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Abstract: In the future, the pursuit of high-quality economic development and a focus on ecological 
environmental protection in China will inevitably result in significant conflicts between land use and ecological 
land use. The challenge lies in achieving sustainable high-quality development while simultaneously protecting 
the ecological environment, optimizing the land use structure, and promoting a harmonious relationship 
between humans and the land. These challenges are faced by all regions. Land use conflicts primarily occur in 
peri-urban areas characterized by prominent economic development and urban agglomeration. Previous studies 
have mainly focused on analyzing the effects of land use on habitat quality during intense urbanization. 
However, it is important to recognize that land pressure encompasses economic, ecological, and social aspects. 
To gain a comprehensive understanding of the spatial conflict of land use and the impact on habitat quality in 
Ankang, a city that has been advocating ecological protection for the past two decades, this study aims to 
objectively analyze the spatial trends in land use changes in such cities. Additionally, it aims to provide insights 
for the harmonious development of land use in eco-region-oriented cities. Using the SSP-RCP scenarios provided 
by CMIP6, this paper employs a system analysis method, PLUS model, InVEST model, and land use conflict 
measurement model to dynamically simulate the future habitat quality and spatial conflict patterns of land use 
in Ankang City. The study explores the spatial coupling effect of both factors under different scenarios. The 
results indicate the following: (1) Under different future shared socio-economic path scenarios, land use intensity 
and land conflict levels follow the order of SSP585 (high forcing scenario), SSP370 (medium to high forcing 
scenario), SSP245 (medium forcing scenario), and SSP126 (low forcing scenario), with intensity and conflict 
decreasing accordingly. (2) The overall development trend in Ankang City reveals an intensification of land use 
conflicts and a decrease in habitat quality. The expansion rate of construction land is increasing and exhibiting 
aggregation, while agricultural land area is expanding and forest land area is continuously decreasing. (3) Land 
use intensity exhibits a significant positive correlation with land conflict levels, while land conflict levels 
demonstrate a significant negative correlation with habitat quality. These findings suggest that land use has had 
some impact on the ecological environment, with indications of habitat degradation. Even in Ankang, where 
ecological development is highly valued, the city will gradually face conflicts between ecological protection and 
economic development in future scenarios. The study highlights that Ankang's future development space will 
be constrained within the context of environmental protection, leading to greater land use conflicts in urban and 
surrounding areas. Consequently, the quality of habitats will inevitably decline. Therefore, it is crucial to allocate 
sufficient space for economic development while simultaneously prioritizing ecological protection. This 
approach will ensure a healthy economic development trajectory and foster a harmonious relationship between 
humans and the land. 

Keywords: land use change; land use conflict; PLUS model; SSPs-RCP scenario; habitat quality;  

Qin-Ba mountains 
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1. Introduction 

Land utilization serves as a direct and objective reflection of human activities impacting the 
natural ecology, representing the intricate interplay between humans and nature [1]. Alterations in 
land utilization have profound effects on regional ecology, production, climate, and biodiversity [2,3]. 
The rapid pace of urbanization and industrialization has precipitated swift changes in the spatial 
arrangement of land utilization, exacerbating the imbalances in its structure. Consequently, conflicts 
between various land utilization types, such as production, ecology, and habitation, have intensified 
[4]. Land use conflict primarily pertains to the clashes arising from irrational land utilization patterns, 
uncoordinated spatial configurations and quantities, resulting in varying degrees of ecological and 
environmental degradation [5]. Early research on land use conflict predominantly focused on current 
situation analysis, employing qualitative analysis methods, comprehensive land use conflict index 
methods [6,7], map factor superposition methods [8,9], and other modeling approaches [10,11]. 
However, studies predicting changes in conflict patterns were relatively scarce [12]. As the issue of 
land use conflict continues to escalate, researchers have shifted their attention towards potential 
future conflicts [13]. This entails collecting spatial data on land use value and demand through Public 
Participation Geographic Information Systems (PPGIS) to simulate potential conflicts among land 
types [14]. Additionally, the suitability of different land use types is employed to assess potential 
conflicts and synergies [15]. Furthermore, studies have emerged that combine land use prediction 
models to simulate and forecast the spatial and temporal evolution of regional conflicts [16–18]. 

The future prediction of land use relies on quantitative structure projections and spatial 
distribution pattern simulations across various scenarios. Multi-scenario simulations effectively 
unveil the potential correlation between habitat quality and future land use changes. The Shared 
Socioeconomic Pathways (SSP) scenario framework, developed by Schmitz et al., defines five 
scenarios that encompass key drivers of land use change, encompassing diverse climates and 
socioeconomic futures [19–22]. The sixth phase of the Coupled Model Intercomparison Project 
(CMIP6) model offers researchers multiple future development scenarios, coupling shared 
socioeconomic pathways (SSPs) with representative concentration pathways (RCPs) to address global 
climate change [23].Regarding quantitative structure prediction of land use, the system dynamics 
(SD) model surpasses other models by considering climate change and achieving multiple scenarios 
of land use demand prediction at different regional scales. This model better captures the nonlinear, 
dynamic, and systematic characteristics of land use change [24]. However, the SD model alone cannot 
predict the spatial pattern of land use. By combining the SD model with a land use simulation model, 
it becomes possible to more accurately simulate the spatial distribution of land use [25]. In terms of 
spatial distribution pattern simulation, previous studies [26] have not been able to dynamically and 
spatially simulate land use patches of natural land use types. Commonly used models include the 
CA model [27,28], CLUE-S model [29,30], and FLUS [31–33]. However, the emerging patch-
generating land use simulation model (PLUS) not only retains the advantages of adaptive inertia 
competition and roulette competition mechanisms found in existing future land use simulation 
models but also utilizes the random forest algorithm to determine the development potential of each 
land use type. This allows for a more accurate simulation of changes in land use spatial distribution 
[34–36]. 

