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Abstract: Metagenomic analysis of mosquitoes allows the genetic characterization of mosquito-associated
viruses in different regions of the world. This study applied the metagenomic approach to search for novel
viral sequences in seven species of mosquitoes collected from the Novosibirsk region of Western Siberia. Using
NGS sequencing, we identified 15 coding-complete viral polyproteins (genomes) and 15 viral-like partial
sequences in mosquitoes. The complete sequences for novel viruses or partial sequences of capsid proteins,
hypothetical viral proteins, and RdRp were used to identify their taxonomy. The novel viral sequences were
classified within the orders Tymouvirales and Picornavirales, the families Partitiviridae, Totiviridae, Tombusviridae,
Iflaviridae, Nodaviridae, Permutotetraviridae, Solemoviridae, with several attributed to four unclassified RNA-
viruses. The main part of the novel putative viruses and viral sequences was associated with Coquillettidia
richardii mosquito. This study is intended to increase our understanding of viral diversity in mosquitoes found
in the natural habitats of Siberia, characterized by very long, snowy, and cold winters.
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1. Introduction

Mosquitoes are well known to transmit numerous arboviruses causing viral infections in
animals and humans, such as West Nile virus (WNV), Zika, Japanese encephalitis, Chikungunya, and
dengue viruses [1-4]. In recent years, the development of metagenomic approaches has led to the
discovery of many novel viruses in invertebrates [5-10]. Studying the viromes of different species of
mosquitoes has revealed new viruses referred to as Insect-Specific Viruses (ISVs). The viral
interference within the ISV group and pathogenic viruses may dramatically change the viral
biodiversity in mosquitoes and thereby predetermine the transmission of pathogenic viruses by
mosquitoes to animals and humans [11-16]. These are viruses belonging to Peribunyaviridae,
Flaviviridae, Reoviridae, and Togaviridae families, with all of them being a potential source of viral
biodiversity for viruses with dual tropism for invertebrate and vertebrate hosts [7,17,18].

Comparing mosquito viromes from different geographical regions revealed their biodiversity,
providing new insights into the phylogeography of mosquito-borne viruses [5,6,19,20]. Generally,
such studies are conducted in countries characterized by warm or tropical climates, such as China,
Australia, Mozambique, and the USA, where mosquito-borne viral infections are not uncommon.
Sindbis, Inco, and West Nile viruses are usually detected and isolated from mosquitoes in the
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southern regions of Russia [21,22]. No systemic information is available for Western Siberia, where it
is also possible for mosquito-borne viruses to circulate. This region has a continental climate with
long winters and short summers that may limit the biodiversity of mosquito species and mosquito-
associated viruses. Only several studies have reported the detection of WNV markers in birds and
human cases of West Nile fever in Western Siberia [22,23].

In this study, we sought to investigate the biodiversity of mosquito-borne viruses from different
mosquito species collected in Western Siberia using metagenomic approaches.

2. Materials and Methods

2.1. Mosquito samples

For the study, 3.910 mosquitoes were collected in the Novosibirsk region during the spring-
summer period of 2017-2018. The collection sites were selected in typical mosquito habitats in
Western Siberia (Figure 1.): deciduous and mixed forests with well-developed grassy cover,
deforestations with a natural resumption of hardwoods, and stream banks. The mosquitoes were
collected wusing a light trap [https://survinat.ru/2011/09/metodika-sborov-xraneniya-i-izucheniya-
komarov/]. The capture was conducted after sunset. The mosquitoes were transported in a thermal
bag, on a damp napkin, at a temperature of 4°C and stored at minus 18-24°C. The fragments of the
16S rRNA and COI gene of the mitogenome were sequenced to determine the mosquito species [11].
The pools of 1040 mosquitoes were formed using the data on mosquito species and the time of
collection.
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Figure 1. The place where mosquitoes were collected for the study, with the upper picture showing

the world and the lower showing the Novosibirsk region.
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2.2. Sample preparation

All the mosquitoes were washed in 70% ethanol and then twice in water, followed by
homogenization to remove potential surface microorganisms. The homogenization of the samples
was performed mechanically by grinding in a mortar with 300 pl of sterile saline. The homogenates
were centrifuged at 8,000 g for 5 minutes at 4°C, and the supernatants were used for the analysis. The
total RNA was extracted using Extract RNA reagent (Eurogen, Russia) according to the
manufacturer's protocol and purified on Cleanup Mini spin columns (Eurogen, Russia). The pools
were then processed by benzonaze [24]. The first chain of cDNA was synthesized using the NEBNext
Ultra Direction module. The second cDNA chain was synthesized using the UMI Second Strand
Synthesis module (Illumina, Lexogen).

