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Abstract: Ultrasonic-guided lamb wave approach is an effective non-destructive testing (NDT) method used
for detecting localized mechanical damage, corrosion, and welding defects experienced in metallic pipelines.
Signal processing of the guided waves is often challenged due to the complexity of operational conditions and
environments in the pipelines. Machine learning approaches in recent years, including convolutional neural
networks (CNN) and long short-term memory (LSTM), have exhibited their advantages to overcome these
challenges for signal process and data classification of complex systems, thus great potential for damage
detection of critical oil/gas pipeline structures. In this study, a CNN-LSTM hybrid model is utilized for
decoding ultrasonic guided waves for damage detection of metallic pipelines, and twenty-nine features are
extracted as input to classify different types of defects from metallic pipes. The prediction capacity of the CNN-
LSTM model is assessed by comparing it to the CNN and LSTM. The results demonstrate that the CNN-LSTM
hybrid model exhibits much higher accuracy, with 94.8%, as compared to those of CNN and LSTM.
Interestingly, the results also reveal that predetermined features, including time-, frequency-, and time-
frequency domains, could significantly improve the robustness of the deep learning approaches, even though
the deep learning approaches are often believed they include automated feature extraction, without the hand-
crafted steps as the shallow learning do. Furthermore, the CNN-LSTM model displays higher performance
when the noise level is relatively low (e.g., SNR=9 or higher), as compared to the other two models, but its
prediction drops gradually with the increase of the noise.

Keywords: CNN-LSTM hybrid model; Lamb wave; data-driven approach; damage identification;
structural health monitoring; machine learning

1. Introduction

Onshore transmission/distribution oil/gas pipelines are major energy systems to transport and
deliver energy to power communities and other end users. These pipeline structures are vulnerable
to mechanical damage, corrosion, and other threats when subjected to aging and different stressors.
Different NDT-based sensors and inline inspection tools, including the ultrasonic-guided lamb wave
approach, have been used to monitor, detect, and locate potential defects in pipelines.

Besides the physics-based signal process, data-driven approaches have been accepted in the
recent decade for data process, including the use of artificial neural networks (ANNSs) [1-3] and deep
learnings (DLs) [4-6]. Waveform-based deep neural networks have become a necessary part of many
pattern recognition systems [7-11]. These deep neural networks directly take raw signals as input
such as in infrastructure condition assessment [12], stress level identification [13], structure damage
identification [14,15], structure health monitoring [16-19], structure damage diagnosis [20-22] and
structure damage detection [23-25].

For feature extraction in ultrasonic signal processing, Pittner and Kamarthi [26] developed a
method to automatically sort the wavelet coefficients matrix into the important frequency range and
less important frequency range and the Euclidean norms have been used to calculate the features of
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a process wavelet signal [26]. This method was successfully applied to the diagnosis of pulmonary
diseases [26]. Shi et al. concluded that the multi-stable stochastic resonance (SR) method had much
good performance and capability in signal processing than the classical bistable SR method [27]. It
could improve the output signal-to-noise ratio, improve the detection effect, and could also detect
lower signal-to-noise ratio weak signals [27]. Shi et al. presented a method of empirical mode
decomposition with cascaded multi-stable stochastic resonance system (CMSRS) denoising. He
found that this method could effectively help denoise the high-frequency signals, improve the energy
of low-frequency signals and identify fault characteristic signals [27]. Zhao et al. [28] proposed a
piecewise tri-stable stochastic resonance (PTSR) method to extract signal fault features and compared
the fault characteristics of extracted signals with the standard tri-stable SR method. The result showed
that PTSR method had better signal processing performance than STSR method [28]. Despite that, the
applicability of the CNN-LSTM hybrid model has not been investigated in the fault ultrasonic signal
classification area. In addition, the feature parameters used to express the features of time-series data
have not been used in the ultrasonic signals of damaged pipelines.

Therefore, this study aims to fill the knowledge gaps in how to achieve efficient and accurate
classification of different kinds of damaged pipelines with corrosion by utilizing the multi-feature
extraction capability of the hybrid deep learning model and constructing reasonable datasets to
improve the accuracy of different models. In this study, the dataset used for model training was
collected from field tests, and the classification results of the proposed CNN-LSTM hybrid model
were compared with some benchmark models, like CNN and LSTM models, to verify its advantages.
Furthermore, the influence of signal noise on classification accuracy was specifically calibrated.

