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Article 
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Abstract: Event-related potentials (ERPs) are estimated by averaging time-locked single trial 
electroencephalography (EEG) signals in response to specific events or stimuli. Classifying ERPs accurately is 
a challenge because (a) single trials have poor signal-to-noise-ratios (SNRs) and (b) it is difficult to collect large 
single trial ensembles to generate high SNR ERPs for classifier training and testing. The 𝑚 -subsample 
averaging (𝑚-SA) strategy which generates small-sample ERPs by repeated averaging of a small number of 
single trials drawn without replacement, has been proposed as a solution to the two problems. An ERP formed 
by averaging 𝑚 single trials is referred to as an 𝑚-ERP where 𝑚 is referred to as the averaging parameter. In 
this study, we conduct thorough analyses of 𝑚-SA and focus on issues not addressed in previous studies to 
better understand the beneficial properties of 𝑚 -SA and to further support its application for ERP 
classification. Specifically, we (a) analyze the improvement in SNR as a function of 𝑚 using the mean-root-
mean-square SNR and visual analyses of 𝑚-ERP plots with confidence intervals, (b) analyze the improvement 
in interclass separation as a function of 𝑚, (c) determine how the SNR and interclass separation analyses can 
help to select the averaging parameter 𝑚, (d) determine the number of distinct 𝑚-ERPs that can be drawn 
from a single-trial ensemble, and (e) determine several probabilities related to the generation of distinct 𝑚-
ERPs. Furthermore, an extensive set of experiments are designed to analyze the performance of support vector 
machine and convolution neural network classifiers employing 𝑚 -SA with various combinations of the 
averaging parameters used for generating the training and test sets. The results confirm that ERPs can be 
classified accurately using small subsample averaging. Most importantly, it is concluded that 𝑚-SA can be 
deployed in practice to accurately classify ERPs in brain activity research and in clinical applications without 
having to collect a prohibitively large number of single trials. 

Keywords: ERP classification; single trial averaging; interclass separation; convolution neural 
networks; support vector machines 

 

1. Introduction 

Event-related potentials (ERPS), which are the brain responses to specific sensory, cognitive, or 
motor events [1-4], are widely used to diagnose neurological disorders in clinical evaluations [5-11] 
and to study brain functioning in neuroscience and cognitive psychology research [12-19]. The 
response to an event, referred to as a single trial, is modeled as the additive superposition of the ERP 
(signal of interest) and the ongoing electroencephalogram (EEG) activity (noise). The ERP is not 
discernible in the single trial because it is much smaller than the EEG in which it is embedded. That 
is, the signal-to-noise ratio (SNR) of single trials is poor. The standard method for improving the SNR 
is through averaging multiple single trials acquired through repeated presentations of the same 
stimulus [20-26]. Including more single trials in the average is expected to lead to better SNR 
improvements, therefore, it is not unusual in practice to attempt collecting hundreds of single trials 
to generate a single ERP. However, collecting a large number of single trials from participants is 
problematic because they have trouble paying attention to the tasks, become restless, and experience 
fatigue during lengthy experiments. As a result, the noise level in the single trials increases and the 
SNR decreases even further. An interesting study [27] explored the effect of the number of trials on 
statistical power and asked the following question: how many trials does it take to get a significant 
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ERP effect? It was determined that there is no simple answer to the question but recommended that 
the sample size, the anticipated effect magnitude, and the noise level should be considered. The study 
also offered two practical conclusions. First, unless power is near floor or ceiling, increasing the 
number of trials almost always produces appreciable increases in power. Second, the extent to which 
power can be increased by increasing the number of trials appears to be greater in within-participant 
designs than in between-groups designs. 

In this study related to ERP classifier design, we pose a similar question: how many single trials 
are needed to design a practical ERP classifier yielding acceptable classification accuracies? The term 
“design” encompasses the training and testing operations which require training and test sets. It is 
impossible to train and test an ERP classifier if all single trials are used to generate a single ERP. 
Furthermore, it would be impractical to collect an enormously large number of single trials to 
generate large ensembles of high SNR ERPs to form training and test sets. The most obvious solution 
is to use single trails directly, without averaging, as attempted in the design of customized brain 
computer interfaces (BCIs) which are typically controlled by the presentation of a single stimulus, 
that is, by single trials [28-33]. In general, irrespective of the application, high classification accuracies 
cannot be expected with single trials due to the poor SNR. Classifying ERPs accurately, therefore, is 
a challenge primarily because (a) single trials have poor SNRs and (b) it is difficult to collect large 
single trial ensembles in practice to generate high SNR ERP ensembles for classifier training and 
testing. The question as to how many single trials are needed to design ERP classifiers can be 
rephrased as: is it possible to design high accuracy ERP classifiers from a practical-sized single trial 
ensemble? We have proposed subsample averaging as answer to the rephrased question and 
demonstrated, empirically, that it facilitates the design of ERP classifiers [34,35]. Since detailed 
analyses of subsample averaging are the main focus of this study, a concise description of the 
procedure is presented next. 

1.1. Subsample Averaging 

The method to generate subsample ERPs is called 𝑚-Subsample Averaging (𝑚-SA) in which 𝑚, 
referred to as the averaging parameter, is the subsample size [34,35]. The goal of 𝑚-SA is to enable 
the design of ERP classifiers that yield high accuracies for small values of 𝑚 so that a large number 
of single-trials do not have to be collected for classifier design. Given a single trial ensemble of size S଴, 𝑚-SA generates subsample ERP ensembles for classifier design by: 

(a) Drawing a random subsample of single trials, without replacement, of size 𝑚, 𝑚 < S଴. 
(b) Averaging the 𝑚 single trials to obtain a subsample ERP which is called an 𝑚-ERP. 
(c) Replacing the 𝑚 single trials of the subsample into the single trial ensemble. 
(d) Repeating steps (a)–(c) 𝑞 times to generate an ensemble of S௤ 𝑚-ERPs. 

