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Abstract: In swarm-robotics foraging, the purpose of task allocation is to adjust the number of active 

foraging robots dynamically based on the task demands and changing environment. It is a difficult 

challenge to generate self-organized foraging behavior in which each robot can adapt to 

environmental changes. To complete the foraging task efficiently, this paper presents a novel self-

organized task allocation strategy known as the dynamic response threshold model (DRTM). To 

adjust the behavior of the active foraging robots, the proposed DRTM newly introduces the traffic 

flow density, which can be used to evaluate the robot density. First, the traffic flow density and the 

amount of obstacle avoidance are used to adjust the threshold which determines the tendency of a 

robot to respond to a stimulus in the environment. Then, each individual robot uses the threshold 

and external stimulus to calculate the foraging probability that determines whether or not to go 

foraging. Simulation and physical experiments are carried out to evaluate the performance of the 

proposed method. The experimental results show that the DRTM is superior to and more efficient 

than the adaptive response threshold model (ARTM) in swarm foraging. 

Keywords: swarm robotics; adaptive foraging; self-organized; task allocation; dynamical response 

threshold model; traffic flow density 

 

1. Introduction 

Inspired by the foraging of ant colonies, numerous studies [1–3] have used activation-threshold 

model to implement task allocation in a swarm of foraging robots. Although such mechanisms 

generate efficient task allocation (TA), some drawbacks remain. With a higher threshold, an 

individual robot is apt to stay in the nest; with a lower threshold, having many robots forage 

simultaneously increases the amount of physical interference [4]. Therefore, a swarm with a fixed 

threshold lacks adaptive capacity and cannot respond properly to an uncertain and dynamic 

environment. Moreover, as has been noted elsewhere, the performance of swarm-robotics foraging is 

influenced by the physical interference among the active foraging robots [5,6]: having too many 

robots foraging simultaneously leads to less-efficient foraging [7,8]. However, previous studies on 

TA did not take physical interference into account when adjusting the number of active foraging 

robots [9–11]. 

To overcome the above drawbacks, this paper proposes the dynamic response threshold model 

(DRTM) with the aim of achieving self-organized TA and completing foraging tasks efficiently. First, 

our approach uses a mutative threshold that varies with the external environment (e.g., the number 

of active foraging robots and the number of times robots avoid the obstacles), so DRTM makes the 

swarm system adaptive to the changing environment and robust to failures. Second, we also newly 

take into account the physical interference and traffic conditions to adjust the behavior of the robots 
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dynamically. Clearly, the greater the density of active foraging robots in the environment, the higher 

the amount of physical interference. Therefore, to adjust the number of active foraging robots, we 

newly propose the concept of traffic flow density (TFD), which denotes the density of active foraging 

robots. To better describe the traffic conditions, the DRTM also uses the amount of physical 

interference to adjust the robots’ behavior. In the proposed approach, the TFD and the amount of 

interference are both used to adjust the response threshold dynamically. When there is traffic 

congestion in the foraging area, the threshold rises and the swarm allocates fewer robots to foraging 

tasks; when there is no traffic congestion, many more robots are sent foraging. Therefore, by 

considering traffic information from the environment, the DRTM can reduce the amount of physical 

interference among robots and improve the foraging efficiency. 

The remainder of this paper is organized as follows.  In Sect. 2, we briefly review existing 

studies in the field of TA. In Sect. 3, we describe the attractor selection model (ASM) and DRTM used 

in swarm foraging and briefly introduce the simulation setup and performance measures. In Sect. 4, 

we present the results of experiments to demonstrate the effectiveness of the proposed method. In 

Sect. 5, we explore swarm foraging further under different experimental conditions. In Sect. 6, we end 

the paper with some concluding remarks. 

2. Background 

Nature is full of examples of social insects that cooperate efficiently to complete complex tasks. 

A typical example is the foraging done by ant colonies, in which the ants search for food in their 

environment and transport it to their nest [12]. Inspired by such foraging behavior, various studies 

[13–16] have used simple robots to complete complex foraging tasks. In such tasks, the robots search 

for certain objects (known as food tokens) that are scattered in the foraging arena. Once a food token 

is found, the robot captures it and delivers it to a specific area designated as the nest [17]. Swarm 

foraging can be treated as a comprehensive process of searching, collecting, and transferring. In the 

future, it could be used to clean up toxic waste, collect samples in unknown regions, clear land mines, 

and for search and rescue and planetary exploration [18,19]. 

Most previous studies of swarm foraging analyzed how the swarm energy changes. Each food 

token contains a certain amount of energy that increases the swarm energy upon being collected by 

a robot. However, some swarm energy is lost to the movement of the active foraging robots and the 

interference among them (e.g., blocking the paths of others or collisions that slow the robots down). 

The swarm’s nest can also entail energy being lost at a certain rate (Crate). To maintain its energy at 

the desired level, the swarm must implement self-organized TA: the control algorithm of each robot 

must decide when the robot should search for food tokens and when it should remain in the nest. 

Such TA can be observed in social insects such as ants [20]. In an ant colony, when there are fewer 

food tokens (stimuli) than a certain threshold θ, many more ants go foraging; when there are more 

food tokens than this threshold, fewer ants go foraging [21]. Bonabeau et al. proposed a simple 

activation-threshold model to account for the experimental observations of how an ant colony divides 

its labor [22]. 

