo et al. [8]. 

A definitive theory of quark confinement remains elusive despite experimental and lattice gauge 

theory/ computer simulation successes. The QCD large lattice technique is based upon strong cou-

pling conditions so that perturbative techniques are deemed impractical. From a mathematical per-

spective, the confinement problem is known as the mass gap problem. A promising solution origi-

nally proposed by t’Hooft [9] and Mandelstam [10] claims that the ground-state of QCD is a dual 

superconductor in which quarks are confined by chromoelectric vortices. These vortices are analo-

gous to the Abrikosov vortices seen in Type-II superconductors. In the current exposition QCD de-

scriptions also become relevant to the macro-scale dual superconducting behaviour uncovered. 

In a dual superconductor, the roles of the electric and magnetic fields are exchanged so that in 

this case the electric field is excluded. The significance of dual superconductivity in furthering an 

understanding of the strong interaction is examined in comprehensive reviews by Ripka [11] and 

Kondo et al. [12]. The superconducting phase transition established is consistent with Ginzburg-Lan-

dau theory suggesting gauge-invariant coupling of a scalar field Φ to the Yang-Mills action of QCD 
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[12]. The emergent gauge field is associated with an apparent broken symmetry with gradient energy 

expressed on the hyperbolic surface of the system where the electric field is excluded. However, 

gauge symmetry is revealed not to be broken but rather decomposed and synchronized to become 

more capacious in extent. 

A model for the emergent gauge symmetry is presented here to account for the net energy gain 

initiated by the ‘rolling’ critical behaviour (and subsequent geometrical action of the vacuum mani-

fold) in terms of Noether-conserved quantities, ie. energy and angular momentum for the case being 

considered. Since a topological phase factor, or Berry phase, reveals gauge structure in quantum me-

chanics [13], the existence of a parity-time (PT) symmetry may account for quantum mechanical in-

teractions manifesting as real energy [14] in the gradient energy term of the Lagrangian  describing 

the dual superconductor phase [1]. 

Emergence of the gauge field corresponds to a critical correlation length ξ that represents long-

range ordering of magnetic spins, ie. a magnetic condensate. This divergence is responsible for an 

energy gap in the gradient energy term analogous to complex energy band gaps reported in non-

Hermitian PT symmetric systems [15]. Also, the existence of a mass gap in QCD is necessary to ex-

plain why the strong interaction is strong but only short-ranged. Confirmation of a mass gap would 

account for the fact that quantum particles have positive masses even though classical waves travel 

at the speed of light [16]. Evidence of a Berry phase and the Ginzburg-Landau parameter κ [1] thus 

enables insights into the Yang-Mills action and the mass gap phenomenon in QCD. 

Experimental evidence and background material 

The temperature and pressure of the crystal-fluid are measured at five-second intervals with 

sensors that have direct contact with the crystal-fluid and recorded by a PLC/ PC monitoring system. 

All values for energy and thermodynamic potentials are derived from the pressure and temperature 

measurements by the NIST REFPROP program/database [17]. The calculations are in accordance with 

GERG-2008 modified by the Kunz and Wagner Model 0 (KW0) [18]. The piston expander is com-

pletely immersed in a heat bath with a temperature of 270K, approx. The schematic arrangement 

provided in Figure 1 is reproduced from [1]. 
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Figure 1. Schematic arrangement of the experimental apparatus in which a negative pressure material 

is formulated and manipulated. Dissipative structuring of the crystal-fluid material is controlled with 

a view to establishing a power cycle in the piston expander through non-equilibrium, non-extensive 

volume displacements. 

A negative pressure fluid is established by the Berthelot method [19]. Approx. 3.5 grams of crys-

tal-fluid are transferred into a previously evacuated stainless-steel sample vessel (50ml). A low-en-

ergy, negative pressure regime results in the formation of water ice cages hosting methane molecules. 

The sample vessel is completely immersed in a relatively large heat bath (70 litres) where the temper-

ature of the bath is controlled with an electric element and a refrigeration dip cooler. Once the desired 

temperature is obtained, the sample is released into the fluid-side of the 0.5 litre retracted piston 

expander, also completely immersed in the heat bath, which displaces the piston vertically upwards 

to the fully-extended position. The gas-side of the piston is open to atmospheric pressure during this 

extension. This action reduces the energy of the system further and is intended to transfer the guest 

methane molecules from the host water ice cages to similar structures within the inhibitor solvent. 

Negative and positive piston displacements are then induced through pressurized nitrogen 
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perturbations to produce negative and positive work outputs where displacement ratios are 1:100 

and 100:1, approx. 

From completion of the Berthelot mixing process through subsequent positive and negative dis-

placements of the piston expander, REFPROP determines that the crystal-fluid material remains in a 

subcooled liquid phase, as recorded in Appendix A of [1]. It is both astonishing and remarkable that 

3.5 grams of material does not transition to a vapour or gas, nor produce any methane outgassing, 

when contained within the initial sample volume of 50 ml. More remarkable still is that an additional 

work-generating positive piston displacement of 0.5 litre also has no effect upon the integrity of the 

subcooled liquid phase. Notwithstanding, a conventional interpretation in terms of fluid mechanics 

would locate all the crystal-fluid material in the lowest section of stainless-steel tubing connecting 

the sample vessel to the piston expander (excluding any capillary action) due to ordinary gravity and 

the generation of work would be inconceivable. This perplexing and counterintuitive outcome is ex-

amined in more detail below together with supporting mathematical expressions. 

In addition to the temperature and temperature measurements, only the piston position and 

mass of the material components are required to calculate all the thermodynamic properties, critical 

exponents and scaling relations shown in Appendix A of [1]. Whilst validity of the REFPROP calcu-

lations may be reasonably challenged, it has been demonstrated successfully that the program/ data-

base is very sensitive to outgassing and re-absorption events associated with phase transitions in 

similar materials when performing quasi-thermodynamic cycles [5]. In such circumstances methane 

outgassing accompanies the formation of low-energy, guest-free water ice cages and is consistent 

with the fluctuation-dissipation theorem. With these phase-change processes, long-range interactions 

are also established whereby non-additivity in the fundamental thermodynamic relation is revealed. 

Figure 2 is reproduced (with some additional annotation) from the recent experimental results 

reported in [1] where Points 1-4 identify particular stages of the work cycle in a low-energy system; 

Stage 1-2 corresponds to negative displacement of the 0.5 litre piston expander and Stage 3-4 corre-

sponds to positive displacement. 

 

Figure 2. Excess internal energy potential resulting from excess thermodynamic potentials during 

external pressure perturbations. All values for energy, work and thermodynamic potentials are de-

rived by the NIST REFPROP program/database based only upon temperature, pressure and mass 

measurements together with the piston position. The calculations are in accordance with GERG-2008 
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modified by the Kunz and Wagner Model 0 (KW0). The piston expander is completely immersed in 

a heat bath with a temperature of 270K, approx. 

Changes in negative potential energy and internal energy vary in a 1:1 relationship after dis-

counting the Pv work term associated with the walls of the vessel. Thus, a linear oscillator or constant 

energy Hamiltonian function is determined. The associated affine non-concave entropy function rep-

resents local stability conditions achieved through dynamically responsive inhomogeneities, ie. the 

complex reorganization of dissipative structures composed of water ice cages, such that energy can-

not be minimized and entropy cannot be maximized [2]. Specific volume and internal energy are 

shown to be highly constrained intensive parameters. 

Loss of homogeneity is characteristic of phase transitions that give rise to critical phenomena. 