Relevant studies indicate a positive correlation between spatial land use conflict and ecological 
environment quality. Both climate change and human activities directly impact habitat quality by 
altering the land use process. To analyze the influence of habitat quality on land use, it is essential to 
quantify the degree of land use quantitatively. Additionally, by employing dynamic spatiotemporal 
simulation of natural land use types, the spatial characteristics of land use conflicts can be revealed 
through a constructed model based on landscape indices. This approach enables accurate 
identification of conflict locations and the performance of land use conflicts within the spatial 
structure [37]. Furthermore, in the realm of dynamic modeling of land use change, numerous scholars 
have utilized land use data to assess habitat quality. This assessment is primarily conducted through 
hierarchical analysis (AHP) [38], artificial neural network methods (ANN) [39], principal component 
analysis [40], the InVEST model [41], RS-GIS unified ecological and environmental quality evaluation 
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index method [42], and other similar approaches. Notably, the InVEST model offers a concise method 
to estimate habitat quality based on land use data and habitat threat data. It proves particularly useful 
when available data are limited, and sampling areas are not feasible [43]. 

Nevertheless, prior research primarily concentrates on land use conflicts and ecological impacts 
in urban areas, primarily influenced by social and economic factors. There is a dearth of studies 
examining the effects of land use on habitat quality in mountainous eco-cities or small-scale cities. 
This paper assesses the evolving patterns of habitat quality in Ankang, a city located in the Qin-Ba 
Mountain region with ecological preservation, considering future climate scenarios and the ongoing 
development of land conflicts. The findings hold substantial importance for Ankang's ecological city 
in achieving a harmonious balance between environmental conservation and economic progress. 

In summary, the study presents a framework that integrates the Sustainable Development (SD) 
model, PLUS model, InVEST model, and land use conflict evaluation model. This framework aims to 
examine future land conflicts within the constraints of ecology and urban economic development, 
using the city of Ankang in the Qin-Ba Mountains as a case study. The study aims to accomplish the 
following: (1) Determine the direction and scale of land use changes in Ankang City under different 
scenarios, namely SSP126 (low forcing scenario), SSP245 (medium forcing scenario), SSP370 (medium 
to high forcing scenario), and SSP585 (high forcing scenario). (2) Analyze the evolutionary process of 
land use conflicts and habitat quality in Ankang City over the next 30 years, including their spatial 
patterns. (3) Investigate the potential relationship between habitat quality and land use extent in 
Ankang, considering future environmental changes and development patterns. This analysis aims to 
provide guidance for the sustainable utilization of land resources and the establishment of 
harmonious human-land relationships in similar cities. Additionally, it aims to offer a scientific basis 
for the formulation of optimal land use policies. 

2. Materials and Methods 

2.1. Study Area 

Ankang is situated in the southeastern region of Shaanxi Province (31°42′~33°49′N, 
108°01′~110°01′E), within the climatic transition zone of China, where the Yangtze River and Yellow 
River systems converge. It serves as a vital water-conserving area for the national South-North Water 
Diversion Central Project. The region experiences a subtropical continental monsoon climate, 
characterized by a humid and temperate climate, distinct four seasons, ample precipitation, and a 
lengthy frost-free period. Ankang is nestled within the mountainous terrain of the Qin-Ba Mountains, 
bordered by the Han River, with the Qinling Mountains to the north and the Daba Mountains to the 
south. This topography showcases a prominent pattern of elevated peaks in the north and south, with 
river basins in the central area. Ankang enjoys a strategic geographical position, serving as the 
intersection and geometric center of three major economic zones: Guanzhong-Tianshui, Chengdu-
Chongqing, and Jianghan. Additionally, it lies in the upstream region of the national Yangtze River 
Economic Belt and serves as the central hub of the Han River Economic Corridor in Shaanxi Province. 
Consequently, Ankang faces the challenge of balancing land utilization for economic development, 
agricultural production, and ecological preservation due to the increasing demand for land resources. 
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Figure 1. Study area of Ankang. 

2.2.Data sources 

The data required for this study contains land use data, socio-economic data, natural factors 
data, etc., as shown in Table 1. 

(1) Land use data: Land use data for 2000, 2010 and 2020 were obtained from the National 
Geographic Information Resources Catalogue Service System (https://www.webmap.cn/) with a 
temporal resolution of 30m. 

(2) Socio-economic data: Statistical data from Shaanxi Statistical Yearbook, Ankang Statistical 
Yearbook and Ankang Annual Statistical Bulletin from 2000 to 2020. GDP data from the Resource and 
Environment Science and Data Centre of the Chinese Academy of Sciences (https://www.resdc.cn/) 
with a resolution of 1 km, and population density data from the NASA Socio-Economic Data and 
Applications Center (SEDAC) (https://sedac.ciesin.columbia.edu) at a resolution of 1 km. Nighttime 
lighting data are from the VIIRS_DNB_VNLV2 dataset from the Earth Observation Group (EOG) 
(https://eogdata.mines.edu) at a resolution of 500m. Roads, railways, rivers, water resources and 
residential sites were obtained from the National Geographic Information Resources Catalogue 
Service (https://www.webmap.cn/). 

(3) Natural factors data: soil dryness, soil type, soil erosion type, NDVI, NPP, soil erosion 
intensity and farmland productivity potential are from the Resource and Environment Science and 
Data Centre of the Chinese Academy of Sciences (https://www.resdc.cn/) with a resolution of 1km. 
River water resources are from the National Geographic Information Resources Catalogue Service 
(https://www.webmap.cn/) and DEM data from the Geospatial Data Cloud (https://www.gscloud.cn) 
with the resolution is 30m. Meteorological data are the annual average temperature and average 
precipitation from 2000 to 2020 at various meteorological stations in Ankang and sourced from the 
National Climatic Data Center (https://www.ncdc.noaa.gov/). 

