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Abstract: The entropy and charge distributions have been calculated for a simple model of
polyelectrolytes attached to the surface of DNA using a field-theoretic method that includes
fluctuations to the lowest one-loop order beyond mean-field theory. Experiments have revealed
correlation-driven behavior of DNA in charged solutions, including charge inversion and
condensation. In our model, the condensed polyelectrolytes are taken to be doubly charged dimers of
length comparable to the distance between sites along the phosphate chains. Within this lattice-gas
model, each adsorption site is assumed to have either a vacancy or a positively-charged dimer
attached with the dimer oriented either parallel or perpendicular to the double helix DNA chain.
We find that the inclusion of the fluctuation terms decreases the entropy by ∼50% in the weak
binding regime. There, the bound dimer concentration is low because the dimers are repelled from
the DNA molecule, which competes with the chemical potential driving them from the solution to
the DNA surface. Surprisingly, this decrease in entropy due to correlations is so significant that it
overcompensates for the entropy increase at the mean field level, so that the total entropy is even
lower than in the absence of interactions between lattice sites. As a bonus, we present a transparent
exposition of the methods used that could be useful to students and others wishing to use this
formulation to extend this calculation to more realistic models.

Keywords: entropy; DNA; biomolecules; polyelectrolyte; fluctuations; charge inversion; correlations;
field theory; one-loop order

1. Introduction

Entropy is often described as a measure of disorder. Its importance is that the free energy of a
system involves a trade-off between the entropy and the energy. The simplest example of this is the
Helmholtz free energy F = E − TS, which applies to a system with a fixed number of particles and a
fixed volume at constant temperature. Because of the complexity of biological systems, there are many
instances in which the TS term of the free energy either dominates the energy term, or at least plays an
important role in the free energy minimization that determines equilibrium and drives the dynamics
of the system.

As a consequence, the determination of the optimal structure of many biologically important
systems requires minimization of the free energy, and hence this competition between the internal
energy and entropy. Often in biological systems the changes in entropy are greater than the changes in
internal energy. For instance, in the hydrophobic effect, an unfolded protein lowers the entropy by
ordering the water molecules, and so the protein prefers to be in the folded state[1,2]. In the chloroplast
stroma, it has been shown that there is an entropy-driven attraction that determines chloroplast
ultrastructure through spontaneous Mg2+-induced stacking of membranes[3].

In sickle hemoglobin, the aggregation of monomers into polymers[4] is also entropy driven,
with the internal energy and entropy in a delicate balance. In fact, Cao and Ferrone [5] measured
the chemical potential µPC, which is the "glue" that holds the polymer together, and found that the
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entropic contribution to this chemical potential is around −11 kcal/mol, which is more than 100%
of the chemical potential itself. Another example is F-actin, whose fibrils stack in cross-linked rafts
when positive alkaline earth ions are in the solution[6]. In F-actin counter-ions form one-dimensional
charge density waves that have a periodicity equal to twice the actin monomer spacing, coupling to
twist distortions of the oppositely-charged actin filaments[7]. These phenomena and others owe their
existence to Coulomb interactions between the constituent parts, and the geometry of the underlying
structure can also play a vital role.

Thermodynamically, the distribution of charge in the solution is governed by a competition
between energy and entropy. The bound state in which the ions are condensed on the surface of the
macroion/polyelectrolyte is energetically-favored, and the continuum state, in which the ions are free
to drift in any direction, is entropically-favored. The balance between these two factors in minimizing
the free energy has been shown to vary significantly based on the geometry of the macroion [8]. This
interplay between electrostatics and geometry is particularly important for polyelectrolytes in solution,
and they have shown to produce a wide array of intriguing phenomena in many different systems. One
example is DNA, which in the presence of a physiological salt solution (a 0.1 molar solution of NaCl)
is usually negatively charged, with a double helix DNA molecule strongly repelling another. However,
if DNA is in a dilute salt solution in which a positively charged polyelectrolyte, such as spermine
or sperimidine, has been added to the solution, it has been shown to roll up into a tightly-packed
torus[8–11]. In fact, DNA is usually in a very compact state in cells and viruses.

Historically, the most common description of charged solutions has been Poisson-Boltzmann
theory, but continued research has indicated that charged species in solution can have far more complex
and counterintuitive effects than simple charge screening [8]. In 1969 Manning proposed [12,13] that a
portion of the ambient ions condense onto (i.e., attach to) the surface of a charged macro-ion, partially
neutralizing the bare charge. This occurs up to the point at which the energy required to condense
another ion equals the available thermal energy kBT at temperature T, where kB is the Boltzmann
constant. The proposed effect, later termed “Manning condensation," marked a significant departure
from linearized Poisson-Boltzmann theory that predicted only exponential screening. In Manning’s
treatment of polyelectrolytes, which are long chains of charged subunits, the ion condensation was
addressed [8] separately from the ions that remain in solution, which were treated using linearized
Poisson-Boltzmann theory [12,13].

Further refinements in the treatment of these ambient-ion solutions have been motivated in
part by surprising effects observed in DNA that cannot be accounted for using Poisson-Boltzmann
theory. By using multivalent cations, modifying the salts in the solutions, and even using alcohol
solvents, it is possible to cause the DNA to undergo a radical structural transition into a variety of new
geometries, including rod-like bundles and toroids [14]. The toroidal structures, in particular, have
received considerable attention in the biological community because such toroidal packing motifs are
employed by spermidine and other molecules to contain their own DNA in small volumes [15]. A
variety of techniques, including cryo-transmission electron microscopy [15] and UV spectroscopy [16],
have enabled direct observation of the formation of these toroidal condensates, and similar studies on
other biological polyelectrolytes like F-actin [6] indicate that condensation is a general phenomenon. If
the electrical interactions between the polyelectrolyte, such as DNA, and the ambient-ion solution are
purely those predicted by the Poisson-Boltzmann description, then two like-charged polyelectrolytes
always repel one another, and such condensates will not form. For these condensates to be stable, the
net electrical force between like-charged polyelectrolytes must be attractive, which is incompatible with
the Poisson-Boltzmann theory of ions in solution.

Many of the approaches to understanding the role of polyelectrolytes in biological systems
have adopted models of continuum electrostatics, and some of these have focused on solving the
Poisson-Boltzmann equation for a cylindrical model of DNA in the presence of multivalent ions[8,17].
However, it has been shown that including charge correlations is essential to understanding these
systems[18,19]. Recognizing the need for including fluctuations beyond the mean field, Ha and
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Liu used a field theoretic approach that produces a systematic expansion taking these effects into
account[20–23]. They employed a simplified model of a DNA particle as a charged cylindrical rod
composed of cylindrical charged segments and considered these rodlike particles in the presence
of polyvalent counterions. Their first model consisted of two rodlike DNA molecules[20], and they
found attraction between the rods. When Podgornik and Parsegian suggested that the fluctuation
forces between such rodlike polylectrolytes might not be pairwise additive[24], Ha and Liu extended
their calculation to include bundles of rodlike particles and included a one-dimensional form factor
depending on the ionic size in order to incorporate short-ranged correlations along the rod length
approximately[21,22]. They found that the breakdown of pairwise additivity can lead to qualitatively
new behavior, although they still found that that the rods attracted one another under some conditions.
Shklovskii then pointed out that the previous results seemed to be independent of radius, and that, in
a highly correlated system of negatively-charged cylindrical rods in the presence of positive counterion
charges, those positive charges can form a Wigner crystal, which will be three-dimensional and closely
packed for small rod radii and form two-dimensional Wigner crystals on the surfaces of rods for large
radii[25]. Ha and Liu saw merit in the arguments for the large radius limit but disagreed with the
the two-dimensional crystal lattice limit, which they said was due to Shklovskii incorrectly assuming
pairwise additive interactions between various surfaces, which would make that limit invalid[22].

To show how the radius of a DNA chain could affect multivalent-counterion-induced attraction
between negatively-charged DNA chains, Ha and Liu used a modified model of DNA[23]. They
assumed, as before, that a DNA rod is a stack of short cylinders that have a finite radius and length, but
to treat two-dimensional charge fluctuations on the surface of the rod, they divided the counterions
into two classes, free and condensed, with the condensed counterions modifying the local charge
at the surface of the cylinder, giving rise to charge fluctuations on the two-dimensional surface of
each cylinder. With this model, they found that the competition between attractive and repulsive
interactions tended to balance one another, resulting in no attraction at all for thick rods. They also
found that that for valence of the polyvalent cations greater that around 3, the spacing of chains in a
bundle and the size of bundles appears nearly independent of the nature of the bundling agent. This is
because the increased valence leads to a stronger screening as well as a stronger attraction.

Recognizing that geometry was playing a crucial role in the attraction, Nguyen and Shklovskii
[26,27] proposed a simple theory of charge inversion that considers the structure of the polyelectrolyte
together with its electrostatic interaction with the substrate. The idea was that there is fractionalization
of charge in which a polyelectrolyte can either neutralize the charge or reverse it depending on how
it attaches. In that model, a single double-helix strand of DNA is represented by a rigid cylinder
with two one-dimensional lattices of negative charges −e in helices around the surface to represent
DNA’s double helix of negatively-charged phosphates. In order to model the polyelectrolyte solution
in which the DNA is immersed, they take the positively-charged species to be freely-jointed chains.
These adsorbing species have multiple charges that may partially attach to the surface, with excess
charge protruding into the solution, as shown in Figure 1. They assumed that all the negative charges
on the DNA are neutralized by the polyelectrolytes, so that there will be no vacancies, and because
there is excess charge dangling into the solution, the charge on the surface can be not only neutralized
but reversed. They also assume that the only role of the background salt solution is to provide
screening for the interaction between the polyelectrolyte chains. Since they assumed no vacancies on
the one-dimensional chains, they could easily count the possible configurations. In calculating the
electrical potential, they took the negative charges of the DNA to be spread uniformly on the surface
of the cylindrical DNA surface and used simple electrostatic arguments with screened potentials to
calculate the energies involved. For polyelectrolytes in a 0.1M NaCl solution with DNA, Nguyen and
Shklovskii[26] give in their Eq. (6) an estimate of the net charge inversion, the charge density on DNA
divided by its bare charge density. The largest value of that estimate is about 0.07.
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Figure 1. Charge fractionalization occurs when only a fraction of the positive charges of the
polyelectrolyte attach to the negatively-charged surface. The charges that are not attached then
cause the surface to become positively charged. This shows a freely jointed polyelectrolyte chain of
charge 3e is adapted from Figure 1b of Nguyen and Shklovskii [26].

Since the simple calculation of Nguyen and Shklovskii[26] did not include the discrete nature of
the phosphate sites in calculating the electrostatics and used a simple version of the entropy, Bishop
and McMullen[28] decided to use a more rigorous formalism to calculate the charge reversal in DNA.
Starting with the simplifying assumption that the polyelectrolytes could be considered as dimers
(two units in length) on DNA, Bishop and McMullen allowed for vacancies and used a model of
the discrete location of phosphates on the DNA surface, with interactions between charges located
on the various sites. In that model, doubly-charged polyelectrolyte molecules attach to the DNA
either parallel or perpendicular to the DNA surface and confirmed that under the right conditions, the
charge on the surface could be inverted. The use of the lattice model allowed them to accomdodate
vacancies, which is not possible if the charge is treated in a continuum manner. Inspired by the work
of Ha and Liu[20–23], they used a field-theoretic approach that employs a loop expansion, where the
mean field contains polyelectolyte ions adsorbed on the surface of the DNA, similar to their approach.
While the general formalism for the one-loop expansion was presented in that paper, the numerical
calculations stopped at the mean field level, and the current work extends that to include fluctuations
at the one-loop method. The emphasis here is on the entropy and the role it plays in the configuration
of charged species attached to the lattice. The details of this model will be explained in detail in the
next section.

The results of these theories indicate that the correlation effects in the solution are also
strongly-dependent on the system geometry. To understand this, consider the electric potential
outside spherical, cylindrical, and planar positively-charged surfaces in vacuum. For spheres, the
potential decays as the inverse of the distance; for the cylinder, the potential decreases logarithmically
with the distance; and for the plane, the potential decreases linearly with the distance. Gelbart et al.
[8] assert that, in an ambient-ion solution, the entropy of the point ions varies logarithmically with
their concentration, and therefore with the distance from the cylinder. Thus they conclude that, in a
crude comparison, for spherical geometry, the r−1 potential is dominated by the logarithmic entropy;
for planar geometry, the entropy is dominated by the linear potential; and for cylindrical geometry,
both the energy and the entropy vary logarithmically.[29] In this paper, we will incorporate the impact
of the ions in solution on the free energy through the chemical potential of these ions, as detailed in
Appendix B.

The helical geometry of DNA, then, sits precisely balanced on the fulcrum between energy- and
entropy-driven processes under physiological conditions. The geometry of the biomolecule plays
an even more crucial role when the highly-charged ions in solution are not point charges but have
geometries of their own. Such is the case for DNA immersed in a solution of polyelectrolytes. These
polyelectrolytes can be proteins or other fragments of biomolecules which are routinely found in the
nucleus [30], so that, again, the central biological processes occur in precisely the most difficult regimes
to model.

For charge inversion on DNA with polyelectrolytes, “physiological conditions" require
incorporating the combined effects of charge correlation, thermodynamic fluctuations, crowding,
and geometrical considerations all at once. As we have discussed in this introduction, there has
been considerable work in addressing all of these issues. Some approaches treat only the geometry,
with no interactions[31]. Others include both geometry and interactions, but use a continuum model
for electrostatics that neglects discreteness effects[32]. The lattice gas dimer model is unique in its
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simultaneous consideration of all these effects, and the thermodynamic and geometrical idealizations
it makes can be systematically improved.

While the formalism of Bishop and McMullen[28] included both a mean field theory and
corrections due to fluctuations or charge correlations, the computed results were obtained only at the
mean field level. In this paper, this simple model is extended to calculate the fluctuation corrections
and the entropy of the system. The purpose is to determine the importance of the fluctuation terms
for inverting the charge and to see whether these terms have a significant impact on the entropy of
the system. A preliminary version of this work was in Sievert’s master’s thesis[33]. In Sec. 2 of this
paper, we outline the model of the charged binding sites on DNA and present the computation of the
entropy due only to the hard-core repulsion that prevents multiple binding on the same site. In Sec. 3
we explain the geometry of the double helix and show how it can be represented as a one-dimensional
lattice and in Sec. 4 derive the form of the potential and determine the orthogonal transformation that
diagonalizes it. In Sec. 5, we use functional integral techniques to derive the partition function, which
uses a Gaussian integral identity to perform the sum over configurations exactly, at the expense of
an integral over a new auxiliary field. In Sec 6, we show how the grand canonical potential can be
computed order by order, in which the first two terms are the mean field and the one-loop correction
to the mean field. In Sec. 7, we examine the saddle point equation that defines the mean field, and this
is used to calculate the entropy, the number densities of all species, and the charge density. In Sec. 8,
we find the explicit form for the inverse-Hartree-field-fluctuation propagator. In Sec. 9, we include
the one-loop order terms in the calculations to reveal the effects of fluctuations. Finally, in Sec. 10, we
compare the results of the various approximations. Details concerning the Gaussian integral identity
and the chemical potential of dimers in solution are given in Appendices A and B.

2. The Noninteracting DNA Lattice Gas

Our model system starts with a simplified version of the DNA molecule itself, as shown in
Figure 2, with double helical chains of phosphate ions connected by base pairs. The phosphate ions
are represented by red balls and blue balls, with the base pairs represented by yellow lines. The two
different chains are labeled "up chain" and "down chain", which correspond to the direction of the
carbon atoms in the sugar backbone. We will assume that each phosphate site has charge −e, where e

is magnitude of the charge of an electron, and that there are no charges either between the phosphate
sites along the helical chain or in the vicinity of the base pairs. In solution are polyelectrolyte ions of
charge +2e, which we call dimers. These dimers are assumed to be the length of the spacing between
two phosphate ions along a helical chain, which is a(1) = 0.684 nm= 6.84 Å, which is longer than
a diatomic molecule. Possible candidates for these species are the diamines, 1,3-diaminopropane
(DAP2+), putrescine (Put2+), and cadaverine (Cad2+). An extension of this model could include more
highly charged spermidine(Spd3+) or spermine (Spn4+). These polyamines are shown in Figure 3,
with the lattice spacing a(1) shown as the dashed line for comparison. Although we will only consider
the doubly charged species in our model, the model and analysis could be extended to these more
highly-charged species in the future.