The article is organized as follows: firstly, the method of wavelet threshold denoising was used
to denoise the raw ultrasonic signal series. Secondly, twenty-nine feature parameters were extracted
as input data for training different machine learning networks. Next, the data reduction was used to
reduce the dimensionality of the twenty-nine feature parameters series and the reduced data was
input to the CNN-LSTM hybrid models to verify the classification accuracy. Finally, the impacts of
noise interference on the effectiveness of the CNN-LSTM model were further evaluated.

2. Framework of machine learning-enriched CNN-LSTM method for damage detection

Figure 1 shows the flowchart of the methodology. The sequences of monitoring data were
collected to build the dataset. The dataset included different kinds of pipeline defects status. Second,
the CNN-LSTM model was established and verified as compared to CNN, and LSTM individually,
and further studies were conducted to reveal the influence of the different features, and data
reduction process on prediction accuracy.
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Figure 1. Framework of machine learning-enriched method for damage detection.

2.1. CNN-LSTM hybrid model
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A CNN-LSTM hybrid model was proposed, and the structure and the data processing flow of
the model are shown in Figure 2, which is based on Zhang’s research [29]. The purpose of the CNN
layer is to extract the signal features of the time-domain, frequency-domain, and time-frequency
domain from the monitoring data. The obtained features are then put into a two-dimensional array
and used as the input for the LSTM layer to analyze the time-series features. The mechanism of
feature extraction of CNN and feature processing of LSTM is shown in the following sections.
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Figure 2. Flow chart of the CNN-LSTM hybrid model.

Convolutional neural network (CNN) is a popular deep learning algorithm, and its purpose is
to process data in the form of multi arrays [30]. The convolutional layer and the max-pooling layer
are the two main layers in CNN structure, as shown in Figure 1.

The convolutional layer is designed to perform convolution and activation operations on the
input data and produce feature maps [29]. The mathematic procedure of convolution in layer 1 is

exhibited as [31]
C]-=f<z mixkj+bj) )
miEM

where mi is the data input to the convolutional layer, kj is the convolutional kernel, and bj is the
bias. f (-) represents the activation function.

The average pooling layer follows the convolutional layer and helps to reduce the feature map
resolution and decrease the network computation time. The arithmetical formula of the pooling
operation in layer 1 is exhibited as [31]

Sj = Bj down(cj) + bk (2)
where down (-) represents the average pooling method.

The input dataset for the CNN-LSTM hybrid model is collected from time series data. For CNN
structure, the input layer works with the input data, the convolutional layer extracts data features
with kernel functions, and the average pooling layer is to reduce the amount of data from the
convolutional layer, reducing overfitting [32]. Finally, the data is flattened into the LSTM layer.

LSTM is a long-short term memory network and it is an effective tool to deal with sequence and
time series data for classification and regression problems [33]. The LSTM network defines three
layers. The sequence input layer and the LSTM layer are the two most important structures for an
LSTM network. The purpose of the sequence input layer is to input the time series data for the LSTM
network. The purpose of the LSTM layer is to memorize long-term dependencies between time steps
of sequence data [34]. The last layer is used to output the information of pattern recognition.

There are four components, including input gate (i), forget gate (f), cell candidate (g), and output
gate (0), used to control the cell state and hidden state of the layer [35], Figure 3 is the LSTM structure,
which is drawn based on Chevalier’s research [34], illustrating the flow of data at time step t.
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The input gate (i;) and the forget gate (f;) are defined to control the cell state update, and reset
(forget), respectively, while the cell candidate (g,) and the output gate (o) denote the add information
to cell state, and control the cell state added to hidden state, respectively, in the form [35]

g = Ug(Wixt + Rih¢—1 + by) (3)
ft = O'g (fot + tht—l + bf) (4‘)
gt = O-C(Vl(gxt + Rght—l + bg) (5)
0¢ = 0y (Woxt + Roheq + bo) (6)

where t is the time step, o, is the gate activation function, The matrices W, R, and b are
concatenations of the input weights, the recurrent weights, and the bias of each component,
respectively.
c; is cell state at time step t and can be defined as [35]
¢t = [rOce—1 +1:O9; (7)
where © is the Hadamard product.
h. is hidden state at time step t and can be defined as [35]
hi—1 = 0:O0(ct) (8)

where o, is the state activation function.

