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Abstract: Event-related potentials (ERPs) are estimated by averaging time-locked single trial
electroencephalography (EEG) signals in response to specific events or stimuli. Classifying ERPs accurately is
a challenge because (a) single trials have poor signal-to-noise-ratios (SNRs) and (b) it is difficult to collect large
single trial ensembles to generate high SNR ERPs for classifier training and testing. The m-subsample
averaging (m-SA) strategy which generates small-sample ERPs by repeated averaging of a small number of
single trials drawn without replacement, has been proposed as a solution to the two problems. An ERP formed
by averaging m single trials is referred to as an m-ERP where m is referred to as the averaging parameter. In
this study, we conduct thorough analyses of m-SA and focus on issues not addressed in previous studies to
better understand the beneficial properties of m-SA and to further support its application for ERP
classification. Specifically, we (a) analyze the improvement in SNR as a function of m using the mean-root-
mean-square SNR and visual analyses of m-ERP plots with confidence intervals, (b) analyze the improvement
in interclass separation as a function of m, (c) determine how the SNR and interclass separation analyses can
help to select the averaging parameter m, (d) determine the number of distinct m-ERPs that can be drawn
from a single-trial ensemble, and (e) determine several probabilities related to the generation of distinct m-
ERPs. Furthermore, an extensive set of experiments are designed to analyze the performance of support vector
machine and convolution neural network classifiers employing m-SA with various combinations of the
averaging parameters used for generating the training and test sets. The results confirm that ERPs can be
classified accurately using small subsample averaging. Most importantly, it is concluded that m-SA can be
deployed in practice to accurately classify ERPs in brain activity research and in clinical applications without
having to collect a prohibitively large number of single trials.

Keywords: ERP classification; single trial averaging; interclass separation; convolution neural
networks; support vector machines

1. Introduction

Event-related potentials (ERPS), which are the brain responses to specific sensory, cognitive, or
motor events [1-4], are widely used to diagnose neurological disorders in clinical evaluations [5-11]
and to study brain functioning in neuroscience and cognitive psychology research [12-19]. The
response to an event, referred to as a single trial, is modeled as the additive superposition of the ERP
(signal of interest) and the ongoing electroencephalogram (EEG) activity (noise). The ERP is not
discernible in the single trial because it is much smaller than the EEG in which it is embedded. That
is, the signal-to-noise ratio (SNR) of single trials is poor. The standard method for improving the SNR
is through averaging multiple single trials acquired through repeated presentations of the same
stimulus [20-26]. Including more single trials in the average is expected to lead to better SNR
improvements, therefore, it is not unusual in practice to attempt collecting hundreds of single trials
to generate a single ERP. However, collecting a large number of single trials from participants is
problematic because they have trouble paying attention to the tasks, become restless, and experience
fatigue during lengthy experiments. As a result, the noise level in the single trials increases and the
SNR decreases even further. An interesting study [27] explored the effect of the number of trials on
statistical power and asked the following question: how many trials does it take to get a significant
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ERP effect? It was determined that there is no simple answer to the question but recommended that
the sample size, the anticipated effect magnitude, and the noise level should be considered. The study
also offered two practical conclusions. First, unless power is near floor or ceiling, increasing the
number of trials almost always produces appreciable increases in power. Second, the extent to which
power can be increased by increasing the number of trials appears to be greater in within-participant
designs than in between-groups designs.

In this study related to ERP classifier design, we pose a similar question: how many single trials
are needed to design a practical ERP classifier yielding acceptable classification accuracies? The term
“design” encompasses the training and testing operations which require training and test sets. It is
impossible to train and test an ERP classifier if all single trials are used to generate a single ERP.
Furthermore, it would be impractical to collect an enormously large number of single trials to
generate large ensembles of high SNR ERPs to form training and test sets. The most obvious solution
is to use single trails directly, without averaging, as attempted in the design of customized brain
computer interfaces (BCls) which are typically controlled by the presentation of a single stimulus,
that is, by single trials [28-33]. In general, irrespective of the application, high classification accuracies
cannot be expected with single trials due to the poor SNR. Classifying ERPs accurately, therefore, is
a challenge primarily because (a) single trials have poor SNRs and (b) it is difficult to collect large
single trial ensembles in practice to generate high SNR ERP ensembles for classifier training and
testing. The question as to how many single trials are needed to design ERP classifiers can be
rephrased as: is it possible to design high accuracy ERP classifiers from a practical-sized single trial
ensemble? We have proposed subsample averaging as answer to the rephrased question and
demonstrated, empirically, that it facilitates the design of ERP classifiers [34,35]. Since detailed
analyses of subsample averaging are the main focus of this study, a concise description of the
procedure is presented next.

1.1. Subsample Averaging

The method to generate subsample ERPs is called m-Subsample Averaging (m-SA) in which m,
referred to as the averaging parameter, is the subsample size [34,35]. The goal of m-SA is to enable
the design of ERP classifiers that yield high accuracies for small values of m so that a large number
of single-trials do not have to be collected for classifier design. Given a single trial ensemble of size
So, m-SA generates subsample ERP ensembles for classifier design by:

(a) Drawing a random subsample of single trials, without replacement, of size m, m < S,.
(b) Averaging the m single trials to obtain a subsample ERP which is called an m-ERP.
(c) Replacing the m single trials of the subsample into the single trial ensemble.

(d) Repeating steps (a)—(c) q times to generate an ensemble of S, m-ERPs.

Steps (a)—(d) are repeated Q times toyield Q m-ERP ensembles, each of size Sg. The generation
of each ensemble is referred to as a “run.”. For each run, the single trial ensemble is first randomly
partitioned into a training set and a test set to prevent the same single trials being used in both sets.
The m-ERPs of the training and test sets are generated independently from the single trials in their
respective sets. The m-ERP ensembles of each channel are generated from the single trials of the
corresponding channel. A large number of m-ERPs can be generated by m-SA for ERP classifier
design from a practical sized single trial ensemble. Furthermore, m-SA is highly flexible and can be
used to generate large m-ERP ensembles for customized classifier design for individual subjects as
well as group-based classifier design involving multiple subjects [35]. For convenience, single trials
are referred to as 1-ERPs.