Deng and Bloomfield have shown using Raman difference spectra, for the systems they studied,
that in the presence of spermidine or spermidine these polyvalent cations bind electrostatically near
the DNA phosphates[34]. van Dam et al. agree with this conclusion and suggest that the A form of
DNA is stabilized by polyamines fitting perfectly between the phosphate ions[35]. They conclude that
DAP, which has charge +2e probably has the best fit to the phosphate lattice of all the polyamines,
and that longer species, like spermine and sperimidine are longer and probably also interact with base
pairs. In our model, we are assuming that there is no interaction with the base pairs.
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Figure 2. Model of DNA as two helical chains of phosphates, shown as red and blue balls, with
the yellow lines representing the base pairs. These have been labeled “up" and “down" chains,
corresponding to the direction of the carbon atoms in the sugar backbone.

Figure 3. Polyamines as candidates for attachment to DNA. The diamines, including
1,3-diaminopropane (DAP2+), putrescine (Put2+), and cadaverine (Cad2+) have charge +2e, with
sufficient length to attach to adjacent phosphates along the DNA chain, with DAP2+ the best fit. These
are the most likely polyelectrolytes that the dimers in our model represent. Higher-charged polyamines
spermidine(Spd3+) and spermine (Spn4+), shown for comparison, are considerably longer. The lattice
spacing a(1) between phosphates along a helix is shown as a dashed line for comparison.

The choice of Bishop and McMullen[28] to model dimers was motivated by the wealth of studies
(refs. [36] and [37], among others) in the literature about dimer models in other branches of physics,
as well as for geometrical simplicity. We will continue to use this same model. Dimers, the shortest
polyelectrolytes, have only two possible orientations when adsorbed on DNA, assuming that the
length of the dimer is comparable to the helical spacing between charged sites on DNA, as shown in
Figure 4. As we stated earlier, this should not be confused with a diatomic molecule, which would not
be long enough to span the space distance between two phosphate ions on one of the helical chains of
DNA.
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Figure 4. Double helix of negatively-charged phosphate chains of red and blue balls are wrapped
around a cylinder. A parallel dimer attaching to one of the chains would neutralize two sites, while
a perpendicular dimer would have one excess charge dangling into the solution, causing that site to
have a net positive charge.

In our model, a dimer lying on the cylindrical surface of the molecule must lie parallel to the
helical strands, neutralizing the charge on two adjacent sites. Otherwise, the dimer must adsorb
perpendicular to the cylindrical surface, extending one end radially out from the central axis of
the cylinder and inverting the charge on a single site. Charge inversion by dimers, then, is quite
similar to charge inversion due to two species of point ions: one monovalent species representing
parallel-adsorbed dimers and one divalent species representing perpendicular-adsorbed dimers. In the
previous work, Bishop and McMullen[28] modeled the adsorption of dimers in a lattice-gas model as a
two-component solution of point ions, allowing the possibility of vacancies, and used field-theoretic
methods to describe the thermodynamics of the system. They carried their calculations to a mean-field
level of approximation of the inverted charge on DNA, but did not calculate the entropy. Their work
confirmed the possibility of charge inversion within this model.

Those computations yielded the charge per site on the DNA helix as a function of the
chemical potential, or equivalently of the concentration of the polyelectrolyte in solution. While
the Nguyen-Shklovskii[26] calculation assumed complete filling of the lattice, the Bishop-McMullen
approach allowed for vacancies, represented as negatively-charged sites, in addition to the neutral
or positively-charged sites arising from dimer adsorption. However, the lattice-gas model, which
assumes all sites are equivalent, does not take into account that the parallel dimer occupies two sites.
In this model, the binding energy of the parallel dimer is taken to be ε(‖) and for the perpendicular
dimer ε(⊥), and these energies can be adjusted to account for the difference in occupancy. In practice,
the occupation of two sites is mimicked by making the binding energy of the parallel dimer twice as
large as that of the perpendicular dimer, and we will use the same approach here in the numerical
calculations. The assignment of binding energies to these species is a simple way of including the
complicated electrostatics that allows the polyelectrolyte ions to bind to the surface of the DNA. This
is analogous to the "fermion" model of Ha and Liu[22], which assumes that each site can either be
empty or occupied by one counterion. Here, as in the earlier Bishop and McMullen work, we have
three species, parallel dimers, perpendicular dimers, and vacancies.

This approach allows us to describe adsorption of either species independently for each site.
Any configuration of the DNA-dimer complex in this model can then be described by identifying the
type of dimer (parallel, perpendicular, or none) adsorbed on each site on the DNA molecule. Such a
model also resembles the lattice gas model of condensed matter physics [38], which treats the ways of
distributing particles of different types onto a regular lattice of sites. In this section, we assume that
the three different species on the lattice do not interact with one another, and in this case, the structure
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of the lattice does not matter. We call this the noninteracting model. This does not actually mean that
there are no interactions. The interaction of the polyelectrolytes with the DNA can actually be quite
strong, depending on the values of ε(‖) and ε(⊥), and their attachment to the lattice is analogous to
what Ha and Liu call condensed counterions[22]. Also, we will assume that there is only one species
per site, which corresponds a hard-core repulsion between sites.

In developing the formalism, it is convenient to consider a vacancy as a third species γ of particle,
because then we can impose the constraint that each site is singly occupied, either by a parallel dimer
(γ = ‖), a perpendicular dimer (γ =⊥), or a vacancy (γ = v). For each our three species of “particles"
that can reside on our lattice sites, we define a relative charge qγ in units of the magnitude e of the
charge of an electron. These relative charges are then qv = −1 for vacancies, q‖ = 0 for parallel dimers,
and q⊥ = +1 for perpendicular dimers. We will assume that the binding energy εγ of species γ to the
lattice depends only on the type of species and not the location. We will be specifying each lattice point
by its location ℓ along helix b, with the pair (ℓ, b) specifying that lattice position. Then the quantity n

γ
ℓ,b

will be the number of particles of species γ on the lattice site at ℓ on chain b. For each chain, ℓ extends
from −N to N , such that the total number of sites is Nsites = 2(2N + 1), and we employ periodic
boundary conditions. There will also be free polyelectrolyte ions in solution, and their influence on the
stability of the adsorbed dimers will be through their chemical potential.

We begin by considering the Hamiltonian HNI for this noninteracting system (that is, with no
interactions between different sites aside from the hard-core repulsion that blocks double-occupancy),
which is

HNI = ∑
ℓ,b

∑
γ

εγn
(γ)
ℓ,b . (1)

Because we have a system that exchanges particles with its surroundings, specifically the ions in the
solution surrounding the DNA, which attach to the surface, we work in the grand canonical ensemble.
If the system contains Nγ particles of type γ in equilibrium with its surroundings, with an average
internal energy E, the grand canonical potential ΩG, which is a function of the temperature T, volume
V, and chemical potentials µγ for each species γ, is written as[38,39],

ΩG(T, V, µ) = E − TS − ∑
γ

µγNγ , (2)

where the number of particles of type γ is given by

Nγ = ∑
ℓ,b

n
(γ)
ℓ,b . (3)

Then the entropy can be written in terms this potential as

S = −
(

∂ΩG

∂T

)

V,{µγ}
= kBβ2

(

∂ΩG

∂β

)

V,{µγ}
, (4)

where β = 1
kBT and kB is Boltzmann’s constant. In this partial derivative, the volume and all the

chemical potentials µγ of all species γ are held constant. It is convenient to define the grand canonical
partition function ZG in terms of the grand canonical potential ΩG as

ZG = ∑
configurations

e−β(E−∑γ µγ Nγ) = e−βΩG , (5)

where the sum over configurations includes all the accessible states of the system. The grand canonical
potential can alternatively be written in terms of the partition function as

ΩG = − ln ZG

β
, (6)
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and this allows us to write an expression for the entropy in terms of ZG as:

S = kB ln ZG − kBβ

ZG

(

∂ZG

∂β

)

V,{µγ}
. (7)

For the noninteracting lattice, the average internal energy is represented here by the Hamiltonian
(1), E = HNI , and the noninteracting grand canonical partition function ZNI becomes

ZNI = ∑
configurations

e−β ∑ℓ,b ∑γ(εγ−µγ)n
(γ)
ℓ,b , (8)

where we have suppressed the G subscript for simplicity.
Since a vacant site does not really correspond to a particle, we recognize that energy and chemical

potential of the vacancy must be related such that ε(v) − µv = 0. In addition, because the dimers
adsorbed on the surface and those in solution are in equilibrium, µ‖ = µ⊥ = µdimer is the chemical
potential of dimers in solution at the appropriate concentration. We thus need an estimate for µdimer.
Approximating the dimer as a uniformly-charged cylinder, this value is shown in Appendix B to be
βµdimer ≃ 0.79 at the physiological temperature of T ≃ 310 K.

The average occupancy 〈n(γ)〉NI for species γ per site is found by taking the derivative of this
partition function with respect to µγ,

〈n(γ)〉NI =
1

NsitesβZNI

∂ZNI

∂µγ
. (9)

This can be verified by taking the derivative of Eq. (8).

〈n(γ)〉NI =
1

NsitesZNI
∑

configurations
∑
ℓ,b

n
(γ)
ℓ,b e−β ∑ℓ,b ∑γ(εγ−µγ)n

(γ)
ℓ,b , (10)

which is by definition the average number per site of species γ.
Continuing with the evaluation of the partition function, we note that the exponential of a sum

can be written as the product of exponentials, enabling us to rewrite the partition function (8) as

ZNI = ∑
configurations

∏
ℓ,b

∏
γ

[

e−β(εγ−µγ)
]n

(γ)
ℓ,b . (11)

In order to simplify and to appreciate the physical meaning of this expression, it is useful to define the
relative activity [40] of species γ in the noninteracting lattice-gas model, given by

a
(γ)
NI = e−β(εγ−µγ) . (12)

Note that this is independent of the lattice site ℓ or chain b. The partition function can then be written
in the simple form

ZNI = ∑
configurations

∏
γ

∏
ℓ,b

[

a
(γ)
NI

]n
(γ)
ℓ,b . (13)

Because we have assumed that there can be only one species per site, parallel dimer, perpendicular
dimer, or vacancy, the sum over configurations can now be done over each site separately, where there
are three possible configurations

{n
(⊥)
ℓ,b , n

(‖)
ℓ,b , n

(v)
ℓ,b } = {1, 0, 0} , {0, 1, 0} , or {0, 0, 1} . (14)
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This is the same as saying that n
(γ)
ℓ,b = 1 for one and only one of γ =⊥, ‖, or v and is zero otherwise.

This means that

∑
single-site

configurations

∏
γ=⊥,‖,v

[

a
(γ)
NI

]n
(γ)
ℓ,b

= ∑
γ

a
(γ)
NI , (15)

and so the grand partition function is

ZNI = ∏
ℓ,b

(

∑
γ

a
(γ)
NI

)

. (16)

Since every term in the product is the same, the expression in parentheses is simply raised to the power
Nsites, giving

ZNI =

(

∑
γ

a
(γ)
NI

)Nsites

. (17)

At this point, we can easily see that we can obtain the average number per site using our derivative
form from Eq. (9) as

〈n(γ)〉NI =
1

NsitesβZNI

∂

∂µγ

(

∑
γ′

a
(γ′)
NI

)Nsites

. (18)

Taking the derivative and substituting the expression for ZNI in the denominator, we have

〈n(γ)〉NI =
Nsites

Nsitesβ
(

∑γ′′ a
(γ′′)
NI

)

Nsites

(

∑
γ′

a
(γ′)
NI

)Nsites−1
∂

∂µγ
a
(γ)
NI , (19)

where the derivative of the activity is

∂

∂µγ
a
(γ)
NI =

∂

∂µγ
e−β(εγ−µγ) = βa

(γ)
NI . (20)

Using this in the expression for the mean site occupancy in Eq. (19) and cancelling Nsites − 1 factors of
the sum over γ, the mean occupancy for species γ is given by

〈n(γ)〉NI =
a
(γ)
NI

∑γ′ a
(γ′)
NI

. (21)

In Figure 5, we show the mean occupancies for the three species versus ε‖, with ε‖ = 2ε⊥. Negative
ε‖ corresponds to an attraction of dimers to the lattice, and we see that parallel adsorption of dimers
dominates because of the stronger binding, followed by perpendicular adsorption, with vacancies
becoming nonexistent. Positive ε‖ corresponds to a repulsion of dimers from the lattice, so that at large
ε‖, the ordering is reversed, for the same reasons. At small positive ε‖, the dimers are repelled from the
lattice, but this competes with the chemical potential, which tries to put dimers back onto the lattice.
In this low-coverage regime, perpendicular adsorption dominates, while vacancies dominate for large
βε‖ because the dimers would prefer to stay in solution. For ε‖, ε⊥ → 0, the parallel and perpendicular
mean occupancies become the same. Similarly, where ε‖ − µdimer = 0, 〈n(‖)〉NI = 〈n(v)〉NI because, as
mentioned earlier, εv − µdimer is always zero. Also, 〈n(⊥)〉NI = 〈n(v)〉NI where ε‖ = 2µdimer because
that is where ε⊥ = µdimer. It is at this point where 〈n(‖)〉NI becomes a maximum.
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Figure 5. Plots of the mean occupation numbers 〈n(γ)〉NI in the noninteracting lattice gas model.
Curves are shown for γ =‖ (blue,solid), ⊥ (red,long-dashed), and v (green,short-dashed). The
parameters used in the calculation are βµdimer = 0.79 and ε‖ = 2ε⊥. For negative ε‖ − µdimer, dimers
are attracted to the lattice, while for positive values of this quantity, they are repelled.

The average charge per site can now be determined by multiplying qγ, the charge of species γ, by

n
(γ)
ℓ,b the occupation of species γ on site ℓ of chain b,

ρℓb = ∑
γ

qγn
(γ)
ℓb . (22)

Since we assume that every site has either a parallel dimer, a perpendicular dimer, or a vacancy, with
single occupancy, then for a given site and species, n

(γ)
ℓb is either 0 or 1. The average charge density is

then the sum the averages of the individual terms,

ρNI ≡ 〈ρℓb〉NI = ∑
γ

qγ〈n(γ)〉NI . (23)

This charge density is plotted as the solid blue curve in Figure 6. Because a parallel dimer has no
charge, q‖ = 0, a perpendicular dimer has a positive unit charge, q⊥ = +1, and a vacancy has a
negative unit charge, qv = −1, the total mean field charge per site ρc in Figure 6 is the difference
between the curves 〈n(⊥)〉NI and 〈nv〉NI in Figure 5 and goes to zero where those two curves cross.