Figure 3. The LSTM structure of a cell [34].

Figure 3 shows that LSTM can deal with continuous and highly correlated time series data [29].
During the corrosion process of damaged pipeline system, the current corrosion monitoring data has
a closely connection with the previous days, and the series of corrosion monitoring data is highly
time dependent [29]. As a result, LSTM can be used to deal with the time series information from the
CNN networks and process the processed data to the layers to classify the different kinds of damaged
pipelines.

2.2. Features extraction

2.2.1. Definition of features

In this study, ten dimensional time-domain characteristic indicators, six dimensionless time-
domain characteristic indicators and the thirteen frequency-domain characteristic indicators are
selected to characterize the fault characteristics in different kinds of damaged pipelines, as shown in
Table 1 and Table 2. Here, sixteen time-domain features and thirteen frequency-domain features are
chosen respectively. These indicators are chosen based on Chen’s research [36].

Dimensional indicators will become much bigger with the development of defects and they will
also change with the changes in working conditions [36]. Dimensionless indicators depend on the
probability density function. Both indicators can better reflect the trend of pipeline defects. Therefore,
this study uses these indicators as a time domain characteristic index. These indicators are usually
applied in reflecting the fault trend of space rolling bearings [36].
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In Table 2, s(k) is the spectrum of signal x(n), k=1,2,3..., K, K is the number of spectral lines,
and f; is the frequency value of the kth spectral line. The characteristic parameter p; reflects the
vibration energy in the frequency domain, p,, ps;, ps, ps and pjgreflect the degree of dispersion or
concentration of the spectrum; ps, p;, pg and py reflects the change of the position of the main

frequency [36].

Table 1. Time-domain characteristic indicators.
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2.2.1. Data dimension reduction

The number of features in time-domain features, frequency-domain features and time-frequency
domain features is too large. In order to select several main characteristics to express the fault features
of damaged pipelines, two different methods of data dimension reduction have been tested, PCA
method and K-PCA method.

2.2.2.1. Principal component analysis (PCA)
The PCA could be defined in the form as follows:
Step 1: standardization.
value — mean

Z= standard deviation )
After standardization, all the variables are transferred into the range of [0,1], it can reduce the
deviation of principle components.
Step 2: Covariance matrix calculation

l
C = z XX, (10)
l L=y
For X, Yl 1 X, =0, X, = (X, (1), X.(2), ..., X, (m))T, t=1,2,3,...,1, m is the dimension and m<l.
Step 3: Calculate the eigenvectors and eigenvalues of the covariance matrix to identify principal
components
Aibi = Cuy (11)
where 1; is one of eigenvalues of C, y; is the corresponding eigenvector, i=1,2,3,...,m.
Step 4: the principal components of s, can be calculated as the orthogonal transformations of
X, based on corresponding eigenvector p;.

se(D) = w;" X, (12)

2.2.2.1. Kernel principal component analysis (KPCA)

KPCA is to perform nonlinear transformation and achieve nonlinear analysis from linear PCA
on the samples using the kernel method.

Aial- = K(Zi (1 3)
where K is the kernel matrix, K = {Kij}nxn , Kij = k(x;,x;), x; and x; are samples in the original

space.
ZHx) = Zi=1 a;'k(x;, x;) (14)
Y =[Z'(x),Z%(x), Z3(x), ..., Z™(x)]T (15)

where a! is the Ith eigenvector. In the new space, the coordinates of the sample x on the first m
nonlinear principal components constitute the sample Y. KPCA has the properties as PCA and KPCA
can extract a greater number of principal components than PCA.