Table 1. Research data and sources 

Data type Data name Resolution Source 

Land use 
data 

Land use data 30m 
National Geographic Information 
Resources Catalogue Service 
System https://www.webmap.cn/ 
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Data type Data name Resolution Source 

Socio-
economic 

data 

Statistical data —— 
Shaanxi Statistical Yearbook, 
Ankang Statistical Yearbook, 
Ankang Annual Statistical Bulletin 

GDP 1 km Resource and Environment Science 
and Data Centre 
https://www.resdc.cn/ Population density 1 km 

Night lights 500m 
Earth Observation Group (EOG) 
https://eogdata.mines.edu 

Roads, Railways —— 
National Geographic Information 
Resources Catalogue Service 
https://www.webmap.cn/ 

Natural 
factors data 

Soil dryness 1 km 

Chinese Academy of Sciences 
Resource and Environmental 
Science and Data Centre 
https://www.resdc.cn/ 

Soil type 1 km 

Soil erosion type 1 km 

Soil erosion intensity 1 km 

NDVI 1 km 

NPP 1 km 

Agricultural 
production potential 

1 km 

River Water 
Resources 

—— 
National Geographic Information 
Resources Catalogue Service 
https://www.webmap.cn 

DEM 30m 
National Geographic Information 
Resources Catalogue Service 
https://www.webmap.cn 

Meteorological data —— 
National Geophysical Data Center 
https://www.ncdc.noaa.gov/ 

2.3. Research methods 

The proposed framework in this study comprises four primary components. (1) Initially, 
scenario simulation parameters are established based on the anticipated socio-economic and climate 
change datasets across various SSP-RCP scenarios. The SD model is then employed to simulate land 
use demand in Ankang under these diverse scenarios. (2) Subsequently, the PLUS model is utilized 
to forecast the spatial distribution of land use under different future scenarios. (3) Furthermore, the 
integrated spatial conflict measurement model is employed to examine the temporal evolution and 
spatial differentiation of land use conflicts in Ankang. Additionally, the InVEST model is utilized to 
predict habitat quality in Ankang under four scenarios. (4) Lastly, bivariate spatial autocorrelation 
analysis is conducted to unveil the spatial correlation between land use conflict and habitat quality 
in Ankang. 
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Figure 2. Research framework diagram. 

2.3.1. SSPs-RCPs scenarios 

CMIP6 represents a synthesis of various scenarios derived from the Shared Socio-Economic 
Pathways (SSP) and Representative Concentration Pathways (RCP). It highlights the significance of 
diverse socioeconomic development patterns in influencing climate change [44]. The simulated 
scenarios for future climate change encompass the timeframe of 2020-2050. Scenario parameters were 
tailored to the study area (Table 2), and average annual changes were computed at ten-year intervals. 
Detailed specifications for each scenario can be found in Table 3. 

Table 2. Study area setting scenario parameters and sources 

Scenarios Forcing category  
Parameter 

Data 
source 

SSP126 
[45] 

Low forcing scenario GDP GDP forecast data [49] 

SSP245 
[46] 

Medium forcing 
scenario 

Population 
China’s future population km-scale 

grid data [50] 

SSP370 
[47] 

Medium to high 
forcing scenario 

Temperature World Climate Research Program 

[22] (WCRP)https://esgf-

node.llnl.gov/cmip6 
SSP585 

[48] 
High forcing 

scenario 
Rainfall 

Table 3. Parameter settings for different climate scenarios from 2020 to 2050 

Scenarios 
2030 2040 2050 

GGR PGR TCR PCR GGR PGR TCR PCR GGR PGR TCR PCR 

SSP126 5.08% 0.01% 3.13% 12.25% 3.05% 0.14% 4.92% 19.84% 1.70% 0.36% 2.70% 25.20% 

SSP245 4.78% -0.10% 3.08% 26.30% 2.79% 0.02% 3.70% 17.16% 1.58% 0.19% 4.39% 25.84% 

SSP370 4.09% -0.20% 5.20% 18.57% 2.00% -0.09% 4.49% 19.40% 0.80% -0.02% 5.78% 17.06% 

SSP585 5.37% 0.01% 7.78% 14.77% 3.58% 0.14% 4.93% 18.43% 2.32% 0.36% 5.97% 26.42% 

Note: GCR refers to the annual rate of change in GDP, PGR refers to the annual rate of change in population, 
TCR refers to the annual rate of change in temperature and PCR refers to the annual rate of change in rainfall. 
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2.3.2. System dynamics model 
The system dynamics (SD) model developed in this research comprises four primary 

subsystems: the economic subsystem, population subsystem, climate subsystem, and land use 
subsystem [51]. By utilizing land use data, socio-economic data, and meteorological data from 
Ankang City spanning the years 2000 to 2020, the study examines the feedback and interaction 
relationships among each subsystem and variable. Subsequently, it determines the variations in each 
variable and establishes quantitative relationships between them. The VensimPLE software was 
employed to construct the system dynamics model of land use change in the study area (Figure 3). 

 

Figure 3. SD model of land use demand in Ankang. 

2.3.3. PLUS model 
The PLUS model incorporates the rule mining framework utilizing the Land Expansion Analysis 

Strategy (LEAS) model and the Cellular Automata (CA) model based on multi-type Random Seeds 
(CARS) [44]. In this investigation, land use data for two time periods spanning from 2010 to 2020 
(Figure 4), along with factors such as elevation, slope, temperature, precipitation, farmland 
production potential, soil type, soil erosion type, population density, GDP, night lighting index, NPP, 
distance from highways, distance from other urban roads, distance from railways, distance from river 
systems, and distance from settlements, are utilized as predictor variables(Figure 5) within the PLUS 
model to determine the probability of suitability for each land use type in Ankang. 

 

Figure 4. Ankang land use map for 2000, 2010 and 2020. 
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Figure 5. Driving factor indicators. 

2.3.4. Land use conflict measurement model 
The land use conflict measurement model, utilizing the landscape pattern index, serves the 

purpose of not only expressing spatial land use conflicts but also revealing regional ecological risks 
[52]. In this research, the designated study area is divided into multiple 6km×6km grid cells, which 
are employed as evaluation units for assessing land use spatial conflicts. In order to account for the 
spatial patches that extend beyond the study area's boundary and are not fully covered by the grid, 
these patches are considered as one complete grid. The calculation of the landscape index is 
performed using Fragstats4.2 software (Table 4). 

Table 4. Land use conflict measurement model construction. 