A measure of the magnitude of the charge fluctuations is given by the average of the square of the
charge on a site minus the square of its average, which is the charge variance σ2

NI , given by

σ2
NI = 〈ρ2〉NI − ρ2

NI , (24)

where
〈ρ2〉NI = 〈ρ2

ℓb〉NI , (25)

and

ρ2
ℓb =

[

∑
γ

qγn
(γ)
ℓb

]2

= ∑
γ,γ′

qγqγ′n
(γ)
ℓb n

(γ′)
ℓb . (26)

The product n
(γ)
ℓb n

(γ′)
ℓb describes a double occupancy of site (ℓ, b) by species γ and γ′. Since we have

required single occupancy, then we must have γ = γ′. Also, since n
(γ)
ℓb can only take the values 0 or 1,

[n
(γ)
ℓb ]2 = n

(γ)
ℓb . (27)
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Then the charge density per site reduces to

ρ2
ℓb,NI = ∑

γ

q2
γn

(γ)
ℓb,NI . (28)

Taking the thermal average of both sides, we have

〈ρ2〉NI ≡ 〈ρ2
ℓb〉NI = ∑

γ

q2
γ〈n(γ)〉NI . (29)

In Figure 6, we have plotted the standard deviation in the charge density, σNI, which is the square root
of the charge variance, for the noninteracting model. As we saw in Figure 5, there are three distinct
regions, ε‖ ≪ 0, ε‖ ≫ 0 and ε‖ near µdimer. These three regions are also reflected in Figure 6. At
large negative ε‖, parallel adsorption dominates, which leads to ρ ≈ 0. At large positive ε‖, vacancies
dominate, leading to ρ < 0, and for ε‖ near µdimer, there is a small window where perpendicular
adsorption of dimers dominates, leading to positive values of ρ. Correspondingly, the fluctuations,
represented by the standard deviation σNI , become small when |ε‖| becomes large, and the fluctuations
are largest at small |ε‖|, when there are comparable numbers of all species. The phenomenon of
charge inversion is demonstrated in Figure 6 because the average charge is positive, indicating that
sufficiently many dimers adsorb in a perpendicular configuration to invert the charge on the molecule
from negative to positive. The magnitude of charge inversion increases in the weak-binding limit
ε⊥, ε‖ → 0. The maximum of this inversion in Figure 6 is about 0.25, which is much larger than the
estimate of 0.07 from the work of Nguyen and Shklovskii[26] , as discussed in the Introduction. That
work treated the charge on DNA as a continuum, while we have used the discrete lattice of phosphates
in a lattice-gas model. We have not included interactions between sites yet, although we have assumed
that there can only be one species per site, either a parallel dimer, a perpendicular dimer, or a vacancy.
We will see later in this paper that interactions reduce this value somewhat, but it will still be much
larger than 0.07.
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Figure 6. Plots of the charge densities for the noninteracting lattice gas model. The charge density
ρNI is shown as the solid blue curve, and the standard deviation of the charge density, σc, is shown
as the dashed red curve. The parameters used in the calculation areβµdimer = 0.79 and ε‖ = 2ε⊥. As
in Figure 5, dimers are attracted to the lattice when ε‖ − µdimer < 0, and dimers are repelled from the
lattice when ε‖ − µdimer > 0.

The noninteracting entropy SNI can be obtained from the partition function using Eq. (7) as

SNI = kB ln





(

∑
γ

a
(γ)
NI

)Nsites


− kBβ
(

∑γ′ a
(γ′)
NI

)Nsites

∂

∂β

(

∑
γ

a
(γ)
NI

)Nsites

. (30)
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Because the derivative of the activity with respect to β can be written in terms of its logarithm as

β
∂

∂β
a
(γ)
NI = a

(γ)
NI ln a

(γ)
NI , (31)

the entropy can be written in the simple form

SNI

kBNsites
= −∑

γ

a
(γ)
NI

∑γ′′ a
(γ′′)
NI

ln





a
(γ)
NI

∑γ′ a
(γ′)
NI



 . (32)

Substituting the mean occupancy for the noninteracting model from Eq. (21) allows us to write the
dimensionless entropy per site for the noninteracting model in a simplified form as

SNI

kBNsites
= −∑

γ

〈n(γ)〉NI ln 〈n(γ)〉NI , (33)

which agrees with the standard result for the entropy of mixing of an ideal solution with species
γ = (‖,⊥, v) [40].

In Figure 7, we show the entropy SNI of the noninteracting model as a function of the binding
energy βε‖, assuming ε‖ = 2ε⊥. We also show the individual contributions of Eq. (33) to the entropy.
The entropy is a maximum when disorder is greatest, and this occurs when the numbers of each of
the species are as close to equal as possible, which occurs at ε‖ = µdimer, the maximum of 〈n(⊥)〉 in
Figure 5.
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Figure 7. The entropy SNI per site in the noninteracting lattice gas model. The parameters used in the
calculation are βµdimer = 0.79 and ε‖ = 2ε⊥. The dashed curves are the individual contributions in
Eq. (33).

3. Geometry of the Charged Double Helix of DNA

While stored in the nucleus of a cell, DNA is wrapped compactly both around histone protein
complexes and around itself, but on sufficently small scales (≈ 150 base pairs [41], or 15 turns [30],
or 50 nm [8]), DNA’s dominant geometrical structure is the familiar double-helix structure shown
in Figure 2. Each strand of the DNA takes the shape of a helix with a characteristic radius RDNA =

0.946 nm and pitch angle ψ = 29.6◦, as shown in Figure 8. Here the pitch angle ψ denotes the angle
with respect to the xy-plane that gives the appropriate altitude per unit circumferential winding; in
cylindrical coordinates, tan ψ = ∆z/RDNA∆φ, where ∆z is the distance along the z axis. Each strand of
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DNA has a “direction", identified by a particular carbon on the backbone structure, corresponding
to the chirality of the helix. In the DNA double-helix, the two strands are antiparallel and therefore
have opposite chiralities. As a consequence, the azimuthal angle between the two helices is always a
constant, ∆φ = 160◦. Because this phase shift is not exactly 180◦, the chains have unequal separation
in the clockwise and counterclockwise azimuthal directions. The larger gap is referred to as the major

groove, and the smaller as the minor groove.
When the hydrogen atoms dissociate under physiological conditions, the resulting negative

charges (−e, where e is the magnitude of the charge of the electron), can be regarded as located at the
mean position of the oxygen atoms on the backbone, as shown in Figure 2. This figure was constructed
using geometrical data taken from Bishop and McMullen [28], which is based on experimental x-ray
diffraction data [42,43] as input to the SYBYL molecular modeling program[44]. The oxygen atoms
occur at regular intervals along each strand, separated by a helix segment of arc length a(1) = 0.684 nm.
It is these sites located at regular intervals along the helix to which dimers will adsorb. These
negatively-charged sites do not occur at the same altitudes on both strands, however. Rather, there
is a vertical separation ∆z = 0.023 nm between corresponding sites on the two strands. With the
relative phase of the strands and the vertical separation between sites on those strands taken together,
corresponding sites on the two strands may be viewed as connected by a helical segment of arc length
a(2) = 3.34 nm at a pitch angle of α = 0.394◦. This geometry is shown in Figure 8.

Figure 8. A segment of a single DNA strand. The helix winds along the cylindrical surface with a pitch
angle ψ, and a helix of pitch angle α connects a site with its neighbor on the other chain. The helix has
been stretched in the z direction so that the angle α, which is only ≈ 0.4◦, can be clearly labeled on the
diagram.

When positively-charged dimers approach the DNA molecule, they will be attracted to the
negative charges at the sites on the double-helix. We consider dimers with a length comparable to the
spacing a(1) between sites on a strand and having positive charges +e at either end. The dimers can
then adsorb onto the surface in two possible orientations, either parallel to the strand or perpendicular
to the helix axis. (See Figure 4.) If the dimer adsorbs parallel to the strand, the positive charges from
the dimer lie directly over the negative charges on the strand, neutralizing the charge on two adjacent
sites. If the dimer adsorbs perpendicular to the surface of the bounding cylinder, one end of the dimer
sits atop the site, while the other extends radially outward. This perpendicular adsorption effectively
inverts the charge on the site from −e to +e. In order to use a lattice-gas model, this geometric
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constraint is loosened by having the parallel dimer block only a single site. This deficiency can be
somewhat compensated by making binding energy of the parallel dimer twice as large, ε‖ ≈ 2ε⊥.

Note that because the length of the dimer (equal to the same-chain site spacing a(1) = 0.684 nm)
is much smaller than both the cross-chain site spacing a(2) = 3.34 nm and the vertical separation
∆z = 3.4 nm between turns of the helix, other orientations of the dimer are not possible.

The problem thus described is a complex one, but the similarities with the lattice gas models of
condensed matter physics provide guidelines for how to proceed. These prescriptions, however, are
aimed at the treatment of a periodic crystalline lattice, and, although the DNA sites exhibit helical
symmetry, they do not constitute a periodic lattice in the strict sense of the term. However, an
appropriate choice of coordinates can take advantage of the helical symmetry, so that, in these new
coordinates, the positions of the sites will fall on a regular, one-dimensional lattice.

We will define these coordinates on a cylinder of radius RDNA, as shown in Figures 8 and 9.
The first coordinate x(1) traces out a path with pitch angle ψ along a single helical strand, and the
other coordinate x(2) traces out a path with pitch angle α that connects corresponding sites on the
two strands. Geometrically, a cylinder can be regarded as flat in the sense that it has no curvature. In
Figure 9, we show the way that the cylinder can be cut with scissors and unwrapped so that this lattice
can be mapped on a flat surface as shown in Figure 10. If we define the origin of coordinates x(1) and
x(2) to be halfway along the helical path between the partners on the two chains, as shown in Figures 9
and 10, then the positions of the sites on both strands form a one-dimensional lattice in the coordinates
(x(1), x(2)).

�
(�)

�
(�)

Figure 9. DNA double helix wrapped around a cylindrical tube. If the scissors cut along the solid
green line, which is the center of the minor groove, then the paper can be put on a flat surface, with the
double helix forming a one-dimensional chain. The coordinate x(1) lies along the dashed brown line in
the major groove, midway between the up and down chains, and x(2) lies along a path on the surface of
the cylinder that connects the two phosphates on the two sub-chains that are connected by base pairs.
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Figure 10. Diagram of the new coordinates x(1) and x(2) in terms of the cylindrical coordinates (φ, z).

These coordinates can be written simply in terms of cylindrical coordinates (φ, z) in matrix form
as

[

RDNAφ

z

]

=

[

cos ψ cos α

sin ψ sin α

] [

x(1)

x(2)

]

. (34)

Inverting this gives definitions of the two coordinates as

x(1) =

(

sin α

sin(α − ψ)

)

RDNAφ −
(

cos α

sin(α − ψ)

)

z (35)

and

x(2) = −
(

sin ψ

sin(α − ψ)

)

RDNAφ +

(

cos ψ

sin(α − ψ)

)

z. (36)

With these definitions, the difference in coordinates between adjacent sites on the same strand is
∆x(1) = a(1), and the difference in coordinates between corresponding sites on the two strands is
∆x(2) = a(2). That is, a(1) is the distance along the helical path of a single chain from one phosphate
ion to the next, and a(2) is the distance along a helical path from a phosphate ion on one chain to its
partner phosphate ion on the other chain.

Next we define a lattice index ℓ, which specifies the cell (altitude on the double-helix) and chain
index b, which specifies the basis site, where b = − 1

2 for the “down"(↓) chain and b = 1
2 for the “up"(↑)

chain, as shown in Figure 11. Using these variables, the coordinates can be written as

(x(1), x(2)) = (ℓa(1), ba(2)) , (37)

where
ℓ = 0,±1,±2, . . . ; b = ±1

2
. (38)

Thus, although the sites on the DNA molecule do not constitute a periodic lattice in real space, they
do constitute a lattice in an appropriately-defined coordinate space (see Figure 11). As we will see,
however, this choice of coordinates will make the form of the interaction potential more complicated
as a result.

The use of (x(1), x(2)) instead of the cylindrical coordinates (φ, z) indicates a more fundamental
shift in our description of the DNA double-helix. The two-dimensional surface on which the helices lie
is a cylinder of radius RDNA, and the helices inherit the cylinder’s geometric properties. The geometry
of the cylinder, however, is locally indistinguishable from the geometry of the flat plane. One common
consequence of this is that it is possible to smoothly wrap a flat sheet of paper around a cylinder.
In contrast, it is not possible to smoothly wrap a sheet of paper around a sphere; this problem is
well-known because of the geometrical distortions that occur in flat maps of a spherical Earth. Maps
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Figure 11. In the new coordinates x(1) and x(2), the positions of the sites constitute a one-dimensional
lattice with two sites per unit cell. Here b = − 1

2 for the “down"(↓) chain and b = 1
2 for the “up"(↑)

chain.

of a cylindrical surface, however, have no such distortions. This geometrical difference is quantified
by the Riemannian curvature tensor, which vanishes for both the cylinder and the plane, but not for
the sphere[45]. This means that the local geometry of the cylinder behaves in exactly the same way as
the local geometry of the plane, so that a helix on a cylinder is geometrically equivalent to a line on a
plane.

Our choice of coordinates is simply a map of the cylindrical surface that reduces the double-helix
to two parallel lines, as shown in Figure 11. The result of this map is that we have a linear lattice with
two phosphate sites per cell, with the cells labeled from ℓ = −N to N . All 2N + 1 cells are identical,
and the lattice can be imagined to satisfy periodic boundary conditions.

The analogy describing DNA as a ladder wrapped around a cylinder of radius RDNA then has a
true mathematical basis, because the local structure of the double-helix is equivalent to the structure
of a “ladder" — a one-dimensional chain with a unit cell containing one site from each strand. If
interactions are ignored, then the problem is described simply by this one-dimensional lattice.

4. DNA Interaction Potential

The geometrical structure of the double helix is important in determining the electrostatic energy
Uint of the sites (with and without dimers) interacting with one another. The full Hamiltonian must
contain these contributions and can be written as

H = ∑
ℓ,b

∑
γ

εγn
(γ)
ℓ,b + Uint , (39)

where the interaction energy Uint is the total interaction energy between all the charges on all the sites.
If V(ℓ1,b1),(ℓ2,b2)

is the screened Coulomb energy between a charge qγ1 at site ℓ1 on chain b1 with another
charge qγ2 at site ℓ2 on chain b2, then Uint can be written as

Uint =
1
2 ∑

γ1,γ2

∑
(ℓ1,b1),(ℓ2,b2)

qγ1 n
(γ1)
ℓ1,b1

V(ℓ1,b1),(ℓ2,b2)
n
(γ2)
ℓ2,b2

qγ2 , (40)

where n
(γ)
ℓ,b is the number of particles of species γ on the lattice site at (ℓ, b) and qγ is the charge of that

species, in units of the magnitude e of the charge of an electron. The factor of 1/2 is to ensure that
we are not double counting when we sum over all lattice sites, and we implicitly exclude same-site
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interactions (ℓ1, b1) 6= (ℓ2, b2). The total charge on a given site is given by summing all the charges on
that site, so that the total charge on the site (ℓ, b) is

ρℓ,b = ∑
γ

qγn
(γ)
ℓ,b . (41)

The interaction potential can then be written in terms the the total charge on each site as

Uint =
1
2 ∑

(ℓ1,b1),(ℓ2,b2)

ρ(ℓ1,b1)
V(ℓ1,b1),(ℓ2,b2)

ρ(ℓ2,b2)
, (42)

where V is the electrostatic interaction energy between the sites. This screened electrostatic energy
between charges qγ1 and qγ2 at positions (ℓ1, b1) and (ℓ2, b2), (in SI units) is

V(ℓ1,b1),(ℓ2,b2)
=

e2

4πǫ

e−qsdb1b2
(ℓ1−ℓ2)

db1b2(ℓ1 − ℓ2)
, (43)

where ǫ is the electric permittivity of the medium between the two charges, and db1b2(ℓ1 − ℓ2) is
the straight-line distance between the two charges. Distances along the chain are invariant under
translations by a lattice spacing, and so db1b2(ℓ1 − ℓ2) depends only on the difference between the lattice
site indices ℓ1 − ℓ2. As in the noninteracting lattice-gas model, we have three species of “particles" on
the lattice sites, vacancies of charge qv = −1, parallel (‖) dimers of charge q‖ = 0, and perpendicular
(⊥) dimers of charge q⊥ = +1.

Under physiological conditions, the presence of monovalent salt ions such as Na+ leads to
screening of the bare charges. Traditionally, screening is treated by modeling the ions as a continuous
density, resulting in the nonlinear Poisson-Boltzmann equation [19,46]. The Poisson-Boltzmann
equation is not analytically solvable, so it is often further approximated by linearization. The resulting
Thomas-Fermi model is analytically solvable and gives the screened Coulomb (or Yukawa) potential
between two charges given in Eq. (43) where ǫ = 78.5ǫ0 is the permittivity of water (with ǫ0 the
permittivity of free space) and qs is the magnitude of the screening wave vector [47]. Various names
are ascribed to both the nonlinear and linearized equations, including Debye-Hückel, Thomas-Fermi,
and Poisson-Boltzmann, but we will always refer to the Poisson-Boltzmann equation when we mean
the nonlinear form and the (linearized) Thomas-Fermi equation when we mean the linearized form.