2.3. Evaluation of model performances

2.3.1. Confusion matrix and accuracy as performance indicators

Confusion matrix is a popular method applied to classification problems, including binary
classification and multiclass classification problems [37]. Table 1 is an example of a confusion matrix
for binary classification [37].
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Table 3. Confusion matrix for binary classification.

predicted
Negative Positive
Negative N FP
Actual Positive FN TP

The counts of predicted and actual values are calculated from confusion matrices. The output
“TN” represents for True Negative which is the number of negative examples classified accurately
[37]. “TP” shows True Positive which shows the number of positive examples classified accurately
[37]. “FP” stands for False Positive which means the number of actual negative examples classified
as positive [37]. “FN” is False Negative which is the number of actual positive examples classified as
negative [37]. The accuracy of a confusion matrix model is calculated using the given formula below
[37].

TN +TP

A =
CeUracy = TN+ FP+ FN + TP

(16)

2.3.1. ROC curve as another performance indicator

The receiver operating characteristic (ROC) curves are produced by comparing the true positives
rate against the false positives rate depending on various thresholds, which were used as the
evaluation tool in machine learning [1,2]. The area under the ROC curve (AUC) stands for the level
or measurement of separability it ranges from 0 to 1. Better model performance is associated with
higher AUC. When a model has an accuracy of 100%, AUC equals one.

3. Case study

3.1. Ultrasonic guided waves collected from embedded damaged pipes

Figure 4 shows the experiment principle of the ultrasonic testing system. Torsional guided
waves are excited using the piezoelectric transducers by manipulating their orientation, as used in
the literature [38]. A total of nine piezoelectrical transduces were arranged axially in a ring to build
the test system. Tone burst signals were used to excite the transducers and the low bandwidth nature
of these signals makes the generation of torsional mode much easier. The waveform generator was
the 33220A 20 MHz Function/Arbitrary Waveform Generator. The parameters of Arbitrary
Waveform Generator are as follows. The waveform type was the default arbitrary waveform with
the frequency of 40 Khz, the amplitude of 10 vpp, and the waveform production period of 3 seconds.
In order to better read the waveform data, the Noesis 7.0 software was used to transfer the original
waveform data, and will be fed into the neural networks.

Arbitrary Waveform
Generator | Computer |

Low frequency Data acquisition
power amplifier system

Automatic transit- Low frequency

receive switch power amplifier

Ring of piezoelectric | Defect |

transducers

Figure 4. Experimental setup.
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A total number of 336 groups of samples are collected for each pipeline state, where 240 groups
are randomly selected as training samples, and the remaining 96 groups are used as test samples.
Each set of samples contains 3000 sampling points. This dataset consists of 6 classes and each class
represents different kinds of damaged pipes (Table 4): a) P-1: the pipe with a small notch located
at1/3L away from the left side, b) P-2: the pipe with a big notch located at 1/3L away from the left side
and a weldment at 2/3L away from the left side, c) P-3: the pipe with a small notch at 1/3L and a
weldment at 2/3L away from the left side, d) P-4: the pipe with a big notch located at 1/3L away from
the left side, e) P-5: -the pipe with epoxy coating without damage, and f) P-6: the pipe with epoxy
coating with a weldment at 2/3L away from the left side. The reason for this pairing is to detect the
steps of the corrosion of different kinds of pipes. The specific description of the data set is shown in
Table 4. The time-domain waveforms corresponding to the various pipeline states are shown in
Figure 5.

Table 4. Data label and damage type.

Sample ID Damage type Training Testing
sample sample
P-1 the pipe with a small notch located at1/3L away from the
left side
P2 the pipe with a big notch located at 1/3L away from the left
side and a weldment at 2/3L away from the left side
P-3 the pipe with a smal.l notch at 1/3L and a weldment at 2/3L 240 9%
away from the left side
P-4 a pipe with a big notch shaped damage
P-5 The pipe with epoxy coating without damage
Pt The pipes with epoxy coating with a weldment at 2/3L away

from the left side.

3.2. Data denoise using wavelet threshold denoising

Wavelet threshold denoising can be realized through the following steps, which is drawn based
on [39].

Step 1: Discrete wavelet decomposition of signal with noise. According to the characteristics of
the signal with noise, the appropriate wavelet base and the number of decomposition layers are
selected to perform discrete wavelet transform and the wavelet coefficients d;, of each layer are
acquired.