The discovery of a distinctive universality class of critical exponents that obey the scaling laws of 

Fisher, Rushbrooke, Widom and Josephson [20] reveals spontaneous magnetic and superconducting 

properties for the crystal-fluid material investigated. A phase transition from Type-II superconduc-

tivity to dual Type-I superconductivity is identified through the Ginzburg-Landau parameter κ 

where the spontaneous magnetic field Hs transitions from negative to positive [1] and a complex 

order parameter field Ψ(r) emerges. The associated spontaneous magnetism Ms can be either positive 

or negative such that the phase transition increases hyperbolic curvature (positive piston displace-

ment) or reduces hyperbolic curvature (negative piston displacement), respectively. 

Derivation of the Gaussian hyperbolic curvature K also gives the Gaussian radius Rg, as shown 

below. This enables the hyperbolic surface area of a hollow, walled sphere having radius R to be 

determined (A = 4πsinh2(R/2)). The hyperbolic surface area maps almost exactly to the negative in-

verse of the gradient energy where topological defects are introduced. The external pressure pertur-

bations may be interrupted at any point such that both the swept volume V and the hyperbolic cur-

vature K become fixed and stable. This suggests that the non-equilibrium gradient energy is captured 

and confined within the hydrogen bonding interactions of the water ice cages and inhibitor solvent 

as the system relaxes into a non-critical, stable state. 

Inequalities in the associated Maxwell relations together with calculations of the hyperbolic ge-

ometry reveal non-additivity and non-extensivity in the fundamental thermodynamic relation. Ad-

ditivity can be restored through hyperbolic curvature (ie. surface area A) whilst extensivity can be 

restored through gradient energy/ coupling energy (ie. volume V) [21]. The coupling energy is related 

to the critical correlation length exponent v in 3-dimensions combined with values of a scalar field Φ 

as derived from the gradient energy term -½(∇Φ)2 of the Lagrangian such that: coupling energy ∝ (𝑒ః)ଷ௩ (1)

The critical correlation length ξ associated with the universality class is linked to volume V 

through Lorentz boosts, ie. relativistic velocity and the reference frames associated with acceleration 

and deceleration [1]. The critical correlation length ξ is revealed to be a Lorentz length expansion; a 

relativistic phenomenon coinciding with the formation of a magnetic condensate [12]. The relativistic 

time contraction conjugate to the critical correlation length is also revealed in Figure 3 where the y-

axis representing scalar field values has units of s-1, ie. the reciprocal of time. 
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Figure 3. Effect of the critical correlation length ξ on the magnitude of the scalar field Φ. A gradient 

energy term -½(∇Φ)2, as derived from the non-equilibrium Lagrangian function, is equivalent in value 

to the coupling energy. From this, scalar field Φ values associated with the critical response are deter-

mined. Values of negative gradient energy and positive coupling energy are both equivalent in value 

to PV work done by the piston expander which can be either negative or positive. 

Again, the correlation length ξ is associated with a superconducting phase transition and related 

to a Lorentz boost in 3-dimesional space [1]. Its value reveals the presence of self-organized criticality 

responsible for a ‘rolling’ critical response in accordance with: 𝜉 ~ │𝑇 −  𝑇௖│ି௩ (2)

where T is the system temperature and Tc is the critical temperature. Both temperatures are dynamic 

under external pressure perturbation to reveal sustained anisotropy in the water ice cage structures 

in either direction. ξ corresponds to a gap in gradient energy and increasing values of the gauge field 

Φ are associated with relativistic length expansion and time contraction [1]. 

The gradient energy term -½(∇Φ)2 equates with PV work (ie. it is described by the least action 

principle of the Lagrangian) whilst the hyperbolic surface area is a function of the Gaussian radius of 

hyperbolic curvature Rg. Both properties are calculated from experimental results [1]. In order for the 

gradient energy to be fully expressed on the surface of the system, it is necessary to introduce topo-

logical defects at the superconducting phase transition where the spontaneous magnetic field Hs 

moves from negative to positive through zero. 

Application of the scaling laws to the experimental results [1] reveals that pressure perturbation 

induces low susceptibility χ leading to spontaneous magnetism Ms with associated spontaneous mag-
netic field Hs. For positive Hs, ordering is attributed to the emergence of the complex parameter field 

Ψ(r) and the topology associated with magnetic frustration and charge fractionalization. Condensa-

tion of fractionalized magnetic charges into a monopole condensate [11,12] would act to exclude mag-

netic current from the embedding vacuum manifold resulting in the spontaneous magnetism that 

also excludes the electric field E to establish dual superconducting behaviour. 
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Analysis and discussion 

Gauge symmetry 

The exponential function for the coupling energy e3vΦ, as derived from experiment (1), represents 

a capturing of the magnetic condensate wavefunction through the energy degeneracy of the water 

ice cage structures such that it becomes real and observable. It also expresses the scale-invariant and 

gauge-invariant properties of the system. Conservation of angular momentum requires the existence 

of a sink/ source for the associated changes in inertia (variable effective radius) together with a cor-

responding symmetry relation. 

Scale-invariance is attributed to the hyperbolic curvature of Lorentz boosts that impose a con-

formal symmetry on the embedding vacuum manifold [22]. Conformal symmetry is able to describe 

the tetrahedral, hydrogen bonded, 3-dimensional spatial geometry of the crystal-fluid under non-

extensive volume changes whilst its variable hyperbolic surface area maps to the gradient energy 

term of the Lagrangian (see below). Since a universality class of topologically invariant critical expo-

nents has been determined for the continuous (second order) phase transition, the system can be 

modelled through conformal field theory in 4-spacetime dimensions, ie. it is describable by a renor-

malizable quantum field theory in which the non-perturbative conformal bootstrap is irrelevant [23]. 

Yang-Mills theory is a strongly coupled quantum field theory [16], ie. a gauge theory in which 

the low-energy dynamics are far removed from any classical description [24]. It is represented 

through the mathematical structure of Lie groups that provide for intricate topologies. The compact, 

simple Lie group SU(3) describes the strong interaction in QCD, ie. the binding of quarks and gluons 

through confinement mechanisms. The mechanical action of the piston expander can be described by 

the emergence of a gauge field Φ and the critical length exponent v (as Equation (4) below). In QCD 

such gauge fields are collectively known as gluon fields. The field strength, or curvature Fμν, has the 

general form: 𝐹ఓఔ =  ∂ఓ𝐴ఔ −  ∂ఔ𝐴ఓ − 𝑖ൣ𝐴ఓ, 𝐴ఔ൧ (3)

where Aν provides for Lorentz invariance and Aμ is the gauge connection. 

The gauge connection depends upon a complex scaling symmetry that is exact but not directly 

observable [25]. In the quantum state Ψ  eiθΨ, which could be interpreted as a potential sink/ source 

for the ‘hidden’ inertia of the false vacuum system (although later this is revealed not to be the case). 

It also represents the complex order parameter field of the Ginzburg-Landau superconducting phase 

transition included in Equation (7) below. 

Experimental results lead to a relativistic manifestation of length expansion and time contraction 

arising from false vacuum behaviour in a thermodynamically constrained condensed matter system. 

The local stability conditions maintained through dynamically responsive inhomogeneities in this 

soft matter are deemed equivalent to the property of asymptotic freedom, or antiscreening, which 

accounts for the mechanism of colour confinement in particle physics, ie. scale-invariance is effective 

across the micro- and macro-scales. In QCD it is the emergence of clouds of virtual gluons that estab-

lish the antiscreening phenomenon [3]. In both mechanisms, increasing kinetic energy is mirrored by 

an increasing negative energy potential such that total energy remains constant. 

Whilst the crystal-fluid material displays high stability in total energy and density, the embed-

ding manifold always remains on the threshold of instability. Small positive or negative pressure 

perturbations produce divergent critical behaviour manifesting as large variations in swept volume 

V. However, this is not the specific volume of the material system (density remaining almost constant) 

but rather the non-extensive volume change associated with the condensation of magnetic charges 

and simultaneous emergence of a gradient energy term.  