One must be cautious in using the screened Coulomb potential for screened interactions. The
continuous density approximation from which the nonlinear Poisson-Boltzmann equation was derived
constitutes a form of mean-field theory[19], which fails to describe any of the effects due to correlations
between the ions such as charge inversion and condensation. Thus we cannot model screening of
the DNA molecule by the dimers using the Thomas-Fermi model, or even the Poisson-Boltzmann
equation. Instead, we must treat the dimers as individual particles and compute their interactions so
that we do not ignore correlation effects.

For the screening due to the monovalent salt, however, the valence involved is small enough
and the concentration is low enough that a mean-field treatment is generally believed to be a
good approximation [19? ]. Thus, we will treat the interaction energy Uint in Eq. (42) using the
screened Coulomb potential for the dimer-dimer interactions, with the screening vector qs given in the
Thomas-Fermi model as [47]

qs =

√

2n
βe2

ǫ
=
√

8πnℓB , (44)

where β = 1/kBT is the inverse temperature, n is the concentration of ions, and ℓB = βe2/(4πǫ) is the
Bjerrum length [32]. The Bjerrum length is a characteristic length scale equal to the distance at which
two proton charges interact with energy kBT. It should be noted that these expressions differ slightly
in the literature because of various authors’ choices of units for the electrostatics. Here, we use SI units.
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By choosing a coordinate system based on the arc lengths around the surface of the cylinder, we
have managed to align the sites into a regular lattice, but the potential V(ℓ1,b1),(ℓ2,b2)

depends on the
straight-line distance between the sites rather than the surface arc-length connecting them. We must
then express Eq. (43) in terms of the straight-line distance function db1b2(ℓ1 − ℓ2) between the sites at
(ℓ1a(1), b1a(2)) and (ℓ2a(1), b2a(2)). The straight-line distance in cylindrical coordinates between two
points on the surface of a cylinder of radius RDNA is

distance(φ1, z1, φ2, z2) =
{

2R2
DNA [1 − cos (φ1 − φ2)] + (z1 − z2)

2
} 1

2 , (45)

and applying our change of variables (35,36) gives the straight-line distance between sites as

db1b2(ℓ) = RDNA

{

2

[

1 − cos

(

a(1)

RDNA
ℓ cos ψ +

a(2)

RDNA
b cos α

)]

+

[

a(1)

RDNA
ℓ sin ψ +

a(2)

RDNA
b sin α

]2






1
2

,

(46)

where ℓ = ℓ1 − ℓ2 and b = b1 − b2. Because of the translational invariance of the lattice, the distance in
Eq. (46) depends only on the differences between the lattice and basis indices, and not their values
individually. From this relation, we see the symmetry property of the distance,

db1b2(ℓ) = db2b1(−ℓ) (47a)

d↑↑(ℓ) = d↓↓(−ℓ) . (47b)

Since b1 and b2 are either + 1
2 or − 1

2 , b = b1 − b2 takes the three values b = 0 for interactions of
one site on a single chain with all other sites on the same chain, b = 1 for interactions between a site
on the “up" chain with with all the sites on the “down" chain, and b = −1 for interactions of one site
on the “down" chain with all the sites on the “up" chain. We will write an up arrow ↑ will indicate
b1,2 = 1

2 , and a down arrow ↓ will indicate b1,2 = − 1
2 . Plots of d↑↑(ℓ)/RDNA and d↑↓(ℓ)/RDNA are

shown in Figure 12a. There are wiggles in the curve because, as the chain wraps around the cylinder
(see Figure 4), the distances between lattice sites can become larger or smaller than they would be on a
linear chain.

In order to understand the consequences of the screened Coulomb potential (43) depending on the
straight-line distances d between sites, we define a new notation for the potential, which is expressed
in terms of the difference in lattice site indices ℓ1 − ℓ2,

Vb1b2(ℓ1 − ℓ2) ≡ V(ℓ1,b1),(ℓ2,b2)
. (48)

This potential decays exponentially as a function of the straight-line distance d (inset of Figure 12(b)).
However, as a function of the lattice index ℓ as in Figure 12(b), there are corresponding “wiggles" in the
decay. This occurs because the distance between the sites decreases slightly as the helix completes a
turn. These wiggles are present for every turn the helix makes, but the effect on the potential becomes
negligibly small after about the first turn. Thus, by using the indices ℓ and b to describe the relationships
between sites, we have reduced the DNA double-helix structure to a regular one-dimensional lattice
with two sites per cell at the cost of an irregular potential due to the geometrical structure of the DNA
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molecule. The potentials for other combinations of b1 and b2 can be related to those in Figure 12(b)
through the symmetry relations

Vb1b2(ℓ) = Vb2b1(−ℓ) (49a)

V↑↑(ℓ) = V↓↓(−ℓ) . (49b)
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Figure 12. (a) Distance db1b2 (ℓ)/RDNA between sites and (b) screened Coulomb potential Vb1b2 (ℓ1 − ℓ2)

as a function of lattice index ℓ, within the same chain (↑↑) and between the two chains (↑↓). The red
curve (↑↑), representing same-chain repulsion, is an even function, and the blue curve (↑↓), representing
opposite-chain repulsion, is neither even nor odd. The point ℓ = 0 for the same chain repulsion is
omitted because it would correspond to a site interacting with itself. The inset in (b) is the screened
Coulomb interaction as a function of the straight-line distance d between charges. At the physiological
temperature of T = 37◦ C (300.15 K), β ≡ 1/kBT ≈ 1/(27 meV).

Fourier transforming in the site index ℓ block diagonalizes this matrix into 2 × 2 blocks,
corresponding to the chain indices b1 and b2. Explicitly, the Fourier transform is

Ṽ = F †VF , (50)

where the elements of F are independent of b1 and b2 and are given by

F(ℓ,b1),(k,b2)
=

1√
2N + 1

eikℓ , (51)

and the dagger denotes the adjoint (complex conjugate transpose). We use periodic boundary
conditions, so that the wave vector k appearing here, which is dimensionless, takes the 2N + 1
values

k = −N∆k · · · N∆k , (52)

where

∆k =

(

2π

2N + 1

)

. (53)
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If N is large, the range of k is essentially continuous from −π to π.
The matrix elements of this Fourier transform are

Ṽ(k1,b1),(k2,b2)
=

1
2N + 1

N
∑

ℓ1,ℓ2=−N
e−ik1ℓ1V(ℓ1b1),(ℓ2,b2)

eik2ℓ2 . (54)

Substituting for V from Eq. (48), we have

Ṽ(k1,b1),(k2,b2)
=

1
2N + 1

N
∑

ℓ1,ℓ2=−N
e−i(k1ℓ1−k2ℓ2)Vb1b2(ℓ1 − ℓ2) . (55)

Since we regard the chain as having periodic boundary conditions, changing summation indices
to ℓ = ℓ1 − ℓ2 and ℓ2 gives

Ṽ(k1,b1),(k2,b2)
=

1
2N + 1

N
∑

ℓ=−N
e−ik1ℓVb1b2(ℓ)

N
∑

ℓ2=−N
e−i(k1−k2)ℓ2 , (56)

where the sum over ℓ2 becomes

N
∑

ℓ2=−N
e−i(k1−k2)ℓ2 = (2N + 1)δk1,k2 . (57)

We can now write the Fourier transform of Vb1b2(ℓ) as

Ṽb1b2(k) =
N
∑

ℓ=−N
e−ikℓVb1b2(ℓ) . (58)

Substituting this back into the matrix, we have

Ṽ(k1,b1),(k2,b2)
= δk1,k2 Ṽb1b2(k1) . (59)

Thus, the Fourier transform Ṽ of V is diagonal in the k indices and contains 2 × 2 blocks

Ṽ(k) =

[

Ṽ↓↓(k) Ṽ↓↑(k)
Ṽ↑↓(k) Ṽ↑↑(k)

]

. (60)

The symmetries (49) of the screened Coulomb potential on the DNA lattice are reflected in the Fourier
transforms (58) as well:

Ṽb1b2(k) = Ṽb2b1(k)
∗ = Ṽb2b1(−k) (61a)

Ṽ↑↑(k) = Ṽ↓↓(k) . (61b)

Also, because V↑↑(ℓ) is an even function of ℓ, Ṽ↑↑(k) is real. The Fourier transforms (58) are plotted in
Figure 13.

As can be seen in Figure 13, the Fourier transforms Ṽ(k) have regions of k that are negative, which
is a result of transforming with respect to our helical coordinate system. When the screened Coulomb
potential (43) is Fourier transformed with respect to the straight-line distance d, the function is positive
definite. We have instead Fourier transformed the potential a function of the lattice index ℓ, resulting
in the “wiggles" in Figure 12(b) caused by the turns of the helix. These deviations from the exponential
decay of V(d) result in the deviations here from the positive-definite Fourier transform.
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Figure 13. Plots of the Fourier transforms Ṽ↑↑(k) (solid red curve) and Ṽ↑↓(k) against the dimensionless
wavevector k. The symbols Re and I m correspond to the real (blue dashed curve) and imaginary
parts (green dot-dashed curve) of the complex Fourier transform, respectively.

Using the symmetry operations in Eqs. (61a) and (61b) obeyed by the Fourier transforms allows
us to simplify the 2 × 2 blocks Ṽ(k) in Eq. (60) to

Ṽ(k) =

[

Ṽ↑↑(k) Ṽ∗
↑↓(k)

Ṽ↑↓(k) Ṽ↑↑(k)

]

. (62)

This matrix is easily diagonalized, yielding the real eigenvalues

λk,± = Ṽ↑↑(k)± |Ṽ↑↓(k)|, (63)

which are plotted in Figure 14. The transformation that diagonalizes Ṽ(k) is a unitary matrix
ξ(k) whose columns are the eigenvectors of Ṽ(k). Choosing the λk+ eigenvector to be first, this
transformation matrix is given by

ξ(k) =
1√
2





1 1
Ṽ↑↓(k)
|Ṽ↑↓(k)|

− Ṽ↑↓(k)
|Ṽ↑↓(k)|



 . (64)

This diagonalizes the 2 × 2 matrix Ṽ(k) according to

[

λ+(k) 0
0 λ−(k)

]

= ξ†(k)Ṽ(k)ξ(k). (65)
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Figure 14. Plots of the eigenvalues λk± of the 2 × 2 blocks of Ṽ(k).
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We can write the combined process of Fourier transforming V into block-diagonal form and then
diagonalizing the 2 × 2 blocks Ṽ(k) as a single unitary transformation M given by

M(ℓ,b),(k,σ) =
ξb,σ(k)√
2N + 1

eikℓ, (66)

which completely diagonalizes V such that

Λ = M†VM. (67)

Here Λ is a diagonal matrix, with each element along the diagonal given by:

Λ(k1,σ1),(k2,σ2)
= δk1,k2 δσ1,σ2 λk1σ1 , (68)

where σ is either + or −.
Although we have diagonalized the potential with a unitary transformation, the fact that the

transformation matrix is complex means that the charge density in the diagonal basis could also be
complex, which is physically undesirable. However, the potential matrix in the position basis is real and
symmetric, which means that it should be diagonalizable by a real orthogonal transformation matrix
W . In fact, the transformation matrix is not unique, since there is a degeneracy in the eigenvalues,
since λk,σ = λ−k,σ. This means that we can choose eigenvectors that are real by taking two orthogonal
linear combinations of the eigenvectors of the unitary transformation M for k and −k. Those two new
eigenvectors, which represent the columns (k, σ) for k > 0 and k < 0 of the new transformation matrix
W , are given by

W(ℓ,b),(k,σ) =
1√
2

{

M(ℓ,b),(k,σ) +M(ℓ,b),(−k,σ)

}

, k > 0 , (69)

and
W(ℓ,b),(k,σ) = i

1√
2

{

M(ℓ,b),(k,σ) −M(ℓ,b),(−k,σ)

}

, k < 0 . (70)

Since ξbσ(−k) = ξ∗bσ(k), these can be written in terms of real and imaginary parts as

W(ℓ,b),(k,σ) =

√
2

√

(2N + 1)
Re
{

eikℓξbσ(k)
}

, k > 0 . (71)

and

W(ℓ,b),(k,σ) = −
√

2
√

(2N + 1)
Im
{

eikℓξbσ(k)
}

, k < 0 . (72)

When k = 0, the orthogonal transformation is the same as the unitary transformation, that is

W(ℓ,b),(0,σ) = M(ℓ,b),(0,σ) =
ξb,σ(0)√
2N + 1

, (73)

where

ξ(0) =
1√
2

[

1 1
1 −1

]

. (74)

Here the columns are labeled by the eigenvalue σ = ±, and the rows are labeled by the chain b = −1/2
for the first row and b = 1/2 for the second row.
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This transformation can be written in a more compact form by introducing the unitary
transformation matrix Z , whose elements are defined by

Z(kσ),(k′σ′) = δσ,σ′











i√
2
(δk,k′ − δk,−k′) k < 0

δk,k′ k = 0
1√
2
(δk,k′ + δk,−k′) k > 0

. (75)

Then the orthogonal transformation is
W = MZ . (76)

In deriving the thermodynamic quantities for the interacting lattice gas model, it will be
convenient to be able to use this orthogonal transformation to diagonalize the potential.

5. Partition Function for Interacting DNA Chains

For the interacting lattice gas, the partition function is similar to the noninteracting one in Eqs. (5)
and (8). However, here the full Hamiltonian H from Eq. (39) is used, and then the partition function is
given by

ZG = ∑
configurations

e
−β
(

H−∑ℓ,b ∑γ µγn
(γ)
ℓ,b

)

. (77)

The full Hamiltonian, including the interaction term from Eq. (42) written in matrix form, is

H = ∑
ℓ,b

∑
γ

εγn
(γ)
ℓ,b +

1
2

ρTVρ . (78)

In Sec. 4, we showed that the orthogonal transformation matrix W diagonalizes V . In order to
streamline the calculation, it will be useful to insert the identity matrix in the form WWT , to the left
and right of of V in the interaction term of the Hamiltonian, which gives

H = ∑
ℓ,b

∑
γ

εγn
(γ)
ℓ,b +

1
2
(ρTW)(WTVW)(WTρ) , (79)

where we have grouped factors to show the transformed quantities.
The Hamiltonian, with the interaction term written in the diagonal basis, can then be written as

H = ∑
ℓ,b

∑
γ

εγn
(γ)
ℓ,b +

1
2

ρ̃2Λ

= ∑
ℓ,b

∑
γ

εγn
(γ)
ℓ,b +

1
2 ∑

k,σ
(ρ̃k,σ)

2λk,σ , (80)

where ρ̃ = WTρ is the transformed charge density. We have not transformed the first term in the
Hamiltonian to the diagonal basis because it is more convenient later in the calculation to have it in the
position basis. Substituting this form into the partition function and writing the resulting expression
as two separate exponentials, we have

ZG = ∑
configurations

e−β ∑ℓ,b ∑γ(εγ−µγ)n
(γ)
ℓ,b e−

β
2 ∑k,σ ρ̃2

k,σλk,σ . (81)

We can write the exponential of the sum in the interaction term as a product of exponentials as

ZG = ∑
configurations

e−β ∑ℓ,b ∑γ(εγ−µγ)n
(γ)
ℓ,b ∏

k,σ
e−

β
2 ρ̃2

k,σλk,σ . (82)
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From this expression, we can see that the mean site occupancy for the interacting lattice-gas model can
be obtained in the same way as in the noninteracting case (9),

〈n(γ)〉 = 1
NsitesβZG

∂ZG

∂µγ
, (83)

by differentiating the partition function with respect to the chemical potential.
In the noninteracting case, since all the information about the configuration was contained in

n
(γ)
ℓ,b , we were able to decouple the sum over configurations from the sum over lattice sites because

the activity was independent of position, and n
(γ)
ℓ,b only appeared in its exponent. This is because

only linear factors of n
(γ)
ℓ,b were in the exponent in the partition function. While it is still true that n

(γ)
ℓ,b

contains the configuration dependence, it now appears quadratically in the exponent of the partition
function, since ρ̃k,σ contains linear factors of the n

(γ)
ℓ,b , and the exponent in the interaction term contains

ρ̃2
k,σ. This makes it impossible to decouple the sum over configurations from the sum over lattice sites.