Land use conflict 
measurement model 

Equation Number 

Land use conflict 
Comprehensive Index [53] 

LUCI= LUAWMPFD+ LUFI −LUSI (1) 

Land use complexity index 
(LUAWMPFD)[54] 

LUAWMPFD = ∑ ∑ [2ln(0.25Pij)ln(aij) (aijA )]n
j=1

m
i=1  (2) 

Land use vulnerability 
index (LUFI) 

𝐿𝑈𝐹𝑖  = ∑ 𝐹𝑖𝑛
𝑖=1  ×  𝑎𝑖𝐴  (3) 

Land Use Stability Inde 
(LUSI) 

LUSI = 1 – PD   𝑃𝐷 = 𝑛𝑖𝐴  (4) 

2.3.5. InVEST model 
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Habitat quality refers to the ecological capacity to offer optimal conditions for natural ecological 
processes, taking into account regional habitat fragmentation and the ability to withstand habitat 
degradation [55]. 

where Qxj denotes the habitat quality of raster x in land use type j; Hj denotes the habitat 
suitability of land use type j; Dxj denotes the level of stress on raster x in land use type j; z denotes the 

normalization constant; and k is the scaling constant. where Dxj in Eq.5 is calculated as follows: 𝐷𝑥𝑗 = ∑  𝑅
𝑟=1 ∑  𝑌𝑟

𝑦=1 ( 𝑤𝑟∑  𝑅𝑟=1 𝑤𝑟) 𝑟𝑦𝑖𝑟𝑥𝑦𝛽𝑥𝑆𝑗𝑟 (6) 

where R is the number of stressors; r is the stressor; y is the grids number of stressors r; Yr is the 
grids number occupied by the stressor; Wr is the stressor weight, taking values ranging from 0 to 1; 
irxy is the effect (exponential or linear) of stressor r on each grid of the habitat; βx is the habitat 
disturbance resistance level; Sjr is the relative sensitivity of different habitats to each stressor. 

Table 5. Threat source attributes 

Threat source Maximum threat distance/km Weight Distance attenuation type 

Agricultural land 2 0.4 Linear  

Railroads 5 0.7 Linear  

Road 4 0.6 Linear  

Residential site 10 1 Exponential 

Construction land 8 1 Exponential 

Table 6. Sensitivity of different land types to threat sources 

Land use type 
Habitat 

suitability 

Threat source 

Agricultural 
land 

Railway Road 
Residential 

site 
Construction 

land 

Agricultural 
land 

0.5 0.3 0.7 0.7 0.6 0.9 

Forest land 1 0.5 0.8 0.7 0.6 0.9 

Grassland 0.8 0.5 0.6 0.6 0.4 0.6 

Water 0.3 1 0.7 0.7 0.4 0.4 

Construction 
land 

0 0 0 0 0 0 

𝑄𝑧𝑗 = 𝐻𝑗 (1 − ( 𝐷𝑥𝑗𝑧𝐷𝑥𝑗𝑧 + 𝑘𝑧)) (5) 
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Land use type 
Habitat 

suitability 

Threat source 

Agricultural 
land 

Railway Road 
Residential 

site 
Construction 

land 

Unused land 0.1 0.1 0.2 0.2 0.1 0.1 

2.3.6. Spatial heterogeneity analysis of land use 

Hotspot analysis, as a local spatial autocorrelation index, can be employed to examine the spatial 
concentration of ecological or environmental variables and their clustering patterns [57]. The Getis-
Ord Gi* index [Gi*(d)] is utilized to identify regional hotspot analysis. 𝐺𝑖∗(𝑑) = ∑  𝑛𝑖=1 W𝑖𝑗(𝑑)𝑋𝑖∑  𝑛𝑖=1 𝑋𝑖  (7) 

Where Wij is the spatial weight matrix; Xi is the sample value of i.U 

Moran's I is a measure of spatial autocorrelation [57]. The bivariate local spatial autocorrelation 
index assesses the level of correlation and spatial aggregation between the attribute value of a spatial 
unit and the corresponding attribute value on its neighboring spatial units [58]. 𝐿𝐼𝑆𝐴i = 1n (𝑥𝑖 − 𝑥̅)∑  𝑖 (𝑥𝑖 − 𝑥̅)2 ∑  𝑗 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̅)  (8) 

Where Wij is the spatial weight matrix between cell i and cell j; xi is the attribute value of cell i; 𝑥̅ is the average of all attribute values; n is the total number of regional cells. 

3. Results 

3.1. Land use analysis 

3.1.1. Land use demand prediction in Ankang based on SD model 
The values of the variables in the SD model are established to determine the desired extent of 

each land use type from 2000 to 2020, using statistical data from 2000 as a basis. The simulation 
outcomes for 2020 were then compared with the actual data to assess the accuracy of the SD model 
(Table 7). The results indicate that the disparities between the simulated and actual data are minimal, 
with errors of less than 2.5%. This suggests that the model exhibits a high level of simulation accuracy 
and is capable of predicting future land use patterns. 

Table 7. Comparison between Projected results and Actual data in 2020(ha) 

Land use 
type 

Actual value in 
2020  

Projected value in 
2020  

Simulation 
error（%） 

Agricultural 
land 

423669.7 423601.3 -0.02% 

Forest land 1778084.1 1776178.2 -0.11% 

Grassland 123596.8 123553.3 -0.04% 

Water 14707.7 14682.4 -0.17% 

Construction 
land 

14829.1 14828.1 -0.01% 

Unused land 330.8 337.6 2.04% 
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Based on the 2020 land use data, the parameters corresponding to different climate change 
scenarios were inputted into the aforementioned SD model for simulation, resulting in prediction 
outcomes (Figure 6). The results indicate variations in land use demand across the four climate 
scenarios. In all scenarios, there was an increase in the area of construction land, agricultural land, 
and grassland. The SSP585 scenario exhibited the highest growth rate in construction land, grassland, 
and agricultural land area, followed by the SSP370 and SSP245 scenarios, while the SSP126 scenario 
had the lowest growth rate. Conversely, there was a decrease in the demand for forest land area in 
all scenarios, with the SSP585 scenario experiencing the most significant decline, while the other 
scenarios remained relatively stable. Additionally, the area of unused land and water witnessed 
varying degrees of reduction across the four scenarios, with the SSP245 scenario showing a smaller 
change in unused land area. Notably, the SSP585 scenario demonstrated the most pronounced 
changes in land use types, resulting in a larger area of unused land. 

 

Figure 6. Land use demand obtained from SD model simulation. 