Steps (a)–(d) are repeated Q times to yield Q 𝑚-ERP ensembles, each of size S୯. The generation 
of each ensemble is referred to as a “run.”. For each run, the single trial ensemble is first randomly 
partitioned into a training set and a test set to prevent the same single trials being used in both sets. 
The 𝑚-ERPs of the training and test sets are generated independently from the single trials in their 
respective sets. The 𝑚-ERP ensembles of each channel are generated from the single trials of the 
corresponding channel. A large number of 𝑚-ERPs can be generated by 𝑚-SA for ERP classifier 
design from a practical sized single trial ensemble. Furthermore, 𝑚-SA is highly flexible and can be 
used to generate large 𝑚-ERP ensembles for customized classifier design for individual subjects as 
well as group-based classifier design involving multiple subjects [35]. For convenience, single trials 
are referred to as 1–ERPs. 

1.2. Aim of the Study 

The aim of this study is to conduct detailed analyses of 𝑚-SA to answer the following important 
questions not addressed in the previous studies: 
(a) What is the relationship between the SNR and the averaging parameter 𝑚? This question will be 
answered with the help of the ERP averaging model. The SNR will be analyzed as a function of 𝑚 
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objectively using the mean-root-mean-square SNR and subjectively by comparing plots of 𝑚-ERPs 
with the full sample ERP. The 95% confidence intervals (CIs) will be included in the plots to compare 
the variations within the generated 𝑚-ERPs against the variations within the single trials. 
(b) What is the relationship between the interclass separation and the averaging parameter 𝑚? A 
measure of the interclass separation will be analyzed as a function of 𝑚 to answer this question. The 
interclass separation will be plotted for various values of 𝑚 to observe how the measure is affected 
by increasing 𝑚. Furthermore, an example involving 2-dimensional Gaussian clusters will be used 
to illustrate the improvements that can be expected by increasing 𝑚. 
(c) How can the SNR and interclass separation analyses conducted in (a) and (b) help with the 
selection of the averaging parameter 𝑚? 
(d) What is the number of distinct 𝑚 -ERPs that can be drawn from a single-trial ensemble? 
Combinatorial analyses will be conducted to develop a relationship between 𝑚 and the number of 
distinct 𝑚-ERPs that can be generated by 𝑚-SA. 
(e) Given an ensemble of 1-ERPs, what is the probability of generating (a) a distinct 𝑚-ERP, (b) 
duplicates of an 𝑚-ERP, and (c) an ensemble of distinct 𝑚-ERPs? Through probability analyses, 
relationships will be derived to determine these probabilities as functions of 𝑚. 

The answers to the above set of questions will offer valuable insights into the properties of 𝑚-
SA and support the suitability of 𝑚-SA for ERP classifier design. In addition, a set of experiments are 
designed to systematically analyze the performance trends as a function of the averaging parameters 
used for generating the training and test sets and to show the improvements over single trial 
classification. An appearance of some overlap of this study with our two previous studies described 
in [34,35] is inevitable because 𝑚-SA is employed in those studies simply to facilitate classifier design. 
Furthermore, the ERP data used are the same as in the previous studies. Consequently, some issues 
related to the development of 𝑚-SA, description of the ERP data, and related terminology will 
overlap. However, the goals of this study are totally different from those of the previous studies 
which focused on exploiting the cone-of-influence of the continuous wavelet transform for the 
development of unichannel and multidomain ERP classifiers. Most importantly, none of the analyses 
related questions listed above are covered in the previous studies or in other reported studies. 

2. Methods 

In this section we (a) describe the single-trial data used in this study, (b) analyze the variability 
of 𝑚-ERP as a function of 𝑚 using plots with confidence intervals (c) analyze the SNR as a function 
of 𝑚 using the mean-root-mean-square SNR, (d) analyze the interclass separation as a function of 𝑚, (e) determine several probabilities related to the generation of distinct 𝑚-ERPs, and (f) describe 
the experiments using SVM and CNN classifiers to evaluate classifier performance as a function of 
various combinations of the averaging parameters used for training and testing. 

2.1. Single trial data 

The EEG/ERP data used in this study, which was also used in the two previous studies [34,35], 
was downloaded from: 
https://eeglab.org/tutorials/10_Group_analysis/study_creation.html#description-of-the-5-subject-
experiment-tutorial-data (accessed on May 1, 2023). 

This binary data set was selected because it is compact and serves the purpose of demonstrating 
the aims outlined in Section 1.2. Complete details of the data can be found on the listed website and 
the details of the single trials extracted from the EEG can be found in [34]. Details of the single trial 
data pertinent to this study are: 
Task: Auditory binary semantic task requiring subjects to distinguish between synonymous and non-
synonymous word pairs. 
Number of ERP classes: Two (synonymous, non-synonymous). 
Number of subjects: 5. 
Number of channels: 64. 
Sampling rate: 200 Hz; Single trial duration: 1 s; Number of samples in single trials: 200 
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Number of single trials for each subject: 195 synonymous and 195 non-synonymous. 

2.2. Visual Analyses of 𝑚-ERPs 

The most straightforward way to analyze real subsample 𝑚 -ERPs is to compare them 
subjectively with the full sample ERPs through visual examination. The full sample ERP estimated 
by averaging all 𝑆଴ single trials will be referred to as the gold standard ERP (GS-ERP). To avoid 
cluttering plots with 𝑆଴ 𝑚-ERPs, the mean of the 𝑚-ERPs, referred to as the mean 𝑚-ERP (M𝑚-ERP) 
is plotted together with the GS-ERP. Figure 1 shows examples of GS-ERPs estimated from a single 
trial ensemble of size 𝑆଴ = 195 and the M𝑚-ERPs determined from the 195 𝑚-ERPs generated using 𝑚 -SA for 𝑚 = 8, 16, 32, 64, 128. The GS-ERP and M 𝑚 -ERPs are displayed in red and green, 
respectively. The plots also contain the superimposed 95% CIs to reflect the variations across the 𝑆଴ 
1-ERPs and 𝑆଴ 𝑚-ERPs. The CIs of the GS-ERP and M𝑚-ERPs are shaded in light red and green, 
respectively. The plots show that (a) the similarity between the M𝑚-ERPs and GS-ERPs increases 
when 𝑚 is increased and (b) the variations in the 𝑚-ERPs decrease when 𝑚 is increased. 

 
                    (a)          (b)          (c) 

 
                      (d)               (e)          (f) 

Figure 1. GS-ERPs (red) and M𝑚-ERPs (green) (a) 𝑚=1; (b) 𝑚=1 and 𝑚=8; (c) 𝑚=1 and 𝑚=16; (d) 𝑚=1 and 𝑚=32; (e) 𝑚=1 and 𝑚=64; (f) 𝑚=1 and 𝑚=128. The 95% CIs of the 1-ERPs and 𝑚-ERPs are 
shaded in light red and green, respectively. 

