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Article 
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Abstract: Ultrasonic-guided lamb wave approach is an effective non-destructive testing (NDT) method used 
for detecting localized mechanical damage, corrosion, and welding defects experienced in metallic pipelines. 
Signal processing of the guided waves is often challenged due to the complexity of operational conditions and 
environments in the pipelines. Machine learning approaches in recent years, including convolutional neural 
networks (CNN) and long short-term memory (LSTM), have exhibited their advantages to overcome these 
challenges for signal process and data classification of complex systems, thus great potential for damage 
detection of critical oil/gas pipeline structures. In this study, a CNN-LSTM hybrid model is utilized for 
decoding ultrasonic guided waves for damage detection of metallic pipelines, and twenty-nine features are 
extracted as input to classify different types of defects from metallic pipes. The prediction capacity of the CNN-
LSTM model is assessed by comparing it to the CNN and LSTM. The results demonstrate that the CNN-LSTM 
hybrid model exhibits much higher accuracy, with 94.8%, as compared to those of CNN and LSTM. 
Interestingly, the results also reveal that predetermined features, including time-, frequency-, and time-
frequency domains, could significantly improve the robustness of the deep learning approaches, even though 
the deep learning approaches are often believed they include automated feature extraction, without the hand-
crafted steps as the shallow learning do. Furthermore, the CNN-LSTM model displays higher performance 
when the noise level is relatively low (e.g., SNR=9 or higher), as compared to the other two models, but its 
prediction drops gradually with the increase of the noise.  

Keywords: CNN-LSTM hybrid model; Lamb wave; data-driven approach; damage identification; 
structural health monitoring; machine learning 

 

1. Introduction 

Onshore transmission/distribution oil/gas pipelines are major energy systems to transport and 
deliver energy to power communities and other end users. These pipeline structures are vulnerable 
to mechanical damage, corrosion, and other threats when subjected to aging and different stressors. 
Different NDT-based sensors and inline inspection tools, including the ultrasonic-guided lamb wave 
approach, have been used to monitor, detect, and locate potential defects in pipelines.  

Besides the physics-based signal process, data-driven approaches have been accepted in the 
recent decade for data process, including the use of artificial neural networks (ANNs) [1–3] and deep 
learnings (DLs) [4–6]. Waveform-based deep neural networks have become a necessary part of many 
pattern recognition systems [7–11]. These deep neural networks directly take raw signals as input 
such as in infrastructure condition assessment [12], stress level identification [13], structure damage 
identification [14,15], structure health monitoring [16–19], structure damage diagnosis [20–22] and 
structure damage detection [23–25].  

For feature extraction in ultrasonic signal processing, Pittner and Kamarthi [26] developed a 
method to automatically sort the wavelet coefficients matrix into the important frequency range and 
less important frequency range and the Euclidean norms have been used to calculate the features of 
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a process wavelet signal [26]. This method was successfully applied to the diagnosis of pulmonary 
diseases [26]. Shi et al. concluded that the multi-stable stochastic resonance (SR) method had much 
good performance and capability in signal processing than the classical bistable SR method [27]. It 
could improve the output signal-to-noise ratio, improve the detection effect, and could also detect 
lower signal-to-noise ratio weak signals [27]. Shi et al. presented a method of empirical mode 
decomposition with cascaded multi-stable stochastic resonance system (CMSRS) denoising. He 
found that this method could effectively help denoise the high-frequency signals, improve the energy 
of low-frequency signals and identify fault characteristic signals [27]. Zhao et al. [28] proposed a 
piecewise tri-stable stochastic resonance (PTSR) method to extract signal fault features and compared 
the fault characteristics of extracted signals with the standard tri-stable SR method. The result showed 
that PTSR method had better signal processing performance than STSR method [28]. Despite that, the 
applicability of the CNN-LSTM hybrid model has not been investigated in the fault ultrasonic signal 
classification area. In addition, the feature parameters used to express the features of time-series data 
have not been used in the ultrasonic signals of damaged pipelines.  

Therefore, this study aims to fill the knowledge gaps in how to achieve efficient and accurate 
classification of different kinds of damaged pipelines with corrosion by utilizing the multi-feature 
extraction capability of the hybrid deep learning model and constructing reasonable datasets to 
improve the accuracy of different models. In this study, the dataset used for model training was 
collected from field tests, and the classification results of the proposed CNN-LSTM hybrid model 
were compared with some benchmark models, like CNN and LSTM models, to verify its advantages. 
Furthermore, the influence of signal noise on classification accuracy was specifically calibrated. 