In a swarm of foraging robots, TA refers to the ability to adjust the number of active foraging 

robots dynamically based on local decisions made by each robot. Some TA mechanisms are based 

only on threshold values, whereby robots decide to go foraging when an external stimulus exceeds a 

threshold value. The external stimulus could be related to the number of food tokens stored in the 

nest or the amount of time spent in each state by each robot. To maintain the nest energy at the desired 

level, Kreiger & Billeter implemented a simple TA mechanism based on individual activation 

thresholds that are fixed and distributed equally among 75 − 100% of the desired nest energy [1]. 

When the nest energy is less than the threshold value, the robots begin to search for food token. 

Agassounon & Martinoli dealt specifically with the advantages and drawbacks of using threshold-

based TA for foraging tasks [23]. Liu et al. presented a simple adaptation mechanism to adjust the 

ratio of foragers to resters automatically and adjusted the threshold values according to internal, 

environmental, and social cues [24]. When the time spent in each state exceeds the corresponding 
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threshold, the individual robot switches to the next state. Using threshold-based methods, many 

robots forage simultaneously, which can lead to undesired physical interference. 

Other TA mechanisms are based on probabilistic methods, wherein the threshold values and 

other information are used to calculate probability. In a probabilistic method, the decision of each 

robot to switch its activity is taken based on a probability. A simple adaption rule is then used to 

adjust the probability of a robot leaving the nest; the probability is raised or lowered as a fixed 

constant multiplied by the number of consecutive successes or failures at collecting food tokens [10]. 

Buchanan et al. [25] and Brutschy et al. [26] presented a self-organized method to partition a task into 

sequentially interdependent subtasks based on probabilistic methods. Pitonakova et al. [27] achieved 

self-organized TA based on a probabilistic method, wherein at each time step an observer can become 

a scout with a fixed probability. In such probabilistic methods, various factors (e.g., information about 

food and the environment) that could affect the foraging efficiency are not accounted for. Therefore, 

when researching TA, many studies have used probability methods based on response threshold 

model. Bonabeau et al. introduced a fixed response threshold model (FRTM) to account for 

experimental observations of how social insects divide their labor [22,28]. However, the FRTM uses 

a fixed threshold and so cannot cope with uncertain and dynamic environments. Therefore, Lee et al. 

[29] and Lope et al. [30] used an response threshold model with a variable threshold; when a robot 

engages in a task, the task-associated threshold is decreased. Kanakia et al. proposed a sigmoid 

response threshold function to respond to changing task requirements by adapting the static response 

thresholds [31]. Castello et al. proposed an extended FRTM known as ARTM using a discretized 

version of the attractor selection paradigm to control the threshold parameters dynamically [9,11]; 

when the stimulus decreases, the threshold tends to increase and fewer robots go foraging; when the 

stimulus increases, the threshold tends to decreases and far more robots go foraging. In ARTM, the 

changes regarding the threshold are only related to the number of food tokens in nest. Kanakia et al. 

not only provided a theoretical basis for response threshold functions of agents that share information 

being optimal strategies but also reinforced that using adaptive response thresholds is the correct 

strategy for the type of scenario investigated herein [32]. However, although response threshold 

model improve foraging efficiency, they do not consider physical interference when seeking to 

improve TA performance. 

3. Methods 

In swarm foraging, a robotic system is homogeneous. All robots follow the same behavior rules 

when foraging, as shown in Figure 1. The states for swarm foraging are as follows: 

 

Figure 1. State transitions in foraging. An individual robot switches its behavior among the given 

three states in response to a specific external stimulus. The states of searching and returning are 

foraging states in which the robot consumes energy. Task allocation (TA) is the process of converting 

from the waiting state to the searching state. 
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Waiting (SW): At the outset of foraging, all robots are waiting in the nest. An individual robot 

initializes a timer at t1 = 0 to denote its waiting time in the nest, with the minimum waiting time T1 

being given in advance. When the waiting time expires (t1≥T1), the individual robot uses the DRTM 

to calculate its foraging probability Ps. Based on Ps, the robot determines whether to switch from the 

SW state to the SS state. 

Searching (SS): When a robot begins foraging, the ASM controls its foraging behavior. When the 

robot captures a food token, it switches to the SR state. 

Returning (SR): In the SR state, the ASM controls the returning behavior. When the robot arrives 

at its nest, it deposits the food token and then switches to the SW state. 

To maintain the number of food tokens at the desired level, the swarm should use effective self-

organized TA to respond to its changing environment. We employ a control strategy based on the 

ASM to control the movement of each robot. Herein, we propose the DRTM to generate self-

organized TA to adjust the number of foraging robots dynamically. 

3.1. Attractor Selection Model (ASM) 

Inspired by the dynamic behavior of biomolecules that can adapt to a new, unknown, and noisy 

environment [33], Kashiwagi et al. proposed a simple and robust ASM to respond robustly to 

unknown environmental changes without requiring a large number of specific sensors and 

transducers [34]. 