1.2. Aim of the Study

The aim of this study is to conduct detailed analyses of m-SA to answer the following important
questions not addressed in the previous studies:
(a) What is the relationship between the SNR and the averaging parameter m? This question will be
answered with the help of the ERP averaging model. The SNR will be analyzed as a function of m
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objectively using the mean-root-mean-square SNR and subjectively by comparing plots of m-ERPs
with the full sample ERP. The 95% confidence intervals (Cls) will be included in the plots to compare
the variations within the generated m-ERPs against the variations within the single trials.
(b) What is the relationship between the interclass separation and the averaging parameter m? A
measure of the interclass separation will be analyzed as a function of m to answer this question. The
interclass separation will be plotted for various values of m to observe how the measure is affected
by increasing m. Furthermore, an example involving 2-dimensional Gaussian clusters will be used
to illustrate the improvements that can be expected by increasing m.
(c) How can the SNR and interclass separation analyses conducted in (a) and (b) help with the
selection of the averaging parameter m?
(d) What is the number of distinct m-ERPs that can be drawn from a single-trial ensemble?
Combinatorial analyses will be conducted to develop a relationship between m and the number of
distinct m-ERPs that can be generated by m-SA.
(e) Given an ensemble of 1-ERPs, what is the probability of generating (a) a distinct m-ERP, (b)
duplicates of an m-ERP, and (c) an ensemble of distinct m-ERPs? Through probability analyses,
relationships will be derived to determine these probabilities as functions of m.

The answers to the above set of questions will offer valuable insights into the properties of m-
SA and support the suitability of m-SA for ERP classifier design. In addition, a set of experiments are
designed to systematically analyze the performance trends as a function of the averaging parameters
used for generating the training and test sets and to show the improvements over single trial
classification. An appearance of some overlap of this study with our two previous studies described
in [34,35] is inevitable because m-SA is employed in those studies simply to facilitate classifier design.
Furthermore, the ERP data used are the same as in the previous studies. Consequently, some issues
related to the development of m-SA, description of the ERP data, and related terminology will
overlap. However, the goals of this study are totally different from those of the previous studies
which focused on exploiting the cone-of-influence of the continuous wavelet transform for the
development of unichannel and multidomain ERP classifiers. Most importantly, none of the analyses
related questions listed above are covered in the previous studies or in other reported studies.

2. Methods

In this section we (a) describe the single-trial data used in this study, (b) analyze the variability
of m-ERP as a function of m using plots with confidence intervals (c) analyze the SNR as a function
of m using the mean-root-mean-square SNR, (d) analyze the interclass separation as a function of
m, (e) determine several probabilities related to the generation of distinct m-ERPs, and (f) describe
the experiments using SVM and CNN classifiers to evaluate classifier performance as a function of
various combinations of the averaging parameters used for training and testing.

2.1. Single trial data

The EEG/ERP data used in this study, which was also used in the two previous studies [34,35],
was downloaded from:
https://eeglab.org/tutorials/10_Group_analysis/study_creation.html#description-of-the-5-subject-
experiment-tutorial-data (accessed on May 1, 2023).

This binary data set was selected because it is compact and serves the purpose of demonstrating
the aims outlined in Section 1.2. Complete details of the data can be found on the listed website and
the details of the single trials extracted from the EEG can be found in [34]. Details of the single trial
data pertinent to this study are:

Task: Auditory binary semantic task requiring subjects to distinguish between synonymous and non-
synonymous word pairs.

Number of ERP classes: Two (synonymous, non-synonymous).

Number of subjects: 5.

Number of channels: 64.

Sampling rate: 200 Hz; Single trial duration: 1 s; Number of samples in single trials: 200
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Number of single trials for each subject: 195 synonymous and 195 non-synonymous.

2.2. Visual Analyses of m-ERPs

The most straightforward way to analyze real subsample m-ERPs is to compare them
subjectively with the full sample ERPs through visual examination. The full sample ERP estimated
by averaging all S, single trials will be referred to as the gold standard ERP (GS-ERP). To avoid
cluttering plots with S, m-ERPs, the mean of the m-ERPs, referred to as the mean m-ERP (Mm-ERP)
is plotted together with the GS-ERP. Figure 1 shows examples of GS-ERPs estimated from a single
trial ensemble of size S, = 195 and the Mm-ERPs determined from the 195 m-ERPs generated using
m-SA for m= 8, 16, 32, 64, 128. The GS-ERP and Mm-ERPs are displayed in red and green,
respectively. The plots also contain the superimposed 95% Cls to reflect the variations across the S,
1-ERPs and S, m-ERPs. The CIs of the GS-ERP and Mm-ERPs are shaded in light red and green,
respectively. The plots show that (a) the similarity between the Mm-ERPs and GS-ERPs increases
when m is increased and (b) the variations in the m-ERPs decrease when m is increased.

4 4 4
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Figure 1. GS-ERPs (red) and Mm-ERPs (green) (a) m=1; (b) m=1 and m=8; (¢) m=1 and m=16; (d)
m=1 and m=32; (e) m=1 and m=64; (f) m=1 and m=128. The 95% ClIs of the 1-ERPs and m-ERPs are
shaded in light red and green, respectively.

2.3. SNR Analyses

The improvement in the SNRs of m-ERPs generated by m-SA can be determined by first
considering the following model most often used to describe the brain’s response to an external
stimulus or event [20-26]:

g=f+n @

in which, g is the single trial recording, f is the stimulus induced signal of interest, and 7 is
the ongoing EEG (noise). In this signal plus noise model, it is assumed that f is deterministic, f and
n are independent, and 71 is zero-mean with variance o?. An m-ERP is the signal formed by
averaging m time-locked single trials in the 1-ERP ensemble which is given by

Im = A/m) XL (f + 1), (2)
=1/mXL, f+A/m)ELin. (3)

That is,
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Im =f + M, (4)

where 7, is the average of the m single trial EEGs in g,,. It follows that
Elgn] =f and  (5)

1

Var(gm] = (=) o2 (6)

where E[.] and Var[.] are the expectation and variance operators, respectively. That is, the variance
of the zero-mean noise in g,, decreases by a factor of m resulting in an improvement in the SNR.
Furthermore, because the E[gn] = f, gm approaches f as the number of single trials m in the
averaging process increases.

Given an ensemble of m-ERPs, the improvement in the SNR as a function of m can be measured
objectively using the mean-root-mean-square SNR which is denoted by ®,, and is given by
1/2

, (7)

o = |1y 221 [Gas(@)?
M [Sq FO=EE 6650~ 6m w (@)

where, Q is the duration of the ERPs, S, is the number of m-ERPs generated, Ggs(q) represents the
gold standard ERP, and G, ,(q) represents the w'® m-ERP. @, was computed for the m-ERPs
using the 1-ERP ensemble that was used to generate the plots in Figure 1. Note the unequal spacings
of the x-axis tick values in Figure 1 and in the figures to follow. The results, presented in Figure 2 for
m=1,8,16,32,64, and 128, confirm that &, increases when m is increased.