The article is organized as follows: firstly, the method of wavelet threshold denoising was used 
to denoise the raw ultrasonic signal series. Secondly, twenty-nine feature parameters were extracted 
as input data for training different machine learning networks. Next, the data reduction was used to 
reduce the dimensionality of the twenty-nine feature parameters series and the reduced data was 
input to the CNN-LSTM hybrid models to verify the classification accuracy. Finally, the impacts of 
noise interference on the effectiveness of the CNN-LSTM model were further evaluated. 

2. Framework of machine learning-enriched CNN-LSTM method for damage detection 

Figure 1 shows the flowchart of the methodology. The sequences of monitoring data were 
collected to build the dataset. The dataset included different kinds of pipeline defects status. Second, 
the CNN-LSTM model was established and verified as compared to CNN, and LSTM individually, 
and further studies were conducted to reveal the influence of the different features, and data 
reduction process on prediction accuracy. 

 

Figure 1. Framework of machine learning-enriched method for damage detection. 

2.1. CNN-LSTM hybrid model 
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A CNN-LSTM hybrid model was proposed, and the structure and the data processing flow of 
the model are shown in Figure 2, which is based on Zhang’s research [29]. The purpose of the CNN 
layer is to extract the signal features of the time-domain, frequency-domain, and time-frequency 
domain from the monitoring data. The obtained features are then put into a two-dimensional array 
and used as the input for the LSTM layer to analyze the time-series features. The mechanism of 
feature extraction of CNN and feature processing of LSTM is shown in the following sections. 

 
Figure 2. Flow chart of the CNN-LSTM hybrid model. 

Convolutional neural network (CNN) is a popular deep learning algorithm, and its purpose is 
to process data in the form of multi arrays [30]. The convolutional layer and the max-pooling layer 
are the two main layers in CNN structure, as shown in Figure 1.  

The convolutional layer is designed to perform convolution and activation operations on the 
input data and produce feature maps [29]. The mathematic procedure of convolution in layer l is 
exhibited as [31] �� = � �� �� × �� + ���� � � � (1) 

where �� is the data input to the convolutional layer, �� is the convolutional kernel, and �� is the 
bias. f (∙) represents the activation function. 

The average pooling layer follows the convolutional layer and helps to reduce the feature map 
resolution and decrease the network computation time. The arithmetical formula of the pooling 
operation in layer l is exhibited as [31] �� = �� ����(��) + �� (2) 
where down (∙) represents the average pooling method. 

The input dataset for the CNN-LSTM hybrid model is collected from time series data. For CNN 
structure, the input layer works with the input data, the convolutional layer extracts data features 
with kernel functions, and the average pooling layer is to reduce the amount of data from the 
convolutional layer, reducing overfitting [32]. Finally, the data is flattened into the LSTM layer. 

LSTM is a long-short term memory network and it is an effective tool to deal with sequence and 
time series data for classification and regression problems [33]. The LSTM network defines three 
layers. The sequence input layer and the LSTM layer are the two most important structures for an 
LSTM network. The purpose of the sequence input layer is to input the time series data for the LSTM 
network. The purpose of the LSTM layer is to memorize long-term dependencies between time steps 
of sequence data [34]. The last layer is used to output the information of pattern recognition. 

There are four components, including input gate (i), forget gate (f), cell candidate (g), and output 
gate (o), used to control the cell state and hidden state of the layer [35], Figure 3 is the LSTM structure, 
which is drawn based on Chevalier’s research [34], illustrating the flow of data at time step t. 
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The input gate (��) and the forget gate (��) are defined to control the cell state update, and reset 
(forget), respectively, while the cell candidate (��) and the output gate (o) denote the add information 
to cell state, and control the cell state added to hidden state, respectively, in the form [35] �� = ��(���� + ��ℎ��� + ��) (3) �� = ������� + ��ℎ��� + ��� (4) �� = ������� + ��ℎ��� + ��� (5) �� = ��(���� + ��ℎ��� + ��) (6) 
where t is the time step, ��  is the gate activation function, The matrices W, R, and b are 
concatenations of the input weights, the recurrent weights, and the bias of each component, 
respectively. �� is cell state at time step t and can be defined as [35] �� = ��⨀���� + ��⨀�� (7) 
where ⨀ is the Hadamard product. ℎ� is hidden state at time step t and can be defined as [35] ℎ��� = ��⨀��(��) (8) 
where �� is the state activation function. 

 

Figure 3. The LSTM structure of a cell [34]. 

Figure 3 shows that LSTM can deal with continuous and highly correlated time series data [29]. 
During the corrosion process of damaged pipeline system, the current corrosion monitoring data has 
a closely connection with the previous days, and the series of corrosion monitoring data is highly 
time dependent [29]. As a result, LSTM can be used to deal with the time series information from the 
CNN networks and process the processed data to the layers to classify the different kinds of damaged 
pipelines. 