The ASM is simple and does not require a model of the environment. It is therefore robust to 

unknown environmental changes. Therefore, we propose a method for controlling a robot’s 

movement based on the ASM. The ASM is described by the following Langevin equation: 

( ) ( )x f x A t ε= × +                                    (1) 

where x and f(x) represent the state and the dynamics of the ASM, respectively. The function f(x) can 

be designed to have some attractors, and ε is a noise term. The term A(t) is the called ‘activity’ variable 

and indicates the fitness of the current state to the environment. To apply the ASM to robot control, 

we interpret the state x as the posture (position and orientation) of the robot, therefore 𝑥ሶ  represents 

the motion of the robot. The function f(x) is designed to have some attractors that are related to 

particular motions. In swarm foraging, when the robot is in state SS, the attractors are the food; when 

the robot is in state SR, the attractor is the light within the nest. When the foraging robot discovers an 

attractor, it keeps advancing to approach the corresponding attractor. The activity A(t) can also be 

considered as the ASM’s input variable, with A(t) = {0, 1}. When the robot detects an attractor, A(t) is 

set to 1; at this point, f(x)×A(t) controls the motion of the robot, and the robot approaches the attractor. 

If the robot detects no attractors, A(t) is set to 0; ε controls the motion of the robot, and the robot 

performs a random walk to search for attractors. 

As given in Table 1, at the outset of state SS the fitness of the current state to the environment is 

A(t) = 0; the robot’s motion is controlled by the noise ε and the robot performs a random walk to 

search for food. When the robot detects a food token, the activity is set to A(t) = 1; the robot’s motion 

is then controlled by f(x)×A(t) and the robot advances to approach the food token. After capturing the 

food token, the robot switches to state SR. A light source is set up in the nest, and the robot returns to 

the nest by tracking the light. In state SR, the robot walks randomly to detect the light with A(t) = 0. 

When the robot detects the light, the activity is set to A(t) = 1; f(x)×A(t) then controls the robot’s motion 

and the robot advances to approach the light. After depositing the food token in the nest, the robot 

switches to state SW. 

Table 1. Foraging behaviors based on attractor selection model(ASM). 

State Detect attractors ASM’s input: A(t) Robot’s motion 

SW No 0 random walk 

SW Yes 1 approach to the food 

SW No 0 random walk 

SW Yes 1 approach to the light 
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3.2. Dynamical Response Threshold Model (DRTM) 

To complete the foraging task, we should maintain the swarm energy at the desired level. The 

food tokens collected by the foraging robots can increase the swarm energy. However, the foraging 

activities (e.g., the movements of the foraging robots) and interference among robots constitute a loss 

of swarm energy. The swarm’s nest can also constitute a loss of energy at a certain rate (Crate). 

Therefore, the amount of food (or energy) in the nest will decrease gradually, and when there are 

fewer food tokens than the desired level, the robots tend to go foraging based on the DRTM. By 

adjusting the number of foraging robots, the DRTM can complete effective TA and improve foraging 

efficiency. The DRTM accounts for the TFD and the amount of obstacle avoidance to adjust the 

response threshold dynamically. In the DRTM, the foraging behavior of an individual robot is 

influenced by the external stimulus (S(t)) and the response threshold (θ). 

The external stimulus S(t) reflects the amount of food in the nest and is defined as 

S(t) = Fd − F(t)                                    (2) 

where Fd is the desired number of food tokens to be maintained in the nest and F(t) is the number of 

food tokens in the nest at time t. The stimulus S(t) measures the gap between the existing number of 

food tokens and the desired number. Larger S(t) means far fewer existing food tokens than desired, 

and therefore many more robots will be allocated to foraging. Conversely, with smaller S(t), fewer 

robots tend to go foraging. When S(t) ≤ 0, there are the desired number of food tokens and the robots 

stop going foraging. 

In swarm foraging, physical interference refers mainly to obstacle avoidance. If a foraging robot 

detects an obstacle (e.g., another robot or a wall), it executes avoidance behavior, namely turning 

away from the obstacle. Such avoidance behavior may interrupt the state of the robot, and after 

resolving a collision, the robot may spend much time reentering its previous state. For example, if a 

robot advances toward its nest in a straight line by tracking the light, obstacle avoidance can cause 

the robot deviate from its route. After resolving the collision, the robot searches for the light once 

again in random walk, thereby taking longer to return to the nest. Therefore, obstacle avoidance 

consumes more energy and decreases foraging efficiency. To have fewer obstacle avoidance events 

(OAEs), we propose two measurements to evaluate the traffic conditions upon which the number of 

active foraging robots is adjusted dynamically. One is the TFD and the other is the average number 

of OAEs. 

In swarm foraging, the number of OAEs is related not only to the number of active foraging 

robots but also to the size of the foraging arena. To assess quantitatively how the number of foraging 

robots and the size of the foraging arena impact the foraging task, we newly introduce the concept of 

TFD. As a basic concept in traffic engineering, the TFD denotes the number of vehicles within one or 

several lanes on a unit length of road [35] and is defined as 

VNk
L

=                                         (3) 

where NV is the number of vehicles on the road and L is the length of the road. The TFD can reflect 

the traffic conditions directly and has been widely used in traffic engineering. When k is large, there 

is traffic congestion on the road; otherwise, the traffic is flowing smoothly. Based on the size of the 

TFD, different traffic management and control measures are adopted to regulate the road traffic to 

improve traffic efficiency. 