15.0

120

6.0

3.0

m

Figure 2. The mean-root-mean square SNR &, as a function of m. ®,=3.14, ®4=8.39, ®,=11.84,
<D32=12.9, ¢64:13'6/ CD128:14.36

.2.4. Interclass separation Analyses

Interclass separation measures are useful for determining the separation between a pair of
clusters in feature space. Clusters with high interclass separations are generally easier to classify thus
facilitating classifiers design. If Gy, and G,,, are the m-ERPs of the feature clusters belonging to
classes x and y, respectively, and dg(4, B) is the Euclidean distance between vectors A and B in
feature space, the inter-class separation between the x and y clusters of the m-ERPs can be
measured by

dg( Gxm ,Gym)
- 2(C - —, ®
(1/Nx) Zi.2; Ae(Gm ko Gem)+ (1/Ny) X 21 dE(Gym k. Gym)
where, Gymy and Gy, are the k™ m-ERPs in the respective ensembles; G,,, and G,,, are the

Peyym =

cluster means; and N, and N, are the number of m-ERPs in the x and y m-ERP ensembles,
respectively. The numerator in Equation (8) is the Euclidean distance between the cluster centroids
and the denominator is the total compactness because each term in the denominator is a measure of
the respective cluster compactness.
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Figure 3 shows a plot of the interclass separation as a function of m using the 2-class single trials
of channel O2 of the first subject. It is clear that p(y,), increases because the denominator of
Equation (8) decreases when m increases. Although the analyses have focused only on a single trial
ensemble of one channel collected from a single subject, similar results can be expected from the
single-trial ensembles across subjects and across channels.

8.5

P(xyym

1.5

m

Figure 3. Interclass separation as a function of m. puy)1 =173, Puys =59, Pryye =
6.81,0(x3)32 = 7-25, Pxyrea = 774, P(xy)128 = 8.14

Further insights into the increase in the inter-class separation as m is increased can be
demonstrated by using a toy dataset consisting of clusters of two-dimensional feature vectors instead
of real high-dimensional ERP clusters which cannot be visualized in feature space. The conclusions
drawn from the demonstration can be generalized to higher dimensional clusters, including ERP
clusters. Figure 4(a) illustrates two 100-point clusters drawn from two bivariate Gaussian
distributions with different means and identical covariance matrices of the form o?I where g2 is
the variance of each feature and I is the identity matrix. That is, the features are statistically
independent. The features vectors in the two clusters are regarded as the original single-trial 1-ERP
training vectors belonging to two classes. Figures 4(b) to 4(d) show examples of 100-point m-ERP
clusters, generated from the original clusters using m-SA, for m =2, 4, and 8. The vectors in the
resulting clusters are regarded as m-ERPs generated from the single trial vectors. It will be assumed
that the a priori probabilities of the two classes are equal. For the choice of cluster parameters with
equal prior class probabilities, the Bayes optimal classifier reduces to the nearest mean classifier [36]
whose decision boundary is the perpendicular bisector (solid green line) of the line joining the two
means (green dashed line). The linear SVM classifier is also specifically chosen for this illustration
because it can be used to elegantly demonstrate the effects of m-SA on the decision boundaries as a
function of m. Each figure shows the cluster means (black filled circles), support vectors (black
circles), SVM margins (black dashed lines), and the SVM decision boundary (solid black line). The
following conclusions can be drawn from the figures: when m is increased, the (a) the inter-class
scatter separation increases due to the increase in the cluster compactness, (b) the width of the SVM
margins increase, and (c) the SVM decision boundary approaches the optimal decision boundary.
Based on these conclusions, it can be expected that classification accuracies will, in general, increase
as the subsampling parameter m is increased. Furthermore, classifier complexity is reduced because
the shrinking of the clusters makes them more easily separable when m is increased.

m=1 ) m=2
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(a) (b) (c) (d)

Figure 4. Illustration of the interclass separation and decision boundaries as a function of m (a)
single-trial clusters (b) 2-ERP clusters (c) 4-ERP clusters (d) 8-ERP clusters.

2.5. Selection of the Averaging Parameter

An important question that must be addressed is the selection of the averaging parameter m for
classifier design. The results from the SNR and interclass separation analyses can help provide
answers to the question. It is clear from Figure 2 and Figure 3 that increasing m will improve the
SNR and increase the interclass separation, respectively, which should in turn improve the classifier
performance. However, it is also clear from Figures 1 and 4 that the variations decrease in the m-
ERPs and the shapes of the clusters are not preserved as m is increased, respectively. As a result, the
risk of overfitting increases especially for non-linearly separable clusters which can have adverse
effects on the classifier performance. Therefore, the selection of m involves a tradeoff between
improving SNR and interclass separation against the risk of overfitting. Other factors influencing the
selection of m include the size of the single-trial ensemble S, the SNRs of the single trials, and the
number of m-ERPs needed in the training and test sets. An empirical approach using a validation set
can be used in practice to determine the smallest value of m that yields the desired level of
performance for a particular classification problem.

The averaging parameter does not have to be the same for the training and test sets, that is, the
classifier can be trained with m-ERPs and tested on n-ERPs. Although it is desirable to keep both m
and n small in practice, it is especially important to be able to obtain high accuracies for small values
of n so that a large number of single trails does not have to be collected to get test results. A classifier
labelled “CL” which is trained and tested with m-ERPs and n-ERPs, respectively, will be denoted
by m-CL-n. It is also possible to train classifiers with m-ERPs taking multiple values of m to reduce
overfitting and thus improve generalization.

2.6. Probability Analyses

In order to gain a better understanding of m-SA, this subsection focuses on answering the
following questions: (a) what is the number of distinct m-ERPs that can be generated? (b) what is the
probability of generating distinct m-ERPs? (c) what is the probability of generating duplicates of an
m-ERPs? and (d) what is the probability of generating an ensemble consisting entirely of distinct m-
ERPs?

2.6.1. Number of Distinct m ERPs

For the m-SA method to be an effective method for generating ensembles of m-ERPs for
classifier design, it is important that the ensembles contain m-ERPs that are distinct (not identical).
An m-ERP in an ensemble is defined as being distinct if no other m-ERP in the ensemble is generated
by averaging exactly the same m single-trials. Thatis, a pair of m-ERPs are distinct even if they differ
by one single trial in the averaging operation. This issue can be investigated by first determining the
number of distinct m-ERPs which is given by the number of combinations (order of single-trials does
not matter in the averaging operation) of S, single-trials taken m at a time. That is, the number K,

of distinct m-ERPs is given by
S!