2.3. NGS sequencing and phylogenetic analysis

The dsDNA libraries were prepared and analyzed by NGS on MiSeq using the Illumina
technology. Cutadapt (version 1.18) and SAMtools (version 0.1.18) were used to remove Illumina
adapters and re-read. The contigs were assembled de novo using the MIRA assembly (version 4.9.6).
The experimentally determined sequences were deposited in GenBank. The phylogenetic analysis
was performed using RNA-dependent RNA polymerase (RdRp) sequences from GenBank with
amino acid identity > 20%. The sequences were aligned, and phylogenetic trees were built in Vector
NTI Advance 11, MEGA 7/10 (PSU, USA), and Lasergen 7 (Invitrogen). The resulting viral sequences
and sequence read archive (SRA) were deposited in GenBank. The phylogenetic trees were calculated
by the maximum likelihood method using 500 replicates for bootstraps values.

3. Results

3.1. Mosquito species

A total of 3,910 mosquitoes were collected in the Novosibirsk suburbs and Novosibirsk region
rural district in 2017-2018. The pools of 10-40 mosquitoes were formed to identify the mosquito
species for every collection point. The fragments of the 165 rRNA and COI gene of the mitogenome
were sequenced to determine the species of mosquitoes (Figure 2). Aedes caspius (Pallas, 1771) and Ae.
mariae (Sergent and Sergent, 1903) were found to be the most abundant species, making up to 41.2%
of the total. Anopheles messeae (Falleroni, 1926) accounted for 34.6%, Culex pipiens (Linnaeus, 1758) for
8.3%, Coquillettidia richardii (Ficalbi, 1889) for 5.5%, C. modestus (Ficalbi, 1889) for 4.8%, An.
maculipennis (Meigen, 1818), and An. sinensis (Wiedemann, 1828) for 2.8%.
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Figure 2. Histogram of mosquito species collected in the south of Western Siberia (Novosibirsk
region).

3.2. NGS sequencing

One hundred forty-four putative viral sequences were selected in the first step, and of these, 30
sequences with lengths greater than 1239 bp were chosen. Eight sequences with a level of identity >
80% aa) have been previously described as mosquito-borne viruses (Table 1). These are Partitivirus-
like 1 (dsRNA, Partitiviridae), Hammarskog tombus-like virus (ssRNA (+), Tombusviridae),
Hammarskog picorna-like virus (ssRNA (+), Picornavirales, unclassified), Lymantria dispar iflavirus
1 (ssRNA (+) viruses, Iflavirus), Wenzhou noda-like virus 6 (ssRNA (+) viruses, unclassified),
Mayapan virus (ssRNA (+), 2 segments, Sanxia permutotetra-like virus 1 (ssRNA (+) viruses,
unclassified), Chaq virus-like 1 (RNA viruses, unclassified). Other 22 viral sequences are presented
as putative mosquito-borne sequences, with a level of identity less than 79% for viral prototype
sequences.

The proportions for classified and unclassified viral reads are presented for 13 mosquito pools
(Figure 3). The prevalence of unclassified and classified picornaviruses was detected practically in all
studied pools. Unclassified viral sequences were also analyzed, ranging from 0.13 to 34.27% for the
different pools.
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Table 1. List of putative and novel mosquito-associated viruses detected in Western Siberia.

