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Abstract: Solid-state LiDAR offers multiple advantages over mechanism mechanical LiDAR,

including higher durability, improved coverage ratio, and lower prices. However, solid-state

LiDARs typically possess a narrow field of view, making them less suitable for odometry and

mapping systems, especially for mobile autonomous systems. To address this issue, we propose

a novel rotating solid-state LiDAR system that incorporates a servo motor to continuously rotate

the solid-state LiDAR, expanding the horizontal field of view to 360◦. Additionally, we propose

a multi-sensor fusion odometry and mapping algorithm for our developed sensory system that

integrates an IMU, wheel encoder, motor encoder and the LiDAR into an iterated Kalman filter to

obtain a robust odometry estimation. Through comprehensive experiments, we demonstrate the

effectiveness of our proposed approach in both outdoor open environments and narrow indoor

environments.

Keywords: LiDAR; odometry and mapping; SLAM; urban environment

1. Introduction

Odometry and mapping, also known as simultaneous localization and mapping (SLAM) [1], is an

important task for autonomous mobile systems to localize themselves and interact with surroundings

in unknown environments. RGB cameras and light detection and ranging (LiDAR) are two commonly

used sensors for SLAM. RGB cameras capture detailed texture information of the environments, which

offers useful constraints for visual SLAM [2–6]. However, they are easily affected by environmental

lighting changes and lack depth information, which limits their effectiveness in 3D perception. LiDAR,

as an active sensor, is less susceptible to environmental changes and provides accurate 3D information

of the environment. Therefore, LiDAR-based SLAM has gained significant attention in applications

where reliable perception is critical for ensuring safety and achieving high performance, such as

autonomous driving and specialized robotics.

Solid-state LiDAR sensors [7,8] have recently made remarkable progress and gained increasing

attention for SLAM applications due to their numerous advantages over traditional mechanical LiDAR.

Firstly, solid-state LiDAR eliminates the need for a mechanical rotating mechanism, making it more

suitable for specialized environments with high/low temperatures and vibrations. Secondly, solid-state

LiDAR is generally less expensive and more lightweight than mechanical LiDAR, making it more

suitable for small mobile robots. Lastly, the most significant characteristic of solid-state LiDAR is

its non-repeating scanning pattern, which results in significantly higher point-cloud density with

increasing scan time compared to mechanism LiDAR.

However solid-state LiDAR typically has a narrower field of view (FOV) than mechanism LiDAR,

e.g. Livox HAP with 120◦ × 25◦ FOV and HESAI FT120 with 100◦ × 75◦, which poses challenge for

scan registration. A narrow FOV represents the robot is difficult to get sufficient information from

the environment, making the SLAM system vulnerable to less featured and elongated environments.

Such a disadvantage is more severe for mobile robot where the sensor installation position is restricted

and installed height is commonly lower, resulting in less effective scanning information. Equipping

multiple LiDARs can solve this problem, but it goes against the original intention of using more

cost-effective solid-state LiDAR on mobile robots.
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To address this challenge, we present a novel solution for solid-state LiDAR-based SLAM in

mobile robot applications. Specifically, we designed and implemented an economical rotating sensory

platform that effectively expands the LiDAR’s horizontal FOV to 360 degrees as shown in Figure 1.

We propose a multi-source information fusion odometry system that combines the rotation encoding

measurements of the rotating platform, IMU measurements, wheel speed odometry, and LiDAR

odometry in an iterative extended Kalman filter to obtain robust and accurate pose estimation. The

proposed solution overcomes the limitations of solid-state LiDAR by providing a wider FOV while

maintaining cost-effectiveness. The multi-source information fusion algorithm ensures accurate

and reliable localization even in challenging environments where feature degradation may occur.

Experimental results on outdoor, indoor and stair scenarios as Figure 1(c) demonstrate the effectiveness

and practicality of our proposed solution for mobile robot localization and mapping.

The following of this article is structured as follows: In Section 2, past relevant works are

discussed. Section 3 provides the detailed design of rotating platform and presents the kinematic

model of our experimental mobile robot. Our proposed LiDAR odometry system is detailed in Section 4.

In Section 5, we present the experimental results and evaluation. Finally, we conclude our work and

discuss directions for future research in Section 6.