2.2. Features extraction 

2.2.1. Definition of features 

In this study, ten dimensional time-domain characteristic indicators, six dimensionless time-
domain characteristic indicators and the thirteen frequency-domain characteristic indicators are 
selected to characterize the fault characteristics in different kinds of damaged pipelines, as shown in 
Table 1 and Table 2. Here, sixteen time-domain features and thirteen frequency-domain features are 
chosen respectively. These indicators are chosen based on Chen’s research [36]. 

Dimensional indicators will become much bigger with the development of defects and they will 
also change with the changes in working conditions [36]. Dimensionless indicators depend on the 
probability density function. Both indicators can better reflect the trend of pipeline defects. Therefore, 
this study uses these indicators as a time domain characteristic index. These indicators are usually 
applied in reflecting the fault trend of space rolling bearings [36]. 
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In Table 2, �(�) is the spectrum of signal x(n), k=1,2,3…, K, K is the number of spectral lines, 
and �� is the frequency value of the kth spectral line. The characteristic parameter �� reflects the 
vibration energy in the frequency domain, ��, ��, ��, �� and ���reflect the degree of dispersion or 
concentration of the spectrum; �� , �� , ��  and �� reflects the change of the position of the main 
frequency [36]. 

Table 1. Time-domain characteristic indicators. 

Dimensional time-domain (with 10 indicators) 

Feature index Expressions 
Features 

index 
Expressions 

Mean value �� = 1� � ���
���  Kurtosis � = 1� � ����

���  

Root mean square 
value ���� = �1� � ����

���  variance ��� = 1� − 1 �(�� − ��)��
���  

Square root 
amplitude �� = �1� � �|��|�

��� ��
 

maximum 
value 

���� = ���{|��|} 

absolute mean 
amplitude 

|��| = 1� �|��|�
���  

minimum 
value 

���� = ���{��} 

Skewness ∝= 1� � ����
���  

peak-to-peak 
value 

���� = max(��) − min (��) 

Dimensionless time-domain (with 6 indicators) 

Waveform Index �� = ����|��|  peak index �� = ��������  

pulse index �� = ����|��|  margin index ��� = ������  

kurtosis index �� = ������  
Skewness 

Index 
� = ∝�����  

Table 2. Frequency-domain characteristic indicators (with 13 indicators). 

Number Expressions Number Expressions 

1 �� = ∑ �(�)�����  8 �� = �∑ ����(�)����∑ ����(�)����  

2 �� = ∑ (�(�) − ��)����� �  9 �� = ∑ ����(�)�����∑ �(�)���� ∑ ����(�)����  

3 �� = ∑ (�(�) − ��)������(���)�  10 ��� = ���� 

4 �� = ∑ (�(�) − ��)����� ����  11 ��� = ∑ (�� − ��)��(�)���� ����  

5 �� = ∑ ���(�)����∑ �(�)����  12 ��� = ∑ (�� − ��)��(�)���� ����  

6 �� = �∑ (�� − ��)��(�)���� �  13 ��� = ∑ (�� − ��)�.��(�)���� ���  

7 �� = �∑ ����(�)����∑ �(�)����    
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2.2.1. Data dimension reduction 

The number of features in time-domain features, frequency-domain features and time-frequency 
domain features is too large. In order to select several main characteristics to express the fault features 
of damaged pipelines, two different methods of data dimension reduction have been tested, PCA 
method and K-PCA method. 

2.2.2.1. Principal component analysis (PCA) 

The PCA could be defined in the form as follows: 
Step 1: standardization. � = ����� − ������������ ��������� (9) 

After standardization, all the variables are transferred into the range of [0,1], it can reduce the 
deviation of principle components. 

Step 2: Covariance matrix calculation  � = 1� � ��������� (10) 

For �� , ∑ ������ = 0, �� = (��(1), ��(2), … , ��(�))�, t=1,2,3,…,l, m is the dimension and m<l. 
Step 3: Calculate the eigenvectors and eigenvalues of the covariance matrix to identify principal 

components ���� = ��� (11) 
where �� is one of eigenvalues of C, �� is the corresponding eigenvector, i=1,2,3,…,m. 

Step 4: the principal components of �� can be calculated as the orthogonal transformations of �� based on corresponding eigenvector ��. ��(�) = ����� (12) 

2.2.2.1. Kernel principal component analysis (KPCA) 

KPCA is to perform nonlinear transformation and achieve nonlinear analysis from linear PCA 
on the samples using the kernel method. ���� = ��� (13) 
where K is the kernel matrix, � = ������×� , ��� = �(�� , ��), ��  and ��  are samples in the original 
space.  ��(�) = � ������� , ������� (14) � = [��(�), ��(�), ��(�), … , ��(�)]� (15) 
where �� is the lth eigenvector. In the new space, the coordinates of the sample x on the first m 
nonlinear principal components constitute the sample Y. KPCA has the properties as PCA and KPCA 
can extract a greater number of principal components than PCA. 