The ‘rolling’ critical response initiated by anisotropy in water ice cage structures facilitates net 

energy gain for the duration of external pressure perturbations, either positive or negative, in a dis-

play of self-organized criticality [26]. The angular momentum of the material is transferred to or from 

the embedding vacuum manifold through self-organizing behaviour and high energy degeneracy of 
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the water ice cage structures. However, this brief statement does not provide a full description and a 

more detailed hypothesis follows. 

Work derived from the piston expander can be expressed in terms of an electromagnetic pseudo-

scalar gauge-invariantly coupled to the gauge field Φ and the critical length exponent v. The relation-

ship is in agreement with the cosmological inflation model proposed by Ratra [27]: න 𝑃d𝑽 =  12 𝐹ఓఔ𝐹ఓఔ𝑒ଷ௩ః (4)

where the covariant vector Fμν and contravariant gradient potential Fμν combine to produce Lorentz 

invariance for the pseudo-scalar field when rotated on a hyperbolic manifold, ie. the electromagnetic 

field pseudo-scalar enables a non-additive energy contribution to enter the non-equilibrium system 

in the form of hyperbolic curvature. 

In the quasi-micro-canonical ensemble [1], the electromagnetic field pseudo-scalar is involved 

in the coupling mechanism but contributes no work in itself. It expresses the Berry curvature of the 

vacuum manifold whilst hosting the magnetic exchange pathways that facilitate energy transfers ei-

ther to or from the vacuum manifold. The inner-product of the E and B fields remains the same 

viewed in all relativistic frames [28] with the pseudo-scalar field remaining Lorentz invariant such 

that: 12 𝐹ఓఔ𝐹ఓఔ =  Bଶ −  Eଶ𝑐ଶ = constant (5)

where c is the speed of light. 

Ginzburg-Landau theory states that the free energy of a superconductor near a phase transition 

can be expressed in terms of a complex order parameter field [29]:  𝛹(𝒓) = |𝛹(𝒓)|𝑒௜ః(𝒓) (6)

Then a complex rendering of the coupling energy term e3vΦ maps to a complex wavefunction of 

the Berry phase: ൫𝑒௜ః൯ଷ௩ → |𝛹(𝒓)|൫𝑒௜ః(𝒓)൯ଷ௩ (7)

where the quantity |Ψ(r)|2 reflects the density of superconducting charge carriers; electrons for Type-

II and the magnetic counterpart arising from gauge monopole charges for dual Type-I [11]. Appendix 

A provides a summary of the Ginzburg-Landau theory of superconductors. 

In the dual superconductor model of confinement [9,10], the Yang–Mills vacuum is based on the 

condensate of a magnetically charged Higgs field. In this situation, the critical correlation length ξ 

also represents the coherence length ξ’ of the magnetic monopole condensate [12] which diverges to 

encompass total hyperbolic volume V of the system at the superconducting phase transition [29]. In 

this case the monopole condensate ξ' becomes exceptionally large under relativistic Lorentz rotation 

and expands effectively even further due to the ‘rolling’ critical response [1]. ξ' also gives the distance 

over which the dual superconductor can be represented by a wavefunction. 

Since the coherence length ξ’ and maximum value for the Ginzburg-Landau parameter κ for the 

Type-I dual superconductor are known [1], the London penetration depth λ can be derived (see Ap-

pendix A). ξ’ and λ are equal to the inverse Higgs mass mH and inverse vector boson mass mV, re-

spectively [11]. In normal metallic superconductors λ is the distance within which an externally ap-

plied magnetic field disappears inside the superconductor. However, for the dual superconductor λ 

represents a distance beyond the developing QCD flux tubes within which the magnetic current and 

electric field are expelled as a result of the dual Meissner effect. 

So, mH determines the extent of QCD vacuum, which manifests in the embedding vacuum man-

ifold volume V and mV determines the Gaussian hyperbolic curvature K of the embedding vacuum 

manifold. 

Appendix A includes supporting quantitative analysis. 

The complex form of the coupling energy term resembles a quantum mechanical wavefunction 

in which the energy spectrum is made entirely real and observable through dissipative structuring 
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of water ice cages. Ψ0(r) corresponds to the emergence of the gauge field Φ at the Type-II to dual 

Type-I superconducting phase transition. Dissipation of either the scalar field or the critical correla-

tion length ξ would represent a collapse in the wavefunction. 

Application of de Moivre’s formula and isomorphic mapping of the complex field to rotational 

matrix form gives:  ൫𝑒௜ః൯ଷ௩ =  cos 3𝑣𝛷 + 𝑖 sin 3𝑣𝛷 →  ቂ cos 3𝑣𝛷 𝑖 sin 3𝑣𝛷 −𝑖 sin 3𝑣𝛷 cos 3𝑣𝛷 ቃ ≕ V (8)

and similarly expressing electromagnetic duality as rotations in the 2-dimensional real plane: 12 𝐹ఓఔ𝐹ఓఔ →  ቂ cos 3𝑣𝛷 −𝑖 sin 3𝑣𝛷𝑖 sin 3𝑣𝛷 cos 3𝑣𝛷 ቃ ≕ Vୌ (9)

Then the conjugate transpose of (8) is (9) and VVH = 1 suggesting that PV work of the piston 

expander is contingent upon the decomposition of a Hermitian unitary matrix A into two 2 x 2 non-

Hermitian unitary matrices (ie. two complex matrices V and VH containing both real and imaginary 

components such that VH ≠ V) [30]. The gauge field and the electromagnetic pseudo-scalar are thereby 

coupled through a marginal interaction. 

Although this interpretation appears at odds with the expression for PV work stated in (4), in 

fact any 2 x 2 complex symmetric matrix A can be eigendecomposed into a diagonal matrix D sand-

wiched between two complex unitary matrices, ie. VDVH in this case. Minkowski spacetime vectors 

can be represented by 2 x 2 orthogonally diagonalizable matrices and incorporated into the extended 

physical VDVH decomposition to reveal the coupling energy source:  D ≔ ൤(𝑒ః)ଷ௩ 0 0 (𝑒ః)ିଷ௩൨ (10)

These Hermitian matrices exhibit basic 3-dimensional rotation as well as 4-dimensional Lorentz 

transformation properties consistent with the relativistic length expansion and time contraction as-

sociated with the non-extensive element of PV work, as revealed through the experimental results 

[1]. Thus, the 2 x 2 unitary matrix A as a member of the U(2) symmetry group is decomposed into 

factors identifiable as both Hermitian and non-Hermitian.  

When represented in terms of gauge symmetry groups [30], the U(1) group of electromagnetism 

(via its mapping to SO(2) in the 2-dimensional real plane) and the SU(2) group of the complex order 

parameter Ψ(r), are in fact subgroups of the U(2) group such that: 𝑈(1) ⊗ 𝑆𝑈(2)/ ℤଶ →  𝑈(2) (11)

which describes a mapping to a Yang-Mills electroweak symmetry group [31] where ℤ2 represents 

the topology associated with the condensation of gauge monopoles [32]. Formation of the U(2) group 

is accompanied by critical behaviour and emergence of the gauge field Φ as predicted by the Yang-

Mills theory. 

The dual superconductor model has several interpretations that require condensation of gauge 

monopoles, just as normal superconductivity results from the condensation of electric charges (or 

Cooper pairs – see Appendix A) [11,12]. Theoretical frameworks for the condensation of gauge mon-

opoles have been structured in terms of Abelian gauge-invariance (the SU(2) gauge symmetry group) 

or non-Abelian gauge-invariance (the SU(3) gauge symmetry group). Recent efforts [12] have sought 

to extract the Abelian component responsible for gauge-independent quark confinement from non-

Abelian gauge-invariance required for gauge monopole condensation without losing the essential 

characteristic of asymptotic freedom. From the experimental findings [1] such a solution emerges out 

of an electroweak interaction that preserves asymptotic freedom, as described below. 