Herein, the TFD is newly used to calculate the density of foraging robots. The logical extension 

of Equation (3) is 

1 ( )r Wk N N
L L

= × −
×

                              (4) 

where L is the side length of the foraging arena (in this foraging scenario, robots roam a square area, 

so the amount of available space is L×L), Nr is the total number of robots in the swarm foraging, and 

NW is the number of robots in state SW. Therefore, Nr-NW denotes the number of active foraging robots. 

In swarm foraging, the TFD is the number of active foraging robots per unit area and can be used to 

reflect the traffic conditions. As can be seen from Equation (4), when k is large, many robots are 
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foraging. Much more obstacle avoidance will be generated, thereby reducing the foraging efficiency, 

meaning that we should decrease the number of active foraging robots. 

The average number of OAEs MA within a period of time T2 can also reflect the traffic situation, 

and MA is defined as 

2T

A

r

M
M

N
=                                       (5) 

where MT2 is the total number of OAEs over time T2. When there is traffic congestion, more avoidance 

behavior arises; when the traffic is moving smoothly, less avoidance behavior arises. However, traffic 

conditions change with time, and the number of OAEs reflects the traffic conditions over time T2. 

Therefore, we need to choose a suitable time period over which to calculate the number of OAEs. Too 

big or too small a time period T2 will not reflect the traffic conditions correctly. The number of OAEs 

due to robots within state SR can well reflect the traffic conditions. Any robot in state SR can return to 

the nest in L/2v seconds, where v is the robot’s speed and L/2 is half the side length of the foraging 

arena; therefore, we set T2 = L/2v. The greater MA, the heavier the traffic congestion, meaning that we 

should decrease the number of active foraging robots. 

In the DRTM, the response threshold changes dynamically and is defined as 

* * Ak Mθ α β= +                                     (6) 

where α and β are adjustment factors used to regulate the contributions of k and MA, respectively. 

The quantity θ can reflect the traffic conditions. As can be seen from Equation (6), k and MA together 

adjust the value of threshold θ. Larger θ means traffic congestion in the foraging arena, and therefore 

fewer robots should be allocated to foraging. Conversely, smaller θ means that many more robots 

should go foraging. 

In the DRTM, the state transition probability Ps, which is the probability of leaving the nest to 

perform foraging, is defined as 

( ) ,   ( ) 0
( )

      0,           ( ) 0

n

n n

s

S t
S t

P S t

S t

θ


>

= +
 ≤

                                   (7) 

where n determines the slope of the probability function; different values of n may produce different 

responses for the same threshold θ and stimulus S(t). The value of n is set randomly for each robot at 

the outset of foraging to avoid all robots working simultaneously. The larger the stimulus S(t), the 

less food there is in the nest for a given desired amount of food; under such circumstances, the 

foraging probability Ps increases. Conversely, Ps decreases when S(t) is smaller. When S(t)≤0, there is 

the desired number Fd of food tokens in the nest and the robots can stop foraging. The traffic 

conditions can also affect the foraging probability; Ps decreases when traffic congestion occurs and 

increases when the traffic is flowing smoothly. As can be seen from Equation (7), the food information 

S(t) and environment information θ together adjust the foraging probability, and therefore the swarm 

allocates a differing number of robots to go foraging based on the foraging probability. Therefore, the 

DRTM can not only reduce the amount of physical interference among the robots but also ensure that 

the foraging task can be completed. 

Figure 2 shows probability response curves for various values of θ and n. According to Figure 2, 

when the threshold θ is equal to the stimulus S(t), the foraging probability is 0.5. Therefore, the robot 

with the lowest θ responds fastest to the external stimulus. A robot with a higher threshold θ is less 

sensitive to the external stimulus and tends to wait for longer in the nest. As shown in Figure 2, n 

determines the speed at which the robot responds to changes in the stimulus. Robots with larger n 

have a steeper curve that will increase their foraging probability more abruptly when the external 

stimulus S(t) increases. 
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Figure 2. Dynamic response curves for various values of θ and n. The probability response curve is 

steeper with larger n. A robot with larger θ goes foraging when the external stimulus is larger. 

Figure 3 shows a flowchart of DRTM-based swarm foraging. Robots in state SW use the DRTM 

to calculate their foraging probability Ps. Based on Ps and roulette wheel selection, an individual robot 

determines whether or not to go foraging. If the robot goes foraging, its foraging behavior is 

controlled by the ASM as described in Sect. 3.1. 

 

Figure 3. Flowchart of swarm foraging based on dynamic response threshold model (DRTM). 

3.3. Simulation Setup 

To evaluate the proposed model, we ran simulation experiments on the ARGoS robotic simulator 

[36]. Figure 4 shows a screenshot of the ARGoS simulator at the start of a simulation experiment. The 

simulation environment was a square area of L meters (3 ≤ L ≤ 4), and the grey circular region 

represents the nest with a diameter of d meters (1 ≤ d ≤ 2). The yellow object in the middle of the 

simulation area is a light source that allows the robots to return to the nest by sensing the intensity 

and direction of the light. The blue objects are robots and are placed in the nest randomly before each 

experiment. The black objects are food tokens and are distributed randomly in the foraging arena. 
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Whenever a robot delivers a food token back to the nest, a new food token is generated randomly in 

the foraging arena. 