(a) (b) (c)

Figure 1. (a) Rotating solid-state LiDAR, (b) experimental robot, (c) mapping result of campus.

2. Related work

Many existing approaches for LiDAR SLAM have been proposed. In this work, we mainly focus

on the LiDAR-only odometry and mapping(LOM), LiDAR-IMU odometry and mapping(LIOM), and

LiDAR-IMU-Wheel odometry and mapping(LIWOM).

LiDAR-only odometry and mapping is based on the iterated closest points (ICP) [9–13] method,

which is proposed by Besl et al. [9] for registering scans. ICP provides good results for dense 3D

point-clouds, but it requires exact point matching, which may not be available in sparse LiDAR

measurements. To address this issue, Segal et al. [11] proposed a solution called Generalized-ICP,

which is based on the distance between points and planes. Building upon this method, Zhang et

al. [14] added point-to-edge matching and developed LOAM, a LiDAR odometry and mapping

framework, in 2014. After that, many works have been proposed for LOAM, such as LeGO-LOAM [15],

LOAM-Livox [16] and methods using semantic information [17,18], deep learning networks [19–21],

or most recent neural rendering techniques [22]. However, due to their reliance only on LiDAR

measurements, such methods may perform poorly in featureless environments. One solution to

this issue is to fuse the measurements of other sensors, such as IMU, GNSS, camera and LiDAR

measurements [23,24].

Combining LiDAR data with IMU measurements is one of the popular solutions to address

the LiDAR SLAM degeneration problem in featureless environments [25]. Such methods can

be divided into two groups, loosely-coupled LiDAR-inertial odometry and mapping(LIOM) and

tightly-coupled LiDAR-inertial odometry. In the loosely-coupled approaches, scan registration and

data fusion are separated. For example, the method by Zhen et al. [26] first registers LiDAR scans and
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estimates robot poses, then fuses these estimates with IMU measurements. Another example is using

IMU measurements as the initial estimate for registering LiDAR scans, as presented in IMU-aided

LOAM [14]. The Loosely-coupled approach has lower computational requirements but neglects

the relationship between other states, such as velocity and pose of new LiDAR measurements. In

contrast, the tightly-coupled LiDAR-inertial odometry directly combines the raw feature points of

LiDAR with IMU measurements. Two main paths can be used for this approach, filter-based and

optimization-based methods. For instance, Geneva et al. [27] fuse IMU measurements and LiDAR

plane feature points using graph optimization, while LIOM [28] also uses graph optimization to

fuse plane and edge features of IMU and LiDAR measurements. Gaussian Particle Filters [29] have

also been used to fuse IMU and planar 2D-LiDAR. However, as the number of feature points and

dimension of the system increase, the requirements for computational power quickly grow in both

graph optimization and Gaussian Particle Filter methods. Kalman filters and their variants, such as

extended Kalman filters [30,31] and iterated Kalman filters, have demonstrated a more efficient and

effective performance in real-time situations. Xu et al. [32,33] proposed the latest approaches, FAST-LIO

and FAST-LIO2, that adopt the iterated extended Kalman filter in LIOM field. Bai et al. [34,35] also

increased the speed of integrating the LIOM system by replacing ikd-tree with iVox.

In complex real-world environments, enhancing perception-based odometry methods by

integrating the robot’s kinematics model obtained from sensors such as wheel encoders can improve

the robustness of odometry and mapping results. In the field of visual SLAM, there are instances where

wheel encoder messages have been incorporated into existing odometry and mapping frameworks.

For example, Zhang et al. [5] employed an iterative optimization method based on sliding windows to

fuse visual, IMU, and wheel encoder measurements. Liu et al. [5] adopted a tightly-coupled approach,

integrating wheel encoder and IMU measurements during a pre-integration stage. However, the

utilization of both LiDAR and wheel encoders is relatively limited. Júnior et al. [36] proposed an

approach that combines LiDAR measurements, IMU data, and wheel encoder information to establish

an odometry and mapping framework specifically designed for challenging environments. Yuan et

al. [37] introduced a framework based on bundle adjustment (BA) to achieve similar functionality.

Existing methods mainly focus on fixed LiDAR sensors and perform poorly when directly applied

with rotating LiDAR sensors due to the special motion characteristics.