In the vacuum of a dual superconductor, the dual Meissner effect compresses the chromoelectric 

flux between a quark and antiquark into a thin flux tube to form the hadronic string [11,33]. As the 

distance between quark and antiquark increases, the flux tube becomes longer whilst maintaining a 

minimal thickness. This geometry ensures that the energy increases linearly with length to create a 

linear confining potential between the quark and antiquark that bears a similarity to the linear oscil-

lating Hamiltonian of the system. The flux tube determines the extent of QCD vacuum suppression, 
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ie. positions where the colour-electric field is maximally expelled to leave a residual dual supercon-

ductivity [34]. 

Yang-Mills theory requires the existence of both chromomagnetic monopole condensation 

(given by a coherence length) and the dual Meissner effect (given by a penetration depth) [11,12]. The 

force carrying gauge bosons of QCD are gluons which perform a similar role to photons in electro-

magnetism. Since the gluon field represents a local expulsion of the QCD vacuum, the absorption of 

physical gluon emissions into the QCD vacuum would tend to reduce local ‘space density’ and effec-

tive magnetic permeability μ0. The net effect is to reduce the hyperbolic curvature of the embedding 

manifold, ie. a quantum mechanical process manifests as ‘strong gravity’ [35]. 

Berry phase and parity-time (PT) symmetry 

The foundations of Berry phase physics lie in the adiabatic theorem of quantum mechanics [36] 

which provides a formal description for a system coupled to a slowly changing environment. If the 

system Hamiltonian H(t) varies adiabatically and │Ψ(t)⟩ is an associated eigenstate then, following 

cyclic evolution of the environmental parameters where H(T) = H(0), the state returns to itself but 

gains an additional phase factor [36,37]: │𝛹(𝑇)⟩ = 𝑒௜ఈ│𝛹(0)⟩ (12)

where α represents the angular momentum of the wavefunction. It originates from the exclusion of 

momentum resulting from chromomagnetic monopole condensation which is effectively stored in 

the electromagnetic field pseudo-scalar [24].  

The adiabatic theorem is based upon a single, non-degenerate eigenstate to which the system 

‘clings’ as the environment is slowly changed [38]. However, for the pressure-perturbed system being 

examined, asymptotic freedom constrains innumerable, degenerate and excited eigenstates to a sin-

gular value of total energy in the oscillating Hamiltonian function. External pressure perturbations 

applied to the crystal-fluid material see changes in kinetic/ internal energy mirrored by changes in 

negative energy potential such that total energy remains constant. When perturbations cease, the 

negative energy potential dissipates but internal energy becomes fixed close to the final resting value. 

So, in this case, a positive or negative perturbation of any duration is responsible for a single linear 

oscillation, or cycle, that is imposed upon a linear, sliding-scale of discrete values. Integration of the 

scalar potential ∇Φ over a Hamiltonian cycle reveals the gradient energy term -½(∇Φ)2 that becomes 

observable in the PV work extracted from the piston expander (see Equation (22) below). 

The transient negative energy potential responsible for the phase factor Ψ(T) exists only for the 

duration of the pressure perturbation. Whilst the Hamiltonian remains constant under perturbation 

(as Figure 2), it resolves to a different, stable value once the perturbation ceases. The final value of 

internal energy is then ‘propped’ and stabilized through dissipative structuring of water ice cages, 

subject to limited dielectric relaxation, as quantified by Stage 2-3 and Stage 4-1 (Figure 2). 

For acceleration (Stage 1-2) the effective radius decreases, and for deceleration (Stage 3-4) the 

effective radius decreases. However, the resulting ‘hidden’ inertia is deemed not to be responsible 

for the Berry curvature term within the geometrical phase (7) since the externally-induced momen-

tum manifests entirely in non-additivity of the hyperbolic curvature. Instead, the Berry curvature is 

linked to the condensation of magnetic charges whereby the resulting exclusion of charge momentum 

manifests in the energy potential of the electromagnetic field pseudo-scalar (5). The Berry curvature 

is subsequently captured to be made real and observable in the variable hyperbolic volume of the 

embedding vacuum manifold. Again, this hyperbolic volume is stabilized by the dissipative struc-

turing of water ice cages within the crystal-fluid material so that the complex Berry phase is trans-

formed into real work done. 

For a classical thermodynamic system, changes in inertia ½mr2 represent changes in kinetic/ in-

ternal energy. However, since both internal energy and specific volume are highly constrained pa-

rameters within a false vacuum system, the energy of acceleration/ deceleration is prevented from 

manifesting in the crystal-fluid material. Thus, Pv work is limited to interactions with the walls of the 

vessel. For the synchronized U(2) symmetry group identified below, angular momentum is instead 
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conserved in the acceleration/ deceleration of quarks that results in the emission/ absorption of glu-

ons, ie. changes in negative energy potential. Gluons emitted by quarks are absorbed by the QCD 

vacuum manifold whilst the gluons absorbed by quarks emerge from the QCD manifold, thereby 

tending to effect local ‘space density’ and effective permeability μ0. 

Pv is insignificant in comparison to PV such that it represents the negative energy potential of 

the crystal-fluid material only. Therefore, for a constant Hamiltonian oscillator of constant mass m, 

½r2 ∝ 1/Pv, as described in Appendix B of [1]. The average 1-dimensional radius rx of the stable, non-

critical system is then found: 

𝑟௫  ∝  ඨ 2𝑃𝑣 (13)

The Gaussian curvature K for the 2-dimensional, hyperbolic surface of the non-critical system 

(ie. with no topological defects) for the principal curvature relationship of rx = - ry , can then be deter-

mined: 𝐾 =  1𝑟𝑥𝑟𝑦 (14)

or 𝐾 ∝  − ൬𝑃𝑣2 ൰ (15)

Then, the average Gaussian radius of hyperbolic curvature (1/K or Rg) is given by: 𝑅௚ = ൬ 2𝑃𝑣൰ (16)

Principal curvature K has units of m2 s-2 that map directly to the vector boson mass mV as the 

inverse of the penetration depth λ (as described in Appendix A). Through this mechanism, the neg-

ative energy potential of gluons is conserved through indirect hyperbolic curvature quantifiable by 

the non-equilibrium values of pressure P and specific volume v. Thereby, a quantum mechanical 

action can be tuned thermodynamically under false vacuum conditions. 

Decomposition of the complex gauge connection (eiΦ)3ν in equations (8) and (9) suggests that 

complex Berry curvature is necessary for emergence of real coupling energy (1). It also determines 

the phase of electromagnetic duality, which in the extreme leads to dual superconducting behaviour, 

ie. condensation of magnetic charges resulting in the exclusion of magnetic current and the electric 

field1. The cyclic evolution of the gauge connection results from the effective adiabatic property of 

the constrained false vacuum system (as revealed in the constant Hamiltonian oscillator of Figure 2) 

to establish a novel form of the Berry phase [36], one responsible for topological ordering in the dual 

Type-I superconductor [8]. As with the conventional ground-state Berry phase, this ‘excited-states’ 

variant exposes the gauge structure in quantum mechanics [13,39]. 

In addition to describing the emergence of a gauge field Φ, the gradient energy term -½(∇Φ)2 of 

the Lagrangian also maps to the complex order parameter field Ψ(r) in accordance with Ginzburg-

Landau theory. The PV work generated in the piston expander suggests that the associated quantum 

mechanical wavefunction is made real and observable, a phenomenon recently uncovered by Gu et 

al. [13]. More precisely, the VDVH decomposition reveals that the wavefunction becomes entirely real 

as the coupling energy is exposed through the diagonal matrix D in the VDVH decomposition. 