However, we can use an integral identity, known as the Hubbard-Stratonovich transformation, to
replace the term quadratic in ρ̃k,σ in the exponential with a term linear in ρ̃k,σ, meaning that there will

only be linear terms in n
(γ)
ℓ,b . This requires introducing the integral over an auxiliary field ∆̃k,σ. Then

the sum over configurations is possible to do exactly, although at the cost of having to integrate over
the auxiliary fields.

The integral identity, which is a complicated way of writing unity, as is shown in Appendix A, is
given by

∫

√

βλ

−2π
d∆̃ e

β
2 λ∆̃2−βλ∆̃ρ̃e

β
2 λρ̃2

= 1 , (84)

where the integration path is over the real axis from −∞ to ∞ when λ < 0 and over the imaginary axis
from −i∞ to i∞ when λ > 0. In the previous work by Bishop and McMullen[28], the problem was done
in the position basis, and this integral identity, known as the Hubbard-Stratonovich transformation,
was written with the matrix version of the potential in the exponent, as given in Negele and Orland[48].
This form creates a dilemma when there are negative and possibly zero eigenvalues of the potential,
and it is difficult to determine the path of integration, since it changes depending on the sign of the
eigenvalues. Zero eigenvalues would make the determinant of the matrix in that formula zero, and
one then finds that there is a division by zero in the formula. By transforming to the diagonal basis, all
these difficulties are avoided, since there is a separate integral for each eigenvalue, and if a particular
eigenvalue is zero, the identity is not used at all.

To use the identity in Eq. (84), we make the identifications that λ = λk,σ, ρ̃ = ρ̃k,σ, and ∆̃ = ∆̃k,σ.
Substituting this “1" into the partition function, we have

ZG = ∑
configurations

∏
k,σ

∫

√

βλk,σ

−2π
d∆̃k,σe

β
2 λk,σ∆̃2

k,σ−βλk,σ∆̃k,σ ρ̃k,σ e
β
2 λk,σ ρ̃2

k,σ ×

×e−β ∑ℓ,b ∑γ(εγ−µγ)n
(γ)
ℓ,b e−

β
2 ρ̃2

k,σλk,σ . (85)

Now we see that the two exponentials containing ρ̃2
k,σ cancel, as we planned. Of course, we have

gained this convenience by introducing the auxiliary field ∆̃k,σ, and we will have to do the integral
over this variable at a later stage. However, since ∆̃k,σ does not depend on the configuration of the
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system, we can bring the sum over configurations and the leading exponential factors in the partition
function inside the integral, and the expression for the partition function becomes

ZG =
∫

(

∏
k,σ

√

βλk,σ

−2π
d∆̃k,σ

)

∑
configurations

exp

{

−β ∑
ℓ,b

∑
γ

(εγ − µγ)n
(γ)
ℓ,b +

+∑
k,σ

[

β

2
λk,σ∆̃2

k,σ − βλk,σ ρ̃k,σ∆̃k,σ

]

}

. (86)

It will be useful to define an action S such that the partition function can be written in the form

ZG =
∫

D[∆̃] ∑
configurations

e−S [∆̃], (87)

where

S [∆̃] = β

{

∑
ℓ,b

∑
γ

(εγ − µγ)n
(γ)
ℓ,b + ∑

k,σ

[

− β

2
λk,σ∆̃2

k,σ + βλk,σ ρ̃k,σ∆̃k,σ

]

}

and

D[∆̃] =

(

∏
k,σ

√

βλk,σ

−2π
d∆̃k,σ

)

. (88)

Note that the factors of βλk,σ are included here in the grand differential D[∆̃], rather than incorporating
them in the action S [∆̃], as was done in Bishop and McMullen[28] and in Sievert[33]. When these
factors appear in the action, they introduce a term of the form ln

√

det(βv). This adds a large constant
value to the mean field results, which is subtracted out when the fluctuation terms are included. It
actually has no real physical meaning and is part of the normalization of the integral[49].

We see that by diagonalizing first, our auxiliary fields are in the diagonal basis of the potential. If
we transform the terms containing εγ and µγ to this basis, they will no longer be diagonal. Therefore,
we will leave those terms in the position basis. It will also be convenient to have the term containing
∑k,σ λk,σ ρ̃k,σ∆̃k,σ in the position basis also. Therefore, the expression for the transformed charge density
is

ρ̃k,σ = ∑
ℓ,b

WT
(k,σ),(ℓ,b) ∑

γ

ρ
(γ)
ℓ,b

= ∑
ℓ,b

WT
(k,σ),(ℓ,b) ∑

γ

qγn
(γ)
(ℓ,b) , (89)

in terms of the quantities in real space.
Substituting this into the action, we have

S [∆̃] = β

{

∑
ℓ,b

∑
γ

(εγ − µγ)n
(γ)
(ℓ,b) − ∑

k,σ

[

1
2

λk,σ∆̃2
k,σ + ∆̃k,σλk,σ ∑

ℓ,b
WT

(k,σ),(ℓ,b) ∑
γ

qγn
(γ)
(ℓ,b)

]}

. (90)

It is convenient to identify the last term in this expression as a self energy of species γ,

Σ̃
(γ)
ℓ,b [∆̃] =

(

∑
k,σ

∆̃k,σλk,σWT
(k,σ),(ℓ,b)

)

qγ . (91)

By transforming ∆̃k,σ to the position basis as

∆̃k,σ = ∑
ℓ′ ,b′

∆ℓ′ ,b′W(ℓ′ ,b′),(k,σ) , (92)
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this self-energy can also be written in the position basis as

Σ
(γ)
ℓ,b [∆] = Σ̃

(γ)
ℓ,b [∆̃]

= qγ ∑
ℓ′ ,b′

∆ℓ′ ,b′

(

∑
k,σ

W(ℓ′ ,b′),(k,σ)λk,σWT
(k,σ),(ℓ,b)

)

= qγ ∑
ℓ′ ,b′

∆ℓ′ ,b′V(ℓ′ ,b′),(ℓ,b) . (93)

This will be a useful form to use when we discuss the saddle point, or mean-field, approximation.
Keeping the first term in the position basis and the second term in the diagonal basis, we now

write the action in a compact form, combining the self energy term with the first term in the action to
obtain

S [∆̃] = β

{

∑
ℓ,b

∑
γ

(εγ + Σ
(γ)
ℓ,b [∆]− µγ)n

(γ)
(ℓ,b) − ∑

k,σ

[

1
2

λk,σ∆̃2
k,σ

]

}

. (94)

Analogous to the noninteracting case, we define the activity as

ã
(γ)
ℓ,b [∆̃] = a

(γ)
ℓ,b [∆] = e−β(εγ+Σ

(γ)
ℓ,b [∆]−µγ) . (95)

With this definition, the partition function becomes

ZG =
∫

D[∆̃] ∑
configurations

(

∏
ℓ,b

∏
γ

{a
(γ)
ℓ,b [∆]}

n
(γ)
(ℓ,b)

)

eβ ∑k,σ[
1
2 λk,σ∆̃2

k,σ] . (96)

The trace over configurations is now done over each site separately exactly as we did for the
noninteracting case, where n

(γ)
(ℓ,b) = 1 for one and only one of γ =‖,⊥, or v, and zero otherwise. Thus,

performing the trace gives

∑
single-site

configurations

∏
γ

{ã
(γ)
ℓ,b [∆̃]}

n
(γ)
(ℓ,b) = ∑

γ

ã
(γ)
ℓ,b [∆̃] , (97)

and the grand partition function becomes

ZG =
∫

D[∆̃]e−Seff[∆̃], (98)

where the effective action is

Seff[∆̃] = − β

2 ∑
k,σ

λk,σ∆̃2
k,σ − ∑

ℓ,b
ln

(

∑
γ

ã
(γ)
ℓ,b [∆̃]

)

. (99)

This is the general result, which is in principle exact. To understand what the
Hubbard-Stratonovich transformation has accomplished for us, recall that the interaction energy
Uint posed two difficulties: the additional configuration dependence and the coupling between the
sites. By introducing auxiliary fields through the Hubbard-Stratonovich transformation (84), we
managed to separate these two complications so that one factor exp

[

− β
2 ∑k,σ λk,σ∆̃2

k,σ

]

contains
interactions between field fluctuations but no configuration dependence, and another factor
exp

[

β ∑k,σ λk,σ ρ̃k,σ∆̃k,σ
]

that is configuration-dependent (through ρ̃k,σ) but decoupled. This allowed
us to define a modified activity (95) that incorporated all the configuration dependence, making it
possible to evaluate the sum over configurations directly, as in the noninteracting case.
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What we have done in using the Hubbard-Stratonovich transformation is replace the interaction
part of the partition function with its functional integral representation. From the form of Eq. (96), we
see that the largest contribution to the partition function comes from the values of ∆̃2

k,σ for which the
effective action Seff is stationary, i.e., at a saddle point. Thus a Taylor series expansion of the effective
action (99) about the saddle point will yield an order-by-order approximation to the exact partition
function (98).

6. Expansion in Powers of the Auxiliary Field

Since it is not possible to evaluate the integral in the partition function of Eq. (98) exactly, we will
approximate it by expanding the action in Eq. (99) about a mean field ∆c, and include fluctuations to
lowest order about this mean field. This mean field is determined by the saddle point of the integrand
in Eq. (98), which is the largest contribution to the integral.

We can write the effective action then as an expansion about this uniform saddle point. As an
aid to keeping track of the order of the expansions, we add a multiplicative factor m in front of the
effective action. as

mSeff
(

∆̃ = ∆̃c + δ∆̃/
√

m
)

= mSeff[∆̃c] + ∑
k,σ

δ∆̃k,σ√
m

m
∂Seff[∆̃]

∂∆̃k,σ

∣

∣

∣

∣

∣

∆̃c

+

+
1
2 ∑

k1,σ1,k2,σ2

δ∆̃k1,σ1√
m

m
∂2Seff[∆̃]

∂∆̃k1,σ1 ∂∆̃k2,σ2

∣

∣

∣

∣

∣

∆̃c

δ∆̃k2,σ2√
m

+ . . . . (100)

Here the expansion parameter δ∆̃ is scaled by m−1/2 by writing δ∆̃k,σ ≡ √
m[∆̃k,σ − ∆̃k,σ,c]. The factors

of m cancel in the quadratic term, so that it is of order m0.
In evaluating the integral in the partition function, the largest contribution comes from the region

near a saddle point, and the terms beyond the saddle point give corrections to the integral. Physically,
the saddle point solution corresponds to a mean field approximation, and we begin with that. The
saddle point is found by setting the first derivative in the expansion to zero, that is

∂Seff[∆̃]

∂∆̃k,σ

∣

∣

∣

∣

∣

∆̃c

= 0 . (101)

The second derivatives evaluated at the saddle point are proportional to the components of a
matrix D̃−1, which is the inverse propagator for the fluctuations of the auxiliary Hartree field ∆ that
we introduced to decouple the interparticle interactions. Because we want to absorb the normalization
factor in the grand differential D[∆̃], we have defined each of the elements of D̃−1 by the second
derivative of Seff[∆̃] divided by −βλk,σ as

(D̃−1)(k1,σ1),(k2,σ2)
= −

(

1
βλk,σ

)

∂2Seff[∆̃]

∂∆̃k1,σ1 ∂∆̃k2,σ2

∣

∣

∣

∣

∣

∆̃c

. (102)

We will show in Sec. 8 that, for a spatially uniform saddle point, this matrix is diagonal, that is, Seff[∆̃]

is diagonal in the δ∆̃k1,σ1 ’s, that is,

(D̃−1)(k1,σ1),(k2,σ2)
= (D̃−1)(k1,σ1),(k1,σ1)

δk1,k2 δσ1,σ2 . (103)

Although the Gaussian integral can still be done if D̃−1 is not diagonal, the argument becomes much
easier to follow if we assume at this point that D̃−1 is diagonal because then the Gaussian integral can
be done straightforwardly.
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With this assumption that D̃−1 is diagonal, the expansion of the effective action reduces to

mSeff
(

∆̃ = ∆̃c + δ∆̃/
√

m
)

≃ mSeff[∆̃c]−
1
2 ∑

k,σ
βλk,σ(D̃−1)(k,σ),(k,σ)(δ∆̃k,σ)

2 . (104)

The grand canonical partition function can then be written as

ZG ≃ e−mSeff[∆̃c ]
∫

(

∏
k,σ

√

βλk,σ

−2π
d(δ∆̃k,σ)

)

e
1
2 β ∑k,σ λk,σ(D̃−1)(k,σ),(k,σ)(δ∆̃k,σ)

2
. (105)

This can be written as a product of Gaussian integrals as

ZG ≃ e−mSeff[∆̃c ] ∏
k,σ

∫

(

√

βλk,σ

−2π
d(δ∆̃k,σ)

)

e
1
2 βλk,σ(D̃−1)(k,σ),(k,σ)(δ∆̃k,σ)

2
,

and each Gaussian integral can be evaluated using the same change of variable and path of integration
as was used in the Hubbard-Stratonovich transformation in Eq. (84) that originally was used to define
the auxiliary fields, and as is discussed in Appendix A. Each Gaussian integral produces a result of the
same form, regardless of whether (D̃−1)(k,σ),(k,σ) is positive or negative. This quantity can never be
zero, since we would not have defined an auxiliary field for that case, which is the same as the case in
which an eigenvalue of the potential is zero. Therefore, the integral can always be evaluated, and the
partition function can be written as

ZG ≃ e−mSeff[∆̃c ] ∏
k,σ

1
√

(D̃−1)(k,σ),(k,σ)

. (106)

Note that all the factors of βλk,σ have cancelled out due to our choices of the form of the effective action
Seff and the inverse Hartree field fluctuation propagator D̃−1. Choosing these quantities carefully
allows for the correct normalization of the integral[49]. The product can now be brought inside the
square root, and since D̃−1 is diagonal, this gives the determinant of the matrix inside the square root,
and so the partition function assumes the form

ZG ≃ e−mSeff[∆̃c ] 1
√

det(D̃−1)
, (107)

and the partition function can be written as a single exponential,

ZG ≃ e−{mSeff[∆̃c ]+
1
2 ln det(D̃−1)} . (108)

The grand canonical potential is then

ΩG = − 1
β

ln ZG ≃ 1
β
{mSeff[∆̃c] +

1
2

ln det(D̃−1)} . (109)

If we formally write the expansion in terms of orders in m, we have

ΩG ≃ mΩm=1 + Ωm=0 +
1√
m

Ωm=− 1
2
+

1
m

Ωm=−1 + · · · . (110)

The leading term in the expansion is therefore given by the saddle point value

mΩm=1 = mΩc =
m

β
Seff[∆̃c] , (111)
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and what is known as the “one-loop" correction term is

Ωm=0 =
1
2

ln det(D̃−1) =
1
2

Tr ln D̃−1. (112)

7. The Saddle-Point or Mean Field Approximation

The first task in this section is to find an equation that determines the value of the auxiliary field
at the saddle-point or mean-field value of the the effective action. In order to find this saddle point, we
must set the first derivative of the effective action in Eq. (99) with respect to the auxiliary field ∆̃k,σ to
zero. That derivative is given by

∂Seff[∆̃]

∂∆̃k,σ
= −βλk,σ∆̃k,σ − β ∑

ℓ,b

1
(

∑γ′ ã
(γ′)
ℓ,b [∆̃]

) ∑
γ

∂ã
(γ)
ℓ,b [∆̃]

∂∆̃k,σ
. (113)

The activity a
(γ)
ℓ,b [∆̃] for species γ is given by Eq. (95), and its derivative is

∂ã
(γ)
ℓ,b [∆̃]

∂∆̃k,σ
= −βã

(γ)
ℓ,b [∆̃]

∂Σ̃
(γ)
ℓ,b [∆̃]

∂∆̃k,σ
, (114)

where from Eq. (91), the derivative of the self-energy is

∂Σ̃
(γ)
ℓ,b [∆̃]

∂∆̃k,σ
= qγλk,σWT

(k,σ),(ℓ,b) . (115)

Substituting this into the derivative of the action, we have

∂Seff[∆̃]

∂∆̃k,σ
= −βλk,σ∆̃k,σ + βλk,σ ∑

ℓ,b
WT

(k,σ),(ℓ,b)
∑γ qγ ã

(γ)
ℓ,b [∆̃]

∑γ′ ã
(γ′)
ℓ,b [∆̃]

. (116)

Setting this first derivative to zero, we obtain an equation whose solution gives the auxiliary field
in the saddle point approximation,

∆̃(k,σ) = ∑
ℓ,b

WT
(k,σ),(ℓ,b)





∑γ qγ ã
(γ)
ℓ,b [∆̃]

∑γ′ ã
(γ′)
ℓ,b [∆̃]



 . (117)

We see that on the right-hand side of the equation is the transformation to the diagonal basis of the
potential, as given in Eq. (92). We could therefore write the auxiliary field in the position basis as

∆(ℓ,b) =
∑γ qγa

(γ)
ℓ,b [∆]

∑γ′ a
(γ′)
ℓ,b [∆]

, (118)

where a
(γ)
ℓ,b [∆] is the activity with the self energy in the diagonal basis Σ̃

(γ)
ℓ,b [∆̃], which by Eq. (93)

has been replaced by the self energy in the position basis, Σ
(γ)
ℓ,b [∆]. Either of these two equations,

Eq. (117) or (118), may be considered the equation giving the saddle-point, or mean-field, value of
the auxiliary field, and we will refer to this as the mean field equation. In this expression a

(γ)
ℓ,b [∆c] is a

function of all the ∆(ℓ,b),c elements, and so, for N = 30, which we have used in our calculations, there
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are Nsites = 2(2N + 1) = 122 coupled nonlinear equations. Therefore, for simplicity, we make the
assumption that the mean field is spatially uniform, which means that

∆(ℓ,b),c = ∆c , (119)

where ∆c is constant. This is still a nonlinear equation in ∆c, and so this must be solved numerically
with an iterative approach.