Kin = (So—m)'m! ©)

2.6.2. Probability of Generating a Distinct m-ERP

Because the distinct m-ERPs are equally likely, the probability P, of a distinct m-ERP is
(1/Ky,). For practical values of S, and m, K,,, tends to be quite large. Consequently, P, tends to be
quite small. For example, when S, =128 and m =8, Kg = 1.4297e+12 and Pg = 6.9945e-13. The
maximum number of distinct m-ERPs occurs when m = S,/2 for which case B, takes on its least
value. Low values of P,, are desirable to avoid generating duplicates of m-ERPs.
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2.6.3. Probability of Generating Duplicates of m-ERPs

The probability of generating x duplicates of an m-ERP from R subsamples of size m drawn

from an ensemble of S, single trials is given by the binomial probability

R! -
Prrx = mpmx(l - Pm)(R ), (10)

The probabilities of generating duplicates of m-ERPs using m-SA is extremely small which is
beneficial in practice. For example, the probability Pgi90, of obtaining 2 identical 8-ERPs from R =
100 subsamples of size 8 generated from an ensemble of S, = 128 single-trials is 2.4217e-21.
Furthermore, for a fixed m, the probability of generating identical m-ERPs decreases as S, is
increased.

2.6.4. Probability of Generating a Distinct m-ERP ensemble

The probability that an m-ERP ensemble generated from R subsamples of size m drawn from
an ensemble of S, single trials is distinct is given by

Km!
Gmrrim® - D

For practical values of K, and R, P, tends to be high which is also a desirable property of
m-SA. That is, it is very likely that all m-ERPs in the ensemble are different. For example, if S, =128,

m = 4, and R= 1000, then, K,,, = 10668000 and P, 1990 =~ 0.9543.

Ppr =

2.7. Classification Experiments

The goal of the experiments described in this section is to demonstrate how m-SA enables the
design of ERP classifiers and to observe the performance trends as the training and testing averaging
parameters are varied systematically. Although m-SA can be used in conjunction with most ERP
classifiers, classical SVM [37] and deep learning CNN classifiers [38] are selected because they are
quite diverse from each other. Furthermore, SVMs [39-42] and CNNs [43-50] and have proven to be
quite effective in numerous classification problems including EEG and ERP classification. The
performance trends as functions of the averaging parameters observed from these two classifiers
should hold for most other classifiers.

For the purpose of this study, classifiers were designed for the ERPs of each channel
independently. The four top-ranked channels (Cz, C2, T8, C6) as determined in [35] according to their
interclass separations were selected from each subject to give a total of 4x5=20 data sets to design the
classifiers. These 20 data sets are more than adequate for demonstrating the goals of this study.
Increasing the number of channels will simply increase the already large number of tables used to
present the results without any additional benefits. For each value of m, the number of m-ERPs
generated for designing the classifier of each channel was equal to the number of single trials, that is,
195/class. Five-fold cross validation was used to evaluate the performance of the classifiers. Therefore,
the number of m-ERPs tested for a run was (195/class)(2 classes)=390. The final classification
accuracies were averaged over 50 runs, that is the average of testing (390)(50)=19,500 m-ERPs.

2.7.1.m-. SVM-n and m-CNN-n Classifiers

The SVM and CNN classifiers trained with m-ERPs and tested on m-ERPs will be referred to as
m-SVM-n and m-CNN-n, respectively. The inputs to both classifier types were the min-max
normalized m-ERPs. That is, no feature extraction was involved in order to analyze the performance
independent of the choice of the feature sets. However, the same performance trends can be expected
if features sets are used. The classifiers were implemented using the PyTorch library. Details of the
implementations are as follows:

m-SVM-n classifiers: The Gaussian radial basis function kernel was used to implement the m-
SVM-n classifiers. An exhaustive grid search was applied to select the best combinations of the
regularization parameter C and influence parameter y.

m-CNN-n classifiers: The architecture of the CNN classifiers consisted of a sequence of a
convolution layer, pooling layer, convolution layer, pooling layer, and a fully connected network
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(FCN) consisting of 3 layers of neurons. The activation functions were ReLU in the convolution layers,
sigmoidal in the first 2 layers in the FCN, and softmax in last FCN layer. The “same” operation was
used in the convolution layers. The dimensions of the filters in both convolution layers were filters
(9 X 1) and the number of filters in both layers was 32. The pooling layer used a (2 X 1) max pooling
filter with a stride of 2. The FCN had 1024, 256, and 2 neurons in the 3 layers. The training options
used were: initialization = min-max, optimizer = Adam, learning rate = 0.001, number of epochs = 50,
drop out probabilities =0.15.

3. Results and Discussion

The complete set of results for the 20 data sets are presented in Tables A1-A4 in Appendix A for
combinations of m and n taking values 1, 4, 8, 16, and 32. The tables show the results for each of the
4 channels selected. Each entry in the tables is an average of testing 19,500 m-ERPs. Note that except
for the case in which the training averaging parameter m is equal to one, the testing averaging
parameter n takes values that are less than, equal to, and greater than m. The 1-SVM-1 and 1-CNN-
1 are single trial classifiers, that is, the classifiers trained and tested solely with single trials. These
single trial classifiers serve as the baseline for performance comparisons with the m-SVM-n and m-
CNN-n classifiers. The averages across the 4 channels are summarized in Tables 1 and 2. That is, each
entry in Tables 1 and 2 is the average of the 4 corresponding values in the Tables in Appendix A. The
average accuracies across the 5 subjects are also presented in Tables 1 and 2.

Table 1. Accuracies of the m-SVM-n classifiers averaged across the 4 channels.

Subjects Subject
m n B, B, B, B, B Avg
1 5090 5039 50.74  51.05 50.89 50.79
4 53.82 5424 5379  53.90 53.62 53.87
| 8 56.03 56.73 57.08  56.80 56.68 56.66
16 5890 59.10 5935  58.87 59.47 59.14
32 62.04 6195 6270 63.53 62.89 62.62
1 5277 5227 5254 52.85 53.36 52.76
4 5597 5538 5539  55.85 56.08 55.73
4 8 5944 5938 60.11 59.34 59.63 59.58
16 6230 6335 6287 6248 62.13 62.63
32 65.52 6596 6634  66.03 65.85 65.94
1 5530 55.06 55.15 5536 55.80 55.33
4 59.11 5829 5846  59.09 59.19 58.83
3 8 62.65 62.05 63.03 63.26 63.09 62.82
16 66.34  66.54 6575  65.87 65.89 66.08
32 70.04 7024  69.86  69.65 70.00 69.96
1 5942  59.73  60.00 60.14 59.18 59.69
4 62.58 63.20 63.14 62091 63.60 63.09
16 8 6642 6698  66.63  65.42 66.54 66.40
16 69.74  69.57 70.04 70.43 69.27 69.81
32 7270 72,58 7322 7251 72.15 72.63
1 6335 63.13  62.84 63.90 63.74 63.39
4 66.59  66.89 6699  66.20 66.85 66.70
32 8 70.15 7034 69.82  69.77 69.76 69.97
16 72.62 7299 73.07  73.00 73.32 73.00
32 7597 75.65 7624  75.70 75.73 75.86

Table 2. Accuracies of the m-CNN-n classifiers averaged across the 4 channels.