Since the system can be described through a combination of Hermitian and non-Hermitian ma-

trices, it resembles a PT symmetric system [14]. Such systems are characterized as not being isolated 

from the environment (ie. non-adiabatic) but subject to highly constrained interactions. This descrip-

tion is consistent with the false vacuum behaviour of the crystal-fluid material where both specific 

volume and internal energy are highly constrained. Energy and entropy gains and losses to the envi-

ronment (including the embedding vacuum manifold in this case) are exactly balanced, ie. a 
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renormalized, scale-invariant interaction between condensed matter and quantum wavefunction be-

comes evident in the constant energy Hamiltonian. 

PT symmetry requires both space reflection and time reversal symmetries. The upside-down 

potential of the quartic term as identified by Bender [14] is consistent with the marginal interaction 

and negative gradient energy term derived from experiment [1]. However, the results presented here 

reveal the symmetry of Lorentz boosts, ie. symmetries in the expansion and contraction of both space 

and time, which may represent a more generalized form of PT symmetry. 
1 In this case hyperbolic curvature of the vacuum manifold establishes dual superconductivity rather than 

the hydrogen bonding induced curvature of the crystal-fluid lattice initiating the superconducting phase tran-

sition, as suggested in [1], ie. the causality is reversed. 

Symmetry synchronization and conserved quantities 

Quark acceleration produces gluon emissions since a lower binding potential is necessary to 

maintain the momentum and energy of any given quark colour configuration [40]. This results from 

a gluon recombination process whereby a quark and antiquark pair are annihilated. The emergence 

and absorption of physical gluons represents an exchange between the non-Abelian gauge symmetry 

of QCD and the Abelian gauge symmetry of the vacuum manifold, ie. an electroweak interaction. 

The following non-Abelian Faddeev-Niemi decomposition is considered [41]: 𝑆𝑈(𝑁 + 1) →  𝑆𝑈(𝑁) ⊗ 𝑈(1)ℤே  ~  𝑈(𝑁) (17)

This decomposition is a restricted one since splitting and recombining gluons in SU(3) represents 

a limited interaction with a U(2) spacetime manifold rather than full symmetry breaking to SU(2). 

The requirement for a Higgs-type scalar field is satisfied by the emergent gauge field Φ [12]. So: 𝑆𝑈(3) →  𝑆𝑈(2) ⊗ 𝑈(1)ℤଶ  ~  𝑈(2) ~ 𝑆𝑈(2) ⊗ 𝑈(1)ℤଶ  →  𝑆𝑈(3) (18)

Asymptotic freedom is thereby maintained through the dominant SU(3) group. Again, U(2) ap-

pears as an electroweak symmetry group [31] with ℤ2 representing a topology consistent with the 

condensation of gauge monopoles [32]. 

A U(2) gauge symmetry that provides for the condensation of gauge monopoles has so far been 

identified in both the condensed matter system and the underlying QCD particle physics. However, 

it is also possible to determine a U(2) gauge symmetry for the vacuum manifold of local spacetime 

through which hyperbolic curvature and scalar field potential are effected. That is, where the splitting 

and recombining of force-carrying gluons are associated with fictitious forces in non-inertial refer-

ence frames. 

The Lorentz group SO(4) provides for the conservation of energy and angular momentum in 4-

dimensions (ℝ4) through two continuous symmetries; rotations in 3-dimensional Euclidean space and 

Lorentz boosts which influence both space and time [42]. The 4 x 4 orthogonal matrix representation 

of the metric tensor can also be cast in terms of a 2 x 2 unitary matrix operating on a complex 2-

component spinor. The complete unitary 2 x 2 transformation matrix for spinor rotations and boosts 

can be expressed as: 𝑈 =  𝑒ଵଶ௜ఙ.ఏି ଵଶఙ.஦ (19)

or 𝑈 =  𝑒ଵଶ௜ఙ.ఏା ଵଶఙ.஦ (20)

where θ is the Lorentz rotation angle, σ is the Pauli spin matrix, and ϕ is the angle associated with the 
Lorentz boost (or rapidity) [43]. Equation (19) represents a ‘right-handed’ spinor ϕR and (20) represents 

a ‘left-handed’ spinor ϕL, ie. the Weyl spinors. Later insights by Dirac led to the concept of the bispinor 

which, unlike (19) and (20), preserves parity of the wavefunction under the sign reversal operation 

Ψ(x,t) → Ψ(-x,t) thereby maintaining a positive gauge field and positive energy (whilst also predicting 
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the existence of antimatter). However, retaining the 2 x 2 unitary matrix whilst acknowledging parity 

preservation requirements produces the following spacetime group representation [44]: 𝑆𝑂(4) → 𝑆𝑈(2) ⊕ 𝑆𝑈(2) (21)

The symmetry group decompositions in (11), (18) and (21) are then amalgamated to describe a 

consolidated ‘symmetry synchronization’ that establishes common scale- and gauge-invariance in 

U(2), as shown schematically in Figure 4: 

 

Figure 4. Decomposition of symmetry groups to establish common U(2) scale- and gauge-invariance. 

This model of invariance provides a mechanism through which the pressure-induced ‘rolling’ critical 

response results in PV work that is either positive or negative. The complex reorganization of water 

ice cages produces variable inertia which, through the conservation of angular momentum, is respon-

sible for either an acceleration or deceleration of quarks. In the case of acceleration, this leads to the 

emission of physical gluons that are absorbed into the QCD vacuum manifold. A corresponding ten-

dency to reduce local ‘space density’ and effective magnetic permeability μ0 manifests as reduced 

hyperbolic curvature. Conservation of magnetic charge imposes a superconducting phase transition 

on the crystal-fluid material which reduces swept volume V. 

When a symmetry is broken, a corresponding order parameter that diminishes to zero can often 

be identified. However, in this case the complex order parameter Ψ(r) emerges where symmetry is 

synchronized. 

Both energy and angular momentum are conserved within the common U(2) group to reveal the 

time and space symmetries of a Lorentz boost in agreement with Noether’s theorem (see below). 

Since there is a gluon field for each colour charge, it follows that each gluon field can be composed 
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of a time-like component and three space-like components. These components relate to the electric 

potential and the magnetic potential, respectively, and will interact with the vacuum manifold to 

determine the values of effective permittivity ε0 and effective permeability μ0. 

Variations in effective μ0 require that a spontaneous magnetic flux Ms, with associated sponta-

neous magnetic field Hs, emerges to conserve magnetic charge. Fractionalized magnetic charges aris-

ing from the geometrically frustrated crystal-fluid material can be interpreted as condensing into a 

gauge monopole topology that excludes magnetic current to provide magnetic exchange pathways. 

The correlation length ξ of the magnetic monopole condensate produces divergent critical behaviour 

that is shown to have a distinctive universality class of critical exponents. The gauge monopole top-

ological defects act as both convergent sinks (under acceleration) and divergent sources (under de-

celeration) of the magnetic flux Ms [8]. The nature of these defects is speculated in Appendix A. 