To bridge this gap, we propose a tightly-coupled method to fuse rotating LiDAR data with IMU

and wheel encoder measurements to obtain an accurate odometry and dense mapping result. During

the motion compensation stage for rotating solid-state LiDAR scans, we combine IMU measurements

with motor encoder readings to generate undistorted point-clouds. We install this solid-state LiDAR

on a rotating platform and run our approach on a track robot designed by our lab. We tested our

odometry and mapping approach for rotating solid-state LiDAR in complex environments. To the

best of our knowledge, our approach is the first work that combines the rotating ability of solid-state

LiDARs with exclusive odometry and mapping frameworks for multiple complex environment SLAM

tasks.

3. Rotating Sensory Platform and Experimental Robot

3.1. Experimental Platforms

We first introduce our designed rotating sensory platform for solid-state LiDAR. As shown

in Figure 1(a), we use the Livox HAP solid-state LiDAR sensor which provides a horizontal FOV of

120° and vertical FOV of 25°. Note that, our rotating platform is not limited to this type of LiDAR,

and theoretically it can work with any type of LiDAR. Our rotating platform uses a servo motor to

continuously rotate around z-axis, expanding the LiDAR’s horizontal FOV to 360°. We use conductive

slip rings to achieve data transmission during the rotation process. In this paper, we set the motor

speed to 3000 rotations per minute (RPM) with a reduction ratio of 100, thus resulting in a speed of

30 RPM for the solid-state LiDAR. We visualize the point cloud obtained by the LiDAR sensor in a
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stationary state for 0.1 seconds (see in Figure 2(a)), 2 seconds (see in Figure 2(b)), and on our rotating

platform for 2 seconds (see in Figure 2(c)). As can be seen in Figure 2(a) and Figure 2(b), benefiting

from the non-repeating scanning characteristic of the solid-state LiDAR, a longer scanning period

resulting in higher coverage of the scene. Comparing Figure 2(b) and Figure 2(c), we can see that using

our rotating platform the point cloud collected by the LiDAR can cover more areas of the scene.

(a) (b) (c)

Figure 2. The scanning result of original solid-state LiDAR and our rotating solid-state LiDAR. (a)

is one scanning of original solid-state LiDAR. (b) is the result of two seconds scanning in the same

place of original solid-state LiDAR. (c) is the result of two seconds scanning obtained by our rotating

solid-state LiDAR.

We use our designed tracked robot for evaluating the proposed odometry and mapping

experiment in complex campus environments. Figure 1(b) shows the robot equipped with our rotating

sensory platform. The size of the rotating platform is 30cm × 16cm × 27cm, and when installed on the

robot, the height of LiDAR’s optical center from the ground is 40cm. The robot is equipped with four

independently driven fins with strong obstacle-crossing abilities, allowing us to conduct experiments

in more complex terrains, such as indoor environments with steps even multi-floor stairs. The robot

also equips a wheel encoder enabling us to form its kinematic equation as:

[

vx

ωyaw

]

=

[

1
2

1
2

L
2 − L

2

] [

vL

vR

]

, (1)

where vR and vL are the velocity of the left and right of main track, and the L is the distance of two

main track centers. The final measurement of wheel encoder can be written as vO = [vx 0 0] and

ωO = [0 0 ωyaw].

3.2. Extrinsic Calibration

In this section, we introduce the extrinsic calibration process of our sensor system. Some notations

used in this paper are shown in Table 1. The definition of the sensor coordinate systems of our

experimental robot is given in Figure 1. We also define the coordinate system of LiDAR, IMU and

robot that the coordinate origin of the LiDAR coincides with the optical center, with the X-axis pointing

towards the scanning direction and the coordinate system of the IMU coincides with that of the

accelerometer. The coordinate origin of the robot locates at the center of gravity of the robot. For the

coordinate system of rotating platform, we define the z-axis pointing upward coinciding with the

rotating axis, and the x-axis and y-axis are coincided with robot’s. The center is defined at the same

height as LiDAR’s optical center for convenience. Ideally, the rotating axis of the rotating platform

should coincide with the z-axis of the LiDAR. However, mechanical installation issues can cause errors

in both the distance from the LiDAR’s center to the rotating axis and the angle between these two axes

as in Figure 3. Therefore, we need to calibrate the rotating platform with the LiDAR sensor. We denote

the extrinsic parameters between the LiDAR system and the rotating platform system as MTL:
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MRL =







cos(∆ϕ) 0 sin(∆ϕ)

sin(∆ϕ)sin(∆δ) cos(∆δ) −cos(∆ϕ)sin(∆δ)