Viral prototype Accession Genome Coverage b
Name of viruses G derI:tit 0371)) number, (fragment) NGS t%mez
Yl GenBank size (bp) !
Tymovirales (positive ssSRNA)
Insect-associated
1 Inya 1nseFt—assoc1ated tymov1rus‘1 / Ande'an MW251314 6568 ' 155
virus 1 potato mild mosaic (polyprotein)
virus (near 60%)
Insect-associated
5 Inya 1nseFt-assoc1ated tymovu‘us‘l / Ande.an MW251315 6566 ‘ 105
virus 2 potato mild mosaic (polyprotein)
virus (near 60%)
Partitiviridae (dsRNA)
e . Partitivirus-like 1
3. Partitivirus-like 1 (89%) MW251327 1749 (RdRp) 40
Krahall insect- Atrato Partiti-like virus
4. 14 i 17
associated virus 1/01 2 (63%) MW389552 90 (capsid) ?
Krahall insect- Atrato Partiti-like virus .
associated virus 1/02 2 (61%) MW389553 1512 (capsid) 7
Krahall insect- Atrato Partiti-like virus
%Y 4 14 i
associated virus 1/03 2 (61%) MW38955 88 (capsid) 35
Krahall insect- Atrato Partiti-like virus .
5. associated virus 2 2 (60%) MW389555 1531 (capsid) 79
. . Partitivirus-like 1
6. Talaya insect virus 2/01 (68%) MW251328 1426 (RdRp) 51
Partitivirus-like 1
Talaya insect virus 2/02 artltl(";lr;s') ike MW251329 1489 (RdRp) 30
Talaya insect virus 2/03 Pamtl(‘;lgljs)'hke b Mw251330 1426 (RdRp) 20
1742 (h .
7. TarBrook virus Sonnbo virus (79%) MW251325 ( }_IPOt 75
protein)
Zeyabrook partiti-  Beihai partiti-like virus .
8. like virus 1/01 2 (38%) MW389559 1597 (capsid) 99
Zeyabrook partiti- ~ Beihai partiti-like virus .
like_virus 1/02 2 (38%) MW389560 1597 (capsid) 31
Zeyabrook partiti- ~ Beihai partiti-like virus ,
9. like_virus 2 2 (42%) MW389561 1458 (capsid) 32
Totiviridae (monopartite, dsSRNA)
e Fitzroy Crossing toti- >5863 (RARp,
10. Z -1 2 251 24
0 yryana toti-like virus like virus 1 (51%) MW251336 capsid)
Tombusviridae (positive, sSRNA)
1. Hammersko.g tombus- Hamr.narslfog tombus- MW?251332 4317 . 10
like virus like virus (90) (polyprotein)
. Oyosh t?mbus-llke Hul?el tombus-like MW251324 >5640 . 19
virus virus 13 (62%) (polyprotein)
Picornavirales (positive, ssRNA)
1. Hamme.xrsko‘g picorna- Han.lmar?kog picorna- . _oaieg 11506 - 6952
like virus- like virus (98%) (polyprotein)
14, Miltyushpicomadike o o 63 (1%)  MW251320 9329 31
virus 1/01 (polyprotein)
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Miltyush picorna-like -y o0 Vires 3 (31%)  Mw251321 9329 19
virus 1/02 (polyprotein)
15, Miltyushpicomadike o o s3(G6%)  Mw2s1322 10077 49
virus 2 (polyprotein)
16, Isses picorna-like virus Washmgton bat MW251316 8992 . 537
1 picornavirus (64%) (polyprotein)
Isses picorna-like virus Washmgton bat MW251317 8992 ‘ 134
2 picornavirus (64%) (polyprotein)
17 Or.a Rivulet 1n.se.ct.— Polycipiviridae sp MW251323 10879 ' 62
associated polycipivirus (34%) (polyprotein)
. . Solenopsis invicta 10272
18.  Icha Creek insect virus . MW251313 ) 24
virus 3 (32%) (polyprotein)
Iflaviridae (positive, ssSRNA)
19. Lyn.mntr.la dispar ijma.ntrla dispar MT753155 9996 . 347
iflavirus 1 iflavirus 1 (99%) (polyprotein)
Nodaviridae (Bi-partite positive-sense, ssRNA)
20. Wenzho.u noda-like Wen%hou noda-like MW251319 3098 (RdRp) 159
virus 6 virus 6 (87%)
21. Mayapan virus 1/1  Mayapan virus (90%) MT753152 3024 (RdRp) 292
Mayapan virus 1/2  Mayapan virus (88%) MT753153 1378 (capsid) 181
Mayzas noda-like virus Mayapan virus segment .
22. RNA 2 RNA2 (43%) MW389556 1239 (capsid) 68
Uzakla insect-associated L .
23. virus Mosinovirus (36%) MW389557 2493 (capsid) 46
Permutotetraviridae (AsSRNA)
o Sanx1? perfnutotetra- Sa1.1x1a ;.)ermutotetra- MT753154 4670 . 378
like virus 1 like virus 1 (93%) (polyprotein)
Uzakla mosquito- Vespa velutina
25. associated permutotetra-like virus  MW389558 1749 (capsid) 207
permutotetra-like virus 2 (53%)
Other viruses and viral sequences
2. Chaqvirus-like1n ~ Cnadvirusdiked o, 01q35 1495 (hypot. 451
(82%) protein)
Chaqvirus-like1/2 ~ Craavirusliked iy o35y 1492 (hypot. 300
(82%) protein)
7 Tartas mezct associate Atrajco Sobemo-like MW251326 3259 . 164
virus virus 6 (61%) (polyprotein)
08, ZeyaBrookchag o iisdike 3@7%) Mwasizss 00 (ypot. 220
like_virus 2 protein)
29, Kame.nka 1n§ect- Hubei levi-like virus 3 MW251318 >3296 . 17
associated virus (38%) (polyprotein)
30.  Uzaklainsectvirus ~ [lubeimyriapoda g ag ool 46
virus 1 (33%) (polyprotein)