Subjects Subject
m n Bl BZ B3 B4 BS AVg
1 70.84 6793 7038  69.35 69.47 69.59
1 4 74.55 7430 75776  74.33 75.58 74.91
8 7847 7845 7842  78.73 78.49 78.51
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16 81.69  82.55 8252  82.01 82.24 82.20
32 84.75 85.81 8495 84.79 84.78 85.02
1 7531  74.65 7519 7527 75.05 75.10
4 79.25  79.81 79.59  79.45 80.77 79.77
4 8 81.71  82.56 81.81 82.54 83.19 82.36
16 85.15 8490 84.46 8536 85.10 84.99
32 88.36 8791 8891  88.86 87.68 88.34
1 78.81 7892 7846  78.72 78.67 78.71
4 82.11 82.14 8334 81.76 82.05 82.28
3 8 8596 8533 86.73 86.45 85.55 86.00
16 88.60  88.72  89.58  89.04 88.97 88.98
32 91.65 9186 9136 91.24 91.38 91.50
1 81.77 81.15 82.02 83.11 81.70 81.95
4 8439 85.86 85.81 85.73 85.33 85.43
16 8 89.04 89.34 8941 8792 89.01 88.94
16 92.67 9198 9255 9248 91.74 92.28
32 9534 9476 9472 94.35 94.70 94.77
1 8520 8534 8632 85.70 86.54 85.82
4 88.78  88.59  88.18  89.36 89.90 88.96
3 8 9321 9230 9283 9339 92.59 92.87
16 95.68 95.55 9541  95.61 95.39 95.53
32 98.21 98.04 97.87  96.92 97.57 97.72

3.1. Discussion

It is of interest to analyze the trends in the tables in Appendix A as well as Tables 1 and 2. It is
clear that the m-SVM-n and m-CNN-n classifiers outperform the 1-SVM-1 and 1-CNN-1 baseline
single trial classifiers, respectively. The m-SVM-n and m-CNN-n results in the tables in Appendix
A show that:

(a) for a fixed m, the accuracies increase when n is increased (across the rows of each channel),

(b) for a given n the accuracies increase when m is increased (along the columns of each channel),
(c) the accuracies increase when m and n and are increased together (across the diagonals of each
channel), and

(d) for the same increases in m and n, the improvements in classification accuracies are larger for
smaller values of m and n.

To facilitate trend analyses, Figures 5 and 6 show bar graphs of the subject averages of the m-
SVM-n and m-CNN-n classifiers, that is, the last columns of Tables 1 and 2. The first bar in each
figure depicts the accuracy of the baseline single trial classifier. The error bars represent +/-1 standard
error of the mean. The improvement trends in the accuracies as n is increased can be observed within
each sub-bar graph and the improvements as m is increased is observed across the sub-bar graphs.
The two tables and bar graphs also reveal the diminishing improvements in the classification
accuracies for higher m and n values. The CNN classifiers outperform SVM classifiers, however,
the key point to note is that the performance trends of both types of classifiers are remarkably similar.
Most importantly, the results indicate that high classification accuracies can be obtained using small
values of m and n.Thatis, m-SA can be used to design ERP classifiers using small subsampled ERPs
from a practical sized single trial ensemble.
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Figure 5. The classification accuracies of the m-SVM-n classifiers averaged across the 5 subjects.
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Figure 6. The classification accuracies of the m-CNN-n classifiers averaged across the 5 subjects.

4. Conclusions

Previous studies have empirically shown that m-subsample averaging is an effective method
for facilitating the design of ERP classifiers. This study focused on analyzing m-SA to have a better
understanding of the properties of subsample averaging that support its suitability for ERP classifier
design. The analyses showed that (a) the SNR improves by increasing the averaging parameter m,
(b) the inter-class separation increases by increasing m, (c) a large number of distinct m-ERPs can be
generated by m-SA, (d) the probability of generating a distinct m-ERP is small, (e) the probability of
generating duplicates of m-ERPs is small, and (f) the probability of generating an ensemble
consisting of distinct m-ERPs is high. These analyses results offer important insights into the
favorability of m-SA for ERP classifier design. The extensive set of classification experiments showed
that the m-SVM-n and m-CNN-n classifiers outperformed the baseline single trial classifiers and
most importantly, confirmed that high classification accuracies can be obtained using small-average
m-ERPs generated from practical sized single trial ensembles. Consequently, prohibitively large
numbers of single trials do not have to be collected in practice for the design and deployment of ERP
classifiers in numerous applications related to brain activity research and clinical applications.
Finally, it must be emphasized that m-SA is not restricted to SVM and CNN classifiers and can be
used in conjunction with most ERP classifiers. Furthermore, although m-SA is specifically developed
for ERP classification, it can be exploited to improve the performance in other signal classification
problems where repeated time-locked trials can be collected or where repeated trials can be
synchronized prior to averaging.
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Appendix A

Table Al. Accuracies of the m-SVM-n classifiers for channels Cz and C2.

Channel Cz Channel C2
Subjects Subjects

m n B, B, B, B, B B, B, B; B, B
1 50.77 50.39 51.11 5219 50.68 51.63 50.00 51.43 50.00 51.25
4 54.83 54.86 5421 54.62 53.69 5326 53.62 5447 53.07 54.53
1 8 57.18 5828 57.88 58.05 5724 56.76 56.53 56.96 56.78 57.59
16 60.73 61.06 60.58 6054 61.04 5930 58.65 58.48 59.99 59.10
32 63.20 63.73 63.64 6348 6432 6285 6220 6258 63.41 6249
1 53.15 5231 5216 5254 5250 5231 51.54 5223 5231 52.31
4 56.61 55.68 55.89 56.77 55.64 55.66 55.17 55.84 55.40 55.74
4 8 59.69 58.46 59.85 58.79 5828 58.06 58.18 59.43 59.56 59.67
16 62.65 62.61 6230 61.15 6298 6210 6227 6247 62.09 61.30
32 66.54 65.85 66.08 66.60 6545 65.53 65.54 66.77 66.68 66.48
1 56.11 54.66 56.41 55.05 56.62 55.73 5596 b55.11 56.96 55.67
4 60.80 59.34 59.92 6044 60.91 5891 57.85 5827 5855 58.27
8 8 63.27 63.32 6491 65.34 6339 62.89 60.60 62.64 62.07 63.89
16 6722 68.85 66.15 65.70 6625 65.67 65.42 66.49 65.79 66.96
32 7198 70.77 6953 7020 70.00 69.51 68.76 69.71 69.93 68.48
1 60.76 59.99 59.89 60.03 59.74 60.33 6053 60.69 61.56 60.24
4 63.89 6455 64.84 60.22 64.05 6333 63.68 63.13 65.24 63.51
16 8 67.42 66.45 66.81 6745 6634 66.67 67.63 6751 66.17 66.73
16 70.04 7115 7085 7179 7012 70.76 69.48 69.84 7193 68.63
32 73.12 72.86 73.61 7356 7134 7301 73.16 7447 73.06 72.43
1 63.60 6220 61.82 61.73 6330 6331 64.69 63.75 65.33 65.08
4 67.06 66.94 67.11 65.08 67.00 66.92 6756 6793 67.08 66.33
3 8 70.36 7153 70.68 7033  70.58 7045 69.20 70.96 69.77 69.49
16 7427 73.05 7492 7338 7434 72.09 73.70 7325 7294 73.62
32 7626 76.61 7633 7800 76,57 7578 7537 7637 7528 75.30