One-dimensional non-stationary signal model is as follows [40].

x(8) = £(6) + £(t) 17)
where x(t) is original signal with noise, f(t) is original signal without noise, e(t) is the white
gaussian noise signal.

j OV, (O t = f FO e(Ddt + j (O, k(D ¢ (182)
dj,k = uj'k + ej,k (18b)

where v, (t) is discrete wavelet basis function; and d; is the wavelet coefficient of each layer after
wavelet transformation of the signal with noise x(t); u; is the wavelet transformation coefficient of
the original signal f(t); e; is the wavelet transformation coefficient of the white gaussian noise signal
g(t).

Step 2: Threshold quantization processing. the threshold A and the threshold function are used
to process the wavelet coefficients d;) to obtain the processed wavelet coefficients d;;, of each
layer.

Step 3: Wavelet coefficient reconstruction. The processed wavelet coefficients d;, and the
approximate coefficients of the jth layer are reconstructed to obtain the denoised signal x'(t).

do0i:10.20944/preprints202307.0929.v1
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Figure 5 shows original signal and signal after wavelet threshold denoising. Signal denoising
enhances the signal-to-noise ratio by eliminating interferences that don't supply relevant information
and reduce the predicted accuracy of machine learning models [41].

P-1
156
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Figure 5. Original signal and signal after wavelet threshold denoising.
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4. Results and discussion

4.1. Classification performance of CNN, LSTM and CNN-LSTM model with twenty-nine feature parameters
series

In order to demonstrate the effectiveness of the established CNN-LSTM model for data
classification, this study built CNN and LSTM models as benchmark models and used the twenty-
nine feature parameters series in Table 1 and 2 as the dataset for model training. Table 5 summarizes
the preferred network structures of the two benchmark models, as determined by a number of tests.
This study used padding to prevent information loss when a CNN was utilized to feature extraction
[29]. The classification performance of CNN, LSTM and CNN-LSTM models were compared. The
classification accuracy was evaluated by confusion matrix and the accuracy in Equation (16).

A CNN-LSTM hybrid model was established as discussed in Section 2.1 and as shown in Table
6, and the hybrid model was utilized to concurrently extract the temporal features and analyze the
time series features of the dataset. Figure 6 shows the training progress for both the training and
validation sets of the three models over 300 epochs. CNN-LSTM model achieve better performance
than CNN and LSTM models at the very beginning. For instance, the accuracies of the CNN-LSTM
model on both the training set and the test set start from 65% when epoch = 0, while the accuracies of
the CNN and LSTM models on both the training set and the test set are 40% and 55% respectively.

As the number of epochs increases, the accuracies of the training set and test set of three models
also show a rising trend. Furthermore, it is clear to see that the training accuracies are much higher
than the validation accuracies for three models. When the number of epochs reaches 300, the model
training accuracy and validation accuracy reach the highest value, 94.8% for CNN-LSTM model,
86.5% for LSTM model and 85.4% for CNN model, as shown in Table 5. The classification accuracy
of both the training set and test set is stable at about the highest value at the same time, which means
that the model is capable of adjusting to the training set.

Table 5 shows the test results of three models and a total number of twenty-nine feature
parameters series were used as input. Clearly, the CNN-LSTM hybrid model has a much higher
accuracy by 94.8%, as compared to the CNN and the LSTM model, with accuracy of 85.4% and 86.5%,
respectively. To provide a more intuitive comparison, the confusion matrix predicted for each model
is shown in Figure 7. CNN-LSTM displays five signals out of ninety-six testing signal samples that
are mistakenly categorized into other groups, while CNN and LSTM include fourteen and thirteen
out of ninety-six incorrectly grouped into other groups, respectively, suggesting that the CNN-LSTM
hybrid network could have higher capability for data classification. Even though both CNN and
LSTM models come to identical accuracy, the slightly higher accuracy from the LSTM model over the
CNN'’s could be partially due to the fact that the LSTM structure is specifically proposed for dealing
with time series data as used in this study, thus leading to slightly better results, which is also
confirmed in the other sections below.
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4.2. Classification performance of CNN-LSTM model with denoised data