3.1.2. PLUS model simulates the future land use distribution in Ankang 

The simulation accuracy was deemed sufficient to meet the research requirements. Utilizing the 
land use data from 2020, the land use demand for 2030, 2040, and 2050 in Ankang, under each 
simulated scenario using the SD model, was input into the PLUS model to forecast the future spatial 
and temporal dynamics of land use patterns in Ankang (Fig. 7, Table 8). The findings indicate that 
under the SSP126 scenario, the overall trend of agricultural land expansion follows the course of the 
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Han River, with minimal aggregation except for the river, and an expansion of existing grassland 
areas. In regions with established ecological foundations, such as the Qinling Mountains in the north 
and the Daba Mountains in the south, the forested areas have experienced minimal changes, and the 
expansion of construction land has slowed down. The agricultural land expansion pattern under the 
SSP245 scenario is similar to SSP126, with a slight increase in grassland area. Forested areas are better 
preserved in the northern and southern parts of the study area. The expansion of construction land 
is gradual and fragmented. Under the SSP370 scenario, the agricultural land expansion pattern 
resembles the previous scenarios, with an increase in both grassland and construction land areas. 
Agricultural land encroaches upon the grassland in the basin and valley, squeezing the scattered 
forested spaces along the river, while construction land becomes more concentrated. In the SSP585 
scenario, rapid agricultural land expansion leads to the conversion of grassland into forest land in 
the central valley. Simultaneously, construction land expands swiftly along both sides of the river, 
encroaching upon other land types. Compared to the SSP126, SSP245, and SSP370 scenarios, the 
SSP585 scenario exhibits a larger area of construction land. 

 

Figure 7. Land use in 2030, 2040 and 2050 from PLUS model simulations.
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Table 8. PLUS model simulation land use results (ha). 

Land use type 
SSP126 SSP245 SSP370 SSP585 

2030 2040 2050 2030 2040 2050 2030 2040 2050 2030 2040 2050 

Agricultural 
land 

420631 416496 411507 420599 416411 411331 420941 416774 411202 420562 416318 411169 

Forest land 
177209

8 
176930

6 
176937

1 
177020

9 
176246

1 
175552

4 
176810

1 
175561

0 
174713

9 
177130

3 
175733

7 
174331

9 

Grassland 127924 133320 137483 128550 136148 144063 129533 140031 151506 129106 138774 151369 

Water 
14313.

7 
13847.

3 
13500.

7 
14238.

9 
13555.

4 
12847.

4 
14136 

13170.
2 

12100.
6 

14282.
7 

13285.
3 

12107.
6 

Construction 
land 

18014.
2 

20015.
9 

21148.
7 

19872.
4 

24430.
1 

29243.
5 

20648 
27858.

6 
31069.

3 
20419.

6 
27290.

7 
35049.

2 

Unused land 305.8 299.6 282.7 311.1 287.1 274.6 310.9 278.8 274.2 310.5 279.9 274.2 
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3.1.3. Spatial and temporal analysis of land use conflicts in Ankang 

Based on the distribution characteristics of the cumulative frequency curve, the evolution of land 
use conflicts follows an inverted "U" shape. The controllability levels of these conflicts can be 
classified as follows: stable and controllable, basically controllable, basically out of control, and 
seriously out of control [58]. To classify the comprehensive land use conflict index into four levels, 
the natural breakpoint method was employed. These levels are defined as follows: stable and 
controllable (0,0.35), basically controllable (0.35,0.7), basically out of control (0.7,0.9), and seriously 
out of control (0.9,1.0). 

In general, the land use conflicts in the middle reaches of the Han River are highly intense, and 
their spatial distribution characteristics are evident (Fig.8). Firstly, the areas exhibiting high overall 
land use conflict indices are primarily concentrated in the town center, where human activities are 
more active (such as Hanbin District). This is because Hanbin District serves as the political, 
economic, and transportation hub of Ankang, and economic development has exacerbated land use 
conflicts. Other districts and regions experience low land use conflicts, with higher conflict values 
mainly observed around the town center. However, over time, land conflicts have intensified and 
spread towards the outskirts of the town. Secondly, the areas with low land use conflicts are 
predominantly found in the northern Qinling region and the southern Daba Mountains. These areas 
are characterized by mountainous and hilly terrain, with abundant vegetation coverage and minimal 
human disturbance, resulting in reduced land use conflicts. Furthermore, the results indicate that the 
high land use conflict areas are distributed along both sides of the Han River system. This distribution 
reflects the demand for water resources and transportation by land exploiters and users. 

 

Figure 8. Land use conflict for 2000, 2010 and 2020. 

The spatial patterns of future land use conflicts in Ankang display both similarities and 
variations. The spatial distribution patterns of land use conflicts under the four future scenarios 
remain generally consistent for the next 30 years, exhibiting a distribution pattern characterized by a 
"high center, low north and south, distribution along the river plain, and westward development" 
(Figure 9). This suggests that the spatial conflicts in land use are characterized by post-agglomeration 
expansion, a tendency towards stability, reduced unpredictability and volatility, and a certain degree 
of lag. 

Due to a combination of human activities, social and economic development, nature 
conservation policies, and natural factors such as topographic relief, biodiversity, and river water 
sources, the expansion of land use in Ankang is constrained by the hills and mountains. High-conflict 
areas cannot expand into low-conflict areas in the north and south. Instead, land use conflicts tend to 
spread along the Han River and its surrounding areas, forming a basin that can be managed to some 
extent. Among the different land use simulation scenarios, SSP585 exhibits the most intense land use 
changes, with extensive and concentrated out-of-control areas. The tendency to encroach into the 
surrounding regions is evident from the beginning. The out-of-control pattern gradually spreads to 
the basically controllable areas, particularly in the north and south. In the SSP370 scenario, land use 
development is increasing, accompanied by high land use conflicts. Compared to the SSP245 and 
SSP126 scenarios, large out-of-control areas appear early on. These areas mainly expand from basic 
out-of-control regions to basic controllable areas, as well as towards the western plains, resulting in 
a larger outbreak of out-of-control areas. The SSP245 scenario demonstrates relatively stable land use 
changes, maintaining an existing growth trend with moderate complexity. Although the intensity of 
land use conflicts gradually increases, the out-of-control regions are somewhat restricted within 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 July 2023                   doi:10.20944/preprints202307.0934.v1

https://doi.org/10.20944/preprints202307.0934.v1


 15 

 

manageable limits, indicating some level of human intervention in controlling these areas. Among 
the four scenarios, the SSP126 scenario exhibits the least out-of-control simulation. Land use changes 
remain stable, and the out-of-control conflict areas are effectively curbed. There is a slight expansion 
of stable and controllable areas, such as the northern Qinling Mountains and the southern Daba 
Mountains. 