−sin(∆ϕ)cos(∆δ) sin(∆δ) cos(∆ϕ)cos(∆δ)






, (2)

MtL =







∆x

∆y

0






, (3)

MTL =

[

MRL
MtL

0 1

]

. (4)

where [∆x, ∆y] is the translation parameters and [∆ϕ, ∆δ] is the rotating parameters represented in

Euler angles, i.e., the roll and pitch angle. We design an extrinsic calibration for our platform to obtain

the extrinsic parameters MTL as follows.

Table 1. Notations in our paper.

Symbols Meaning

TsA
k The timestamp of the k − th measurements of senor A.

SA
n ,

d
SA

n scan and after downsampling in A frame.

x̃A, x̂A, δxA true state variables, nominal state variables and error state variables calculated
by measurement of senor A.

ATB, ARB, AtB T is transform from B to A that R is rotation and t is translation.

(·)W , (·)I , (·)L, (·)O, (·)M The coordinate system of world, IMU, LiDAR, wheel odometry and rotating platform.

Figure 3. Assembly error between the LiDAR and motor.

We firstly collect scans at different rotating angles θn of the platform and can obtain a related

transform as Equation (5).

Rθn
=







cos(θn) −sin(θn) 0

sin(θn) cos(θn) 0

0 0 1






. (5)
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Each angle is related to a LiDAR pose measurement Tn = T(θn)
MTL in world frame which is

defined coincided with the original rotating platform frame. For each pair of angles {θi, θj}, we can

establish the relative pose measurement from θi to θ j as θi Tθ j:

T(θn) =

[

Rθn
0

0 1

]

, (6)

θi Tθ j = (T(θi)
MTL)

−1 T(θj)
MTL = MTL

−1
T(θi − θj)

MTL, (7)

By obtain the relative pose observation
θi

T
′

θ j using point cloud registration, we can then establish the

optimization function as:

min
MTL

N

∑
j=1

N

∑
i=1

‖
θi

T
′

θ j −
θi Tθ j‖F(i 6=j) (8)

=min
MTL

N

∑
j=1

N

∑
i=1

‖(
θi

T
′

θ j −
MTL

−1
T(θi − θj)

MTL)‖F(i 6=j). (9)

which can be solved iteratively using Levenberg-Marquardt algorithm.

To obtain precise observation of relative pose
θi

T
′

θ j, we perform the extrinsic calibration in a

structured environment, and obtain the ground truth dense point cloud of the environment using a

Faro FocusS350 scanner1. FocusS350 is a high precision laser scanner with a measuring range of up to

350 m and a measurement accuracy of 1 mm.

For each rotating angle we keep the platform stationary and collect all the point clouds acquired

by the LiDAR within 5 s as one scan. Each scan is registered to the ground truth point cloud of the

environment using ICP [9] to solve the precise pose T
′

θi
in Faro frame. The relative pose observation

is then obtained as θi Tθ j. As the registration is performed between the sparse scan and the ground

truth dense point clouds, we can obtain the relative transformation between the sparse scans even

without overlap to include more constraints in the optimization function Equation (9) to obtain a better

calibration result.

Figure 4. Diagram of calibration showing the relationship of different measurements.

For the extrinsic parameters between the wheel odometry and the IMU ITO, we use the calibration

method described in [6]. For the extrinsic parameters between the rotating platform and the IMU ITM,

we opt a indirect way. We fix the rotating platform and adopt the LiDAR-IMU calibration method

1 http://www.faro.com
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described in [38] to calculate the transformation between LiDAR frame and IMU frame ITL, and then

calculate the extrinsic parameters as ITM = ITL
LTM

4. LiDAR-Inertial-Wheel Odometry and Mapping

4.1. System Overview

The overview of our approach is presented in Figure 5. The measurements of IMU, motor encoder,

wheel encoder and LiDAR are fed into our state estimation module for a fast state estimation. The

estimated pose is then used to register the point cloud with the built global map. The updated map is

finally used for registration in the next step.