To quantitatively study how the denoised data improves the classification accuracy of the deep
learning models, the CNN-LSTM model was trained using the dataset without denoise (original
signal dataset) and with denoise. And the denoised data set has a clear difference with the original
data, as shown in Figure 5. The training accuracies, confusion matrix and ROC curve were used as
indicators to compare, as shown in Table 6, Figure 8 and Figure 9. When considering the denoise, the
accuracy of the CNN-LSTM model is 87.5%, which improves 11% than the accuracy (77.1%) of the
CNN-LSTM model with original data. As illustrated in Figure 8, seven signal samples out of ninety-
six testing signal samples are incorrectly placed into other groups for denoised data model and
twenty-two signal samples out of ninety-six testing signal samples are mistakenly grouped into other
groups for original data model. Similarly, as shown in Figure 9, the AUC of CNN-LSTM model with
denoised data is 0.855, which is also bigger than that of CNN-LSTM model with original data (0.770).
This demonstrates that when denoise was considered in the dataset, the classification accuracy of the
CNN-LSTM hybrid model can be improved.
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Table 6. Accuracy and AUC for the CNN-LSTM hybrid model with different input data.

Deep learning models  Input Accuracy AUC
With Original data 77.1% 0.770
With Denoised data 87.5% 0.855
CNN-LSTM With twenty-nine feature parameters series 94.8% 0.950
Twenty-nine feature parameters series with PCA 93.8% 0.935
Twenty-nine feature parameters series with KPCA  92.7% 0.930
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Figure 9. ROC curve for the CNN-LSTM hybrid model with different input data.

4.3. Classification performance of CNN-LSTM model with predetermined features

To analyses the effectiveness of the twenty-nine feature parameters, CNN-LSTM model was
trained using the dataset with and without twenty-nine feature parameters. As shown in Table 6 and
Figure 8. The classification accuracy of CNN-LSTM model with twenty twenty-nine feature
parameter series improves 22.97% and 8.33% respectively when compared with original input data
(77.083%) and denoised input data (87.500%). The AUC of CNN-LSTM model with twenty-nine
feature parameters series is the highest (0.950), which is close to 1, as shown in Figure 9. The result is
meaningful, which means feature extraction can help improve the training accuracy and performance
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of the CNN-LSTM hybrid models and the twenty-nine features parameter series can be used as
indicator of fault signal features to detect pipeline damage.

4.4. Classification performance of CNN-LSTM model with data dimension reduction

To further improve the classification accuracy of CNN-LSTM model, the feature dimension can
be optimized. In this study, PCA and KPCA were applied to decrease the feature dimension of the
twenty-nine feature parameters and CNN-LSTM model with and without reduction of feature
dimension was trained. As shown in Table 6 and Figure 8, when twenty-nine feature parameters
series with PCA are used as input data of the CNN-LSTM hybrid network, the classification accuracy
is 93.8%. When twenty-nine feature parameters series with KPCA are used as input data of the CNN-
LSTM hybrid network, the classification of accuracy is 92.7%. The classification accuracies reduce by
1% and 2%, for the model with twenty-nine feature parameters series with PCA and the model with
twenty-nine feature parameters series with KPCA respectively, compared with network with twenty-
nine feature parameters series input (94.8%). For ROC curve in Figure 9, the AUC values are 0.935
and 0.930 for the model with twenty-nine feature parameters series with PCA and the model with
twenty-nine feature parameters series with KPCA respectively, which is also lower than the AUC of
CNN-LSTM model with twenty-nine feature parameters series (0.950). The result indicates that the
reduction of data dimension has no effective promotion to the classification accuracy but may reduce
the classification accuracy to some extent.

5. Further discussion of the effectiveness of the hybrid model under noise interference

To evaluate the performance and robustness of the signal processing and model training in
previous study, the noise interference on feature extraction and model training will be studied in this
part. Specifically, the white Gaussian noise that will be directly applied to original signal to simulate
the real situation with noise, noise levels are from 3 dB to 15 dB.