Similar principles apply to variations in vacuum energy determined by the local ‘space density’ 

(which determines the embedding manifold curvature). Conservation of energy requires that nega-

tive PV work is performed under false vacuum acceleration (energy is transferred to the vacuum 

manifold) whilst positive PV work is performed under deceleration (energy is transferred from the 

vacuum manifold). Work is related to the gauge/ scalar field Φ as follows [1]: න 𝑃d𝑽 = − 12 (∇𝛷)ଶ (22)

The right-side of Equation (22) represents the gradient energy term of the Lagrangian function 

resulting from the scalar potential ∇Φ developed across the gauge monopole topology to give the 

integral of the scalar potential ∇Φ. The Lagrangian action of the left-side, ie. mechanical work, is also 

related to the critical response function revealed in the coupling relationship (1) to confirm renormal-

ization in the synchronized U(2) group complex parameter field Ψ(r). That is, energy equivalence 

between the long-range dissipative structuring of water ice cages and the short-range confinement 

mechanisms of sub-atomic particles, as illustrated in Figure 4. This outcome aligns with Anderson’s 

speculative prediction [45]: 

‘Physics in the 20th century solved the problems of constructing hierarchical levels which obeyed 

clear-cut generalizations within themselves […]. In the 21st century one revolution which can take 

place is the construction of generalizations which jump and jumble the hierarchies, or generalizations 

which allow scale-free or scale transcending phenomena. The paradigm for the first is broken sym-

metry, for the second self-organized criticality.’ 

With U(2) scale- and gauge-invariance spanning the asymptotically-free behaviour of both the 

macro-scale dual superconducting system and the quark-gluon system via interactions with the em-

bedding vacuum manifold, a physical correspondence between non-equilibrium thermodynamics 

and quantum mechanics is established. Since the superconducting phase transition is represented by 

Ginzburg-Landau theory (ie. gauge-invariant coupling of a scalar field to the Yang-Mills action is 

predicted) it seems reasonable to link the gradient energy gap of Figure 3 to the mass gap problem 

in QCD. 

Gapped and gapless topologies 

The results in Figure 3 show emergence of the gauge field Φ as a gap between Type-II supercon-

ductivity on the left and dual Type-I superconductivity on the right. This represents a transition be-

tween the gapped state of the magnetically ordered Type-II superconductor and gapless state of the 

topologically ordered dual Type-I superconductor. At this point, the gauge monopole charges con-

dense and the electric field is excluded to be confined on the surface of the system, ie. prior to the 

emergence of topological defects that penetrate the magnetic condensate. That is, a gapless surface is 

established so that the Berry phase manifests as a non-trivial topological insulator [36].  

The gapless surface may be protected from external perturbations tending to re-open the gap 

through non-Abelian topology, as represented by the ℤ2 Chern number in the symmetry group de-

compositions of (11) and (18). In a review of topological superconductors [46], Sato and Ando explore 
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the connection between ℤ2 and time reversal symmetry that is consistent with the symmetry of Lo-

rentz boosts described above. The ℤ2 Chern number can be interpreted as a U(2) group that fibres 

over a circle as a 3-sphere bundle, ie. a Hopf fibration results [47]. 

Typically, a topological insulator is characterized by a non-robust, non-degenerate ground-state 

in which energy bands coincide and exceptional, or ‘diabolical’, points occur. However, the Berry 

phase variant identified above displays the following features: asymptotic behaviour (robustness 

against perturbations); a critical correlation length ξ (long-range entanglement); conformal geometry 

(describable through quantum field theory); and degeneracy in non-trivial topology on a hyperbolic 

manifold [47]. Thus, the system also appears to be topologically ordered and so describable by an 

effective, low-energy topological quantum field theory (TQFT) in which many-body states have top-

ological ground-state degeneracy [48]. In TQFT the critical correlation length ξ is topologically invar-

iant and therefore insensitive to the geometry of the embedding manifold, ie. the critical exponents 

within the universality class remain constant under Lorentz boosts. 

Within the research field of topological phases of matter, as investigated to date, all the topolog-

ically ordered states realized experimentally or investigated theoretically are established through 

strong electron-electron interactions. The coinciding valence bands of gapless ‘diabolical’ points al-

low for degenerate electron movements between the bands. In a crystal structure, the electronic band 

structures are described by Bloch’s theorem as expressed by: 𝛹(𝒓) = 𝑒௜௞.𝒓𝑢(𝒓) (23)

where Ψ is the wavefunction, r is position, u is a periodic function, and k is the crystal momentum 

vector. 

However, the original formulation of the Berry phase was not specifically related to Bloch elec-

trons. Instead, it was based on the general idea that quantum adiabatic transport of particles in slowly 

varying fields (eg. electric, magnetic, or strain) could in principle modify the wavefunction by terms 

other than just the dynamical phase. So, Equation (23) is seen to map to the experimentally derived 

Equation (7) where variable electromagnetic duality of the pseudo-scalar field gives the periodic 

function u(r) and (eiΦ(r))3v represents the angular momentum of magnetic charges that become effec-

tively stored in the pseudo-scalar field as the magnetic monopole condensate forms [24].   

Since the degeneracy associated with the crystal-fluid material occurs in metastable excited-

states (with non-zero temperatures), the gapless degeneracy of the crystal-fluid material cannot be 

attributed to Bloch electrons. So, whilst the gapless surface of the dual superconductor is protected 

through ℤ2 topology, an additional mechanism is necessary to supress excited-state fluctuations such 

that Bloch-wave behaviour can emerge. 

A potential solution is presented in Figure 4 where the synchronized continuous symmetry 

group U(2) leads to descriptions of asymptotic freedom in both quantum and condensed matter sys-

tems.  As conservation of angular momentum extends into the microscopic quantum realm, so con-

finement mechanisms extend out into the macroscopic condensed matter of the dual superconductor 

under a renormalized Noether symmetry. The non-Abelian SU(3) group of QCD remains dominant 

so that excited-state fluctuations due to changes in momentum are suppressed through confinement 

mechanisms and the constant Hamiltonian function is preserved. Topological defects may represent 

the penetration of the dual superconductor by the excluded electric field in the form chromoelectric 

flux tubes, so enabling the formation of quark-antiquark pairs together with an inherent confinement 

mechanism. 

Acceleration and deceleration of the crystal-fluid material thereby become confined interactions 

responsible for the splitting and recombining of gluons. Gluons are either absorbed by or emerge 

from the QCD vacuum manifold. The Higgs-like gauge field Φ also emerges in the transition from 

gapped Type-II superconductivity to gapless dual Type-I superconductivity to establish a reciprocal 

gap in the gradient energy, as revealed in Figure 3. For the gapless state, the spin-1 vector gluons are 

the force-carrying SU(3) gauge bosons/ quasiparticles that generate the Bloch-wave description [49]. 

Gluon interactions with the embedding QCD vacuum manifold enable fictitious forces to emerge in 

non-inertial reference frames that lead to PV work in the piston expander.  
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Whilst the massless gluons either emitted or absorbed by accelerating or decelerating quarks act 

as gauge particles, gauge invariance is only established where the associated gauge field can emerge 

under U(2) ‘symmetry synchronization’ at a critical correlation length ξ in the low-energy system. 

That is, gauge monopole charges are required to condense such that the scalar field potential induces 

a flow of magnetic charge. 

By extension, the lower bound of the QCD mass gap can be attributed to a symmetry-breaking 

of U(2) and the evaporation of a gauge monopole condensate from below in the low-energy, infrared 

limit. In this event, the conservation pathway between the condensed matter and quantum systems 

no longer exists since the systems are effectively isolated except for weak residual gravitational in-

teractions, ie. the systems are decoupled. With this spontaneous breaking of U(2) gauge symmetry 

into isolated sub-groups, and the collapse of any critical magnetic correlation length ξ, there is no 

mechanism through which non-equilibrium angular momentum can be conserved through gluon 

interactions and the corresponding curvature imposed on the embedding manifold, ie. conservation 

of energy and momentum becomes limited to the individual symmetry groups and the condensed 

matter system becomes describable by classical thermodynamics and discontinuous (first order) 

phase transitions. Thus, in this interpretation of broken gauge symmetry, a strong gravitational in-

teraction [35] is replaced by a far weaker one essentially limited to gluon interactions arising from 

quantum fluctuations and other irrelevant interactions. 