2.3. SNR Analyses 

The improvement in the SNRs of 𝑚 -ERPs generated by 𝑚 -SA can be determined by first 
considering the following model most often used to describe the brain’s response to an external 
stimulus or event [20-26]: 𝑔 = 𝑓 ൅ 𝜂, (1) 

in which, 𝑔 is the single trial recording, 𝑓 is the stimulus induced signal of interest, and 𝜂 is 
the ongoing EEG (noise). In this signal plus noise model, it is assumed that 𝑓 is deterministic, 𝑓 and 𝜂  are independent, and 𝜂  is zero-mean with variance 𝜎ଶ . An 𝑚 -ERP is the signal formed by 
averaging 𝑚 time-locked single trials in the 1-ERP ensemble which is given by 𝑔௠ = (1/𝑚) ∑ (𝑓 ൅ 𝜂௜) ௠௜ୀଵ , (2) = (1/𝑚) ∑ 𝑓௠௜ୀଵ ൅ (1/𝑚) ∑ 𝜂௜ .௠௜ୀଵ   (3) 

That is, 
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𝑔௠ = 𝑓 ൅ 𝜂௠,  (4) 

where 𝜂௠ is the average of the 𝑚 single trial EEGs in 𝑔௠. It follows that 𝐸ሾ𝑔௠ሿ = 𝑓 and  (5) 𝑉𝑎𝑟ሾ𝑔௠ሿ = ቀ ଵ௠ቁ 𝜎ଶ.  (6) 

where 𝐸ሾ. ሿ and 𝑉𝑎𝑟ሾ. ሿ are the expectation and variance operators, respectively. That is, the variance 
of the zero-mean noise in 𝑔୫ decreases by a factor of 𝑚 resulting in an improvement in the SNR. 
Furthermore, because the 𝐸ሾ𝑔୫ሿ = 𝑓 , 𝑔୫  approaches 𝑓  as the number of single trials 𝑚  in the 
averaging process increases. 

Given an ensemble of 𝑚-ERPs, the improvement in the SNR as a function of 𝑚 can be measured 
objectively using the mean-root-mean-square SNR which is denoted by Φ୫ and is given by 

Φ୫ = ቈ ଵௌ೜ ∑ ∑ ሾீಸೄ(௤)ሿమೂ೜సభ∑ ሾீಸೄ(௤)ିீ೘,ഘ(௤)ሿమೂ೜సభௌ೜ఠୀଵ ቉ଵ/ଶ
,  (7) 

where, 𝑄 is the duration of the ERPs, 𝑆௤ is the number of 𝑚-ERPs generated, 𝐺ீௌ(𝑞) represents the 
gold standard ERP, and 𝐺௠,ఠ(𝑞) represents the 𝜔௧௛  𝑚-ERP. Φ୫  was computed for the 𝑚-ERPs 
using the 1-ERP ensemble that was used to generate the plots in Figure 1. Note the unequal spacings 
of the x-axis tick values in Figure 1 and in the figures to follow. The results, presented in Figure 2 for 𝑚=1,8,16,32,64, and 128, confirm that Φ୫ increases when 𝑚 is increased. 

 

Figure 2. The mean-root-mean square SNR Φ୫ as a function of 𝑚. Φଵ=3.14, Φ଼=8.39, Φଵ଺=11.84, Φଷଶ=12.9, Φ଺ସ=13.6, Φଵଶ଼=14.36 

.2.4. Interclass separation Analyses 

Interclass separation measures are useful for determining the separation between a pair of 
clusters in feature space. Clusters with high interclass separations are generally easier to classify thus 
facilitating classifiers design. If 𝐺௫௠ and 𝐺௬௠ are the 𝑚-ERPs of the feature clusters belonging to 
classes 𝑥 and 𝑦, respectively, and 𝑑ா(𝐴, 𝐵) is the Euclidean distance between vectors 𝐴 and 𝐵 in 
feature space, the inter-class separation between the 𝑥  and 𝑦  clusters of the 𝑚 -ERPs can be 
measured by 𝜌(௫,௬)௠ = ௗಶ( ீೣ೘ തതതതതതതത,ீ೤೘തതതതതത)(ଵ/ேೣ) ∑ ௗಶ(ீೣ೘,ೖ,ீೣ೘തതതതതത)ಿೣೖసభ ା (ଵ/ே೤) ∑ ௗಶ(ீ೤೘,ೖ,ீ೤೘തതതതതത)ಿ೤ೖసభ  ,  (8) 

where, 𝐺௫௠,௞  and 𝐺௬௠,௞  are the 𝑘௧௛  𝑚-ERPs in the respective ensembles; 𝐺௫௠തതതതത and 𝐺௬௠തതതതത are the 
cluster means; and 𝑁௫  and 𝑁௬  are the number of 𝑚 -ERPs in the 𝑥  and 𝑦  𝑚 -ERP ensembles, 
respectively. The numerator in Equation (8) is the Euclidean distance between the cluster centroids 
and the denominator is the total compactness because each term in the denominator is a measure of 
the respective cluster compactness. 
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Figure 3 shows a plot of the interclass separation as a function of 𝑚 using the 2-class single trials 
of channel O2 of the first subject. It is clear that 𝜌(௫,௬)௠  increases because the denominator of 
Equation (8) decreases when 𝑚 increases. Although the analyses have focused only on a single trial 
ensemble of one channel collected from a single subject, similar results can be expected from the 
single-trial ensembles across subjects and across channels. 