Before solving the mean field equation, it is useful to have a physical interpretation of the mean
auxiliary field ∆c. The first step in this direction is the second task of this section, which is to find the
mean site occupancies of species γ at the mean field level. This is done as in the noninteracting case,
by taking the derivative of the partition function with respect to µγ. At this mean field level, the µγ

dependence is contained in Seff[∆̃c] in Eq. (108), neglecting the term containing the inverse propagator
D−1. The expression for the mean occupancy can be gotten using Eq. (83) as

〈n(γ)〉c =
1

Nsitesβ

∂

∂µγ
ln[e−Seff[∆̃c ]] . (120)

Taking the derivative of the exponential, we can cancel out the partition function in the denominator
and we are left with the derivative of the effective action as

〈n(γ)〉c = − 1
Nsitesβ

∂

∂µγ
Seff[∆̃c] . (121)

Substituting the effective action from Eq. (99), we have

〈n(γ)〉c =
1

Nsitesβ ∑
ℓ,b

1
(

∑γ′ a
(γ′)
ℓ,b [∆c]

)

∂a
(γ)
ℓ,b [∆c]

∂µγ
. (122)

The derivative of the activity is
∂a

(γ)
ℓ,b [∆c]

∂µγ
= βa

(γ)
ℓ,b [∆c] , (123)

and so the mean occupancy becomes

〈n(γ)〉c =
1

Nsites
∑
ℓ,b

a
(γ)
ℓ,b [∆c]

(

∑γ′ a
(γ′)
ℓ,b [∆c]

) . (124)

The third task of this section is to relate the mean charge density per site to the mean occupancy.
The charge density has the same form as in Eq. (22) for the noninteracting model, so that at the mean
field level we obtain

ρc = 〈ρ〉c = ∑
γ

qγ〈n(γ)〉c =
∑γ qγa

(γ)
ℓ,b [∆c]

∑γ′ a
(γ′)
ℓ,b [∆c]

, (125)

which, like the mean site occupancy, is independent of the site index because of our choice of spatially
uniform mean field. This is equivalent to the equation for the saddle-point value of the auxiliary field
because the right-hand side of the equation shows that

ρc = ∆c . (126)

on comparison with Eq. (118)
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In the mean field or saddle point equation for the spatially uniform saddle point, the auxiliary
field is the same for all lattice sites, and the self energy becomes spatially uniform also and can be
written as

Σ
(γ)
ℓ,b [∆c] ≡ Σ

(γ)
c = ρcqγSlattice . (127)

where Slattice is a lattice sum that is independent of the choice of lattice site (ℓ, b) for a long DNA
double helix, and is given by

Slattice = ∑
ℓ′ ,b′

V(ℓ′ ,b′),(ℓ,b) . (128)

For the parameters used in the figures, βSlattice ≈ 2.71.
Consequently, at the mean field level, the self-energy simply represents the electrostatic energy of

charge qγ interacting with the rest of the DNA lattice. This term plays the role of the self-energy Σ in
many-body quantum mechanics [28,48,49]. Since the self-energy is independent of lattice site, so is the
activity, which can be written as

a
(γ)
c = a

(γ)
ℓ,b [∆c] = e−β(εγ−µγ+Σ

(γ)
c ) . (129)

The simplifications made possible by the assumption of a spatially uniform saddle point allow us
to rewrite the mean field equation given by Eq. (118) in an explicit form as

ρc =
∑γ qγe−β(εγ−µγ+qγρcSlattice)

∑γ e−β(εγ−µγ+qγρcSlattice)
. (130)

Again, recall that εv − µv = 0, identically, q‖ = 0, and µ‖ = µ⊥ = µdimer. Therefore, when ρc = 0,
we can see from Eq. (130) that q⊥e−β(ε⊥−µdimer) + qv = 0, and since q⊥ = +1, and qv = −1, it follows
that ε⊥ = µdimer. Therefore, this is the point at which the charge density ρc goes to zero. When
ε‖ = 2ε⊥, the charge density goes to zero at ε‖ = 2µdimer, which is the same place it went to zero for
the noninteracting model, as shown in Figure 6.

Returning to the mean site occupancy in Eq. (124), the quantity inside the sum over ℓ and b is
constant and the sum yields Nsites, and so the average occupancy per species becomes

〈n(γ)〉c =
a
(γ)
c

(

∑γ′ a
(γ′)
c

) . (131)

Using the mean-field value ρc = ∆c of the charge density, calculated from Eq. (130), we have calculated
the average occupation numbers 〈n(γ)〉 via Eq. (131) using Eq. (129) for the activities. In Figure 15, we
have plotted δ〈n(γ)〉c = 〈n(γ)〉c − 〈n(γ)〉NI , which are the differences in the mean-field occupancies
from the occupancies in noninteracting case shown in Figure 5. The corresponding change in the
charge density δρc = ρc − ρNI is shown as the solid blue curve in Figure 16.

The shifts in occupancy plotted in Figure 15 can be primarily understood as a consequence of the
electromagnetic “self energy” Σ

(γ)
c = ρcqγSlattice of each species γ interacting with the total charge ρc

of the lattice. Immediately, this implies that the parallel dimers are hardly modified at all, since they
are electrically neutral and not directly affected by the total charge ρc of the lattice. For the vacancies
and perpendicular dimers, which are charged, the mean field corrections plotted in Figures 15 and 16
act to reduce the overall charge of the lattice. Below βε‖ ≈ 2, the total charge of the lattice is positive,
so the mean field corrections penalize the positively-charged perpendicular dimers and enhance the
negatively-charged vacancies. Above βε‖ ≈ 2, the total charge of the lattice is negative, and this effect
is reversed. Thus, the mean-field corrections tend to reduce (but not eliminate) the charge inversion at
weak binding seen in Figure 5. Note that the biggest effect of this electrostatic self energy is to heavily
penalize the “naked lattice” of negatively-charged vacancies which was the favored ground state at
large positive ε‖ for the non-interacting Hamiltonian.
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Figure 15. A plot of the differences δ〈n(γ)〉c in mean-field average occupation numbers from their
noninteracting values for ‖ (blue, solid),γ =⊥ (red, long-dashed), and v (green, short-dashed). The
parameters used in the calculation are βµdimer = 0.79 and ε‖ = 2ε⊥. The noninteracting results were
shown in Figure 5.
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Figure 16. Plots of the differences in the charge densities and standard deviations of the charge density
for the mean field of the interacting lattice gas model and the noninteracting model. δρc = ρc − ρNI is
shown as the solid blue curve, and δσc = σc − σNI is shown as the dashed red curve. The parameters
used in the calculation are βµdimer = 0.79 and ε‖ = 2ε⊥. The noninteracting results were shown in
Figure 6.

The fourth task of this section is to determine variance of the charge density from the mean field,
similar to Eq. (24) for the noninteracting model, which gives a measure of the importance of spatial
fluctuations in the charge density, can be written in the form

σ2
c = 〈ρ2〉c − ρ2

c , (132)

where the average 〈ρ2〉c of the square of the charge density, similar to Eq. (29) for the noninteracting
model, is

〈ρ2〉c = ∑
γ

q2
γ〈n(γ)〉c =

∑γ q2
γa

(γ)
c

∑γ′ a
(γ′)
c

. (133)

The variance σ2
c will be useful in knowing the size of the charge fluctuations about the mean field, and

this quantity will appear in the next level of approximation. The difference in the standard deviation
δσc = σc − σNI is plotted as the red dashed curve in Figure 16, where σNI for the noninteracting model
was plotted as the red dashed curve in Figure 6.
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Using a spatially uniform saddle point, which yields a charge density ρc that is equal at the mean
field level to the auxiliary field ∆c in real space, it is interesting to write down the auxiliary field in the
diagonal basis, given by

∆̃(k,σ),c = ∑
ℓ,b

WT
(k,σ),(ℓ,b) 〈ρℓ,b〉

∣

∣

c
= ρc ∑

ℓ,b
WT

(k,σ),(ℓ,b) . (134)

From Eqs. (71) and (72), we see that when k 6= 0, WT
(k,σ),(ℓ,b) has the ℓ dependence of the form e±ikℓ,

which by Eq. (57) sums to zero. The only surviving term is for k = 0 which when summed over ℓ gives
2N + 1, and we have from Eqs. (73) and (134)

∆̃(k,σ),c = ρ̃(k,σ),c = δk,0ρc

√
2N + 1 ∑

b

ξb,σ(0) . (135)

There are two different results corresponding to the two different eigenvalue labels σ = + and σ = −
in Eq. (63). Summing over b, these are

∆̃(0,+),c = ρ̃(0,+),c = ρc

√

Nsites

∆̃(0,−),c = ρ̃(0,−),c = 0 , (136)

where Nsites = 2(2N + 1). The interpretation of Eq. (136) can be understood from Eq. (74). The sum
over b in Eq. (135) is a sum over the elements rows in Eq. (74), which for σ = + sums the mean charge
densities on the two chains and for σ = − subtracts the charge densities on the two chains.

The fifth task of this section is to calculate the entropy for the spatially uniform saddle point,
which is our mean field value of the entropy. This requires the effective action at this saddle point,
which becomes

Seff,c = −Nsites ln

(

∑
γ

a
(γ)
c

)

− ρ2
c

2
Nsitesβ Slattice . (137)

The grand canonical potential is then

Ωm=1 = Ωc =
1
β

Seff,c . (138)

We can now compute the entropy from the derivative of the grand thermodynamic potential with
respect to the inverse temperature β, as in Sec. 2. This derivative becomes much more complicated
with the introduction of Uint because the screened Coulomb potential (43) depends on β through the
screening vector qs (44), where

∂qs

∂β
=

qs

2β
. (139)

This introduces a β-dependence into both terms of Eq. (137), so that the mean field entropy is given by
the more complex expression

S̄c =
Sc

kBNsites
=

S
(A)
c + S

(B)
c

kBNsites
, (140)

where

S̄
(A)
c =

S
(A)
c

kBNsites
= −∑

γ

〈n(γ)〉c ln〈n(γ)〉c (141)

is the mixing entropy of the three species using the mean field occupation numbers and

S̄
(B)
c =

S
(B)
c

kBNsites
=

ρ2
c

2
β2 ∂Slattice

∂β
(142)
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arises directly from the self energy Σ ∝ Slattice. The occupation numbers 〈n(γ)〉c used in this expression
are those of the mean-field level, given by Eq. (131) and shown in Figure 15. The mean-field entropy
S̄(0), given in Eq. (140), is plotted in Figure 17, together with −〈n(γ)〉c ln〈n(γ)〉c for each species. Also
shown are the two constituents S̄

(A)
c and S̄

(B)
c of the total entropy. This plot shows that, as with SNI in

Figure 7, the mean-field entropy is greatest for ε‖ near µdimer and decreases outside this region. The

difference δS̄c = Sc−SNI
kBT between this mean-field entropy for the interacting model and the entropy

for the noninteracting model is plotted in Figure 18. Note that this curve has roughly the same shape
as that of δσc in Figure 16, with a large increase in disorder at large positive ε‖ and small changes
elsewhere.
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Figure 17. The functional form of mean-field entropy S0

kBNsites
for the interacting lattice gas model at the

mean field level. The constituent parts of the entropy are shown as well.
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Figure 18. The difference between the mean-field entropy for the interacting lattice gas model and the
entropy for the noninteracting model.

By employing field-theoretic techniques borrowed from quantum mechanics, we have included
the interaction energy Uint in the partition function and found a mean-field approximation to the exact
partition function. However, these mean-field level calculations assume the same average charge ρc

for all DNA molecules in the same solution. Thus, mean-field calculations would predict a repulsive
interaction between two DNA molecules, which would not lead to DNA condensation. Indeed, this
repulsive interaction is all that this zeroth-order calculation can predict. It is the fluctuations of the
charge from its mean-field value that enable the net attraction observed experimentally; to understand
the attractive forces between DNA molecules in solution, it is necessary to extend this treatment by at
least one additional order. The next order in the expansion (100) will yield Gaussian-type integrals,
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which are analytically solvable for the lowest-order fluctuations in the average charge and other
parameters. Furthermore, once lowest-order fluctuations have been included, it will be possible to
calculate thermodynamic properties of the system from the partition function to meaningful levels,
such as the entropy changes due to small fluctuations in the local charge.

8. Inverse-Hartree-field-fluctuation propagator

In order to calculate the inverse-Hartree-field-fluctuation propagator D̃−1, we need to find the
second derivatives of the effective action, evaluated at the saddle point. Since D̃−1 is diagonal, from
Eq. (102), we can write

(D̃−1)(k1,σ1),(k2,σ2)
=

(

− 1
βλk1,σ1

)

∂2Seff[∆̃]

∂∆̃k1,σ1 ∂∆̃k2,σ2

∣

∣

∣

∣

∣

∆̃c

. (143)

Since we already calculated the first derivative in Sec. 7, we need one more derivative, now with
respect to ∆̃k2,σ2 . Substituting from Eq. (116) yields

(D̃−1)(k1,σ1),(k2,σ2)
=

(

− 1
βλk1,σ1

)

∂

∂∆̃k2,σ2

{

−βλk1,σ1 ∆̃k1,σ1+

+βλk1,σ1 ∑
ℓ,b

WT
(k1,σ1),(ℓ,b)

∑γ qγ ã
(γ)
ℓ,b [∆̃]

∑γ′ ã
(γ′)
ℓ,b [∆̃]







∣

∣

∣

∣

∣

∣

∆̃c

. (144)

Performing the derivative, we have

(D̃−1)(k1,σ1),(k2,σ2)
=















1 − ∑
ℓ,b

WT
(k1,σ1),(ℓ,b)

∑γ qγ
∂ã

(γ)
ℓ,b [∆̃]

∂∆̃k2,σ2

∑γ′ ã
(γ′)
ℓ,b [∆̃]

+

+∑
ℓ,b

WT
(k1,σ1),(ℓ,b)

∑γ qγ ã
(γ)
ℓ,b [∆̃]

(

∑γ′ ã
(γ′)
ℓ,b [∆̃]

)2 ∑
γ′′

∂ã
(γ′′)
ℓ,b [∆̃]

∂∆̃k2,σ2











∣

∣

∣

∣

∣

∣

∣

∆̃c

.