5.1. Introduction of white Gaussian noise into the signals

To study the robustness of signal processing and model training, the white Gaussian noise was
directly added to original signal data. Taking the signal in P-1 as an example, Figure 10 shows the
signals with different noise interference. It is clearly to see that with the increase of the SNR, the signal
becomes more and more clear. When SNR= 15 dB, the signal is almost the same as the original signal.
When SNR = 3 dB, the signal is contaminated by noise and it is hard to differentiate between noise
and signal. The sensitivity of the deep learning algorithm to the uncertainty brought on by noise can
also be tested by classifying signals in various noise levels.
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Figure 10. The noised signals on different noise levels.

5.2. Classification performance of CNN-LSTM model with white Gaussian noise interference

To investigate the sensitivity and effectiveness of the model training under noise interference,
the CNN-LSTM model was trained with dataset with and without noise. And different noise levels
are considered, as shown in Figure 11. Twenty-nine feature parameters were extracted from original
signal and noised signal to be used as input of CNN-LSTM model. The accuracies and confusion
matrix of CNN-LSTM model were compared to evaluate the training performance and the results
were shown in Table 7 and Figure 11. Clearly, the classification accuracy improved with the increase
of SNR. A higher SNR indicates a stronger and perceptible signal in comparison to noise, which is
consistent with the result. For instance, when SNR = 15 dB, the accuracy of reconstructed signals is
the highest (93.8%), where P-1 and P-2 are 100% categorized into correct groups but 13% of P-3 and
6% of P-2, P-4 and P-5 are mistakenly placed into wrong groups, as shown in Figure 11. When SNR
= 15 dB, there is almost no noise in signal as shown in Figure 10, which demonstrated the high
accuracy. While for SNR = 3 dB, the signal is seriously contaminated by the noise and the accuracy is
the lowest (33.3%), where the mislabeled data mainly occurred in P-2, P-3, P-4, P-5 and P-6. The
misjudgments in these five categories were higher than 69% which means the features of the signal
were hard to extract. With the decrease of noise level, data classification accuracies were improving.
For example, when SNR = 6 dB, 75% data could be classified into the correct labels, in which the
misclassification was mainly on P-2, P-3, P-4, P-5 and P-6, 19%, 44%, 19%, 38% and 31%
misclassification rate respectively. When SNR =9 dB and 12 dB, misclassification rate became less.
When SNR =15 dB, the accuracy of CNN-LSTM model increased by 181. 3%, 25.0%, 20.0% and 9.8%
respectively when compared with the accuracy of SNR =3 dB (33.3%), 6 dB (75.0%), 9 dB (83.3%) and
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12 dB (85.4%). It means that higher SNR levels can enhance accuracy by lessening the effect of noise
interference and improving the capacity to spot and categorize faults. The results also demonstrate
that the signal processing (denoise and feature extraction) and CNN-LSTM model training is effective
under noise interference.

AUC values were calculated to better illustrate the accuracy results, as shown in Table 2 and
Figure 4. The AUC values also increased with the decrease of noise levels, which was consistency
with the accuracy results. And when SNR = 15 dB, the AUC is 0.950, which is close to one. When the
noise level is really high (SNR = 3 dB), the AUC value is only 0.335, suggesting that the classification
accuracy is unacceptable when AUC is lower than 0.750, based on the literature [24]. When noise
levels decreased to 9 dB and 12 dB, the values of AUC were 0.840 and 0.855, respectively. The results
had the same regularity as the accuracy results, both the accuracies and AUC values increased with
the decrease of noise levels.

Table 7. The classification accuracy of three models on different SNR.

Accuracy
Input SNR (dB
P @) CNN LSTM  CNN-LSTM
twenty-nine feature parameters series (original signal) NAN 85.4% 86.5% 94.8%
3 25.0% 28.8% 33.3%
6 65.5% 67.7% 75.0%
twenty-nine feature parameters series (Noised signals) 9 76.8% 78.5% 83.3%
12 80.0% 83.0% 85.4%
15 83.0% 84.6% 93.8%
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Figure 11. The classification accuracy of CNN-LSTM model on different SNR.

Table 8. The AUC values of three models on different noise levels.