Table A2. Accuracies of the m-SVM-n classifiers for channels T8 and Cé6.
Channel T8 Channel Cé6
Subjects Subjects

m n B4 B, B; B, B B, B, B, B, B
1 50.68 50.77 5042 5157 51.63 50.51 50.39 50.00 50.43 50.00
4 54.88 54.83 5394 5420 54.12 5231 53.65 5253 53.69 52.14
1 8 56.12 57.12 57.74 5776 5699 54.08 55.01 55.75 54.63 54.90
16 58.33 59.71 59.38 5842 59.88 57.26 57.00 58.94 56.53 57.88
32 6141 6124 63.74 6619 6422 60.72 60.62 60.84 61.02 60.52
1 52.70 52.31 5223 5341 5374 5292 5294 5353 53.13 54.88
4 56.26 56.00 55.70 5599 56.85 55.35 54.65 54.12 55.24 56.11
4 8 61.40 62.05 61.61 60.30 61.80 58.62 58.84 59.55 58.69 58.78
16 64.26 66.42 6426 6497 6355 60.18 6210 6243 61.69 60.69
32 66.19 67.22 6724 66.12 6724 6382 6524 6529 64.73 64.23
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1 5446 55.20 54.66 55.19 5528 54.87 54.42 5444 5425 55.62
4 57.89 58.14 56.70 58.89 5789 58.84 57.84 5894 58.48 59.70
8 8 63.85 63.70 63.84 65.08 63.29 60.58 60.59 60.72 60.54 61.78
16 66.85 66.70 65.84 67.08 66.29 65.62 65.20 64.53 6491 64.05
32 69.61 7036 7143 69.77 7195 69.08 71.06 68.75 68.70 69.58
1 58.08 59.32 59.70 59.08 5879 5851 59.09 59.73 59.89 57.94
4 62.77 6352 6340 65.17 65.88 60.34 61.05 61.18 61.02 60.97
16 8 66.36 68.81 68.68 65.21 67.95 65.23 65.02 6351 62.86 65.16
16 69.15 68.36 7030 70.73  70.19 68.99 6930 69.16 67.27 68.14
32 7247 7344 7322 7231 73.21 7219 7086 7157 7111 71.62
1 63.72 62.67 63.56 65.08 63.59 62.78 6297 6222 63.46 63.00
4 66.36 66.45 66.55 68.71 67.98 66.00 66.62 66.38 63.93 66.12
3 8 6945 6996 68.06 6954  68.35 7035 70.69 69.58 69.43 70.62
16 7115 7322 7219 7288  72.89 7298 72.00 71.92 72.80 72.44
32 75.63 7552 7527 73.04 74.38 76.22 75.08 76.97 76.45 76.65
Table A3. Accuracies of the m-CNN-n classifiers for channels Cz and C2.
Channel Cz Channel C2
Subjects Subjects
m n B, B, B, B, B B, B, B, B, B
1 72.66 70.63 73.66 70.63 7156 7156 69.53 72.69 7192 70.39
4 7440 7381 76.89 7231 76.35 7846 7654 76.72 77.69 76.25
1 8 7813 79.22 79.69 8234  81.88 79.23 80.31 79.23 79.31 77.69
16 82.33 8242 8257 8267 8448 81.21 82.72 83.91 8395 81.25
32 85.44 85.74 8594 8544  86.73 85.67 86.82 85.79 84.29 83.94
1 75.81 77.66 77.69 7488  76.09 76.15 75.39 76.29 7654 75.00
4 79.05 81.15 80.79 78.08 80.44 81.04 80.19 80.67 80.41 82.10
4 8 8247 8295 81.16 81.83 83.00 83.02 84.05 83.52 8236 83.32
16 86.15 85.66 85.86 87.06 8727 8511 85.62 84.14 83.44 85.30
32 89.08 88.40 89.71 90.58  89.59 88.51 89.20 89.94 90.56 89.20
1 8092 81.76 80.75 79.62 8289 80.73 7853 80.89 7844 7847
4 83.61 8347 8582 8235 84.09 83.19 8195 83.08 81.58 81.09
3 8 86.82 86.55 87.21 8892 8516 87.86 85.73 86.78 87.03 85.73
16 90.23 89.59 90.25 91.12 8935 90.68 91.03 91.59 90.30 89.74
32 93.66 92.83 9223 9325 9266 92.61 9393 93.61 9248 90.62
1 82.62 8397 8344 86.15 85.08 8295 8236 83.08 8342 8143
4 8547 86.34 8547 8848 86.74 85.65 86.68 88.18 87.31 86.76
16 8 9092 90.83 91.13 8952 90.77 9153 90.64 93.03 90.24 90.63
16 9398 91.90 9324 91.68 9262 9419 9394 9473 9547 94.20
32 96.83 95.89 94.84 9470 9531 96.22 96.00 95.60 96.66 96.01
1 86.56 8594 8594 8825 8856 85.18 8495 86.12 84.37 85.62
4 88.85 88.46 87.31 89.46  91.81 88.26 86.27 88.26 88.16 88.41
3 8 93.56 9354 9346 9347 9292 93.85 90.15 9348 92.68 91.22
16 96.82 96.65 95.87 9550 9624 9549 9395 96.71 94.32 95.07
32 9790 98.13 97.78 98.04 98.13 9874 9743 99.73 96.40 97.96
Table A4. Accuracies of the m-CNN-n classifiers for channels T8 and C6.
Channel T8 Channel Cé6
Subjects Subjects
m n B, B, B; B, B B, B, B, B, B
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1 69.53 6734 66.72 6547 6797 69.62 6423 6844 69.38 67.97
7313 7415 7478 7400 7414 7222 7271 74.65 7332 75.59
8 7814 7705 7633 7687 7759 7837 7724 7842 7639 76.78