2.3. Evaluation of model performances 

2.3.1. Confusion matrix and accuracy as performance indicators 

Confusion matrix is a popular method applied to classification problems, including binary 
classification and multiclass classification problems [37]. Table 1 is an example of a confusion matrix 
for binary classification [37]. 
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Table 3. Confusion matrix for binary classification. 

 predicted 
Negative Positive 

Actual 
Negative TN FP 
Positive FN TP 

The counts of predicted and actual values are calculated from confusion matrices. The output 
“TN” represents for True Negative which is the number of negative examples classified accurately 
[37]. “TP” shows True Positive which shows the number of positive examples classified accurately 
[37]. “FP” stands for False Positive which means the number of actual negative examples classified 
as positive [37]. “FN” is False Negative which is the number of actual positive examples classified as 
negative [37]. The accuracy of a confusion matrix model is calculated using the given formula below 
[37]. �������� = �� + ���� + �� + �� + �� (16) 

2.3.1. ROC curve as another performance indicator 

The receiver operating characteristic (ROC) curves are produced by comparing the true positives 
rate against the false positives rate depending on various thresholds, which were used as the 
evaluation tool in machine learning [1,2]. The area under the ROC curve (AUC) stands for the level 
or measurement of separability it ranges from 0 to 1. Better model performance is associated with 
higher AUC. When a model has an accuracy of 100%, AUC equals one.  

3. Case study 

3.1. Ultrasonic guided waves collected from embedded damaged pipes 

Figure 4 shows the experiment principle of the ultrasonic testing system. Torsional guided 
waves are excited using the piezoelectric transducers by manipulating their orientation, as used in 
the literature [38]. A total of nine piezoelectrical transduces were arranged axially in a ring to build 
the test system. Tone burst signals were used to excite the transducers and the low bandwidth nature 
of these signals makes the generation of torsional mode much easier. The waveform generator was 
the 33220A 20 MHz Function/Arbitrary Waveform Generator. The parameters of Arbitrary 
Waveform Generator are as follows. The waveform type was the default arbitrary waveform with 
the frequency of 40 Khz, the amplitude of 10 vpp, and the waveform production period of 3 seconds. 
In order to better read the waveform data, the Noesis 7.0 software was used to transfer the original 
waveform data, and will be fed into the neural networks. 

 

Figure 4. Experimental setup. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 July 2023                   doi:10.20944/preprints202307.0929.v1

https://doi.org/10.20944/preprints202307.0929.v1


 8 

 

A total number of 336 groups of samples are collected for each pipeline state, where 240 groups 
are randomly selected as training samples, and the remaining 96 groups are used as test samples. 
Each set of samples contains 3000 sampling points. This dataset consists of 6 classes and each class 
represents different kinds of damaged pipes (Table 4): a) P-1: the pipe with a small notch located 
at1/3L away from the left side, b) P-2: the pipe with a big notch located at 1/3L away from the left side 
and a weldment at 2/3L away from the left side, c) P-3: the pipe with a small notch at 1/3L and a 
weldment at 2/3L away from the left side, d) P-4: the pipe with a big notch located at 1/3L away from 
the left side, e) P-5:  -the pipe with epoxy coating without damage, and f) P-6: the pipe with epoxy 
coating with a weldment at 2/3L away from the left side. The reason for this pairing is to detect the 
steps of the corrosion of different kinds of pipes. The specific description of the data set is shown in 
Table 4. The time-domain waveforms corresponding to the various pipeline states are shown in 
Figure 5. 

Table 4. Data label and damage type. 

Sample ID Damage type 
Training 
sample 

Testing 
sample 

P-1 
the pipe with a small notch located at1/3L away from the 
left side 

240 96 

P-2 
the pipe with a big notch located at 1/3L away from the left 
side and a weldment at 2/3L away from the left side 

P-3 
the pipe with a small notch at 1/3L and a weldment at 2/3L 
away from the left side 

P-4 a pipe with a big notch shaped damage 
P-5 The pipe with epoxy coating without damage 

P-6 
The pipes with epoxy coating with a weldment at 2/3L away 
from the left side.  

3.2. Data denoise using wavelet threshold denoising 

Wavelet threshold denoising can be realized through the following steps, which is drawn based 
on [39].  