 

Figure 9. Future land use conflict maps for 2030, 2040 and 2050. 

The Moran's I index is utilized to measure spatial autocorrelation, and the correlation of the land 
use conflict index can be verified through autocorrelation analysis. In the study area, the Moran's I 
index for the 2010 and 2020 data was 0.611 and 0.778, respectively, with P-values less than 0.01 and 
Z-scores greater than 2.58. This indicates a positive spatial correlation and significant spatial 
autocorrelation across the scenarios in the study area. To better illustrate the spatial clustering of land 
use conflicts, the Getis-Ord Gi* statistics are employed to examine the relationship between each 
element and its adjacent environment. Subsequently, a cluster distribution map with high and low 
values (Figure 10) is generated to further illustrate the local variability in land use spatial conflicts. 
The evolution of land use spatial conflicts at the grid level serves as a microcosm of land use change 
in the grid area. The hot spot areas are primarily located along both sides of the Han River and tend 
to spread towards the periphery, while the cold spot areas are situated in the mountainous hills in 
the north and south, exhibiting a steady increase. In the SSP126 scenario, the hot spots continue the 
historical chronological trend, while the cold spots remain relatively stable. In comparison, the 
hotspot area in the SSP245 scenario expands eastward, displaying higher values and greater 
aggregation along the river. The SSP370 scenario represents a substantial land use change with more 
concentrated and pronounced aggregation. The hotspot area in the SSP585 scenario exhibits the 
largest extent and strongest aggregation, while the cold spot areas shrink and become less 
aggregated, yet still demonstrating a north-south distribution pattern. 
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Figure 10. Spatial clustering hotspot analysis under scenarios simulation. 

3.2. Habitat quality analysis 

3.2.1. Habitat quality classes in Ankang 

The habitat quality module in the InVEST model was utilized to predict the habitat quality in 
Ankang City under different scenarios from 2030 to 2050. The results are presented in Table 9, which 
displays the habitat quality classes in Ankang, and Figure 11, which illustrates the spatial distribution 
of habitat quality. 

 Figure 11 reveals that areas with high habitat quality levels (Level > 0.6) are concentrated in the 
Qinling region in the north and the Daba Mountain region in the south. Conversely, areas with lower 
habitat quality levels (Level < 0.4) are clustered in the Han River valley. The buffer zone where the 
Han River basin meets the Qin-Ba Mountain region exhibits a concentration of areas with medium 
habitat quality levels.  

Table 9 demonstrates that under the SSP126 scenario, areas with high habitat quality levels are 
well protected, while areas with low ecological quality levels are controlled, resulting in a gradual 
improvement in habitat quality. By 2050, the mean habitat quality in Ankang is maintained at 0.6429, 
indicating the effectiveness of the SSP126 scenario in enhancing habitat quality. In contrast, the 
SSP245 scenario shows a slight decline in overall mean habitat quality, with a shift from high habitat 
quality areas to lower classes. The SSP370 scenario exhibits a further decline in mean habitat quality, 
characterized by an increase in low-level habitat quality and a transition from high to low levels. 
Under the SSP585 scenario, habitat quality classes are regionally distributed, and there is a notable 
shift from intermediate habitat quality levels to lower levels. By 2050, the average habitat quality in 
Ankang gradually decreases to 0.5360. Furthermore, the standard deviations for the four scenarios 
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indicate variations in habitat quality from 2030 to 2050. However, these changes tend to become 
progressively more stable without significant spikes or decreases. 

 

Figure 11. Habitat quality classes in Ankang under various scenarios. 

Table 9. Habitat quality classes (%) and mean and standard deviation in Ankang. 

Level 

SSP126-HQ SSP245-HQ SSP370-HQ SSP585-HQ 

2030 2040 2050 2030 2040 2050 2030 2040 2050 2030 2040 2050 

0-0.2 2.62 2.58 2.53 2.56 2.69 2.64 2.54 2.85 3.02 4.54 4.80 4.88 

0.2-0.4 13.40 13.35 13.60 13.21 13.12 13.59 13.57 13.78 13.89 11.02 11.31 12.15 

0.4-0.6 16.70 16.83 16.57 16.74 16.78 16.72 16.85 16.81 16.77 23.17 24.18 32.76 

0.6-0.8 48.14 47.79 47.86 48.05 48.12 47.71 47.81 47.50 47.38 44.05 43.32 34.78 

0.8-1 19.13 19.45 19.43 19.45 19.30 19.33 19.22 19.06 18.94 17.21 16.37 15.42 

Mean 0.6421 0.6428 0.6429 0.6436 0.6427 0.6415 0.6407 0.6401 0.6397 0.5615 0.5592 0.5360 

StdDev 0.1974 0.1971 0.1969 0.1967 0.1974 0.1978 0.1979 0.1973 0.1991 0.1927 0.1943 0.1958 
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3.2.2. Habitat quality spatial distribution characteristics 

The predicted spatial distribution pattern for different future scenarios exhibits a more 
pronounced regional clustering, as shown in Figure 12. The average Moran's I value for habitat 
quality under these scenarios is approximately 0.65, with a statistically significant positive correlation 
(P-value < 0.001) indicating spatially significant clustering of habitat quality in Ankang. The figure 
illustrates that Ankang displays distinct spatial clustering characteristics, with high-value clusters 
primarily concentrated along the Qinling Mountains and in the Daba Mountains, while low-value 
clusters are concentrated near the Han River basin. In the SSP126 scenario, the high-value cluster 
areas gradually expand outward towards the periphery over time, suggesting that habitat quality in 
this scenario can extend well beyond the central high-value areas. In the SSP245, SSP370, and SSP585 
scenarios, the high-value areas (with >95% confidence) expand towards the high-value areas (with 
90% confidence), and there is a tendency for the high-value areas (with 90% confidence) to shift 
towards the non-significant areas. As economic development, urbanization intensify, and 
anthropogenic disturbance increases, the habitat quality trend in the middle and lower clusters shows 
a progressive increase and peripheral diffusion. 