 

Figure 4. Screenshot of ARGoS simulator at start of simulation experiment. The yellow object is the 

light source, blue objects are robots, and black objects are food. 

3.3. Performance Measures 

This subsection describes three performance indexes used to evaluate the effectiveness of the 

proposed method. The purpose of swarm foraging is to maintain the food in the nest at the desired 

level, therefore the average deviation of food (ADF) in the nest (Vf) is an important index with which 

to measure the performance. It is defined as 

1

( )T
d

f

t

F F t
V

T=

−
=                                   (8) 

where Fd is the desired number of food tokens and F(t) is the number of net food tokens (the food 

collected by the swarm minus the food consumed by the swarm) at time t in the nest. Measure Vf  

denotes the gap between the existing number of food tokens in the nest and the desired number. As 

such, Vf can be used to assess both the robots’ abilities to adapt to changes in the external stimulus 

and the effect of TA. Smaller Vf not only indicates that the swarm can maintain a food level that is 

closer to the desired value Fd but also proves that the TA is more able to adapt to changes in the food 

supply. 

During a mission, the robots’ movements, the OAEs, and the nest all consume energy that comes 

from the food collected by the robots. Therefore, the energy efficiency (Ee) is introduced as a 

performance measure. It is defined as 

n
e

T

E
E

E
=                                          (9) 

where En is the net food energy and ET is the total energy collected by the robots. Smaller Ee implies 

that the swarm consumes more energy and that the TA leads to less-efficient foraging. 

To reduce the amount of physical interference among the robots, we use the TFD and the number 

of OAEs to adjust the value of threshold θ dynamically. Therefore, the average number of OAEs Mv 

is also considered as a performance measure: 

T
v

r

M
M

N
=                                     (10) 

where MT is the total number of OAEs during foraging and Nr is the total number of robots engaged 

in foraging. Because obstacle avoidance consumes energy and causes traffic congestion, Mv reflects 

the foraging efficiency and the adaptive ability to deal with the traffic congestion. 
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4. Results 

4.1. Simulation Experiment 

We conducted simulation experiments under similar conditions to compare the DRTM with 

ARTM. Each experiment ran for 20min (T=1200s) and the simulation algorithm ran 10 times each 

second, so each experiment involved 12000 simulation steps. The experimental area was a square area 

of L=4.0m and the diameter of the nest was d=1.5m. The total number of robots was Nr=20. The total 

number of food tokens in the experimental environment was Nf=20, and each food token contained 

1500 energy units. Each foraging robot consumed one energy unit per step and each OAE consumed 

Ea=10 energy units. The food reserve in the nest was consumed at the rate of 2.0 (food tokens)/min. 

Following the ARTM, the other parameter settings were T1=50 steps, θt0=3.3 (1 ≤ θ ≤ 10), integer n 

generated randomly (2 ≤ n ≤ 9), and F(0)=5. To allocate many more robots to go foraging, we set the 

desired number of food tokens in the nest as Fd=20. However, there were no reference standards for 

selecting parameters α and β, so we chose those values by trial and error; in each the experiment, we 

set α=3 and β=2. For each TA model, we repeated the simulation experiments 50 times, averaged the 

results, and then processed the data using MATLAB. 

At the beginning of each experiment, there were 5 food tokens in the nest, with the desired 

number being 20 and the robots are all in the nest. Therefore, the stimulus S(t) is 15 and threshold θ 

is 3.3. According to Equation (7), the foraging probability Ps is affected mainly by the stimulus S(t) 

and many robots are allocated to foraging. The movements of the active foraging robots consume 

much more energy, meaning that the number of food tokens in the nest decreases rapidly. As the 

foraging robots delivery food tokens back to the nest continuously, the number of food tokens in the 

nest increases rapidly. At this stage, many robots are foraging and the threshold θ becomes larger in 

the DRTM. As the stimulus S(t) decreases gradually, the threshold θ and stimulus S(t) begin together 

to affect the foraging behavior of the robots. The foraging probability decreases gradually and the 

rate at which food accumulates decreases. When the number of food tokens within the nest reaches 

the desired level, the robots stop going foraging. However, because the swarm’s nest consumes 

energy, when the number of food tokens drops below the desired level, the robots begin foraging 

again. 

Figure 5 shows how the amount of food in the nest changes, from which we can calculate the 

ADF (Vf) and the energy efficiency (Ee). Compared with the ARTM (Vf=4.74), the DRTM (Vf=2.55) 

maintains a net amount of food preserved in the nest that is closer to the desired level. The ADF (Vf) 

shows that the DRTM can respond to changes in food supply more effectively than can the ARTM. 

At the end of the experiment, the total number of food tokens collected by the DRTM is 173.76 and 

the net number of food tokens in the nest is 20.84; the corresponding values for the ARTM are 183.46 

and 18.34, respectively. Each food token contains 1500 energy units. According to Eq. (9), the DRTM 

(Ee=11.99%) consumes less energy than does the ARTM (Ee=9.99%). The energy efficiency (Ee) shows 

that the DRTM gives rise to more-efficient foraging. 
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Figure 5. Net number of food tokens in nest (Nf=20, Ea=10, Nr=20, L=4). 