Step 1: Discrete wavelet decomposition of signal with noise. According to the characteristics of 
the signal with noise, the appropriate wavelet base and the number of decomposition layers are 
selected to perform discrete wavelet transform and the wavelet coefficients ��,� of each layer are 
acquired. 

One-dimensional non-stationary signal model is as follows [40]. �(�) = �(�) + �(�) (17) 
where �(�)  is original signal with noise, f(t) is original signal without noise, �(�)  is the white 
gaussian noise signal. � �(�)��,�(�)� � = � �(�)��,�(�)� � + � �(�)��,�(�)� � (18a) ��,� = ��,� + ��,� (18b) 
where ��,�(�) is discrete wavelet basis function; and ��,� is the wavelet coefficient of each layer after 
wavelet transformation of the signal with noise x(t); ��,� is the wavelet transformation coefficient of 
the original signal f(t); ��,� is the wavelet transformation coefficient of the white gaussian noise signal 
ε(t). 

Step 2: Threshold quantization processing. the threshold λ and the threshold function are used 
to process the wavelet coefficients ��,�   to obtain the processed wavelet coefficients ��,��  of each 
layer. 

Step 3: Wavelet coefficient reconstruction. The processed wavelet coefficients ��,��  and the 
approximate coefficients of the jth layer are reconstructed to obtain the denoised signal x'(t). 
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Figure 5 shows original signal and signal after wavelet threshold denoising. Signal denoising 
enhances the signal-to-noise ratio by eliminating interferences that don't supply relevant information 
and reduce the predicted accuracy of machine learning models [41]. 

(a) 
 

 (b) 

(c) (d) 

 
(e) (f) 

Figure 5. Original signal and signal after wavelet threshold denoising. 
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4. Results and discussion 

4.1. Classification performance of CNN, LSTM and CNN-LSTM model with twenty-nine feature parameters 
series 

In order to demonstrate the effectiveness of the established CNN-LSTM model for data 
classification, this study built CNN and LSTM models as benchmark models and used the twenty-
nine feature parameters series in Table 1 and 2 as the dataset for model training. Table 5 summarizes 
the preferred network structures of the two benchmark models, as determined by a number of tests. 
This study used padding to prevent information loss when a CNN was utilized to feature extraction 
[29]. The classification performance of CNN, LSTM and CNN-LSTM models were compared. The 
classification accuracy was evaluated by confusion matrix and the accuracy in Equation (16).  

A CNN-LSTM hybrid model was established as discussed in Section 2.1 and as shown in Table 
6, and the hybrid model was utilized to concurrently extract the temporal features and analyze the 
time series features of the dataset. Figure 6 shows the training progress for both the training and 
validation sets of the three models over 300 epochs. CNN-LSTM model achieve better performance 
than CNN and LSTM models at the very beginning. For instance, the accuracies of the CNN-LSTM 
model on both the training set and the test set start from 65% when epoch = 0, while the accuracies of 
the CNN and LSTM models on both the training set and the test set are 40% and 55% respectively.  

As the number of epochs increases, the accuracies of the training set and test set of three models 
also show a rising trend. Furthermore, it is clear to see that the training accuracies are much higher 
than the validation accuracies for three models. When the number of epochs reaches 300, the model 
training accuracy and validation accuracy reach the highest value, 94.8% for CNN-LSTM model, 
86.5% for LSTM model and 85.4% for CNN model, as shown in Table 5. The classification accuracy 
of both the training set and test set is stable at about the highest value at the same time, which means 
that the model is capable of adjusting to the training set. 

Table 5 shows the test results of three models and a total number of twenty-nine feature 
parameters series were used as input. Clearly, the CNN-LSTM hybrid model has a much higher 
accuracy by 94.8%, as compared to the CNN and the LSTM model, with accuracy of 85.4% and 86.5%, 
respectively. To provide a more intuitive comparison, the confusion matrix predicted for each model 
is shown in Figure 7. CNN-LSTM displays five signals out of ninety-six testing signal samples that 
are mistakenly categorized into other groups, while CNN and LSTM include fourteen and thirteen 
out of ninety-six incorrectly grouped into other groups, respectively, suggesting that the CNN-LSTM 
hybrid network could have higher capability for data classification. Even though both CNN and 
LSTM models come to identical accuracy, the slightly higher accuracy from the LSTM model over the 
CNN’s could be partially due to the fact that the LSTM structure is specifically proposed for dealing 
with time series data as used in this study, thus leading to slightly better results, which is also 
confirmed in the other sections below.  

(a)CNN (b)LSTM 
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(c)CNN-LSTM 

Figure 6. Accuracy of training and validation for three models. 

Table 5. The classification accuracy for different deep leaning models. 