 

Figure 12. Spatial clustering diagram under scenarios simulation. 

3.3. Influence analysis between habitat quality and land use conflicts 

The global bivariate Moran's I analysis conducted for land use conflict and habitat quality in 
Ankang (Figure 13) reveals that the Moran's I index exhibits a negative value in all predicted 
scenarios, with a p-value of 0.005. These findings suggest a significant negative spatial correlation 
between land use and habitat quality, indicating that land use conflict will result in the degradation 
of habitat quality. 
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In Figure 14, the spatial clustering patterns for the bivariate analysis of land use conflict and 
habitat quality exhibit a significant correlation across most regions. Furthermore, the spatial 
clustering patterns for land use conflict (Figure 10) and habitat quality (Figure 12) demonstrate a 
contrasting distribution. 

Figure 15 illustrates that the primary spatial clustering patterns consist of the high-low type 
(characterized by high land use and low habitat quality) and the low-high type (characterized by low 
land use and high habitat quality). The high-low type is predominantly found along the Han River 
basin and in proximity to railway and road transport routes, primarily concentrated in areas with 
intense human activity. On the other hand, the low-high type is mainly located in areas distant from 
human activity, specifically the Qin-Ba Mountains, owing to its unique geographical location and 
ecological protection measures. 

Additionally, the low-low type (characterized by low land use and low habitat quality) is 
primarily distributed in towns and transitional zones between the plains and the Qin-Ba Mountains 
within the Han River basin. Conversely, the high-high type (characterized by high land use and high 
habitat quality) is scattered throughout the region. 

To summarize, the high-low type signifies the overexploitation of local resources, the high-high 
type indicates a balance between ecological protection and economic considerations, the low-high 
type represents a high level of ecological protection, and the low-low type represents the worst 
outcome with neither ecological nor economic benefits. 

 

Figure 13. Bivariate Moran's l scatter plot for land use conflict and habitat quality. 
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Figure 14. Bivariate LISA Significance Map for Land Use Conflict and Habitat Quality. 

 

Figure 15. Bivariate LISA clustering map for land use conflict and habitat quality. 
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4. Discussion 

4.1. Reasonableness validation 

The SD model encompasses a simulation period from 2000 to 2050, with a yearly time step. The 
historical simulation phase covers the years 2000 to 2020, during which historical data from the 
Statistical Yearbook was utilized to evaluate the simulation results. The accuracy of the simulation 
model was assessed using historical data specifically from 2020. Once the accuracy of the system 
dynamics model was verified, the base year for each scenario simulation was set as 2020, and different 
scenario parameters were inputted to simulate changes in future land use demand. The 2010 land use 
data serves as the base map for the simulation in the SD model, and the resulting land use simulation 
data for 2020 is compared and validated with the actual land use data from that year using the PLUS 
model to evaluate the accuracy of the simulation. After confirming that the simulation accuracy meets 
the requirements of the study, the land use demand for 2030, 2040, and 2050 in Ankang City, under 
each scenario simulated by the SD model, is sequentially inputted into the PLUS model to predict the 
future spatial and temporal dynamics of land use patterns. The results indicate an overall 
classification accuracy of 0.96 and a Kappa coefficient of 0.94 in the PLUS model, demonstrating a 
high level of simulation accuracy and effectiveness in simulating land use changes. Wang et al. [58] 
confirmed the applicability of using a land conflict measurement model based on landscape index in 
mountainous cities. Therefore, this study predicts the spatial and temporal patterns of land conflict 
levels and habitat quality in Ankang from 2030 to 2050. Analyzing the predicted results of different 
land use scenarios in Ankang City from 2030 to 2050, it is determined that the SSP126 scenario would 
lead to improvements in habitat quality and better control of land use conflicts. 

4.2. Shifting land types leading to increased land use conflicts 

In the context of rapid urbanization, the pursuit of high-quality economic growth, and the 
increasing significance of ecological preservation, urban land expansion in Ankang, situated in the 
Qin-Ba Mountains, has primarily concentrated on the areas surrounding the valley basin along the 
Han River. This has resulted in encroachment upon agricultural and forested land within the river 
basin valley, leading to detrimental effects on both the living environment and ecological space. The 
underlying cause of this issue lies in the conflict between land utilization for construction purposes 
and agricultural activities, which stems from the limited availability of land resources in the face of 
growing demands. Conflicts frequently arise between agricultural and construction land, with 
agricultural land often being at a disadvantage in proximity to construction sites. This is due to the 
prioritization of urban construction activities for food production and the creation of favorable 
conditions for economic development, which, in turn, yield greater economic benefits. Consequently, 
agricultural production is negatively impacted, hindering the achievement of sustainable 
development goals. Overall, the spatial arrangement characterized by a mixture of land uses and high 
heterogeneity surrounding the Ankang municipality has resulted in the aggregation of land use 
conflicts. In contrast, the corresponding Qin-Ba Mountains, located far from human activities and 
subject to stringent ecological protection measures, contribute to the preservation of high-quality 
habitats. Within the Han River basin valley, the unique geographical position of Ankang, coupled 
with its predominantly hilly terrain, severely limits the availability of development space. As a result, 
construction land in Ankang primarily encroaches upon agricultural and forested land, expanding 
outward from the core urban area. This, in turn, leads to a more significant reduction in agricultural 
land around the downtown region. Consequently, rural development land is squeezed and pushed 
further away from the urban periphery, resulting in fragmentation and ultimately exacerbating 
conflicts. From an ecological perspective, the pattern of the river valley significantly influences the 
land use pattern in Ankang, further intensifying land use conflicts within the city and exerting a 
profound impact on its urban development. 