Figure 5. System overview of our approach, the system can be separated into two parts: state estimation

and mapping. In state estimation, iterated Kalman filter is adopted to estimate state variables. IMU

measurements are used for integration to generate state prediction. It then updates velocity state by

fusing wheel encoder, transforms raw points from LiDAR frame to IMU frame and compensates for

motion distortion. LiDAR scanning after motion compensation is used to compute residual to optimize

the pose to obtain final odometry result. In mapping module, the new scan is then added to the map

that consists of hash structure and the updated mapping result.

4.2. State Estimation

We first model the state of our system as x = [p θ v ba bω g], where p is pose, v is velocity,

θ is Euler angel, ba is bias of accelerometer, bω is bias of gyroscope, and g is gravity. We use the iterated

Kalman filter as the optimization framework. Instead of directly updating the state in a general Kalman

filter, iterated Kalman filter updates the errors of the state, i.e., δx = x̃ − x̂, where x̂ is the nominal

state and x̃ is the true state. This allows for a smoother and more stable state estimation. The iterated

Kalman filter optimizes the estimation of δx and incorporates it into the nominal state variables x̂ to

obtain the final state estimation.

4.2.1. IMU Integration

In IMU integration stage, we use IMU measurements as inputs to predict the state estimation:

x̂I
n+1 = x̂I

n + ∆t f (x̂I
n, u, 0), (10)

where f (x̂I
n, u, 0) = ˙̂xI

n is the state equation of x̂I
n in continuous time with noise w set to 0, and

∆t = TsI
n+1 − TsI

n refers to the time interval between consecutive IMU time-steps TsI
n+1 and TsI

n.

We follow [31] and calculate δxI
n+1 as:
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δxI
n+1 = FnδxI

n + Gnw, (11)

Fn =



















I3×3 0 I3×3∆t 0 0 0

0 I3×3 + ⌊ω − bω⌋× 0 0 −I3×3∆t 0

0 −Rn⌊a − ba⌋×∆t I3×3 −Rn∆t 0 I3×3∆t

0 0 0 I3×3 0 0

0 0 0 0 I3×3 0

0 0 0 0 0 I3×3



















18×18

, (12)

Gn =



















0 0 0 0

0 −I3×3 0 0

−Rn 0 0 0

0 0 I3×3 0

0 0 0 I3×3

0 0 0 0



















18×12

, (13)

where u⊤ = [ω a]⊤ is the measurements of gyrometer and accelerometer of IMU, and w =

[a⊤
n ω

⊤
n a⊤

w ω
⊤
w ]

⊤ refers to the Gaussian noise of gyrometer and accelerometer, and bias of

gyrometer and accelerometer respectively. ⌊·⌋×∈R3×3 represents transferring 3D-vector to its

skew-symmetric matrix. I3×3 is the 3 × 3 identity matrix and Rn is the transformation from world

frame to IMU frame. ba and bω are the bias of gyrometer and accelerometer.

Using Fn and Gn we can then propagate the covariance Pn of state xn iteratively following:

P̂
I
n+1 = FnP̂

I
nF⊤

n + (Gn∆t)Q(Gn∆t)⊤, (14)

where Q ∈ R12×12 represents the covariance of noise w.

4.2.2. Wheel Encoder Residual Computation and State Update

After the IMU integration, we obtain the state estimation x̂I
n+1 and the covariance matrix P̂

I
n+1

at iteration n + 1. In low velocity situation, the cumulative error of the IMU’s accelerometer can

greatly affect the velocity estimation. To eliminate this error δv in δx and achieve a more stable velocity

estimation, we build the observation model to rectify velocity estimation v̂n+1 in the propagated state

x̂n+1 based on the measurements from wheel encoder:

hW(x) = (
I
R⊤

O vO + I tO×ωO)−
I
R⊤

W v̂I
n+1, (15)

where vxO is the measurement of wheel encoder calculated as in Equation (1), and ORI and OtI is the

extrinsic parameters between wheel encoder with IMU, and WRI is the extrinsic parameters between

world frame with IMU. Based on the observation model, we can the formulate the optimization

function as:

min
δx

‖δx‖
P̂

−1

n+1

+ ‖hO(x) + JhO
δx‖

M−1
O

, (16)
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where M−1
O is the noise of wheel encoder measurements, and JhO

is the Jacobian w.r.t velocity v in state

variables x. Equation (16) can be solved by Kalman filter as follow:

KO = P̂
I
n+1H⊤

O(HOP̂
I
n+1H⊤

O + MO)
−1, (17)

δxO
n+1 = HOδxI

n+1 − hO(x̂I
n+1 + δxI

n+1) (18)

x̂O
n+1 = x̂I

n+1 + KOδxO
n+1, (19)

P̂
O
n+1 = (I − KOHO)P̂

I
n+1, (20)

where Kalman gain KO is solved in Equation (17), δxO
n+1 is Equation (18), and used to update state

x̂O
n+1 in Equation (19) and covariance P̂

O
n+1 in Equation (20).

The updated x̂O
n+1 and P̂

O
n+1 will be then used for motion compensation and the next optimization

of the state.

4.2.3. Motion Compensation

In order to address the distortions and deviations caused by the movement of the robot and the

rotation of the motor in LiDAR scanning results, a kinematic analysis is performed. This analysis

aims to compensate for the motion effects and determine the position of all points at the end of the

scanning in the IMU frame system. The kinematic analysis assumes a constant velocity and utilizes

the transformation information obtained from the extrinsic calibration process.

The first step in motion compensation involves establishing a motion model for each point within

a single scanning. By transforming the points from the LiDAR frame to the world frame as:

W p = WRI(
IRL

L p + I tL) +
W tI . (21)

The kinematic relationship between the velocities W ṗ and L ṗ can be derived as:

W ṗ =
W

ṘI(
IRL

L p + I tL) +
WRI(

I
ṘL

L p + IRL
L ṗ + I

ṫL) +
W

ṫI , (22)

where IRL = IRM Rθi
MRL and I tL = IRM Rθi

MtL + I tM are the transformations from LiDAR frame

to IMU frame. Assuming the environment is perfectly stationary, i.e., W ṗ = 0, we can further

derive Equation (22) to solve the velocity of the point in LiDAR frame as:

L ṗ = −
I
R⊤

L
W

R⊤
I

W
ṘI

IRL
L p −

I
R⊤

L
W

R⊤
I

W
ṘI

I tL −
I
R⊤

L
W

R⊤
I

W
ṫI −

I
R⊤

L
I
ṫL −

I
R⊤

L

I
Ṙ
⊤
L

L p, (23)

= −
M

R⊤
L R⊤

θi

I
R⊤

M⌊ωI⌋×
IRM Rθi

MRL
L p −

M
R⊤

L R⊤
θi

I
R⊤

M⌊ωI⌋×(
IRM Rθi

MtL +
I tM)

−
M

R⊤
L R⊤

θi

I
R⊤

M
W

R⊤
I

W
ṫI −

M
RT

L R⊤
θi

I
R⊤

M
IRM Rθi

⌊ωM⌋×
MtL − ⌊ωM⌋×

L p, (24)

where ωI is the measurements of IMU gyrometer, and ωM is the reading of motor encoder and W ṫI is

the velocity of robot in the real world that can be obtained by state optimization. Using the timestamp

of each point
L

pk
i in a single scan, we can then compensate the motion distortion for each point by

projecting it to the end of the scan as:

L
pk−end

i =
L

pk
i +

L ṗ(1 − ǫi)∆t, (25)

where ǫi = (tL
i − TsL

k )/(TsL
k − TsL

k−1) is the scanning time duration of a k-th scan, and ∆t = TsL
k − TsL

k−1,

and tL
i is the timestamp of a point

L
pk

i .

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 July 2023                   doi:10.20944/preprints202307.0890.v1

https://doi.org/10.20944/preprints202307.0890.v1


10 of 21

4.2.4. Point-cloud Residual Computation and State Update

After the motion compensation, we obtain the undistorted point cloud denoted as SL
n and use it

to construct the residual. Assuming the current iteration of the iterated Kalman filter is n + 1, and the

corresponding state estimation is x̂O
n+1 and the covariance matrix is P̂

O
n+1.When new scanning SL

n is

input, a downsample process will be executed that generate
d
SL

n . Then we transform the point cloud
d
SL

n into world frame as:

d
SW

n = WTI
ITL

d
SL

n . (26)

After downsampling and transforming, the nearest points of
d
SW

n in hash map are retrieved.