Deep learning models Input  Output (Accuracy) 
CNN 

twenty-nine feature parameters 
series 

85.4% 
LSTM 86.5% 
CNN-LSTM 94.8% 

 
(a) CNN 

 
(b) LSTM 
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(c)CNN-LSTM 

Figure 7. The confusion matrix for three models. 

4.2. Classification performance of CNN-LSTM model with denoised data 

To quantitatively study how the denoised data improves the classification accuracy of the deep 
learning models, the CNN-LSTM model was trained using the dataset without denoise (original 
signal dataset) and with denoise. And the denoised data set has a clear difference with the original 
data, as shown in Figure 5. The training accuracies, confusion matrix and ROC curve were used as 
indicators to compare, as shown in Table 6, Figure 8 and Figure 9. When considering the denoise, the 
accuracy of the CNN-LSTM model is 87.5%, which improves 11% than the accuracy (77.1%) of the 
CNN-LSTM model with original data. As illustrated in Figure 8, seven signal samples out of ninety-
six testing signal samples are incorrectly placed into other groups for denoised data model and 
twenty-two signal samples out of ninety-six testing signal samples are mistakenly grouped into other 
groups for original data model. Similarly, as shown in Figure 9, the AUC of CNN-LSTM model with 
denoised data is 0.855, which is also bigger than that of CNN-LSTM model with original data (0.770). 
This demonstrates that when denoise was considered in the dataset, the classification accuracy of the 
CNN-LSTM hybrid model can be improved.  

 
(a) Original data 
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(b) Denoised data 

 
(c) Twenty-nine feature parameters series 

 
(c) Twenty-nine feature parameters series with PCA 
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(d) Twenty-nine feature parameters series with KPCA 

Figure 8. The confusion matrix of the CNN-LSTM model with different kinds of input data. 

Table 6. Accuracy and AUC for the CNN-LSTM hybrid model with different input data. 

Deep learning models Input  Accuracy AUC 

CNN-LSTM 

With Original data 77.1% 0.770 
With Denoised data 87.5% 0.855 
With twenty-nine feature parameters series 94.8% 0.950 
Twenty-nine feature parameters series with PCA 93.8% 0.935 
Twenty-nine feature parameters series with KPCA 92.7% 0.930 

 
Figure 9. ROC curve for the CNN-LSTM hybrid model with different input data. 

4.3. Classification performance of CNN-LSTM model with predetermined features 

To analyses the effectiveness of the twenty-nine feature parameters, CNN-LSTM model was 
trained using the dataset with and without twenty-nine feature parameters. As shown in Table 6 and 
Figure 8. The classification accuracy of CNN-LSTM model with twenty twenty-nine feature 
parameter series improves 22.97% and 8.33% respectively when compared with original input data 
(77.083%) and denoised input data (87.500%). The AUC of CNN-LSTM model with twenty-nine 
feature parameters series is the highest (0.950), which is close to 1, as shown in Figure 9. The result is 
meaningful, which means feature extraction can help improve the training accuracy and performance 
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of the CNN-LSTM hybrid models and the twenty-nine features parameter series can be used as 
indicator of fault signal features to detect pipeline damage. 

4.4. Classification performance of CNN-LSTM model with data dimension reduction 

To further improve the classification accuracy of CNN-LSTM model, the feature dimension can 
be optimized. In this study, PCA and KPCA were applied to decrease the feature dimension of the 
twenty-nine feature parameters and CNN-LSTM model with and without reduction of feature 
dimension was trained. As shown in Table 6 and Figure 8, when twenty-nine feature parameters 
series with PCA are used as input data of the CNN-LSTM hybrid network, the classification accuracy 
is 93.8%. When twenty-nine feature parameters series with KPCA are used as input data of the CNN-
LSTM hybrid network, the classification of accuracy is 92.7%. The classification accuracies reduce by 
1% and 2%, for the model with twenty-nine feature parameters series with PCA and the model with 
twenty-nine feature parameters series with KPCA respectively, compared with network with twenty-
nine feature parameters series input (94.8%). For ROC curve in Figure 9, the AUC values are 0.935 
and 0.930 for the model with twenty-nine feature parameters series with PCA and the model with 
twenty-nine feature parameters series with KPCA respectively, which is also lower than the AUC of 
CNN-LSTM model with twenty-nine feature parameters series (0.950). The result indicates that the 
reduction of data dimension has no effective promotion to the classification accuracy but may reduce 
the classification accuracy to some extent. 

5. Further discussion of the effectiveness of the hybrid model under noise interference 

To evaluate the performance and robustness of the signal processing and model training in 
previous study, the noise interference on feature extraction and model training will be studied in this 
part. Specifically, the white Gaussian noise that will be directly applied to original signal to simulate 
the real situation with noise, noise levels are from 3 dB to 15 dB.   