 
Figure 3. Interclass separation as a function of 𝑚 . 𝜌(௫,௬)ଵ = 1.73 , 𝜌(௫,௬)଼ = 5.9 , 𝜌(௫,௬)ଵ଺ =6.81,𝜌(௫,௬)ଷଶ = 7.25, 𝜌(௫,௬)଺ସ = 7.74, 𝜌(௫,௬)ଵଶ଼ = 8.14 

Further insights into the increase in the inter-class separation as 𝑚  is increased can be 
demonstrated by using a toy dataset consisting of clusters of two-dimensional feature vectors instead 
of real high-dimensional ERP clusters which cannot be visualized in feature space. The conclusions 
drawn from the demonstration can be generalized to higher dimensional clusters, including ERP 
clusters. Figure 4(a) illustrates two 100-point clusters drawn from two bivariate Gaussian 
distributions with different means and identical covariance matrices of the form 𝜎ଶ𝐼 where 𝜎ଶ is 
the variance of each feature and 𝐼  is the identity matrix. That is, the features are statistically 
independent. The features vectors in the two clusters are regarded as the original single-trial 1-ERP 
training vectors belonging to two classes. Figures 4(b) to 4(d) show examples of 100-point 𝑚-ERP 
clusters, generated from the original clusters using 𝑚-SA, for 𝑚 = 2, 4, and 8. The vectors in the 
resulting clusters are regarded as 𝑚-ERPs generated from the single trial vectors. It will be assumed 
that the a priori probabilities of the two classes are equal. For the choice of cluster parameters with 
equal prior class probabilities, the Bayes optimal classifier reduces to the nearest mean classifier [36] 
whose decision boundary is the perpendicular bisector (solid green line) of the line joining the two 
means (green dashed line). The linear SVM classifier is also specifically chosen for this illustration 
because it can be used to elegantly demonstrate the effects of 𝑚-SA on the decision boundaries as a 
function of 𝑚 . Each figure shows the cluster means (black filled circles), support vectors (black 
circles), SVM margins (black dashed lines), and the SVM decision boundary (solid black line). The 
following conclusions can be drawn from the figures: when 𝑚 is increased, the (a) the inter-class 
scatter separation increases due to the increase in the cluster compactness, (b) the width of the SVM 
margins increase, and (c) the SVM decision boundary approaches the optimal decision boundary. 
Based on these conclusions, it can be expected that classification accuracies will, in general, increase 
as the subsampling parameter 𝑚 is increased. Furthermore, classifier complexity is reduced because 
the shrinking of the clusters makes them more easily separable when 𝑚 is increased. 
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(a)    (b)     (c) (d) 
Figure 4. Illustration of the interclass separation and decision boundaries as a function of 𝑚 (a) 
single-trial clusters (b) 2-ERP clusters (c) 4-ERP clusters (d) 8-ERP clusters. 

2.5. Selection of the Averaging Parameter 

An important question that must be addressed is the selection of the averaging parameter 𝑚 for 
classifier design. The results from the SNR and interclass separation analyses can help provide 
answers to the question. It is clear from Figure 2 and Figure 3 that increasing 𝑚 will improve the 
SNR and increase the interclass separation, respectively, which should in turn improve the classifier 
performance. However, it is also clear from Figures 1 and 4 that the variations decrease in the 𝑚-
ERPs and the shapes of the clusters are not preserved as 𝑚 is increased, respectively. As a result, the 
risk of overfitting increases especially for non-linearly separable clusters which can have adverse 
effects on the classifier performance. Therefore, the selection of 𝑚  involves a tradeoff between 
improving SNR and interclass separation against the risk of overfitting. Other factors influencing the 
selection of 𝑚 include the size of the single-trial ensemble 𝑆଴, the SNRs of the single trials, and the 
number of 𝑚-ERPs needed in the training and test sets. An empirical approach using a validation set 
can be used in practice to determine the smallest value of 𝑚  that yields the desired level of 
performance for a particular classification problem. 

The averaging parameter does not have to be the same for the training and test sets, that is, the 
classifier can be trained with 𝑚-ERPs and tested on 𝑛-ERPs. Although it is desirable to keep both 𝑚 
and 𝑛 small in practice, it is especially important to be able to obtain high accuracies for small values 
of 𝑛 so that a large number of single trails does not have to be collected to get test results. A classifier 
labelled “CL” which is trained and tested with 𝑚-ERPs and 𝑛-ERPs, respectively, will be denoted 
by 𝑚-CL-𝑛. It is also possible to train classifiers with 𝑚-ERPs taking multiple values of 𝑚 to reduce 
overfitting and thus improve generalization. 

2.6. Probability Analyses 

In order to gain a better understanding of 𝑚-SA, this subsection focuses on answering the 
following questions: (a) what is the number of distinct 𝑚-ERPs that can be generated? (b) what is the 
probability of generating distinct 𝑚-ERPs? (c) what is the probability of generating duplicates of an 𝑚-ERPs? and (d) what is the probability of generating an ensemble consisting entirely of distinct 𝑚-
ERPs? 

2.6.1. Number of Distinct 𝑚 ERPs 

For the 𝑚 -SA method to be an effective method for generating ensembles of 𝑚 -ERPs for 
classifier design, it is important that the ensembles contain 𝑚-ERPs that are distinct (not identical). 
An 𝑚-ERP in an ensemble is defined as being distinct if no other 𝑚-ERP in the ensemble is generated 
by averaging exactly the same 𝑚 single-trials. That is, a pair of 𝑚-ERPs are distinct even if they differ 
by one single trial in the averaging operation. This issue can be investigated by first determining the 
number of distinct 𝑚-ERPs which is given by the number of combinations (order of single-trials does 
not matter in the averaging operation) of 𝑆଴ single-trials taken 𝑚 at a time. That is, the number 𝐾௠ 
of distinct 𝑚-ERPs is given by 𝐾௠ = ௌబ!(ௌబି௠)!௠! .  (9) 

2.6.2. Probability of Generating a Distinct 𝑚-ERP 

Because the distinct 𝑚 -ERPs are equally likely, the probability 𝑃௠  of a distinct 𝑚 -ERP is (1/𝐾௠). For practical values of 𝑆଴ and 𝑚, 𝐾௠ tends to be quite large. Consequently, 𝑃௠ tends to be 
quite small. For example, when 𝑆଴ =128 and 𝑚 = 8 , 𝐾଼ = 1.4297e+12 and 𝑃  = 6.9945e-13. The 
maximum number of distinct 𝑚-ERPs occurs when 𝑚 = 𝑆଴/2 for which case 𝑃௠ takes on its least 
value. Low values of 𝑃௠ are desirable to avoid generating duplicates of 𝑚-ERPs. 
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2.6.3. Probability of Generating Duplicates of 𝑚-ERPs 

The probability of generating 𝑥 duplicates of an 𝑚-ERP from 𝑅 subsamples of size 𝑚 drawn 
from an ensemble of 𝑆଴ single trials is given by the binomial probability 𝑃௠,ோ,௫ = ோ!(ோି௫)!௫! 𝑃௠௫(1 − 𝑃௠)(ோି௫).  (10) 

The probabilities of generating duplicates of 𝑚-ERPs using 𝑚-SA is extremely small which is 
beneficial in practice. For example, the probability 𝑃 ,ଵ଴଴,ଶ of obtaining 2 identical 8-ERPs from 𝑅 =100  subsamples of size 8 generated from an ensemble of 𝑆଴ = 128  single-trials is 2.4217e-21. 
Furthermore, for a fixed 𝑚 , the probability of generating identical 𝑚 -ERPs decreases as 𝑆଴  is 
increased. 