1 16 80.23 82.09 8134 80.70 80.84 8298 8295 82.25 80.74 82.39

32 83.62 85.70 83.87 83.65 84.42 8429 8497 8422 85.77 84.05

1 7550 73.08 7283 7426 7456 73.78 7250 7396 7541 74.54

7821 7829 7835 8119 8177 7871 7959 7854 7812 78.76

4 8 80.15 82.69 81.72 81.81 8244 8120 80.54 80.85 84.19 83.99

16 8457 8394 8261 8513 8340 84.79 84.37 8523 8582 84.41

32 87.86 85.73 86.78 87.03 8573 8798 88.33 89.19 87.25 86.19

1 7635 7692 7719 7835 7618 7723 7846 75.00 7846 77.15

80.37 80.03 81.69 8262 8249 8126 83.09 82.79 80.50 80.52

8 8 85.62 8444 8674 8475 85.06 8352 8458 86.19 85.11 86.23

16 88.20 88.15 90.16 89.08 89.57 8531 86.11 86.31 85.66 87.22

32 90.11 91.33 9124 9133 9146 90.23 89.35 88.35 87.89 90.79

1 80.56 79.32 80.62 81.00 80.33 80.96 7894 80.94 81.88 79.95

83.80 84.69 84.10 8416 8322 82.65 8574 8549 8298 84.60

16 8 86.03 88.01 8591 85.26 88.07 87.68 87.86 87.57 86.68 86.56

16 91.02 9154 9280 90.78 9024 91.47 9052 89.42 91.99 89.90

32 9461 9442 9355 9257 9210 93.68 92.74 9490 93.48 95.37

1 8442 8445 8714 85.17 86.41 84.64 86.04 86.10 85.00 85.57

88.05 88.37 8823 90.67 8793 89.97 9126 8892 89.14 91.44

0 8 9261 9215 9291 93,50 9283 92.83 93.38 9148 93.92 93.39

16 95.17 95,51 94.82 9692 9590 9523 96.09 94.25 95.72 94.36

32 98.37 98.69 98.08 97.17 9651 97.82 9792 9590 96.08 97.69
References

1.  Blackwood, D. H. R., and Walter J. Muir. “Cognitive brain potentials and their application.” The British
Journal of Psychiatry 157, no. S9 (1990): 96-101.

2. Coles, Michael GH, and Michael D. Rugg. Event-related brain potentials: An introduction. Oxford
University Press, 1995.

3. Handy, Todd C,, ed. Event-related potentials: A methods handbook. MIT press, 2005

4. Luck, Steven J. An introduction to the event-related potential technique. MIT press, 2014.

5. Sur, Shravani, and Vinod Kumar Sinha. “Event-related potential: An overview.” Industrial psychiatry
journal 18, no. 1 (2009): 70.

6.  Verleger, Rolf. “Alterations of ERP components in neurodegenerative diseases.” The Oxford handbook of
event-related potential components (2012).

7. Landa, Leos, Zdenek Krpoun, Martina Kolarova, and Tomas Kasparek. “Event-related potentials and their
applications.” Activitas Nervosa Superior 56 (2014): 17-23.

8.  Seer, Caroline, Florian Lange, Sebastian Loens, Florian Wegner, Christoph Schrader, Dirk Dressler,
Reinhard Dengler, and Bruno Kopp. “Dopaminergic modulation of performance monitoring in Parkinson’s
disease: An event-related potential study.” Scientific Reports 7, no. 1 (2017): 41222.

9.  Sowndhararajan, Kandhasamy, Minju Kim, Ponnuvel Deepa, Se Jin Park, and Songmun Kim. “Application
of the P300 event-related potential in the diagnosis of epilepsy disorder: a review.” Scientia pharmaceutica
86, no. 2 (2018): 10.

10. Hajcak, Greg, Julia Klawohn, and Alexandria Meyer. “The utility of event-related potentials in clinical
psychology.” Annual review of clinical psychology 15 (2019): 71-95.

11. Rokos, Alexander, Richard Mah, Rober Boshra, Amabilis Harrison, Tsee Leng Choy, Stefanie Blain-Moraes,
and John F. Connolly. “Eliciting and recording Event Related Potentials (ERPs) in behaviourally
unresponsive populations: a retrospective commentary on critical factors.” Brain Sciences 11, no. 7 (2021):
835.


https://doi.org/10.20944/preprints202307.1022.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2023 do0i:10.20944/preprints202307.1022.v1

15

12.  Coles, Michael GH, and Michael D. Rugg, eds. Electrophysiology of Mind: Event-related brain potentials
and Cognition. Oxford University Press, 1996.

13. Hillyard, Steven A., and Lourdes Anllo-Vento. “Event-related brain potentials in the study of visual
selective attention.” Proceedings of the National Academy of Sciences 95, no. 3 (1998): 781-787.

14. Picton, Terence W., S. Bentin, P. Berg, Emanuel Donchin, S. A. Hillyard, R. Johnson, G. A. Miller et al.
“Guidelines for using human event-related potentials to study cognition: recording standards and
publication criteria.” Psychophysiology 37, no. 2 (2000): 127-152.

15. Rugg, Michael D., and Tim Curran. “Event-related potentials and recognition memory.” Trends in
cognitive sciences 11, no. 6 (2007): 251-257.

16. Luck, Steven ]., and Emily S. Kappenman. “ERP components and selective attention.” The Oxford
handbook of event-related potential components (2012): 295-327.

17. Woodman, Geoffrey F. “A brief introduction to the use of event-related potentials in studies of perception
and attention.” Attention, Perception, & Psychophysics 72 (2010): 2031-2046.

18. Gupta, Resh S., Autumn Kujawa, and David R. Vago. “A preliminary investigation of ERP components of
attentional bias in anxious adults using temporospatial principal component analysis.” Journal of
psychophysiology (2021).

19. Vurdah, Nydia, Julie Vidal, and Arnaud Viarouge. “Event-Related Potentials Reveal the Impact of Conflict
Strength in a Numerical Stroop Paradigm.” Brain Sciences 13, no. 4 (2023): 586.

20. Woody, Charles D. “Characterization of an adaptive filter for the analysis of variable latency neuroelectric
signals.” Medical and biological engineering 5 (1967): 539-554.

21. Wastell, D. G. “Statistical detection of individual evoked responses: an evaluation of Woody’s adaptive
filter.” Electroencephalography and Clinical Neurophysiology 42, no. 6 (1977): 835-839.

22.  Moducks, Joachim, Walter Kouhler, Theo Gasser, and Dinh Tuan Pham. “Novel approaches to the problem
of latency jitter.” Psychophysiology 25, no. 2 (1988): 217-226.

23. Aunon, Jorge I, Clare D. McGillem, and Donald G. Childers. “Signal processing in evoked potential
research: averaging and modeling.” Critical reviews in bioengineering 5, no. 4 (1981): 323-367.