5.1. Introduction of white Gaussian noise into the signals 

To study the robustness of signal processing and model training, the white Gaussian noise was 
directly added to original signal data. Taking the signal in P-1 as an example, Figure 10 shows the 
signals with different noise interference. It is clearly to see that with the increase of the SNR, the signal 
becomes more and more clear. When SNR= 15 dB, the signal is almost the same as the original signal. 
When SNR = 3 dB, the signal is contaminated by noise and it is hard to differentiate between noise 
and signal. The sensitivity of the deep learning algorithm to the uncertainty brought on by noise can 
also be tested by classifying signals in various noise levels. 

(a)Original signal (b) SNR = 3 dB 
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(c) SNR = 6 dB (d) SNR = 9 dB 

(e) SNR = 12 dB (f) SNR = 15 dB 
Figure 10. The noised signals on different noise levels. 

5.2. Classification performance of CNN-LSTM model with white Gaussian noise interference 

To investigate the sensitivity and effectiveness of the model training under noise interference, 
the CNN-LSTM model was trained with dataset with and without noise. And different noise levels 
are considered, as shown in Figure 11. Twenty-nine feature parameters were extracted from original 
signal and noised signal to be used as input of CNN-LSTM model. The accuracies and confusion 
matrix of CNN-LSTM model were compared to evaluate the training performance and the results 
were shown in Table 7 and Figure 11. Clearly, the classification accuracy improved with the increase 
of SNR. A higher SNR indicates a stronger and perceptible signal in comparison to noise, which is 
consistent with the result. For instance, when SNR = 15 dB, the accuracy of reconstructed signals is 
the highest (93.8%), where P-1 and P-2 are 100% categorized into correct groups but 13% of P-3 and 
6% of P-2, P-4 and P-5 are mistakenly placed into wrong groups, as shown in Figure 11. When SNR 
= 15 dB, there is almost no noise in signal as shown in Figure 10, which demonstrated the high 
accuracy. While for SNR = 3 dB, the signal is seriously contaminated by the noise and the accuracy is 
the lowest (33.3%), where the mislabeled data mainly occurred in P-2, P-3, P-4, P-5 and P-6. The 
misjudgments in these five categories were higher than 69% which means the features of the signal 
were hard to extract. With the decrease of noise level, data classification accuracies were improving. 
For example, when SNR = 6 dB, 75% data could be classified into the correct labels, in which the 
misclassification was mainly on P-2, P-3, P-4, P-5 and P-6, 19%, 44%, 19%, 38% and 31% 
misclassification rate respectively. When SNR = 9 dB and 12 dB, misclassification rate became less. 
When SNR = 15 dB, the accuracy of CNN-LSTM model increased by 181. 3%, 25.0%, 20.0% and 9.8% 
respectively when compared with the accuracy of SNR = 3 dB (33.3%), 6 dB (75.0%), 9 dB (83.3%) and 
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12 dB (85.4%). It means that higher SNR levels can enhance accuracy by lessening the effect of noise 
interference and improving the capacity to spot and categorize faults. The results also demonstrate 
that the signal processing (denoise and feature extraction) and CNN-LSTM model training is effective 
under noise interference. 

AUC values were calculated to better illustrate the accuracy results, as shown in Table 2 and 
Figure 4. The AUC values also increased with the decrease of noise levels, which was consistency 
with the accuracy results. And when SNR = 15 dB, the AUC is 0.950, which is close to one. When the 
noise level is really high (SNR = 3 dB), the AUC value is only 0.335, suggesting that the classification 
accuracy is unacceptable when AUC is lower than 0.750, based on the literature [24]. When noise 
levels decreased to 9 dB and 12 dB, the values of AUC were 0.840 and 0.855, respectively. The results 
had the same regularity as the accuracy results, both the accuracies and AUC values increased with 
the decrease of noise levels. 

Table 7. The classification accuracy of three models on different SNR. 

Input  SNR (dB) 
Accuracy 
CNN LSTM CNN-LSTM 

twenty-nine feature parameters series (original signal) NAN 85.4% 86.5% 94.8% 

twenty-nine feature parameters series (Noised signals) 

3 25.0% 28.8% 33.3% 
6 65.5% 67.7% 75.0% 
9 76.8% 78.5% 83.3% 
12 80.0% 83.0% 85.4% 
15 83.0% 84.6% 93.8% 

 

(a)original signal 
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(b)SNR = 3 dB 

(c)SNR = 6 dB 

(d)SNR = 9 dB 

(e)SNR = 12 dB 
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(f)SNR = 15 dB 
Figure 11. The classification accuracy of CNN-LSTM model on different SNR. 