Note: Bold letters indicate the sequences with an identity level of 80% or more.
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Figure 3. Annotation of the taxonomy for the viral reads in the different pools of Cg. richardii
mosquito.

The phylogenetic analysis results for the sequences obtained from mosquitoes are presented in
Figure 4. This phylogeny is based on an amino acid sequence of RdRp, with these data confirming
the virome biodiversity of mosquito viruses in nature.
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Figure 4. Phylogenetic tree for RNA viruses belonging to different families found in mosquitoes
collected in Western Siberia in 2017-2018. A phylogeny for these viruses is based on the amino acid
sequence of RARp. The sequences from this study are marked with circles.

3.2.1. Tymovirales (positive ssSRNA)

The complete viral genome tymovirus-like sequence with a 60% identity (according to amino
acid sequence) with the previously described Insect-associated tymovirus 1 in Mexico (MN203215)
was detected in the Cq. richardii mosquitoes. This virus has been designated as Inya insect-associated
virus 1 (MW251313, MW251314). The genomic positive ssRNA of the Inya insect-associated virus was
identified to comprise 6526 bp and three ORF-encoding proteins (Figure S1). ORF MP of Inya insect-
associated virus 1 is RdRp, and this ORF contains a highly conservative "tymobox" near the 5'-end
[25]. The tymobox sequence has 16 nucleotides that are likely part of the subgenomic promoter for
the third ORF encoding the coat protein (CP). Previously, the Tymouvirales were well-known as plant
viruses [26]. Inya insect-associated virus 1 can be presumably identified taxonomically by the order
Tymovirales, unclassified Tymouvirales.

3.2.2. Partitiviridae (dsRNA)

Partitivirus-like 1 was detected in Cq. richardii with an identity level of 89% with an isolate from
Anopheles gambiae collected in Liberia (KX148575). Another novel putative partitivirus was detected
in the pool of Cq. richardii mosquitoes (Figure S2) and was designated as Krahall insect-associated
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virus 1 and 2 with an identity level of 60-63% with previously described Atrato Partiti-like virus 2
isolated earlier from Anopheles darlingi in Colombia (MN661058). In addition, seven suspected
partitiviruses were found in the pool of Cq. richardii mosquitoes. These are: novel insect Talaya 1 and
2 viruses (MW251327-MW251330), with a 68-71% aa identity with previously described Partitivirus-
like 1 (Liberia, KX148575); Tarbrook virus (MW251325) with 79% homology with the previously
described Sonnbo virus in Sweden (MK440649); Zeyabrook partiti-like_viruses 1 and 2 having
similarity of 38-42% with Beihai partiti-like virus 2 (NC_032500) from China. All the prototype
sequences were isolated earlier from invertebrates (mollusks, octopuses, mosquitoes, and odonatos).
These partitiviruses were preliminarily taxonomically identified as the family Partitiviridae,
unclassified Partitiviridae.