As shown in Figure 6, the ARTM generates more OAEs in total (MT=1148.44) compared to the 

DRTM (MT=925.96). In the DRTM, the swarm adjusts the threshold θ in real time according to the 

traffic conditions, thereby influencing the foraging probability of those robots within state SW. The 

DRTM encounters fewer obstacles (Mv=46.30) compared to the ARTM by considering the traffic 

conditions, and the DRTM possesses better adaptive abilities compared to the ARTM (Mv=57.42) in 

dealing with traffic congestion. 

 

Figure 6. Number of obstacle avoidance events (OAEs) (Nf=20, Ea=10, Nr=20, L=4).  

Table 2 lists the results of t-tests between the DRTM and ARTM regarding the net number of 

food tokens (Ft) and the total number of OAEs (MT) (listed are the t value, the two-tailed P value, and 

the significance of the results). In Table 2, the sample size and number of degrees of freedom were set 

as 50 and 98, respectively. Based on the results of statistical tests in Table 2, it is clear that the results 

of DRTM are significantly better than the results of ARTM. 
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Table 2. Results of t-tests between DRTM and ARTM regarding total amount of food (Ft) and total 

amount of obstacle avoidance (MT). 

Compare t-value Two-tailed P Significance 

Ft 3.1918 0.0019 YES 

MT 2.2899 0.0242 YES 

4.2. Experiments with Actual Robots 

In order to verify the effectiveness of the self-organized task allocation method based on DRTM, 

the E-puck robot was used to perform the foraging task of swarm robots. The e-puck robots are open 

tools, which have been used extensively for swarm experiments. With a diameter of 6.8 cm and a 

height 5.3 cm, each e-puck robot is equipped with (i) eight infrared proximity sensors for detecting 

obstacles, (ii) one CMOS camera to look for objects, (iii) one three-dimensional accelerometer, (iv) 

three microphones, and(v)one loudspeaker. Each E-puck robot is equipped with a 3D printed 

component, as shown in Figure 7(a), which can realize the passive grasping of food and transport the 

food back to the nest. The food to be searched by the robot is cylindrical, with a diameter of 3.5cm 

and a height of 4.2cm. As shown in Figure 7(b), the upper half of the food is red and the lower half is 

white. There is a color camera on the front of the robot with a resolution of 640*480. When the robot 

searches in the environment, it judges whether it has searched for food by observing the color of the 

object. The environment was designed as a rectangular area of 1.2m×1.5m, and each robot moved at 

a speed of v=0.05m/s.  

 

Figure 7. E-puck robot for foraging tasks. 

In this experiment, seven E-puck robots were used to complete swarm foraging, as shown in 

Figure 8. In order to reduce the error and enable the robot to return to the nest effectively, a static 

robot is placed in the center of the nest as a beacon, and the robot can continuously send out signals 

to assist the foraging robot to return to the nest. The beacon robot is in the center of the nest, and 6 

foraging robots are evenly distributed along the perimeter of the nest. In order to verify the 

effectiveness of the task allocation method and study the factors affecting the task allocation, swarm-

robotics foraging experiments were carried out in two different situations. 
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Figure 8. Experimental environment for performing swarm foraging. 

In the first scenario, the initial food quantity in the nest is set to 10, and the expected food 

quantity is 10. At the beginning of the experiment, the stimulus value S(t)=0, and the robot is in a 

waiting state in the nest. When part of the food in the nest is consumed by the swarm, the stimulus 

value S(t) increases, and the robot decides whether to start foraging by calculating the foraging 

probability. At this time, the TFD and the average number of obstacle avoidance are both 0. From 

Equation (7), it can be seen that the foraging probability of the robot is mainly affected by the stimulus 

value S(t). Therefore, as time increases, the robotʹs foraging probability gradually increases. After the 

foraging robot successfully forages and returns to the nest, if the amount of food in the nest is greater 

than the expected amount, the robot stops foraging. During the experiment, the difference between 

the amount of food in the nest and the expected amount of food is small, so the swarm-robotics 

system allocates fewer robots for food. According to the experimental observation, when the amount 

of food in the nest is less than the expected value, the swarm-robotics system always assigns 1-3 

robots to look for food. The entire experiment ran for 10 minutes, and the swarm robot achieved 

autonomous task allocation and maintained the amount of food in the nest at the desired level. 

In the second scenario, the initial food quantity in the nest is 0, and the expected food quantity 

is 10. At the beginning of the experiment, the stimulus value S(t)=10, the TFD and the average number 

of obstacle avoidance are both 0, that is, the threshold θ=0, and the robot has a higher probability of 

foraging from Equation 7. The system will allocate more robots to start foraging. It is observed from 

the experiment that at the initial moment, all six robots start to look for food. Simultaneous foraging 

of multiple robots increases the speed of food collection, but the TFD in the environment also 

increases. Secondly, the average number of obstacle avoidance among robots also gradually 

increases, which makes the threshold θ larger. When the robot forages successfully and returns to 

the nest, due to the decrease of the stimulus value S(t) and the increase of the threshold θ, the number 

of robots foraging also gradually decreases. Figure 9 shows the experimental state after the 

experiment runs for a short period of time. At this time, the four robots are in the foraging state. With 

the increase of time, the amount of food in the nest gradually increased, while the number of foraging 

robots gradually decreased. When the amount of food in the nest reaches the desired amount, the 

swarm-robotics system no longer assigns robots to start looking for food. Afterwards, the foraging 

behavior of the robot is similar to that in Scenario 1, and a small amount of robots are allocated each 

time to start foraging. The experiment runs for 15 minutes, and the swarm robots can achieve 

autonomous task allocation and the amount of food in the nest can be maintained at a stable level. 