(145)

Substituting the derivative of the activity from Eqs. (114) and (115), we have

(D̃−1)(k1,σ1),(k2,σ2)
=

{

1 + βλk1,σ1 ∑
ℓ,b

WT
(k1,σ1),(ℓ,b)WT

(k2,σ2),(ℓ,b)×

×







∑γ q2
γ ã

(γ)
ℓ,b

∑γ′ ã
(γ′)
ℓ,b [∆̃]

−




∑γ qγ ã
(γ)
ℓ,b [∆̃]

∑γ′ ã
(γ′)
ℓ,b [∆̃]





2
















∣

∣

∣

∣

∣

∣

∣

∆̃c

.

(146)

The quantity in square brackets is just the constant σ2
c , the variance of the charge density, given in

Eq. (132). Since W from Eqs. (71), (72), and (73), is an orthogonal matrix,

∑
ℓ,b

WT
(k1,σ1),(ℓ,b)WT

(k2,σ2),(ℓ,b) = δk1k2 δσ1σ2 , (147)
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and this means that the matrix is diagonal. With these substitutions, the
inverse-Hartree-field-fluctuation propagator becomes

(D̃−1)(k1,σ1),(k2,σ2)
= δk1k2 δσ1σ2

(

1 + σ2
c βλk1,σ1

)

. (148)

This is the inverse propagator for the fluctuations of the auxiliary Hartree field that we introduced to
decouple the interparticle interactions, expressed in the diagonal basis.

The inverse propagator (D̃−1)(k1,σ1),(k2,σ2)
in the diagonal basis is plotted in Figure 19 for the two

eigenvalues λk±, shown in Figure 14. Notice that the shapes are those of the eigenvalues, but shifted
upward. They both have minima at k = π, with the one corresponding to λk+ having its maximum
at k = 0 and the one corresponding to λk− having maxima near k = 0. The corresponding plots
of the propagator D̃(k1,σ1),(k2,σ2)

are shown in Figure 20, also in the diagonal basis. The propagator
increases with βε‖ near k = ±π, and this can be attributed, at least in part, to the increase in σc, shown
in Figure 16, because of the dependence shown in Eq. (146). Although the auxiliary field propagator
normally describes the behavior of fluctuations of a physical field like the charge, its definition given
by Eq. (106) shows that the field here have been rescaled by the square root of the eigenvalue. This
was discussed earlier in the context of entropy in the paragraph after Eq. (88), and so this form is
convenient for the entropy calculation, our focus here, but its interpretation is not quite so direct.

Figure 19. The inverse propagator for the fluctuations of the auxiliary Hartree field (D̃−1)(k1,σ1),(k2,σ2).

Figure 20. The propagator for the fluctuations of the auxiliary Hartree field D̃(k1,σ1),(k2,σ2).

9. Inclusion of Lowest-Order Fluctuations

Going beyond mean field to one-loop order requires use of the full partition function given by
Eqs. (106) and (108). This has consequences for the site occupancies, the average charge per site, the
charge variance, and the entropy. The expression for site occupancy has the same form in terms of
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the partition function as for the noninteracting and mean field cases in Eqs. (9) and (83), and can be
written explicitly for the one-loop order of approximation as

〈n(γ)〉tot =
1

NsitesβZG

∂

∂µγ





e−Seff[∆̃c ]

√

det(D̃−1)



 , (149)

which is obtained from Eq. (111) with m set equal to one. In that expression, m was the parameter
that was introduced in Sec. 6 as an aid to identifying the various orders in the expansion. This can be
written as the sum of two terms,

〈n(γ)〉tot = 〈n(γ)〉c + δ〈n(γ)〉 , (150)

where 〈n(γ)〉c is the occupancy of species γ at the mean field level, given by Eq. (131) ,

〈n(γ)〉c = − 1
Nsitesβ

∂

∂µγ
Seff[∆̃c] , (151)

and δ〈n(γ)〉 is the correction to that mean site occupancy due to fluctuations, which is given by

δ〈n(γ)〉 = 1
Nsitesβ

∂

∂µγ
ln[det(D̃−1)] , (152)

with the inverse propagator D̃−1
(k1,σ1),(k2,σ2)

from Eq. (148) written in matrix form as

D̃−1 = I + σ2
c βΛ , (153)

where I is the identity matrix and Λ is the (diagonal) matrix of eigenvalues of the potential. Since D̃−1

is diagonal, its determinant is given by the product of its diagonal elements as

det D̃−1 = ∏
k,σ

(1 + βλk,σσ2
c ) . (154)

The logarithm of this determinant then gives the sum over logarithms of diagonal elements as

ln(det D̃−1) = ∑
k,σ

ln(1 + βλk,σσ2
c ) . (155)

The only µγ dependence is contained in σ2
c , and its derivative is given by

∂σ2
c

∂µγ
= β〈n(γ)〉c[q

2
γ − 〈ρ2〉c − 2ρc(qγ − ρc)] , (156)

so that the derivative of ln(det D−1) is given by the coefficient

C =
1

2Nsites
∑
k,σ

βλkσ

[1 + βλk,σσ2
c ]

. (157)

Then the mean fluctuation in occupancy δ〈n(γ)〉 becomes

δ〈n(γ)〉 = C〈n(γ)〉c[q
2
γ − 〈ρ2〉c − 2ρc(qγ − ρc)] . (158)

These changes in the mean field occupancies at this one loop order are plotted in Figure 21. These
changes are not large, and the fluctuation corrections amount to no more than about 10% of the
total. The most dramatic effects are seen in the region of large positive ε‖, with the corrections to
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the vacancies and perpendicular dimers going in the opposite direction to the corrections due to the
mean field in Figure 15. This can be interpreted as a relaxation of the rigid penalties imposed by the
electrostatic self energies at the mean field level. An enhancement of parallel dimers is also seen across
the whole range of ε‖ that peaks around ε‖ = µdimer.
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Figure 21. The changes in the occupancies δ〈n(γ)〉 due to fluctuations. These should be compared with
the changes between occupancies of the mean-field and noninteracting systems shown in Figure 15.

The mean charge density at this one-loop-correction level of approximation is given by the same
form as Eqs. (22) and (125) for the noninteracting and mean field approximations and is given by

ρtot = 〈ρ〉tot = ∑
γ

qγ〈n(γ)〉tot , (159)

where now 〈n(γ)〉tot is taken from Eqs. (150) and (158). and the charge density becomes

ρtot = ρc + δρtot , (160)

where
δρtot = ρcC(1 − 3〈ρ2〉c + 2ρ2

c ) . (161)

The change in the charge density δρtot is shown as the solid blue curve in Figure 22. The most notable
features are a negative contribution to the total charge above βε‖ ≈ 2, reflecting the addition of more
negatively charged vacancies due to the fluctuations, and a positive contribution to the total charge
around ε‖ ≈ µdimer. Interestingly, this positive contribution is not associated with the increase of
parallel dimer occupancy, since parallel dimers are electrically neutral. Rather, it is due to the fact that,
although both the negatively charged vacancies and positively charged perpendicular dimers are both
reduced around ε‖ ≈ µdimer, the vacancies are decreased more.
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Figure 22. The changes in the charge density δρtot and in the standard deviation δσtot of the charge
density due to fluctuations. These are further corrections to the mean-field values of Figure 16.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 July 2023                   doi:10.20944/preprints202307.0983.v1

https://doi.org/10.20944/preprints202307.0983.v1


40 of 51

The variance in the charge is given by

σ2
tot = 〈ρ2〉tot − ρ2

tot . (162)

The average of the square of the charge density is given by

〈ρ2〉tot = ∑
γ

q2
γ〈n(γ)〉tot (163)

and is written explicitly as
〈ρ2〉tot = 〈ρ2〉c + δ〈ρ2〉tot , (164)

where 〈ρ2〉c is given by Eq. (133), and δ〈ρ2〉tot works out to be

δ〈ρ2〉tot = C[〈ρ2〉c(1 − 〈ρ2〉c − 2ρ2
c )− 2ρ2

c ] . (165)

The charge variance can then be written as

σ2
tot = σ2

c + σ2
f , (166)

where the fluctuation correction is

σ2
f = −〈ρ2〉2

cC(1 + 9ρ2
cC) + 〈ρ2〉cC[(1 + 8ρ2

c ) + 6ρ2
cC(1 + 2ρ2

c )]

− ρ2
cC[4(1 + ρ2

c )−C(1 + 4ρ2
c + 4ρ4

c )] . (167)

The standard deviation can then be written as

σtot = σc + δσtot , (168)

The change δσtot in the standard deviation of the charge densities due to fluctuations are given in
Figure 22, where the fluctuations account for changes typically of the order of 10% of the mean field
value.

Having obtained results for the effects of fluctuations on the mean occupancies and charge
densities, we now consider the corresponding corrections to the entropy. For that, we need the grand
thermodynamic potential, which was expanded in Sec. 6, as Eqs. (110)-(112), with the mean field and
lowest order fluctuation terms given by

ΩG ≃ Ωc +
1

2β
ln det D−1 . (169)

The corresponding expression for the interacting entropy is

Stot = Sc + δStot , (170)

where the mean field entropy Sc was derived and the results presented in Sec. 7 in Eqs. (140)-(142).
The fluctuation contribution to the entropy δStot is given by

δStot = kBβ2 ∂

∂β

{

1
2β

ln [det (D−1)]

}

, (171)

which requires performing another derivative.
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To evaluate this contribution to the entropy δStot in Eq. (171), we return to Eq. (155) and substitute
into the fluctuation contribution to the entropy from Eq. (171), which after performing derivatives
gives

δStot = S
(A)
f + S

(B)
f , (172)

where
S
(A)
f = − kB

2 ∑
k,σ

ln (1 + βλk,σσ2
c ) (173)

and

S
(B)
f =

kB

2 ∑
k,σ

1
(1 + βλk,σσ2

c )
(βλk,σσ2

c + σ2
c β2 ∂λk,σ

∂β
+ βλk,σβ

∂σ2
c

∂β
) .

The derivative of the eigenvalue λk,σ of the potential is given by

∂λk,σ

∂β
=

∂

∂β
Ṽ↑↑(k) + σ

∂

∂β
|Ṽ↑↓(k)| , (174)

where Ṽ↑↑(k) is the Fourier transform of the interaction potential of a chain with itself and Ṽ↑↓(k) is
the Fourier transform of the interaction potential between the two chains. Both of these potentials
depend on the screening vector qs, and the only β dependence of the potential is contained in qs, which
is proportional to

√

β. The derivative we need is then given by Eq. (139). As a consequence, the
derivative of the Fourier transform of the potential is

∂Ṽb1,b2(k)

∂β
=

1
2

N
∑

ℓ=−N

[

e−ikℓ ∂Vb1,b2(ℓ)

∂β
+ eikℓ ∂Vb2,b1(ℓ)

∂β

]

, (175)

where the derivative of the potential in the position basis is given by

∂Vb1,b2(ℓ)

∂β
= Vb1,b2(ℓ)

(

− qs

2β
db1,b2(ℓ)

)

. (176)

Substituting and using the symmetry relations in Eqs. (47) and (49), the derivative of the Fourier
transform of the potential is

∂Ṽb1,b2(k)

∂β
= − qs

2β

N
∑

ℓ=−N
e−ikℓVb1,b2(ℓ)db1,b2(ℓ) . (177)

Using these relations, the derivative of the eigenvalues becomes

β2 ∂λk,σ

∂β
= − qs

2

N
∑

ℓ=−N

{

βV↑↑(ℓ)d↑↑(ℓ) cos(kℓ)

+σV↑↓(ℓ)d↑↓(ℓ)

[

Re[Ṽ↑↓(k)]
|Ṽ↑↓(k)|

cos(kℓ)− Im[Ṽ↑↓(k)]
|Ṽ↑↓(k)|

sin(kℓ)

]}

, (178)

where Re[Ṽ↑↓(k)] and Im[Ṽ↑↓(k)] are the real and imaginary parts of Ṽ↑↓(k)].
Eq. (172) also requires the derivative of the variance σ2

c , where σ2
c is given by Eq. (132). This

contains the average charge density from Eq. (125) and the average of the square of the charge density
from Eq. (133). This derivative is

β
∂σ2

c

∂β
=

ρc

1 + σ2
c βSlattice

{

([ρE ]av − ρcEc)
[

2 + (1 − 〈ρ2〉c)βSlattice

]

+

+ ρc

(

3σ2
c + ρ2

c − 1
)

β2 ∂Slattice
∂β

}

−
(

[ρ2E ]av − 〈ρ2〉cEc

)

, (179)
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where
E ≡ β(εγ − µγ + ρcqγSlattice) , (180)

Ec = ∑
γ

E〈n(γ)〉c , (181)

[ρE ]av = ∑
γ

qγE〈n(γ)〉c , (182)

and
[ρ2E ]av = ∑

γ

q2
γE〈n(γ)〉c . (183)

Here [· · · ]av is the weighted average of the specified quantity over the distribution given by the
mean-field occupancies 〈n(γ)〉c of the three species.

It is interesting to note that the combinations [ρ2E ]av − 〈ρ2〉cEc and [ρE ]av − ρcEc can be written
in form similar to that of the zeroth-order entropy. These forms are

[ρ2E ]av − 〈ρ2〉cEc = −∑
γ

[

〈n(γ)〉c ln 〈n(γ)〉c

(

1 − ∑
γ′
〈n(γ′)〉c ln 〈n(γ′)〉c

)]

(184)

and
[ρE ]av − ρcEc = −∑

γ

qγ〈n(γ)〉c ln 〈n(γ)〉c + ρc ∑
γ

〈n(γ)〉c ln 〈n(γ)〉c . (185)

The fluctuation entropy contribution S
(A)
f is easy to calculate, given the eigenvalues λk,σ.

Eqs. (174)-(185) simply collect the results that allow us to calculate S
(B)
f . The results for the total

fluctuation entropy δStot and the two contributions to it are shown in Figure 23 for ε⊥ = 1
2 ε‖. Like

the mean field entropy, the fluctuation entropy becomes larger in magnitude as the binding becomes
weak. However, the fluctuation contribution is actually negative in this region, suggesting that the
fluctuations are leading to increasing order. These corrections to the entropy are typically an order of
magnitude larger than the difference between the mean field and noninteracting values of the entropy.
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Figure 23. The fluctuation contribution to the entropy S̄ f =
S f

kB Nsites
per site. The two contributions,

S̄
(A)
f and S̄

(B)
f , to the total entropy are also shown, and they are defined similarly.

10. Discussion

Entropy forms an important contribution to the free energies of many biological systems. Here we
summarize the results for the entropies and particle densities for a lattice gas model representing the
adsorption of molecules on double-stranded DNA. The entropies and particle densities are presented
at three successive levels of approximation, first, for the noninteracting system then at the mean-field
level, and finally with the inclusion of fluctuations to one-loop order. Those fluctuation corrections
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result from correlations induced by the electrostatic forces among the dimer molecules themselves and
with the electrically charged DNA substrate.

Perhaps the most transparent descriptors of the DNA system’s behavior are the average
occupation numbers 〈n(‖)〉, 〈n(⊥)〉, and 〈n(v)〉 representing the thermal average of the numbers of
parallel-adsorbed dimers, perpendicular-adsorbed dimers, and vacancies, respectively, on each site.
These particle densities are proportional to the probability that a given site would be found to be
occupied by a particular species. These site-occupation numbers are shown in Figure 24 for the three
levels of approximation. The short-dashed curves are for the noninteracting level of approximation
〈n(γ)〉NI, the long-dashed curves for the mean field level 〈n(γ)〉c, and the solid curves for the inclusion
of fluctuations 〈n(γ)〉tot. The corresponding charge densities and standard deviations of the charge
density are shown in Figure 25.
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Figure 24. The average occupation numbers in the noninteracting approximation (〈n(γ)〉NI), shown
as dotted curves, the mean-field approximation (〈n(γ)〉c), shown as dashed curves, and the model
including the lowest order corrections to mean field, shown as solid curves, plotted for γ =‖ (blue), ⊥
(red), and v(green). Parameters used in the plot are βµdimer = 0.79 and ε‖ = 2ε⊥.
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Figure 25. The average charge per site in the noninteracting 〈ρ〉NI (green, short dashes), mean-field
(blue, long dashes) and inclusion of fluctuations (red, solid). This plot assumes βµdimer = 0.79 and
ε(‖) = 2ε(⊥).