3.2.3. Totiviridae (monopartite dsSRNA)

We have found a novel putative totivirus designated as Zyryana toti-like virus 2 with the
prototype Fitzroy Crossing toti-like virus 1 isolated earlier from Culex annulirostris in Australia
(MT498830) (Table 1). Zyryana toti-like virus 2 with a 51% identity with prototype sequence was
detected in the pools of An. Messeae and Cq. richardii mosquitoes. The length of the nucleotide
sequence of the Zyryana toti-like virus 2 was over 5863 bp, and the ORFs encode two proteins 1112
aa and 807 aa of CP and RdRp. The putative genome organization schemes for these totiviruses are
presented in Figure S3.

3.2.4. Tombusviridae (positive ssRNA).

Tombusviridae (Tolivirales, Tombusviridae) are single-stranded RNA (+) genomes between 3.7
and 4.8 kb in length, currently regarded as plant viruses with a relatively limited host [27]. We
presented the complete polyprotein (4317 bp) for Hammarskog tombus-like virus with 90% identity
with a similar virus detected in Sweden (MN513379) and isolated from Cg. Richiardii in 2017. The 4166
bp partial polyprotein contains three ORF-encoded hypothetical polypeptides: 397 aa, 482 aa, and
409 aa that differ for Hubei tombus-like 20 (Figure 54). In addition, we found a novel Oyosh tombus-
like virus, with 62% identity with Hubei tombus-like virus 13 (NC033017) isolated from house
centipedes in China. Four polypeptides are encoded by a prototype genome (5904 bp). The RdRp for
Tombusviridae was translated using a potential alternative mechanism to suppress the stop-codon
reading mechanism with the formation of a full-size protein with an elongated C-end of ORF1 [6].

3.2.5. Picornavirales (positive ssRNA)

Most members of the order Picornavirales have a single molecule of positive sense RNA ranging
in length between 7,000 and 12,500 nt. The viral RNA is infectious and serves as a template for
replication and mRNA [28]. Six different picorna-like viruses were identified as mosquito-associated
viruses in Western Siberia (Table 1). We have assembled a complete genome for the Hammarskog
picorna-like virus (11507 bp) from Cg. richardii mosquito that has five OFR encoding 175 aa, 156 aa,
121aa, 376 aa, and 2424 aa polypeptides with 98% aa identity with the previously described
Hammarskog picorna-like virus (MN513381) isolated from Cg. richiardii in Sweden (Figure S5). In
addition, other novel picorno-like viruses were found in Cq. richardii mosquitoes collected in the
Novosibirsk region. These are Miltyush picorna-like viruses 1 and 2, Isses picorna-like virus,
Ichacreek insect virus, and polycipiviridae associated with Ora rivulet insects.

Miltyush picorna-like virus was found to have only 36% identity with the previously detected
Halhan virus 3 from Haliotis discus hannai in Korea (NC040628). Isses picorna -like virus 1 was found
to have 64% identity with previously discovered Washington bat picornavirus in the USA
(KX580885). Ichacreek insect virus 3 was identified to have a 44% level of identity with the previously
detected Solenopsis invicta virus 3 (GU017972) from Solenopsis invicta in Argentina. Ora rivulet insect-
associated polycipiviridae was identified to have a 34% identity level with the previously discovered
Polycipivirida sp. isolated from Pteropus lylei in Cambodia (MK161350). The preliminary taxonomic
identification for these six viruses is Picornavirales, unclassified Picornavirales.

do0i:10.20944/preprints202307.1016.v1
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3.2.6. Iflaviridae (positive ssSRNA)

The order Picornavirales also includes some iflaviruses that were found in Cq. richardii mosquito
in this study. Lymantria dispar iflavirus 1 was detected with its sequence having 99% identity with
already known viral isolates in USA and Russia (KJ629170, MN938851). The alignment and
phylogenetic analysis revealed a high sequence identity with the representatives of Iflavirus, the
family Iflaviridae (data not shown).