The experimental results prove that the task allocation method based on DRTM can achieve effective 

task allocation and ensure that the swarm robots can complete the foraging task. 
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Figure 9. Experimental process of swarm foraging. 

5. Discussion 

The simulation results show that the DRTM gives rise to far-more-efficient foraging compared 

to the ARTM, but some shortcomings remain with the simulation experiments. In swarm foraging, 

many factors affect the foraging performance, such as the number of food tokens in the foraging arena 

(Nf), the energy consumption per OAE (Ea), the total number of robots (Nr), and the size of the foraging 

arena (L×L). Therefore, it is necessary to explore the swarm foraging further under different 

experimental conditions, and we take the experiments reported in Sect. 4.1 for comparison. For each 

TA model, we ran the simulation experiments 50 times. 

5.1 Different Numbers of Food Tokens 

To study how the number of food tokens (Nf) in the foraging arena affects the foraging 

performance, we ran experiments for a swarm with Nf =25 and the other parameters the same as in 

the comparison experiments. 

As can be seen in Figure 10, both the DRTM (Vf=2.90) and the ARTM (Vf=2.92) maintain the 

number of food tokens near the desired level. The total number of food tokens collected by the DRTM 

is 156.90 and the net food is 20.88; the corresponding values for the ARTM are 150.44 and 16.63, 

respectively. The DRTM (Ee=13.31%) consumes less energy compared to the ARTM (Ee=11.06%), 

meaning that the DRTM gives rise to more-efficient foraging. 
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Figure 10. Net number of food tokens in nest (Nf=25, Ea=10, Nr=20, L=4). 

In Figure 11, the total number of OAEs for the ARTM (MT=1053.20) is higher than that for the 

DRTM (MT= 760.22). Compared with the ARTM (MV=52.66), the DRTM (MV=38.01) has fewer OAEs 

and possesses stronger adaptive abilities to deal with traffic congestion. 

 

Figure 11. Number of OAEs (Nf = 25, Ea = 10, Nr = 20, L = 4). (Nf=25, Ea=10, Nr=20, L=4). 

When there are more food tokens within the foraging arena, the active foraging robots discover 

them more easily and spend less time foraging. Compared with the comparison experiments, there 

are fewer OAEs and the energy efficiency increases for both the DRTM and ARTM. Therefore, 

increasing the amount of food improves the foraging efficiency. 

5.2 Different Energy Consumption Due to Obstacle Avoidance 

To explore the influence of the energy consumption per OAE (Ea) on foraging efficiency, we ran 

experiments with Ea=20 and the other parameters the same as in the comparison experiments. 

As shown in Figure 12, the DRTM (Vf=3.06) maintains a number of food tokens that is closer to 

the desired value compared to the ARTM (Vf=5.18). The total number of food tokens collected by the 

swarm using the DRTM is 189.14 and the net food is 20.39; the corresponding values for the ARTM 

are 189.32 and 15.99, respectively. According to Eq. (9), the DRTM (Ee=10.78%) consumes less energy 

than does the ARTM (Ee=8.45%), so the DRTM gives rise to more-efficient foraging. 
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Figure 12. Net number of food tokens in nest (Nf=20, Ea=20, Nr=20, L=4). 

Figure 13 plots the number of OAEs for both the ARTM (MT= 1152.26) and DRTM (MT=912.06). 

It is obvious that the average number of OAEs is less for the DRTM (MV=45.60) compared to the 

ARTM (MV=57.61). We conclude that the DRTM copes effectively with changing traffic conditions. 

 

Figure 13. Number of OAEs (Nf=20, Ea=20, Nr=20, L=4). 

Increasing the energy consumption per OAE (Ea) decreases the energy efficiency and increases 

the ADF. To maintain the number of food tokens at the desired level, the swarm allocates many more 

robots to foraging. This produces many more OAEs, reducing the foraging efficiency further. 

Therefore, compared with the comparison experiments, increasing the energy consumption per OAE 

decreases the foraging efficiency. 

5.3 Different Numbers of Robots 

In swarm foraging, the total number of robots plays an important role in determining the 

foraging performance. To test how the number of robots affects the swarm foraging, we ran 

experiments for a swarm with Nr=30 and the other parameters the same as in the comparison 

experiments. 
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As can be seen in Figure 14, the DRTM (Vf=3.17) maintains a number of food tokens that is closer 

to the desired level compared to the ARTM (Vf=4.94). The total number of food tokens collected by 

the DRTM is 229.44 and the net food is 19.99; the corresponding values for the ARTM are 236.40 and 

15.77, respectively. The ARTM (Ee=6.67%) consumes much more energy than does the DRTM 

(Ee=8.72%), and so the DRTM gives rise to more-efficient foraging. 