2.6.4. Probability of Generating a Distinct 𝑚-ERP ensemble 

The probability that an 𝑚-ERP ensemble generated from 𝑅 subsamples of size 𝑚 drawn from 
an ensemble of 𝑆଴ single trials is distinct is given by 𝑃௠,ோ = ௄೘!(௄೘ିோ)!(௄೘)ೃ .  (11) 

For practical values of 𝐾௠ and 𝑅, 𝑃௠,ோ tends to be high which is also a desirable property of 𝑚-SA. That is, it is very likely that all 𝑚-ERPs in the ensemble are different. For example, if 𝑆଴ =128, 𝑚 = 4, and R= 1000, then, 𝐾௠ = 10668000 and 𝑃ସ,ଵ଴଴଴ ≈ 0.9543. 
2.7. Classification Experiments 

The goal of the experiments described in this section is to demonstrate how 𝑚-SA enables the 
design of ERP classifiers and to observe the performance trends as the training and testing averaging 
parameters are varied systematically. Although m-SA can be used in conjunction with most ERP 
classifiers, classical SVM [37] and deep learning CNN classifiers [38] are selected because they are 
quite diverse from each other. Furthermore, SVMs [39-42] and CNNs [43-50] and have proven to be 
quite effective in numerous classification problems including EEG and ERP classification. The 
performance trends as functions of the averaging parameters observed from these two classifiers 
should hold for most other classifiers. 

For the purpose of this study, classifiers were designed for the ERPs of each channel 
independently. The four top-ranked channels (Cz, C2, T8, C6) as determined in [35] according to their 
interclass separations were selected from each subject to give a total of 4x5=20 data sets to design the 
classifiers. These 20 data sets are more than adequate for demonstrating the goals of this study. 
Increasing the number of channels will simply increase the already large number of tables used to 
present the results without any additional benefits. For each value of 𝑚, the number of 𝑚-ERPs 
generated for designing the classifier of each channel was equal to the number of single trials, that is, 
195/class. Five-fold cross validation was used to evaluate the performance of the classifiers. Therefore, 
the number of 𝑚 -ERPs tested for a run was (195/class)(2 classes)=390. The final classification 
accuracies were averaged over 50 runs, that is the average of testing (390)(50)=19,500 𝑚-ERPs. 

2.7.1.𝑚-. SVM-𝑛 and 𝑚-CNN-𝑛 Classifiers 

The SVM and CNN classifiers trained with 𝑚-ERPs and tested on 𝑚-ERPs will be referred to as 𝑚 -SVM- 𝑛  and 𝑚 -CNN- 𝑛 , respectively. The inputs to both classifier types were the min-max 
normalized 𝑚-ERPs. That is, no feature extraction was involved in order to analyze the performance 
independent of the choice of the feature sets. However, the same performance trends can be expected 
if features sets are used. The classifiers were implemented using the PyTorch library. Details of the 
implementations are as follows: 𝑚-SVM-𝑛 classifiers: The Gaussian radial basis function kernel was used to implement the 𝑚-
SVM-𝑛 classifiers. An exhaustive grid search was applied to select the best combinations of the 
regularization parameter 𝐶 and influence parameter 𝛾. 𝑚 -CNN-𝑛  classifiers: The architecture of the CNN classifiers consisted of a sequence of a 
convolution layer, pooling layer, convolution layer, pooling layer, and a fully connected network 
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(FCN) consisting of 3 layers of neurons. The activation functions were ReLU in the convolution layers, 
sigmoidal in the first 2 layers in the FCN, and softmax in last FCN layer. The “same” operation was 
used in the convolution layers. The dimensions of the filters in both convolution layers were filters (9 × 1) and the number of filters in both layers was 32. The pooling layer used a (2 × 1) max pooling 
filter with a stride of 2. The FCN had 1024, 256, and 2 neurons in the 3 layers. The training options 
used were: initialization = min-max, optimizer = Adam, learning rate = 0.001, number of epochs = 50, 
drop out probabilities =0.15. 

3. Results and Discussion 

The complete set of results for the 20 data sets are presented in Tables A1-A4 in Appendix A for 
combinations of 𝑚 and 𝑛 taking values 1, 4, 8, 16, and 32. The tables show the results for each of the 
4 channels selected. Each entry in the tables is an average of testing 19,500 𝑚-ERPs. Note that except 
for the case in which the training averaging parameter 𝑚 is equal to one, the testing averaging 
parameter 𝑛 takes values that are less than, equal to, and greater than 𝑚. The 1-SVM-1 and 1-CNN-
1 are single trial classifiers, that is, the classifiers trained and tested solely with single trials. These 
single trial classifiers serve as the baseline for performance comparisons with the 𝑚-SVM-𝑛 and 𝑚-
CNN-𝑛 classifiers. The averages across the 4 channels are summarized in Tables 1 and 2. That is, each 
entry in Tables 1 and 2 is the average of the 4 corresponding values in the Tables in Appendix A. The 
average accuracies across the 5 subjects are also presented in Tables 1 and 2. 

Table 1. Accuracies of the 𝑚-SVM-𝑛 classifiers averaged across the 4 channels. 