3.2.7. Nodaviridae (Bi-partite positive-sense, ssSRNA)

We have assembled practically the whole genome for Wenzhou noda-like virus 6 from Cg.
richardii mosquito and Mayapan virus with 87 and 90% identity levels, respectively. Previously, the
sequence of the Wenzhou noda-like virus 6 was identified in Channeled applesnail in China (KX883260)
and Mayapan virus (MH719096) isolated from the Psorophora ferox mosquito in Nexico (Figure S6).
Other novel nodaviruses were also found in Cg. richardii mosquitoes collected in the Novosibirsk
region. These are Mayzas noda-like virus RNA 2 with a prototype Mayapan virus RNA2 segment
(MH719097) with a 43% identity with that isolated from Psorophora ferox mosquito in Mexico and the
insect-associated Uzakla virus with a prototype Mosinovirus (KJ632942) with a 36% identity and
isolated from Culicidae spp. in Cote d'Ivoire.

3.2.8. Permutotetraviridae (dsRNA)

The genomic RNA for permutotetraviruses is 4,582 bp long and encodes three ORFs overlapping
in a short region (Figure S7). The longest ORF (1028 aa) encoding RdRp overlaps with 106 nucleotides
with a small ORF (199 aa), presumably encoding the capsid protein. Like all permutotetraviruses, the
sequences from Cq. richardii mosquito pools showed the presence of the virus with a 93% identity
with previously detected Sanxia permutotetra-like virus 1 in water striders in China (KX883450). The
Uzakla mosquito-associated permutotetra-like virus with a 53% identity to Vespa velutina
permutotetra-like virus 2 in France (MN5650551, MN565052) was early described as unclassified
Permutotetraviridae.

3.2.9. Other viruses and viral sequences

Two variants of Chaq virus-like 1, Tartas insect associate virus, ZeyaBrook chag-like virus 2,
Kamenka insect-associated virus, and Uzakla insect virus were detected in Cq. richardii. The Chaq
virus-like 1 has 82% identity with an earlier described unclassified sequence from Anopheles gambiae
in Liberia (KX148554). The ZeyaBrook chag-like virus 2, Kamenka insect-associated virus, and Uzakla
insect virus have a 33-47% identity with the previously unclassified putative viral sequences
(KX148556, KX883594, and NC032218) isolated from invertebrates. Only the Tartas insect associate
virus may be classified as unclassified Solemoviridae with prototype Atrato Sobemo-like virus 6
(MN661101) with a 61% identity detected in Wyeomyia spp. mosquitoes in Colombia. The
Solemoviridae have a relatively small (4-4.6 kb) positive-sense, single-stranded, monopartite RNA
genome with 4-5 ORFs, and they are usually associated with plant viruses.

4. Discussion

The application of the metagenomic approach offers novel opportunities for virome analysis
[5,7,20]. This approach has provided new insights into the evolution of viruses of clinical importance
and has allowed new viruses to be discovered from different viral families such as Peribunyaviridae
[5], Rhabdoviridae [29], Orthomyxoviridae [7,30], Flaviviridae [31] and Reoviridae [32], as well as
unclassified Chuvirus [7], and Negevirus [33]. Recent metagenomic studies have also confirmed the
presence of dengue virus, Zika virus, and Japanese encephalitis virus in mosquitoes in China [34,35].