 

Figure 14. Net number of food tokens in nest (Nf=20, Ea=10, Nr=30, L=4). 

In Figure 15, the total number of OAEs for the ARTM (MT= 1612.26) is clearly higher than it is 

for the DRTM (MT= 1203.32). Compared with the ARTM (MV=53.74), the DRTM (MV=40.11) has a 

greater advantage regarding traffic congestion. 

 

Figure 15. Number of OAEs (Nf=20, Ea=10, Nr=30, L=4). 

On one hand, the net number of food tokens approaching the desired level spends less time than 

in the comparison experiments because many robots forage simultaneously. On the other hand, too 

many robots foraging simultaneously not only produces many more OAEs but also decreases the 

probability of finding food tokens because they are limited in number. As can be seen from the 

experimental data, the energy efficiency, the ADF, and the average number of OAEs all deteriorated. 

Therefore, increasing the number of foraging robots increases the swarm performance up to a point, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 July 2023                   doi:10.20944/preprints202307.0955.v1

https://doi.org/10.20944/preprints202307.0955.v1


 17 

 

after which the performance starts to decrease influenced by the negative effects of interference 

among the robots. 

5.4 Different Sizes of Foraging Arena 

We designed a set of experiments to investigate the effect of the size of the foraging arena on the 

foraging performance. We ran experiments for a swarm with L=3, d=1, and the other parameters the 

same as in the comparison experiments. 

As shown in Figure 16, the DRTM (Vf=2.35) maintains a number of food tokens that is closer to 

the desired level compared to the ARTM (Vf=4.61). The total number of food tokens collected by the 

DRTM is 165.32 and the net food is 17.75; the corresponding values for the ARTM are 170.90 and 

15.22, respectively. The DRTM (Ee=10.74%) consumes less energy than does the ARTM (Ee=8.91%), 

meaning that the DRTM gives rise to more-efficient foraging. 

 

Figure 16. Net number of food tokens in nest (Nf=20, Ea=10, Nr=20, L=3). 

As shown in Figure 17, the ARTM swarm (MT=1882.32) clearly produces many more OAEs than 

does the DRTM one (MT=1423.08). By taking the traffic information into account, the DRTM 

(MV=71.15) allocates an appropriate number of robots to go foraging and therefore responds more 

effectively to traffic congestion compared to the ARTM (MV=94.12). 

 

Figure 17. Number of OAEs (Nf=20, Ea=10, Nr=20, L=3). 
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Foraging robots are more likely to find food in a smaller arena, thereby decreasing the ADF. 

However, swarm foraging in a smaller arena produces many more OAEs, thereby reducing the 

energy efficiency. Compared with the comparison experiments, the ARTM swarm produces too many 

OAEs, and so we conclude that the DRTM deals better with traffic congestion than does the ARTM. 

Therefore, using too small an arena reduces the foraging efficiency. 

Table 3 lists the results of t-tests between the DRTM and ARTM for each of the preceding 

subsections (listed are the t value, the two-tailed P value, and the significance of the results). The 

sample size and number of degrees of freedom were set as 50 and 98, respectively, for all cases in 

Table 3. Based on the results of these statistical tests, in Table 3, it is clear that the results of DRTM are 

significantly better than the results of ARTM. 

Table 3. Results of t-tests between DRTM and ARTM regarding total amount of food (Ft) and total 

amount of obstacle avoidance (MT) for all cases. 

 

Section Compare t-value Two-tailed P Significance 

5.1 
Ft 4.9663 2.89×10-6 YES 

MT 2.7761 6.59×10-3 YES 

5.2 
Ft 3.2744 1.46×10-3 YES 

MT 2.3803 0.0192 YES 

5.3 
Ft 4.7869 6.00×10-6 YES 

MT 3.9267 1.60×10-4 YES 

5.4 
Ft 2.1899 0.0310 YES 

MT 2.6984 8.21×10-3 YES 

In summary, the foraging efficiency was affected by many factors, such as the number of food 

tokens in the foraging arena (Nf), the energy consumption per OAE (Ea), the total number of robots 

(Nr), and the size of the foraging arena (L×L). We performed the simulation experiments many times 

under different conditions, and the experimental results showed that the DRTM gives rise to more-

efficient foraging compared to the ARTM.  

5. Conclusion 

In this paper, we proposed the DRTM that can be used to adjust the number of active foraging 

robots in a self-organized manner. In the DRTM, the response threshold θ is influenced by the 

number of active foraging robots and the number of OAEs. When there is traffic congestion in the 

foraging arena, fewer robots are allocated to foraging. Conversely, when the traffic is flowing 

smoothly, many more robots tend to go foraging. The external stimulus S(t) is used to measure the 

difference between the existing number of food tokens and the desired number. An individual robot 

uses the threshold θ and stimulus S(t) to calculate its foraging probability, based on which the robot 

determines whether or not to forage. The foraging behavior of those robots in state SW are controlled 

by the ASM. Finally, simulation experiments were conducted to assess the effectiveness of the DRTM. 

The experiments verified that the proposed DRTM improves the TA performance and gives rise to 

more-efficient foraging. 
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