 𝒎 
 𝒏 

Subjects Subject  
Avg 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 

 
1 

1 50.90 50.39 50.74 51.05 50.89 50.79 
4 53.82 54.24 53.79 53.90 53.62 53.87 
8 56.03 56.73 57.08 56.80 56.68 56.66 

16 58.90 59.10 59.35 58.87 59.47 59.14 
32 62.04 61.95 62.70 63.53 62.89 62.62 

 
4 

1 52.77 52.27 52.54 52.85 53.36 52.76 
4 55.97 55.38 55.39 55.85 56.08 55.73 
8 59.44 59.38 60.11 59.34 59.63 59.58 

16 62.30 63.35 62.87 62.48 62.13 62.63 
32 65.52 65.96 66.34 66.03 65.85 65.94 

 
8 

1 55.30 55.06 55.15 55.36 55.80 55.33 
4 59.11 58.29 58.46 59.09 59.19 58.83 
8 62.65 62.05 63.03 63.26 63.09 62.82 

16 66.34 66.54 65.75 65.87 65.89 66.08 
32 70.04 70.24 69.86 69.65 70.00 69.96 

 
16 

1 59.42 59.73 60.00 60.14 59.18 59.69 
4 62.58 63.20 63.14 62.91 63.60 63.09 
8 66.42 66.98 66.63 65.42 66.54 66.40 

16 69.74 69.57 70.04 70.43 69.27 69.81 
32 72.70 72.58 73.22 72.51 72.15 72.63 

 
32 

1 63.35 63.13 62.84 63.90 63.74 63.39 
4 66.59 66.89 66.99 66.20 66.85 66.70 
8 70.15 70.34 69.82 69.77 69.76 69.97 

16 72.62 72.99 73.07 73.00 73.32 73.00 
32 75.97 75.65 76.24 75.70 75.73 75.86 

Table 2. Accuracies of the 𝑚-CNN-𝑛 classifiers averaged across the 4 channels. 

 𝒎 
 𝒏 

Subjects Subject  
Avg 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 

 
1 

1 70.84 67.93 70.38 69.35 69.47 69.59 
4 74.55 74.30 75.76 74.33 75.58 74.91 
8 78.47 78.45 78.42 78.73 78.49 78.51 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2023                   doi:10.20944/preprints202307.1022.v1

https://doi.org/10.20944/preprints202307.1022.v1


 10 

 

16 81.69 82.55 82.52 82.01 82.24 82.20 
32 84.75 85.81 84.95 84.79 84.78 85.02 

 
4 

1 75.31 74.65 75.19 75.27 75.05 75.10 
4 79.25 79.81 79.59 79.45 80.77 79.77 
8 81.71 82.56 81.81 82.54 83.19 82.36 

16 85.15 84.90 84.46 85.36 85.10 84.99 
32 88.36 87.91 88.91 88.86 87.68 88.34 

 
8 

1 78.81 78.92 78.46 78.72 78.67 78.71 
4 82.11 82.14 83.34 81.76 82.05 82.28 
8 85.96 85.33 86.73 86.45 85.55 86.00 

16 88.60 88.72 89.58 89.04 88.97 88.98 
32 91.65 91.86 91.36 91.24 91.38 91.50 

 
16 

1 81.77 81.15 82.02 83.11 81.70 81.95 
4 84.39 85.86 85.81 85.73 85.33 85.43 
8 89.04 89.34 89.41 87.92 89.01 88.94 

16 92.67 91.98 92.55 92.48 91.74 92.28 
32 95.34 94.76 94.72 94.35 94.70 94.77 

 
32 

1 85.20 85.34 86.32 85.70 86.54 85.82 
4 88.78 88.59 88.18 89.36 89.90 88.96 
8 93.21 92.30 92.83 93.39 92.59 92.87 

16 95.68 95.55 95.41 95.61 95.39 95.53 
32 98.21 98.04 97.87 96.92 97.57 97.72 

3.1. Discussion 

It is of interest to analyze the trends in the tables in Appendix A as well as Tables 1 and 2. It is 
clear that the 𝑚-SVM-𝑛 and 𝑚-CNN-𝑛 classifiers outperform the 1-SVM-1 and 1-CNN-1 baseline 
single trial classifiers, respectively. The 𝑚-SVM-𝑛 and 𝑚-CNN-𝑛 results in the tables in Appendix 
A show that: 
(a) for a fixed 𝑚, the accuracies increase when 𝑛 is increased (across the rows of each channel), 
(b) for a given 𝑛 the accuracies increase when 𝑚 is increased (along the columns of each channel), 
(c) the accuracies increase when 𝑚 and 𝑛 and are increased together (across the diagonals of each 
channel), and 
(d) for the same increases in 𝑚 and 𝑛, the improvements in classification accuracies are larger for 
smaller values of 𝑚 and 𝑛. 

To facilitate trend analyses, Figures 5 and 6 show bar graphs of the subject averages of the 𝑚-
SVM-𝑛 and 𝑚-CNN-𝑛 classifiers, that is, the last columns of Tables 1 and 2. The first bar in each 
figure depicts the accuracy of the baseline single trial classifier. The error bars represent +/-1 standard 
error of the mean. The improvement trends in the accuracies as 𝑛 is increased can be observed within 
each sub-bar graph and the improvements as 𝑚 is increased is observed across the sub-bar graphs. 
The two tables and bar graphs also reveal the diminishing improvements in the classification 
accuracies for higher 𝑚 and 𝑛 values. The CNN classifiers outperform SVM classifiers, however, 
the key point to note is that the performance trends of both types of classifiers are remarkably similar. 
Most importantly, the results indicate that high classification accuracies can be obtained using small 
values of 𝑚 and 𝑛. That is, 𝑚-SA can be used to design ERP classifiers using small subsampled ERPs 
from a practical sized single trial ensemble. 
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Figure 5. The classification accuracies of the 𝑚-SVM-𝑛 classifiers averaged across the 5 subjects. 

 

Figure 6. The classification accuracies of the 𝑚-CNN-𝑛 classifiers averaged across the 5 subjects. 

4. Conclusions 

Previous studies have empirically shown that 𝑚-subsample averaging is an effective method 
for facilitating the design of ERP classifiers. This study focused on analyzing 𝑚-SA to have a better 
understanding of the properties of subsample averaging that support its suitability for ERP classifier 
design. The analyses showed that (a) the SNR improves by increasing the averaging parameter 𝑚, 
(b) the inter-class separation increases by increasing 𝑚, (c) a large number of distinct 𝑚-ERPs can be 
generated by 𝑚-SA, (d) the probability of generating a distinct 𝑚-ERP is small, (e) the probability of 
generating duplicates of 𝑚 -ERPs is small, and (f) the probability of generating an ensemble 
consisting of distinct 𝑚 -ERPs is high. These analyses results offer important insights into the 
favorability of 𝑚-SA for ERP classifier design. The extensive set of classification experiments showed 
that the 𝑚-SVM-𝑛 and 𝑚-CNN-𝑛 classifiers outperformed the baseline single trial classifiers and 
most importantly, confirmed that high classification accuracies can be obtained using small-average 𝑚-ERPs generated from practical sized single trial ensembles. Consequently, prohibitively large 
numbers of single trials do not have to be collected in practice for the design and deployment of ERP 
classifiers in numerous applications related to brain activity research and clinical applications. 
Finally, it must be emphasized that 𝑚-SA is not restricted to SVM and CNN classifiers and can be 
used in conjunction with most ERP classifiers. Furthermore, although 𝑚-SA is specifically developed 
for ERP classification, it can be exploited to improve the performance in other signal classification 
problems where repeated time-locked trials can be collected or where repeated trials can be 
synchronized prior to averaging. 
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Appendix A 

Table A1. Accuracies of the 𝑚-SVM-𝑛 classifiers for channels Cz and C2. 