The site occupancies exhibit similar qualitative behavior in all three levels of approximation.
Due to the energetics of binding ε‖ = 2ε⊥, parallel dimers occupy the greatest fraction of sites for all
negative binding energies (ε‖, ε⊥ < 0), followed the perpendicular dimers and then the vacancies, at
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least for the parameters used in these calculations. At weak binding (ε‖, ε⊥ → 0) in the noninteracting
system, the difference between these energies becomes negligible, and both n(‖) and n(⊥) approach the
same value of 40%. When the binding energy ε‖ or ε⊥ increases and reaches the chemical potential
µdimer of the dimers in solution, they are repelled from the surface of the DNA and go into solution,
leaving a “naked” lattice of negatively-charged vacancies, with the parallel dimers being more repelled
than perpendicular ones.

In contrast to the case of noninteracting sites, the inclusion of interactions between sites gives
a pronounced gap of about 25% by which parallel adsorption exceeds perpendicular adsorption in
the weak binding limit. This enhancement of parallel adsorption in the mean-field approximation
results from the inclusion of the charge on the perpendicular dimers in an average or mean field
sense, which penalizes the addition of positively-charged perpendicular dimers when the total charge
on the DNA lattice is positive. Fluctuations reduce this effect slightly. Recall that the perpendicular
dimers are positively charged because one end is not attached to a negative binding site, and this
means that it is energetically unfavorable to have a second one nearby. Parallel binding, on the other
hand, neutralizes the negative charge on the sites, so that a DNA double strand completely covered
in parallel-adsorbed dimers would be electrically neutral. The decrease in perpendicular-dimer
occupancy caused by this electrostatic repulsion of like charges leads to an increase in sites occupied
by vacancies. Vacancies are negatively charged and are energetically favored when the perpendicular
dimers provide a positively-charged region. There may, in fact, be correlations resulting from the lower
electrostatic energy of a configuration in which sites alternate between perpendicular dimers and
vacancies, i.e., between positively and negatively charged sites, in a Wigner-lattice-like state similar to
those described in the literature [8,19,26].

The average charge ρc per site depends only on the perpendicular dimers and vacancies since the
parallel dimers neutralize sites, so that the charge density is written simply as

ρ = ∑
γ

qγ〈n(γ)〉 = 〈n(⊥)〉 − 〈n(v)〉 , (186)

and this connection can be seen in the plots of charge density ρ in Figure 25, when compared with
Figure 24. For all approximations, the average charge is positive at negative and slightly positive
binding energies, indicating charge inversion. This is a result of the occupation numbers shown in
Figure 24, because parallel binding, which neutralizes the charge, increasingly dominates in the strong
binding limit (ε‖ = 2ε⊥ ≪ 0). Similarly, the decrease in the magnitude of the charge inversion from
the noninteracting to the mean-field approximations can be explained by the enhancement of parallel
adsorption and reduction of perpendicular adsorption due to like-charge repulsion. The fluctuation
corrections to the site occupancies are not large when compared with the mean-field values. They only
seem significant at positive binding energies where the site occupancies are shifted in the direction of
the noninteracting system. Of course, the site occupancies are single-particle properties and do not
measure spatial correlations.

The behavior of the entropy is shown in Figure 26, in which the entropy per site is plotted versus
βε‖ for all three levels of approximation. The three curves are practically indistinguishable for strong
binding (negative values of βε‖) until the binding energy becomes quite weak (approaching zero),
indicating little effect of correlations induced by electrostatic repulsion on the entropy in that region.
This is because the dimers are closely packed, leaving little freedom for disorder. The pronounced
differences are seen in the region of ε‖ ≈ µdimer and more positive binding energies (ε‖ = 2ε⊥ ≫ 0),
because the system becomes more disordered. There, the dimers tend to leave the surface and enter
the solution, and the fluctuation corrections to the entropy are greater in that region and act to reduce
the entropy. This shows that the electrostatic correlations increase the order and reduce the entropy.
Surprisingly, this decrease in entropy at large positive ε‖ due to fluctuations is so significant that it
overcompensates for the entropy generated at the mean field level, leading to a total entropy Stot that is
even lower than in the noninteracting case SNI.
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Figure 26. The entropy S per site, in units of the Boltzmann constant kB, in the noninteracting
(green, short dashes), mean-field (blue, long dashes), and and inclusion of fluctuations (red, solid)
approximations. These curves assume βµdimer = 0.79 and ε‖ = 2ε⊥.

The form of the noninteracting entropy comes from the lattice gas model, in which parallel
adsorption is treated as “local," only occupying one site. When the geometrical blocking effect is
included, in which parallel-adsorbed dimers occupy two sites, we would expect the entropy to differ
significantly from the n ln n result even at the noninteracting level. It is unclear how large a contribution
to the full entropy the blocking effect provides, but it is certainly lower for dimers than for longer
polymers, for which the nonlocality is greater. Because of this, it will be important in future work to
develop a way of incorporating the blocking effect into these types of field-theoretic models.

Dimers are certainly the simplest example of polymers, although biological polymers are typically
considerably longer. There is extensive work done on the dimer model, beginning with the work
of Fisher [50,51]. Some of this work has been motivated by the analogy between dimer models and
quantum spin systems [36]. In this context, Fisher has derived expressions for the contributions of
hard-core crowding effects to the partition function, including the geometrical blocking effect. Fisher’s
results include an expression of the noninteracting partition function for dimers on a 1D linear lattice.
In a future publication, we plan to adapt Fisher’s approach to study the statistical consequences of
these blocking effects[52].

In addition, it has been suggested that methods can be adapted from analogous problems in
particle physics[37] and condensed matter physics[53]. This involves using numerical codes like those
of Adams and Chandrasekharan[37] that are used for simulations in lattice quantum chromodynamics.

Modeling the behavior of DNA and other biologically active polymeric molecules under
physiological conditions is an area in which quantitative calculation is particularly difficult. This is
because it is necessary to accommodate simultaneously the influences of geometry, electrostatic forces,
and charge correlations. All of these play roles of varying significance in determining the properties
of these molecules. Despite these challenges, considerable progress has been made in extending our
physical understanding of these systems, and some surprising new physics, such as charge inversion
and condensation, have been discovered in the process.

The work presented here focuses on electrostatic effects and especially on the role they play in
the entropy, with the overall goal of determining the entropy as a contribution to the free energy and
as a driving force in biochemical reactions. For the DNA-based model that we consider, we find that,
particularly in the low-coverage regime, a uniform mean field theory gives changes ∼ 20% from the
usual noninteracting entropy term. We also find, though, that the fluctuation contributions are both
considerably larger and in the opposite direction. This establishes that the fluctuations are significant,
and the opposite sign of their contribution suggests that they lead to additional order in the system.

Several aspects of the formalism and calculations presented here have been done in such a way as
to be accessible to students and others wishing to extend these techniques to more realistic models of
polyelectrolytes condensing on the surfaces of DNA. We have shown in Sec. 3 why the DNA helices
can be treated as a pair of one-dimensional lattices (Figure 9), albeit with unusual interactions due to
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the three-dimensional nature of screened Coulomb potential, as shown in Figure 12. We show that
by writing the interaction term in the diagonal basis, as in Eq. (68) and Figure 14, the problem can be
greatly simplified. In addition, we have chosen a basis in which the eigenvalues and eigenvectors are
real, in Eqs. (71) and (72), which makes the physical interpretation much more transparent. Then we
show in detail in Eq. (84) and Appendix A how to perform a Hubbard-Stratanovich transformation of
the partition function to decouple the sum over configurations from the sum over lattice sites, which
allows one to perform the sum over all configurations of the system exactly. This introduces an integral
over an auxiliary field ∆̃. Often such an auxiliary field emerges as a complicated complex matrix, but
in our diagonal representation it is real and represents the charge density in the diagonal basis, which
was shown explicitly for the mean field by comparing Eqs. (118) and (125). Also in this diagonal basis,
it becomes clear how to choose a proper integration path to have a converging integral. One must then
expand the effective action in a power series in the fluctuations of auxiliary field δ∆̃, as in Eq. (100),
which physically is in powers of the fluctuations of the charge density about the mean field. Setting the
first derivative term in this expansion to zero yields the mean field, which itself includes terms of the
interaction to all orders, as can be seen in Eq. (117) or (118). Whether the expansion is useful depends
on the size of the charge fluctuations. The series is an asymptotic one, which means that the infinite
series does not necessarily converge. However, as is true for all asymptotic expansions, it is useful as
long as the last term kept in the expansion is smaller than the term before it, which is true in our case.
This indicates that the mean field, which is the saddle point, is a reasonable first approximation of the
system. The fluctuations about this mean field then give insight into how the actual solution differs
from the mean field.

In conclusion, we have shown with this simple model the importance of including fluctuation
contributions beyond the mean field. The method we have used has allowed us to include vacancies,
and we have found that the inclusion of the fluctuation term decreases the entropy by ∼50% in the
weak binding regime. This is because, due to the presence of vacancies, the bound dimer concentration
is low because of the competition between dimers being repelled from the DNA molecule and the
the chemical potential driving them from the solution onto the DNA surface. It is surprising that this
decrease in entropy due to correlations is so significant that it overcompensates for the entropy increase
at the mean field level, so that the total entropy is even lower than in the absence of interactions
between lattice sites. This effect of fluctuations could be important for other biological systems as well,
and this approach can be useful where correlations are significant.

Author Contributions: Writing–original draft preparation, M. D. S., M. F. B. and T. M.; writing–review and
editing, M. D. S., M. F. B. and T. M. All authors contributed to this paper equally. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We are grateful to Dr. Kevin R. Ward, Director of Research, Department of Emergency
Medicine, University of Michigan, for introducing us to the role of charge in biological systems and to the practical
consequences that could be achieved by controlling the charge distribution on biological molecules.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 July 2023                   doi:10.20944/preprints202307.0983.v1

https://doi.org/10.20944/preprints202307.0983.v1


47 of 51

Appendix A. A Gaussian Integral Identity

In this appendix, we prove the integral identity that we use in the derivation of the partition
function ZG for the interacting model. The identity is

I =
∫

√

βλ

−2π
d∆̃ e

β
2 λ∆̃2−βλ∆̃ρ̃e

β
2 λρ̃2

= 1 . (A1)

The integration path is over the real axis from −∞ to ∞ when λ < 0 and over the imaginary axis from
−i∞ to i∞ when λ > 0. This integral can be evaluated by noticing that the exponent is a factor times a
perfect square,

β

2
λ∆̃2 − βλ∆̃ρ̃ +

β

2
λρ̃2 =

β

2
λ(∆̃ − ρ̃)2 . (A2)

Substituting, the integral becomes

I =
∫

√

βλ

−2π
d∆̃e

β
2 λ(∆̃−ρ̃)2

. (A3)

Now it is clear why the path of integration must be chosen differently for positive versus negative λ,
since it must be chosen such that the integral converges. If λ = 0, the identity fails, but in that case it is
clearly unnecessary. If λ < 0, we can write λ = −|λ|, and the integral converges for ∆̃ ranging over
the real axis from −∞ to ∞. Substituting y = ∆̃ − ρ̃, with y ranging from −∞ to ∞ the integral can be
evaluated as

I =
∫ ∞

−∞

√

β|λ|
2π

dy e−
β
2 |λ|y2

=

√

β|λ|
2π

√

2π

β|λ|
= 1 , (λ < 0) . (A4)

For λ > 0, the situation is slightly more complicated. In that case, in order to have a decaying
Gaussian in the integrand, we must integrate ∆̃ over the imaginary axis from −i∞ to i∞. This is
accomplished by substituting y = −i

(

∆̃ − ρ̃
)

, for y ranging from −∞ to ∞. In this case, we have

I = i
∫ ∞

−∞

√

βλ

−2π
dy e−

β
2 λy2

= i

√

βλ

−2π

√

2π

βλ

= 1, (A5)

where the i the numerator cancels the
√
−1 in the denominator. This proves the identity for positive λ.

Therefore, we have seen that this identity works for positive and negative values of λ, and, although it
does not work for λ = 0, it is not needed in that case.

Appendix B. Chemical Potential of Free Dimers

The chemical potential of a solution of free dimers is the derivative of the Helmholtz free energy
of the dimers Fdimer with respect to the number of dimers Ndimer, with temperature and volume held
constant,

µdimer =

(

∂Fdimer
∂Ndimer

)

T,V
. (A6)

Assuming that Fdimer is due only to electrostatic interactions, in a dilute solution the free energy is just
the number of dimers times the electrostatic self energy Edimer of a single dimer. Then the chemical
potential becomes

µdimer =

(

∂(NdimerEdimer)

∂Ndimer

)

T,V
= Edimer , (A7)
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and so we need the electrostatic energy of a single dimer. Suppose we model a dimer as a cylinder of
cross-section radius R and length L of total charge Q, as shown in Figure A1. An exact solution to this
problem has been provided by Cifta[54], and the derivation proceeds as follows. The volume charge
density of the cylinder is given by

ρ0 =
Q

πR2L
, (A8)

and the Coulomb self-energy is given by

Es =
1

4πǫ

(

ρ2
0

2

)

∫

V
d3r1

∫

V
d3r2

1
|~r1 −~r2|

, (A9)

where ǫ is the dielectric permeability of the medium surrounding the cylinder. In evaluating the
integrals, the length to radius ratio is defined as

ξ =
L

R
, (A10)

and the exact result, as calculated by Cifta[54], is given by

Es(ξ) =
1

4πǫ

(

4Q2

Rξ2

){

ξ

16
[4 ln(2ξ)− 3] +

32
45π

−
(

1
16ξ

)

4F3(
1
2

, 1, 1,
5
2

; 2, 3, 4;− 4
ξ2 )

}

, (A11)

where the function pFq(a1, a2, . . . , ap; b1, b2, . . . , bp; z) is the generalized hypergeometric function whose
series expansion is

pFq(a1, a2, . . . , ap; b1, b2, . . . , bp; z) =
∞

∑
n=0

(a1)n(a2)n . . . (ap)n

(b1)n(b2)n . . . (bq)n

zn

n!
, (A12)

where the variable z can be either real or complex and (c)n is the Pochhammer symbol defined as

(c)n =
Γ(c + n)

Γ(c)
, n = 1, 2, . . . . (A13)

Here Γ(z) is the gamma function and (c)0 = 1. For a long, thin rod, the logarithm term would
dominate, but a dimer approximated by a cylinder, pictured in Figure A1, does not fall into this regime.

�

�

�

�

�

�

Figure A1. A free dimer approximated by a cylinder, shown in cross section, where the dimer is
designed to attach to two phosphates separated by lattice spacing a. The length of the cylinder is
L = 2a and the radius is R = a

2 , making the ratio ξ = L
R = 4.

As shown in the picture, for the dimer, the radius of the dimer is R = 2a, where a is the lattice
spacing along a DNA helical chain. The length of the dimer is L = 2a, and so the length ratio is
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ξ = L
R = 4. The charge is Q = 2e, where e is the magnitude of the charge of an electron, and the

chemical potential becomes

µdimer = Edimer =

=
1

4πǫ

(

e2

8a

){

1
4
[4 ln(8)− 3] +

32
45π

−
(

1
128

)

4F3(
1
2

, 1, 1,
5
2

; 2, 3, 4;−1
4
)

}

. (A14)

For the parameters given in the text, the chemical potential for the dimer, in units of β = 1
kBT at

T = 300K is given by βµdimer = 0.79. It is interesting to note that approximately the same value was
obtained by Nguyen and Shklovskii[27] and Bishop and McMullen[28] assuming that the dimer is
an infinitely thin rod of length L but that there were upper and lower screening cutoffs. This exact
solution avoids the use of those cutoffs.
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