Numerous genetically diverse viruses have also been detected by NGS sequencing in plants,
invertebrates and vertebrates in tropical countries [7,8]. Phylogenetic analysis has demonstrated that
it is possible for all host species and viruses to co-evolve by changing hosts. Mosquitoes are among
the most common and important viral vectors of the Zika, dengue, yellow fever, and West Nile
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viruses that are associated with unprecedented global outbreaks of these infectious in tropical
countries [36,37]. In addition, mosquitoes are also known to carry insect-specific viruses. Although
not directly affecting humans and animals, these viruses can modulate the transmission of pathogenic
viruses to vertebrates [38,39]. The growth of tourism and trade has also led to an intensive exchange
of viral pathogens and their vectors in different geographic regions. Together with the rapid growth
of large cities in tropical countries, these are the basis for outbreaks or/and epidemics for mosquito-
borne infections among animals and humans, with the environment to maintain the transmission of
zoonotic infectious [40]. In addition, viruses have extraordinary evolutionary potential to generate
new pathogenic isolates that can cause severe diseases in humans and/or animals.

The south of the Western Siberian Plain is characterized by a continental climate, with short
warm summers and long winters, uniform humidity, and rather abrupt changes in all-weather
components over relatively short periods of time [41]. This region has experienced characteristic
negative mean annual temperatures during the last century, with the maximum variations of the
mean annual temperature being 3.6 °C over the observation period. The activity season for different
species of mosquitoes begins when the ambient temperature rises above 0 °C (early May) and ends
in late August or early September, depending on the year. The maximum duration of the mosquito
activity period is approximately four to five months. Seventeen species of mosquitoes were earlier
found in the forest-steppe and steppe zones of the region [42]. The mosquito species composition
from different foci can drastically vary. For example, the Cg. richardii concentrations can vary from
1.7 t0 99.5%, with this species usually dominating in the main forest-steppe and steppe landscapes of
the rural part of the Novosibirsk region.

In this study, we used a metagenomic sequencing method to identify the viromes in seven
mosquito species collected in the vicinity of Novosibirsk. The metagenomic approach was used to
identify the viral diversity in randomly collected mosquitoes. We have identified 30 coding complete
viral genomes and viral-like partial sequences of capsid proteins and/or RdRp from mosquitoes
(Table 1). These sequences were classified as putative members of orders: Tymovirales and
Picornavirales, families:  Partitiviridae, — Totiviridae, — Tombusviridae, Iflaviridae, =~ Nodaviridae,
Permutotetraviridae, Solemoviridae, and four unclassified RNA-viruses. The previously described
Partitivirus-like 1, Hammarskog tombus-like virus, Hammarskog picorna-like virus, Lymantria
dispar iflavirus 1, Wenzhou noda-like virus 6, Mayapan virus, Sanxia permutotetra-like virus 1, and
Chagq virus-like 1 were identified as practically complete genomes with an 82-99% level of identity
in Cq. richardii mosquito. These viruses were earlier found in Liberia (West Africa), Sweden (North
Europe), the USA (America), China (Asia), and Mexico (Central America). These findings allow us to
hypothesize that these viruses may be widely distributed on a global scale.

Some novel putative viruses and viral sequences have prototype viral sequences with 31% to
79% identity levels, with these prototypes also found in invertebrates from almost all continents.
Some of them are associated with different species of mosquitoes. In our study, the main parts of
novel viruses were associated with Cq. richardii mosquito, with this species widespread in the south
of Western Siberia [42]. The role of this mosquito species in the spread of human viral infections in
Siberia has not been studied virtually, suggesting that our knowledge concerning mosquito-
associated viruses in North Eurasia is very limited and requires further study.

5. Conclusions

We have identified novel and known viral genomes and viral-like partial sequences in
mosquitoes collected in the Novosibirsk region of Western Siberia. They were classified as novel
putative viruses using the bioinformatics analysis of partial sequences of capsid proteins and RdRp
or whole polyproteins (genomes) within the orders Tymovirales and Picornavirales, the families
Partitiviridae, Totiviridae, Tombusviridae, Iflaviridae, Nodaviridae, Permutotetraviridae, and Solemoviridae,
and four unclassified RNA-viruses. We believe that the virus identification will enhance our
understanding of the transmission of RNA viruses by mosquitoes in North Asia. We hope that the
discovery and observation of these mosquito-borne viruses can help prevent future outbreaks of viral
infections in the region under study.
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