AUC

fnput SNR(B) cNN - LSTM  CNN-LSTM
twenty-nine feature parameters series (original signal) NAN 0.850 0.855  0.950

3 0.250 0.280 0.335

6 0.655 0.700 0.720
twenty-nine feature parameters series (Noised signals) 9 0.775 0.780  0.840

12 0.800 0.830 0.855

15 0.830 0.845 0.950

5.3. The comparison of the classification performance of CNN, LSTM and CNN-LSTM model

This part compared the performance of three models (CNN, LSTM and CNN-LSTM) with
different levels of white Gaussian noise and used twenty-nine feature parameters series as network
input. Table 7 and Figure 12 shows the comparison results of training accuracies and AUC values of
three models (CNN, LSTM and CNN-LSTM models). Clearly, CNN-LSTM hybrid model achieve
better performance than CNN and LSTM on different noise levels due to its complex time series data
processing structure and this result has also been demonstrated in Section 4.1.
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ROC for signal clasfication by CNN-LSTM
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Figure 12. ROC curve for three models on different noise levels.

For instance, when SNR = 3 dB, the accuracy of CNN-LSTM model increased by 33% and 16%,
respectively, in comparison with CNN (25.0%) and LSTM model (28.8%). The result demonstrated
that CNN-LSTM model had better feature extraction capability than CNN and LSTM model at higher
noise level and LSTM model was much better than CNN model. With the decrease of noise levels,
the difference of training accuracies also decreased among three models. For instance, when SNR =
15 dB, the performance of CNN-LSTM model increased by 4% for both CNN and LSTM model.

For AUC values, there is same trend as training accuracies. With the decrease of noise levels, the
difference of AUC values also decreased. For instance, when SNR = 3 dB, the AUC value of CNN-
LSTM model increased by 34% and 20%, respectively, in comparison with CNN and LSTM model,
while when SNR = 15 dB, the performance of CNN-LSTM model increased by 6% for both CNN and
LSTM model. These findings revealed that the CNN-LSTM model still performed better at classifying
data than the CNN and LSTM models under the noise interference.

6. Conclusions

This study provided a comprehensive study of deep-learning-based signal process of ultrasonic
guided wave and damage detection for metallic pipelines via the CNN-LSTM hybrid model. The
twenty-nine features, including time-, frequency-, and time-frequency domains, were determined to
evaluate the data classification. Six types of mechanical defects in pipe structures were designed for
the case to demonstrate the effectiveness of the proposed methods. As a comparison, the CNN and
LSTM models were selected. To further evaluate the robustness of the signal processing and model
training, noise interferences on signal processing were investigated. The main findings could be
summarized as follows:

e  The results reveal that the CNN-LSTM hybrid model exhibits a higher accuracy for decoding
signals of the ultrasonic guided wave for damage detection, as compared to individual deep
learning approaches (CNN and LSTM), particularly under high noise interferences.

° The results also confirmed that predetermined features, including time-, frequency-, and time-
frequency domains, improve the data classification. Interestingly, while it is well known that the
deep learning approaches could outperform the shallow learning ones that often require hand-
crafted features and thus they could provide the high capability for data classification through
end-to-end manner with fewer physics restraints (“black box”), the election of features with
certain physics (“physics-informed” feature extraction) could significantly improve the
robustness of the deep learning approaches.

e  Data reduction (PCA and KPCA) used for the deep learning training/testing networks in this
study display no apparent improvement to data classification. However, with the increased
volume of datasets, these methods could improve efficiency in terms of shortening computation
time.
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e  The accuracy of the deep learning approaches could be dramatically affected by noise, which
could be stemmed from measurement and environment. The CNN-LSTM model still exhibits a
high performance when the noise level is relatively low (e.g., SNR=9 or higher) but the prediction
drops gradually to the unacceptable limit, when the noise level of SNR is 6, where the amplitude
of the noise level approaches to that of the signals themselves. As compared, the CNN and LSTM
models fail early as expected, when the noise level is much higher.

e  Although this study attempts to provide a comparison study to understand the effectiveness of
the hybrid deep learning model, there are still certain drawbacks that could be improved in the
future. The first one is the dataset which is limited to six common defects and may not be able
to account for broader applications. The simple case that tried to demonstrate the concept may
not account for more complicated signal propagation, reflection, and scatters, which could
challenge the effectiveness of the proposed methods.
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