  Channel Cz Channel C2 

 𝒎 
 𝒏 

Subjects Subjects 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 

 
1 

1 50.77 50.39 51.11 52.19 50.68 51.63 50.00 51.43 50.00 51.25 
4 54.83 54.86 54.21 54.62 53.69 53.26 53.62 54.47 53.07 54.53 
8 57.18 58.28 57.88 58.05 57.24 56.76 56.53 56.96 56.78 57.59 

16 60.73 61.06 60.58 60.54 61.04 59.30 58.65 58.48 59.99 59.10 
32 63.20 63.73 63.64 63.48 64.32 62.85 62.20 62.58 63.41 62.49 

 
4 

1 53.15 52.31 52.16 52.54 52.50 52.31 51.54 52.23 52.31 52.31 
4 56.61 55.68 55.89 56.77 55.64 55.66 55.17 55.84 55.40 55.74 
8 59.69 58.46 59.85 58.79 58.28 58.06 58.18 59.43 59.56 59.67 

16 62.65 62.61 62.30 61.15 62.98 62.10 62.27 62.47 62.09 61.30 
32 66.54 65.85 66.08 66.60 65.45 65.53 65.54 66.77 66.68 66.48 

 
8 

1 56.11 54.66 56.41 55.05 56.62 55.73 55.96 55.11 56.96 55.67 
4 60.80 59.34 59.92 60.44 60.91 58.91 57.85 58.27 58.55 58.27 
8 63.27 63.32 64.91 65.34 63.39 62.89 60.60 62.64 62.07 63.89 

16 67.22 68.85 66.15 65.70 66.25 65.67 65.42 66.49 65.79 66.96 
32 71.98 70.77 69.53 70.20 70.00 69.51 68.76 69.71 69.93 68.48 

 
16 

1 60.76 59.99 59.89 60.03 59.74 60.33 60.53 60.69 61.56 60.24 
4 63.89 64.55 64.84 60.22 64.05 63.33 63.68 63.13 65.24 63.51 
8 67.42 66.45 66.81 67.45 66.34 66.67 67.63 67.51 66.17 66.73 

16 70.04 71.15 70.85 71.79 70.12 70.76 69.48 69.84 71.93 68.63 
32 73.12 72.86 73.61 73.56 71.34 73.01 73.16 74.47 73.06 72.43 

 
32 

1 63.60 62.20 61.82 61.73 63.30 63.31 64.69 63.75 65.33 65.08 
4 67.06 66.94 67.11 65.08 67.00 66.92 67.56 67.93 67.08 66.33 
8 70.36 71.53 70.68 70.33 70.58 70.45 69.20 70.96 69.77 69.49 

16 74.27 73.05 74.92 73.38 74.34 72.09 73.70 73.25 72.94 73.62 
32 76.26 76.61 76.33 78.00 76.57 75.78 75.37 76.37 75.28 75.30 

Table A2. Accuracies of the 𝑚-SVM-𝑛 classifiers for channels T8 and C6. 

  Channel T8 Channel C6 

 𝒎 
 𝒏 

Subjects Subjects 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 

 
1 

1 50.68 50.77 50.42 51.57 51.63 50.51 50.39 50.00 50.43 50.00 
4 54.88 54.83 53.94 54.20 54.12 52.31 53.65 52.53 53.69 52.14 
8 56.12 57.12 57.74 57.76 56.99 54.08 55.01 55.75 54.63 54.90 

16 58.33 59.71 59.38 58.42 59.88 57.26 57.00 58.94 56.53 57.88 
32 61.41 61.24 63.74 66.19 64.22 60.72 60.62 60.84 61.02 60.52 

 
4 

1 52.70 52.31 52.23 53.41 53.74 52.92 52.94 53.53 53.13 54.88 
4 56.26 56.00 55.70 55.99 56.85 55.35 54.65 54.12 55.24 56.11 
8 61.40 62.05 61.61 60.30 61.80 58.62 58.84 59.55 58.69 58.78 

16 64.26 66.42 64.26 64.97 63.55 60.18 62.10 62.43 61.69 60.69 
32 66.19 67.22 67.24 66.12 67.24 63.82 65.24 65.29 64.73 64.23 
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8 

1 54.46 55.20 54.66 55.19 55.28 54.87 54.42 54.44 54.25 55.62 
4 57.89 58.14 56.70 58.89 57.89 58.84 57.84 58.94 58.48 59.70 
8 63.85 63.70 63.84 65.08 63.29 60.58 60.59 60.72 60.54 61.78 

16 66.85 66.70 65.84 67.08 66.29 65.62 65.20 64.53 64.91 64.05 
32 69.61 70.36 71.43 69.77 71.95 69.08 71.06 68.75 68.70 69.58 

 
16 

1 58.08 59.32 59.70 59.08 58.79 58.51 59.09 59.73 59.89 57.94 
4 62.77 63.52 63.40 65.17 65.88 60.34 61.05 61.18 61.02 60.97 
8 66.36 68.81 68.68 65.21 67.95 65.23 65.02 63.51 62.86 65.16 

16 69.15 68.36 70.30 70.73 70.19 68.99 69.30 69.16 67.27 68.14 
32 72.47 73.44 73.22 72.31 73.21 72.19 70.86 71.57 71.11 71.62 

 
32 

1 63.72 62.67 63.56 65.08 63.59 62.78 62.97 62.22 63.46 63.00 
4 66.36 66.45 66.55 68.71 67.98 66.00 66.62 66.38 63.93 66.12 
8 69.45 69.96 68.06 69.54 68.35 70.35 70.69 69.58 69.43 70.62 

16 71.15 73.22 72.19 72.88 72.89 72.98 72.00 71.92 72.80 72.44 
32 75.63 75.52 75.27 73.04 74.38 76.22 75.08 76.97 76.45 76.65 

Table A3. Accuracies of the 𝑚-CNN-𝑛 classifiers for channels Cz and C2. 