Cosmological analogy 

The same principle may be applied to the high-energy bound of the QCD mass gap from above. 

Guth’s model of cosmological inflation [50,51] is also founded upon false vacuum and negative pres-

sure conditions. The associated deceleration of inflationary expansion within a false vacuum would 

result in gluon splitting where conservation of energy and momentum are mediated by a synchro-

nized order parameter field/ symmetry group together with the corresponding cosmic monopole 

condensate necessary to facilitate a critical coherence length and penetration depth. The splitting of 

gluons and the emergence of quark-antiquark pairs act to increase the strong interaction through 

confinement mechanisms. 

The non-extensive inflationary volume expansion model is [1]: 𝑉௥ =  |𝑇 −  𝑇௖|ିଷ௩ (24)

where Vr is the reduced volume │(V – Vc)/ Vc│ at the critical temperature Tc with a correlation length 

exponent v in 3-dimensions. Critical volume Vc and critical temperature Tc are not absolute values 

but rather ‘rolling’ dynamical values determined by structural anisotropy and dissipative false vac-

uum restructuring of elementary particles under non-equilibrium conditions. Vr can also be deter-

mined by the Higgs mass mH which is the inverse of the coherence length ξ’. At the collapse of critical 

behaviour, Vr = 1 and non-extensive inflationary volume expansion ceases. 

The critical length exponent v represents the dimensionless group parameter of rapidity such 

that its emergence on a Lorentz hyperbolic manifold (ie. a Lorentz boost) is associated with a relativ-

istic length expansion to describe non-extensive inflationary volume expansion [1]. Increasing the 

effective radius of structural elements under false vacuum conditions produces deceleration such 

that angular momentum is removed from the sub-atomic quarks. The counteracting emergence of 

quark- antiquark pairs qq̄ plus gluons from the QCD vacuum, the associated gluon splitting, to-

gether with subsequent integration of the emergent particles into complex binding arrangements, 

establishes the colour and quark confinement mechanisms. These tend to increase local ‘space den-

sity’ and effective magnetic permeability μ0. The resultant effect sees hyperbolic curvature of the em-

bedding vacuum manifold increase leading to inflationary expansion. The process is shown as an 

analogue of the experimental findings in Figure 5. 
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Figure 5. Deceleration of dissipative water ice cage structures under critical false vacuum conditions 

results in the transfer of momentum away from sub-atomic quarks. The processes of colour and quark 

confinement see compensating quark-antiquark pairs qq̄ and gluons emerge from the quantum vac-

uum to enable gluon splitting. The corresponding tendency to increase local ‘space density’ increases 

the hyperbolic curvature of the vacuum manifold to facilitate positive expansion work. The external 

pressure perturbations may be interrupted at any point such that gradient energy is captured and 

confined through water ice cage structuring where the system relaxes into a non-critical, stable state. 

At the collapse of critical behaviour, the synchronized gauge symmetry is broken, the cosmic 

monopole condensate with associated topology evaporates, and critical correlation length is de-

stroyed. Absorption of the gauge field into the QCD colour field attributes mass to the emergent 

quark and antiquark pairs qq̄ of the confinement process under a Higgs-like mechanism associated 

with an electroweak interaction, whilst volume and internal energy are ‘propped’ and stabilized by 

reorganizing dissipative structural elements. Again, under such an interpretation, classical thermo-

dynamics essentially separates from quantum mechanics to leave only weak residual gravitational 

interactions, ie. the strong interaction becomes short-ranged. The energy and mass of the strong in-

teraction are thereby effectively fixed at the point where the common symmetry group associated 

with cosmological inflation is broken, the cosmic monopole condensate evaporates, and the critical 

correlation length is destroyed. 

Conclusion 

The complex reorganization of systems with high energy degeneracy is responsible for asymp-

totic freedom, as characterized by the emergence of variable negative potential that maintains con-

stant total energy. In these systems, the excess negative potential imposes variable hyperbolic curva-

ture on the embedding manifold to create strong local gravitational effects that combine with the 

mutually emergent coupling energy to produce mechanical work. This ‘strong gravity’ emerges only 

when quantum interactions are coupled to non-equilibrium thermodynamics through a critical cor-

relation length. 
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Experimental investigations based upon external pressure perturbations uncover a macro-scale 

dual superconducting phase linked to the emergence of a gauge field and the associated synchroni-

zation of a common U(2) symmetry group that encompasses the dual superconductivity, Minkowski 

spacetime and quantum interactions. Combining Ginzburg-Landau theory with the scaling laws re-

veals a coherence length and a penetration depth associated for the macro-scale dual superconductor. 

The coherence length determines non-extensive volume changes whilst its inverse gives the Higgs 

mass. The penetration depth determines the extent of QCD vacuum suppression whilst its inverse 

gives the vector boson mass and resulting indirect hyperbolic curvature. 

Conservation of energy and angular momentum across the condensed matter and quantum do-

mains is linked to time and rotational space symmetries in agreement with Noether’s theorem. It is 

widely conjectured that gauge monopoles are associated with the U(2) group and ℤ2 topology, which 

enables a critical correlation length to be established. For the synchronized U(2) group, the gauge 

vector bosons are represented by the quark emission/ vacuum absorption of gluons from acceleration, 

and vacuum emission/ quark absorption of gluons from deceleration. 

The emergent gauge structure combines with the effective adiabatic property of the constrained 

false vacuum system to establish an ‘excited-states’, degenerate Berry phase. This geometrical phase 

is responsible for topological ordering in the dual Type-I superconductor.  The excluded electric 

field represents the gapless surface of a topological insulator that is protected from external pertur-

bations through ℤ2 topology.  

In complex form the gradient energy term of the Lagrangian strongly resembles a quantum me-

chanical wavefunction in which the energy spectrum becomes entirely real and observable. Such be-

haviour is also found in PT symmetric systems that are not isolated from the environment (ie. non-

adiabatic) but subject to highly constrained interactions. Conservation of energy and momentum are 

determined through the symmetry of Lorentz boosts, ie. symmetries in both time and space, in a 

system containing both Hermitian and non-Hermitian elements. 

The complex parameter field is revealed as the order parameter that emerges to signify a super-

conducting phase transition from Type-II to a dual of Type-I. The phase transition is consistent with 

Ginzburg-Landau theory that describes gauge-invariant coupling of a scalar field to the Yang-Mills 

action in QCD. The Higgs-like gauge field emerges out of the transition from gapped Type-II super-

conductivity to gapless dual Type-I superconductivity to establish a reciprocal gap in the gradient 

energy. The point at which the critical coherence length and penetration depth emerge in the macro-

scale dual superconductor is postulated as the low-energy, infrared bound of the QCD mass gap.  

Appendix A: Ginzburg-Landau theory 

The Ginzburg-Landau (GL) theory of superconductors is founded upon a general approach to 

continuous phase transitions that are accompanied by a change in symmetry [52]. Landau proposed 

that these phase transitions are characterized by an order parameter that is zero in the disordered 

state above Tc but obtains a non-zero value below Tc. For the relatively simple case of a magnet, its 

magnetization M(r) provides a suitable order parameter. 