4.3. Habitat quality response to land type change 

There are disparities in the alteration of habitat quality in Ankang across the four distinct future 
development scenarios, and the overall trajectory of habitat quality aligns with the patterns of land 
utilization. The Qinling region and the Bashan Mountains exhibit superior habitat quality compared 
to the central region, owing to their extensive forest and grassland coverage and minimal human-
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induced activities. Conversely, the Han River Valley basin experiences relatively diminished habitat 
quality due to socio-economic progress, expansion of construction land, and the degradation of 
habitats threatened by agricultural practices. In the SSP126 scenario, regulated construction land 
results in a deceleration of economic growth, leading to an expansion of woodland and grassland 
areas, which in turn enhances habitat quality. In contrast, the SSP585 scenario exhibits the lowest 
habitat quality among all scenarios, attributed to unregulated economic development and reduced 
ecological protection. Consequently, alterations in land utilization patterns have a discernible impact 
on habitat quality, contingent upon changes in response to climatic, economic, and governmental 
factors. The findings suggest that habitat quality exhibits a notable response in areas characterized 
by concentrated land use changes (conflict zones), while displaying less significant changes in regions 
with limited land use alterations (non-conflict zones). 

4.4. Effects between land use and habitat quality 

The interaction between land use and changes in ecosystem services has a significant impact on 
human well-being. However, numerous studies indicate that land use change often results in 
negative effects on ecosystem services [60]. This aligns with the findings of a study on the detrimental 
relationship between land use and habitat quality [61]. Wei et al. demonstrated that alterations in 
various land use types can influence habitat quality in arid inland regions. Similarly, Chen et al. 
revealed that urbanization can impair environmental facilities due to the interference of urbanization 
levels with ecosystem services. Conversely, the capacity of environmental facilities can also limit 
urbanization. Simulations were conducted to analyze land use patterns and habitat quality under 
multiple scenarios, which yielded notable spatial effects. The results obtained from these simulations 
align with the evaluation findings of Wu et al. [63]. Specifically, the SSP126 scenario indicates an 
increasing trend in habitat quality, while the SSP585 scenario shows a degradation trend. The SSP245 
and SSP370 scenarios demonstrate moderate habitat quality. It is worth noting that the development 
model focused solely on economic benefits, as observed in the related study [64], inevitably increases 
ecological risks compared to the results obtained under the SSP585 scenario in this study. Research 
conducted on land use and habitat quality in significant ecosystems such as the Qinling Mountains 
and Han River indicates that urban construction land expansion and economic development should 
be restricted to ecological protection areas. Fragmentation of production and livelihood land poses a 
threat to ecological land, leading to habitat degradation, which is consistent with previous studies 
[65]. These findings suggest that land use change directly influences changes in ecological quality. 
Human activities associated with land use contribute to environmental changes, which subsequently 
impact ecosystems, aligning with the conclusions drawn by Zhao et al. [66] regarding the trade-offs 
between human activities and ecosystem services. Across all scenarios, there is a tendency for 
construction land and agricultural land areas to increase and concentrate around the town center in 
Ankang and the Han River valley, resulting in a decline in habitat quality. These results confirm the 
effects of changes in construction land and agricultural land areas on habitat quality. Notably, the 
construction of land has the most pronounced impact on habitat quality, while alterations in unused 
land and agricultural land areas directly influence changes in habitat quality. 

5. Conclusions 

5.1. Conclusions 

Based on the system dynamics and PLUS model for forecasting future land use, four scenarios 
(SSP126, SSP245, SSP370, and SSP585) with distinct socio-economic development patterns have been 
selected to project future land use intensity, evaluate future land conflict levels, and assess habitat 
quality in the region. The objective is to examine the spatial and temporal effects on the future state 
of land conflicts and habitat quality under different climate and socio-economic change scenarios. 
The findings reveal that the primary spatial clustering patterns for land use and habitat quality exhibit 
a high-low type (high land use and low habitat quality) and a low-high type (low land use and high 
habitat quality), demonstrating a significant negative correlation. In conclusion, the impact on habitat 
quality under different future land use scenarios will rely on effective land use governance and 
planning, as well as external factors such as climate change. The achievement of ecological 
conservation and sustainable economic development necessitates prudent planning and 
management. Even in Ankang, where ecological development is prioritized, the city will gradually 
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encounter conflicts between ecological conservation and economic development in future scenarios. 
Ankang boasts a favorable geographical location, excellent transportation infrastructure, abundant 
tourism resources, and a green industrial base. However, its overall development lags behind 
neighboring cities in terms of scale and progress. Therefore, for ecological cities or small cities, it is 
imperative to strike an optimal balance between socio-economic development and ecological 
protection by promoting high-level preservation and high-quality advancement to effectively 
safeguard the ecological environment and establish a comprehensive ecological civilization system. 
The results suggest that the future development space in Ankang will be constrained within the 
context of ecological conservation, leading to heightened land use conflicts in urban areas, which will 
result in ecosystem degradation and ultimately diminished habitat quality. The findings indicate that 
Ankang must reconcile economic development and ecological protection based on ecological 
conservation principles. Sufficient room for economic development should be allocated without 
encroaching upon areas designated for environmental protection, thereby fostering harmonious 
human-land relationships while ensuring robust economic progress. 

5.2. Limitations 

Firstly, the comprehensive exploration of future land use changes on habitat quality remains 
incomplete. Our current study focused solely on the dynamic changes in land use conflict and habitat 
quality in Ankang, an ecologically oriented city, from 2030 to 2050. We established their spatial 
correlation but did not consider other perspectives such as mathematical or physical models, which 
should be incorporated in future studies for a more comprehensive analysis. 

Secondly, our study only examined the spatial association between land use and habitat quality, 
neglecting the impacts of land use on other elements of ecosystem services. In future studies, we will 
delve deeper into exploring these impacts to gain a more thorough understanding. 

Thirdly, there is a need to further enrich and improve the indicator construction system. 
Additionally, it is crucial to incorporate other factors that influence human activities and socio-
economic development to enhance the simulation of land use demand, land use change, and habitat 
quality change. 

Lastly, our study selected only four typical climate scenarios and social development models, 
which introduces uncertainty in the predictions made by the SD-PLUS model. To mitigate this 
uncertainty, future studies should refine scenario parameters to better measure the future effects of 
land use change on habitat quality. It is also important to target areas with different social service 
orientations to accommodate sustainable future development. 
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