  Channel Cz Channel C2 

 𝒎 
 𝒏 

Subjects Subjects 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 

 
1 

1 72.66 70.63 73.66 70.63 71.56 71.56 69.53 72.69 71.92 70.39 
4 74.40 73.81 76.89 72.31 76.35 78.46 76.54 76.72 77.69 76.25 
8 78.13 79.22 79.69 82.34 81.88 79.23 80.31 79.23 79.31 77.69 

16 82.33 82.42 82.57 82.67 84.48 81.21 82.72 83.91 83.95 81.25 
32 85.44 85.74 85.94 85.44 86.73 85.67 86.82 85.79 84.29 83.94 

 
4 

1 75.81 77.66 77.69 74.88 76.09 76.15 75.39 76.29 76.54 75.00 
4 79.05 81.15 80.79 78.08 80.44 81.04 80.19 80.67 80.41 82.10 
8 82.47 82.95 81.16 81.83 83.00 83.02 84.05 83.52 82.36 83.32 

16 86.15 85.66 85.86 87.06 87.27 85.11 85.62 84.14 83.44 85.30 
32 89.08 88.40 89.71 90.58 89.59 88.51 89.20 89.94 90.56 89.20 

 
8 

1 80.92 81.76 80.75 79.62 82.89 80.73 78.53 80.89 78.44 78.47 
4 83.61 83.47 85.82 82.35 84.09 83.19 81.95 83.08 81.58 81.09 
8 86.82 86.55 87.21 88.92 85.16 87.86 85.73 86.78 87.03 85.73 

16 90.23 89.59 90.25 91.12 89.35 90.68 91.03 91.59 90.30 89.74 
32 93.66 92.83 92.23 93.25 92.66 92.61 93.93 93.61 92.48 90.62 

 
16 

1 82.62 83.97 83.44 86.15 85.08 82.95 82.36 83.08 83.42 81.43 
4 85.47 86.34 85.47 88.48 86.74 85.65 86.68 88.18 87.31 86.76 
8 90.92 90.83 91.13 89.52 90.77 91.53 90.64 93.03 90.24 90.63 

16 93.98 91.90 93.24 91.68 92.62 94.19 93.94 94.73 95.47 94.20 
32 96.83 95.89 94.84 94.70 95.31 96.22 96.00 95.60 96.66 96.01 

 
32 

1 86.56 85.94 85.94 88.25 88.56 85.18 84.95 86.12 84.37 85.62 
4 88.85 88.46 87.31 89.46 91.81 88.26 86.27 88.26 88.16 88.41 
8 93.56 93.54 93.46 93.47 92.92 93.85 90.15 93.48 92.68 91.22 

16 96.82 96.65 95.87 95.50 96.24 95.49 93.95 96.71 94.32 95.07 
32 97.90 98.13 97.78 98.04 98.13 98.74 97.43 99.73 96.40 97.96 

Table A4. Accuracies of the 𝑚-CNN-𝑛 classifiers for channels T8 and C6. 

  Channel T8 Channel C6 

 𝒎 
 𝒏 

Subjects Subjects 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 𝑩𝟏 𝑩𝟐 𝑩𝟑 𝑩𝟒 𝑩𝟓 
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1 

1 69.53 67.34 66.72 65.47 67.97 69.62 64.23 68.44 69.38 67.97 
4 73.13 74.15 74.78 74.00 74.14 72.22 72.71 74.65 73.32 75.59 
8 78.14 77.05 76.33 76.87 77.59 78.37 77.24 78.42 76.39 76.78 

16 80.23 82.09 81.34 80.70 80.84 82.98 82.95 82.25 80.74 82.39 
32 83.62 85.70 83.87 83.65 84.42 84.29 84.97 84.22 85.77 84.05 

 
4 

1 75.50 73.08 72.83 74.26 74.56 73.78 72.50 73.96 75.41 74.54 
4 78.21 78.29 78.35 81.19 81.77 78.71 79.59 78.54 78.12 78.76 
8 80.15 82.69 81.72 81.81 82.44 81.20 80.54 80.85 84.19 83.99 

16 84.57 83.94 82.61 85.13 83.40 84.79 84.37 85.23 85.82 84.41 
32 87.86 85.73 86.78 87.03 85.73 87.98 88.33 89.19 87.25 86.19 

 
8 

1 76.35 76.92 77.19 78.35 76.18 77.23 78.46 75.00 78.46 77.15 
4 80.37 80.03 81.69 82.62 82.49 81.26 83.09 82.79 80.50 80.52 
8 85.62 84.44 86.74 84.75 85.06 83.52 84.58 86.19 85.11 86.23 

16 88.20 88.15 90.16 89.08 89.57 85.31 86.11 86.31 85.66 87.22 
32 90.11 91.33 91.24 91.33 91.46 90.23 89.35 88.35 87.89 90.79 

 
16 

1 80.56 79.32 80.62 81.00 80.33 80.96 78.94 80.94 81.88 79.95 
4 83.80 84.69 84.10 84.16 83.22 82.65 85.74 85.49 82.98 84.60 
8 86.03 88.01 85.91 85.26 88.07 87.68 87.86 87.57 86.68 86.56 

16 91.02 91.54 92.80 90.78 90.24 91.47 90.52 89.42 91.99 89.90 
32 94.61 94.42 93.55 92.57 92.10 93.68 92.74 94.90 93.48 95.37 

 
32 

1 84.42 84.45 87.14 85.17 86.41 84.64 86.04 86.10 85.00 85.57 
4 88.05 88.37 88.23 90.67 87.93 89.97 91.26 88.92 89.14 91.44 
8 92.61 92.15 92.91 93.50 92.83 92.83 93.38 91.48 93.92 93.39 

16 95.17 95.51 94.82 96.92 95.90 95.23 96.09 94.25 95.72 94.36 
32 98.37 98.69 98.08 97.17 96.51 97.82 97.92 95.90 96.08 97.69 
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