24. McGillem, Clare D., Jorge I. Aunon, and Carlos A. Pomalaza. “Improved waveform estimation procedures
for event-related potentials.” IEEE transactions on biomedical engineering 6 (1985): 371-379.

25.  Gevins, Alan S., Nelson H. Morgan, Steven L. Bressler, Joseph C. Doyle, and Brian A. Cutillo. “Improved
event-related potential estimation using statistical pattern classification.” Electroencephalography and
clinical neurophysiology 64, no. 2 (1986): 177-186.

26. Gupta, Lalit, Dennis L. Molfese, Ravi Tammana, and Panagiotis G. Simos. “Nonlinear alignment and
averaging for estimating the evoked potential.” IEEE transactions on biomedical engineering 43, no. 4
(1996): 348-356.

27. Boudewyn, Megan A., Steven J. Luck, Jaclyn L. Farrens, and Emily S. Kappenman. “How many trials does
it take to get a significant ERP effect? It depends.” Psychophysiology 55, no. 6 (2018): e13049.

28. Jochumsen, Mads, Hendrik Knoche, Troels Wesenberg Kjaer, Birthe Dinesen, and Preben Kidmose. “EEG
headset evaluation for detection of single-trial movement intention for brain-computer interfaces.” Sensors
20, no. 10 (2020): 2804.

29. Wirth, Christopher, Jake Toth, and Mahnaz Arvaneh. ““You Have Reached Your Destination”: A Single
Trial EEG Classification Study.” Frontiers in neuroscience 14 (2020): 66.

30. Chailloux Peguero, Juan David, Omar Mendoza-Montoya, and Javier M. Antelis. “Single-option P300-BCI
performance is affected by visual stimulation conditions.” Sensors 20, no. 24 (2020): 7198.

31. De Venuto, Daniela, and Giovanni Mezzina. “A single-trial P300 detector based on symbolized EEG and
autoencoded-(1D) CNN to improve ITR performance in BCIs.” Sensors 21, no. 12 (2021): 3961.

32. Leoni, Jessica, Silvia Carla Strada, Mara Tanelli, Alessandra Brusa, and Alice Mado Proverbio. “Single-trial
stimuli classification from detected P300 for augmented Brain-Computer Interface: A deep learning
approach.” Machine Learning with Applications 9 (2022): 100393

33. Fernandez-Rodriguez, Alvaro, Ricardo Ron-Angevin, Francisco Velasco-Alvarez, Jaime Diaz-Pineda,
Théodore Letouzé, and Jean-Marc André. “Evaluation of Single-Trial Classification to Control a Visual
ERP-BCI under a Situation Awareness Scenario.” Brain Sciences 13, no. 6 (2023): 886.

34. Chen, Xiaoqgian, Resh S. Gupta, and Lalit Gupta. “Exploiting the Cone of Influence for Improving the
Performance of Wavelet Transform-Based Models for ERP/EEG Classification.” Brain Sciences 13, no. 1
(2022): 21.


https://doi.org/10.20944/preprints202307.1022.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 July 2023 do0i:10.20944/preprints202307.1022.v1

16

35. Chen, Xiaoqian, Resh S. Gupta, and Lalit Gupta. “Multidomain Convolution Neural Network Models for
Improved Event-Related Potential Classification.” Sensors 23, no. 10 (2023): 4656.

36. Hart, Peter E., David G. Stork, and Richard O. Duda. Pattern classification. Hoboken: Wiley, 2000.

37. Cortes, Corinna, and Vladimir Vapnik. “Support-vector networks.” Machine learning 20 (1995): 273-297.

38. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” nature 521, no. 7553 (2015): 436-444.

39. Stewart, Andrew X., Antje Nuthmann, and Guido Sanguinetti. “Single-trial classification of EEG in a visual
object task using ICA and machine learning.” Journal of neuroscience methods 228 (2014): 1-14.

40. Parvar, Hossein, Lauren Sculthorpe-Petley, Jason Satel, Rober Boshra, Ryan CN D’Arcy, and Thomas P.
Trappenberg. “Detection of event-related potentials in individual subjects using support vector machines.”
Brain informatics 2, no. 1 (2015): 1-12.

41. Yasoda, K, R. S. Ponmagal, K. S. Bhuvaneshwari, and K. Venkatachalam. “Automatic detection and
classification of EEG artifacts using fuzzy kernel SVM and wavelet ICA (WICA).” Soft Computing 24
(2020): 16011-16019.

42. Buriro, Abdul Baseer, Bilal Ahmed, Gulsher Baloch, Junaid Ahmed, Reza Shoorangiz, Stephen J. Weddell,
and Richard D. Jones. “Classification of alcoholic EEG signals using wavelet scattering transform-based
features.” Computers in biology and medicine 139 (2021): 104969.

43. Lawhern, Vernon ]., Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gordon, Chou P. Hung, and
Brent ]. Lance. “EEGNet: a compact convolutional neural network for EEG-based brain—computer
interfaces.” Journal of neural engineering 15, no. 5 (2018): 056013.

44. Khan, Aisha, Jee Eun Sung, and Je-Won Kang. “Multi-channel fusion convolutional neural network to
classify syntactic anomaly from language-related ERP components.” Information Fusion 52 (2019): 53-61.

45. Lee, Hyeon Kyu, and Young-Seok Choi. “Application of continuous wavelet transform and convolutional
neural network in decoding motor imagery brain-computer interface.” Entropy 21, no. 12 (2019): 1199.

46. Craik, Alexander, Yongtian He, and Jose L. Contreras-Vidal. “Deep learning for electroencephalogram
(EEG) classification tasks: a review.” Journal of neural engineering 16, no. 3 (2019): 031001.

47. Santamaria-Vazquez, Eduardo, Victor Martinez-Cagigal, Fernando Vaquerizo-Villar, and Roberto
Hornero. “EEG-inception: a novel deep convolutional neural network for assistive ERP-based brain-
computer interfaces.” IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, no. 12
(2020): 2773-2782.

48. Liu, Tianjun, and Deling Yang. “A three-branch 3D convolutional neural network for EEG-based different
hand movement stages classification.” Scientific Reports 11, no. 1 (2021): 10758.

49. Zang, Boyu, Yanfei Lin, Zhiwen Liu, and Xiaorong Gao. “A deep learning method for single-trial EEG
classification in RSVP task based on spatiotemporal features of ERPs.” Journal of Neural Engineering 18,
no. 4 (2021): 0460c8.

50. Liang, Xinbin, Yaru Liu, Yang Yu, Kaixuan Liu, Yadong Liu, and Zongtan Zhou. “Convolutional Neural
Network with a Topographic Representation Module for EEG-Based Brain—Computer Interfaces.” Brain
Sciences 13, no. 2 (2023): 268.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202307.1022.v1