For a superconducting system, GL postulates the existence of a complex order parameter Ψ, as-

sumed to be an unspecified physical quantity that characterizes the state of the system. For the normal 

metallic state above the superconductor Tc it is zero, whilst for the superconducting state below Tc it 

is non-zero, such that: 𝛹 =  ൜      0                      𝑇 >  𝑇௖  𝛹(𝑇) ≠ 0          𝑇 <  𝑇௖  (A1)

However, for the non-metallic dual superconducting state observed experimentally, the system 

is instead characterized by: 𝛹 =  ൜  0                 | 𝑇 − 𝑇௖ | ≠ 0          −1 < Mୱ <  1 𝛹(𝑇) ≠ 0   | 𝑇 − 𝑇௖ | ≠ 0           −1 > Mୱ >  1 (A2)
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where Ms is the spontaneous magnetism and Ψ represents the complex form of the coupling energy 

(eiΦ)3v. For -1 < Ms < 1 the system is characterized by an ‘auxiliary’ order parameter Hs, the spontane-

ous magnetic field. 

GL assumes that the real free energy of the superconductor varies smoothly and can only depend 

upon the complex value of |Ψ| so that the free energy density is given by: 𝑓௦(𝑇) =  𝑓௡(𝑇) +  𝛼(𝑇)|𝛹|ଶ +  𝛽(𝑇)|𝛹|ସ + ⋯ (A3)

where: 

fs(T) and fn(T) are the superconducting state and normal state free energy densities, respectively 

and 

α(T) and β(T) are generally phenomenological, temperature dependent parameters. 

The order parameter Ψ(r) is found by minimizing the free energy of the system which, through 

further mathematical manipulation, yields an effective non-linear Schrödinger equation: − ℏଶ2𝑚∗ ∇ଶ 𝛹(𝒓) +  (𝛼 + 𝛽|𝛹(𝒓)|ଶ) 𝛹(𝒓) = 0 (A4)

where: ℏ is the reduced Planck's constant, 

and 

m* determines the energy cost associated with gradients in the order parameter Ψ(r) to define an 

effective mass for the quantum system where m* = 2me and me is the bare electron mass in the normal 

metallic state. 

The non-linearity introduced by the second term in the bracket of (A4) ensures that the quantum 

mechanical principle of superposition does not apply, ie. it cannot be normalized to zero. 

GL theory is developed further to incorporate: inhomogeneous systems introducing a gradient 

into the order parameter; the effect of external perturbations; and the effect of a magnetic field. The 

free energy density of the superconductor then takes the form [52]: 𝑓௦(𝑇) =  𝑓௡(𝑇) + ฬ൬ℏ𝑖  ∇ + 2𝑒𝐀൰ 𝛹ฬଶ +  ℏଶ2𝑚∗ + 𝛼|𝛹|ଶ + 𝛽2 |𝛹|ସ (A5)

where: 

2e is the net charge for a Cooper pair of electrons with positive sign convention 

and 

A is the electromagnetic vector potential 

The full GL equations (not included here) are obtained by minimizing the free energy with re-

spect to fluctuations in the order parameter and the vector potential A. These equations predict the 

existence of two characteristic lengths in a superconductor [52]:  

the coherence length ξ’(T): 𝜉′(𝑇) =  ඨ ℏଶ2𝑚∗ |𝛼(𝑇)| (A6)

(the distinction between coherence length ξ’(T) and correlation length ξ(T) is explained in [29]) 

and the London penetration depth λ(T): 𝜆(𝑇) =  ඨ 𝑚௘𝛽2𝜇଴𝑒ଶ𝛼ሶ |𝑇 − 𝑇௖| (A7)

where: 

α(T) = ά|T – Tc| 
Both lengths diverge as Tc  T. 

The ratio κ = λ(T)/ξ’(T) is known as the Ginzburg-Landau parameter where κ > 1/√2 identifies a 

Type-II superconductor whilst κ < 1/√2 identifies a Type-I superconductor. The ratio is dimensionless 

and independent of temperature within GL theory.  
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The transition from Type-II to Type-I and the effect of Abrikosov vortices is related to the exper-

imental results described in [1] from which Figure A1 is updated to reflect the latest findings: 

 

Figure A1. Critical exponents reveal a magnetic phase transition and superconductor-like behaviour 

for a negative pressure perturbation. The initial response between 0 < Ms < 0.5 appears as diamag-

netism (Hs < 0) and peaks at a lower critical field point Mc1, a result of high susceptibility χ such that 

Ms >> Bs. Diamagnetism is then completely destroyed at Ms = 1, which represents an upper critical 

field point Mc2. For Ms > 1 both Mc1 and Mc’ become ‘rolling’ critical values. 

For Hs < 0, the profile resembles Type-II superconductor behaviour, although it is large rather 

than negative values of susceptibility χ that are held responsible for the diamagnetic effect. The dia-

magnetism peaks at Mc1, the lower critical field, corresponding to minimal magnetic flux density Bs. 

Moving beyond Mc1 towards Mc2 the upper critical field, Bs increases until all superconducting be-

haviour is destroyed at Ms = 1, Hs = 0. For 0 < Ms < 1, the Ginzburg-Landau parameter κ is determined: 𝜅 =  ୑ౙమ√ଶ୑ౙభ   to give   𝜅 >  ଵ√ଶ (A8)

ie. a Type-II superconductor classification. 

For Ms > 1, Hs takes positive values as the susceptibility χ falls below unity. A new value for the 

critical field Mc’ is deemed to be established at or to the right of the Mc2 value. Both Mc2 and Mc’ 

become ‘rolling’ critical values such that 0.9 ≤ Mc’/Mc2 ≤ 1.0 as determined by calculations of κ below. 

For this region κ < 1/√2 which is consistent with Type-I superconducting behaviour. Here, large val-

ues of excluded Bs coincide with exclusion of the electric field E to establish dual superconducting 

behaviour. 

If Mc’ has a minimum value of 1.0 Am-1kg-1 then at the positive displacement phase transition κ 

= 0.707  

Since ξ’(T) is equal to 3.05 m, the penetration depth λ(T) = 2.2 m 

to give the vector boson mass mV (1/ λ(T)) ≤ 0.46 kg 

in the constant energy Hamiltonian, kg ∝ m-2s2 as derived through dimensional analysis with E 

= mc2 

so that mV can be expressed in units of principal curvature m2s-2 

then comparing to the principal curvature calculations using Equation (14): 
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 K ∝ - Pv/2 which at Point 3 gives - (610 x 0.0015)/ 2 = - 0.46 m2s-2 [1] 

          and at Point 1 gives - (290 x 0.0015)/ 2 = - 0.22 m2s-2 [1] 

 

 ∴ 0.22 m-2s2 ≤ λ(T)) ≤ 0.46 m2s-2 

  

and  0.65 ≤ κ ≤ 0.707 
The Higgs mass mH (1/ ξ’(T)) = 0.33 kg 

which determines the non-extensive volume V (mv/ ρ) 

where ρ is the density of the crystal-fluid material with an approximate value of 664 kg m-3 [1]  

to give V = 0.33/ 664 x 10-3 = 0.5 litre, ie. the swept volume of the piston expander. 

For spontaneous diamagnetism seen where Hs < 0, and below the critical correlation length ξ in 

Figure 3, the system appears to be in a gapped superconducting state with Hs acting as an ‘auxiliary’ 

order parameter. The effects of topological defects in the dual superconductor seem to reflect those 

of magnetic impurity states in conventional superconductors that fill in the energy gap. Topological 

defects may represent the penetration of the dual superconductor by the excluded electric field in the 

form chromoelectric flux tubes that enable the formation of quark-antiquark pairs in the confinement 

mechanism. Where Hs > 0, and above the critical correlation length ξ, the system can be described as 

being in a protected gapless superconducting state with Ψ(r) as the complex order parameter. Simi-

larly, it has been shown [53,54] that the transition between the gapped and gapless superconducting 

states in the Abrikosov-Gor’kov theory of a superconducting alloy with paramagnetic impurities is 

of the Lifshitz type, ie a topological phase transition where the number of the components of topo-

logical connectivity on the Fermi surface undergoes changes under the influence of different factors; 

pressure, magnetic field, doping, etc. 
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