Table 8. The AUC values of three models on different noise levels. 

Input  SNR (dB) 
AUC 
CNN LSTM CNN-LSTM 

twenty-nine feature parameters series (original signal) NAN 0.850 0.855 0.950 

twenty-nine feature parameters series (Noised signals) 

3 0.250 0.280 0.335 
6 0.655 0.700 0.720 
9 0.775 0.780 0.840 
12 0.800 0.830 0.855 
15 0.830 0.845 0.950 

5.3. The comparison of the classification performance of CNN, LSTM and CNN-LSTM model 

This part compared the performance of three models (CNN, LSTM and CNN-LSTM) with 
different levels of white Gaussian noise and used twenty-nine feature parameters series as network 
input. Table 7 and Figure 12 shows the comparison results of training accuracies and AUC values of 
three models (CNN, LSTM and CNN-LSTM models). Clearly, CNN-LSTM hybrid model achieve 
better performance than CNN and LSTM on different noise levels due to its complex time series data 
processing structure and this result has also been demonstrated in Section 4.1.  

(a)CNN (b)LSTM 
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(c)CNN-LSTM 

Figure 12. ROC curve for three models on different noise levels. 

For instance, when SNR = 3 dB, the accuracy of CNN-LSTM model increased by 33% and 16%, 
respectively, in comparison with CNN (25.0%) and LSTM model (28.8%). The result demonstrated 
that CNN-LSTM model had better feature extraction capability than CNN and LSTM model at higher 
noise level and LSTM model was much better than CNN model. With the decrease of noise levels, 
the difference of training accuracies also decreased among three models. For instance, when SNR = 
15 dB, the performance of CNN-LSTM model increased by 4% for both CNN and LSTM model. 

For AUC values, there is same trend as training accuracies. With the decrease of noise levels, the 
difference of AUC values also decreased. For instance, when SNR = 3 dB, the AUC value of CNN-
LSTM model increased by 34% and 20%, respectively, in comparison with CNN and LSTM model, 
while when SNR = 15 dB, the performance of CNN-LSTM model increased by 6% for both CNN and 
LSTM model. These findings revealed that the CNN-LSTM model still performed better at classifying 
data than the CNN and LSTM models under the noise interference. 

6. Conclusions 

This study provided a comprehensive study of deep-learning-based signal process of ultrasonic 
guided wave and damage detection for metallic pipelines via the CNN-LSTM hybrid model. The 
twenty-nine features, including time-, frequency-, and time-frequency domains, were determined to 
evaluate the data classification. Six types of mechanical defects in pipe structures were designed for 
the case to demonstrate the effectiveness of the proposed methods. As a comparison, the CNN and 
LSTM models were selected. To further evaluate the robustness of the signal processing and model 
training, noise interferences on signal processing were investigated. The main findings could be 
summarized as follows: 
 The results reveal that the CNN-LSTM hybrid model exhibits a higher accuracy for decoding 

signals of the ultrasonic guided wave for damage detection, as compared to individual deep 
learning approaches (CNN and LSTM), particularly under high noise interferences.  

 The results also confirmed that predetermined features, including time-, frequency-, and time-
frequency domains, improve the data classification. Interestingly, while it is well known that the 
deep learning approaches could outperform the shallow learning ones that often require hand-
crafted features and thus they could provide the high capability for data classification through 
end-to-end manner with fewer physics restraints (“black box”), the election of features with 
certain physics (“physics-informed” feature extraction) could significantly improve the 
robustness of the deep learning approaches.  

 Data reduction (PCA and KPCA) used for the deep learning training/testing networks in this 
study display no apparent improvement to data classification. However, with the increased 
volume of datasets, these methods could improve efficiency in terms of shortening computation 
time.  
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 The accuracy of the deep learning approaches could be dramatically affected by noise, which 
could be stemmed from measurement and environment. The CNN-LSTM model still exhibits a 
high performance when the noise level is relatively low (e.g., SNR=9 or higher) but the prediction 
drops gradually to the unacceptable limit, when the noise level of SNR is 6, where the amplitude 
of the noise level approaches to that of the signals themselves. As compared, the CNN and LSTM 
models fail early as expected, when the noise level is much higher.  

 Although this study attempts to provide a comparison study to understand the effectiveness of 
the hybrid deep learning model, there are still certain drawbacks that could be improved in the 
future. The first one is the dataset which is limited to six common defects and may not be able 
to account for broader applications. The simple case that tried to demonstrate the concept may 
not account for more complicated signal propagation, reflection, and scatters, which could 
challenge the effectiveness of the proposed methods.  
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