Each set of nearest points is used to fit a plane and calculate the distance between the plane with the

corresponding point in the downsampled point cloud, as shown in Figure 6.

Figure 6. LiDAR measurements model. Red point is the point in scan, blue points are the points in

map nearby red point, and the vector from plane to red point is the normal and residual.

Specifically, for each point pj(xj, yj, zj)∈
d
SW

n , we find its nearest points set A in built map:

A = [q1 q2 . . . qi]i×3. (27)

We then calculate the normal vector n to fit the plane formed by A as:

n =
(A⊤A)−1A⊤b

‖(A⊤A)−1A⊤b‖2

, (28)

where b = −[I3×1 I3×1 . . . I3×1]i×3. The residual of LiDAR measurements can be then calculated

as:

hL(x) =
m

∑
j=1

n · (pj − qm), pj =
W

RL
L pj +

W tL, qm = mean(A). (29)

We construct an optimization equation for δx as:

min
δx

‖δx‖
(P̂

O

n+1)
−1 + ‖hL(x) + JhL

δx‖
M−1

L
, (30)
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where M−1
L is the noise of LiDAR measurements, and JhL

is the Jacobian w.r.t position p and posture θ.

Similarly, we use iterated Kalman filter to solve Equation (30) as follows:

KL = (H⊤
L M−1

L HL + (P̂
O
n+1)

−1)−1H⊤
L M−1

L , (31)

δxL
n+1 = HLδxO

n+1 − hL(x̂O
n+1 + δxO

n+1) (32)

xL
n+1 = x̂O

n+1 + KLδxL
n+1, (33)

PL
n+1 = (I − KLHL)P̂

O
n+1, (34)

where Kalman gain KL is solved in Equation (31), δxL
n+1 is Equation (32), and used to update state

xL
n+1 in Equation (33) and covariance PL

n+1 in Equation (34).

The overall procedure of state estimation can be summarized in Algorithm. 1

Algorithm 1 State Estimation Algorithm

Require: Last optimal estimation xn and covariance matrix Pn, LiDAR scan SL
n , the sequence of

IMU measurements un = [ωn an], wheel encoder measurements uW n = [vxn ωyawn
] and the

measurements of motor encoder uMn = [ωMn] in scan SL
n .

1: while i < n do
2: integrate IMU measurements to obtain predict x̂I

n+1 as Equation (10) and P̂
I
n+1 as Equation (14).

3: calculate the residual by Equation (16).
4: solving Equation (16) measurements to calculate δxO

n+1 as Equation (18).

5: update x̂O
n+1 by x̂O

n+1 = x̂I
n+1 + δxO

n+1 and P̂
O
n+1 by Equation (31)

6: i = i + 1
7: end while
8: distort the scan SL

n by state estimation of IMU integration and measurement of motor encoder
according to Equation (23) and Equation (25).

9: calculate normal vector and residual for every point in by Equation (29).
10: while Equation (30) < threshold do
11: solve Equation (30)

12: update xL
n+1 and PL

n+1 by Equation (33) Equation (34)
13: end while
Ensure: xL

n+1 and PL
n+1

4.3. Mapping

In the mapping module, we adopt the iVox structure proposed in [34] to achieve storage and

management of the global map based on the hash algorithm [39].

When a new scan is fed into the mapping module, the first step is to compute a hash-index for

each point. Subsequently, we check whether a voxel in iVox shares the same hash-index as each point.

If a voxel with the same hash-index is found, the corresponding point is inserted into that voxel.

Conversely, if such a voxel does not exist, a new voxel is created based on the hash-index, and the

point is then inserted into it. Each voxel has a maximum capacity, and once this capacity is reached, no

additional points can be inserted.

Regarding the search and matching process, we primarily utilize the k-nearest neighbors search

(k-NN) method to identify voxels that fulfill the specified criteria. Compared to traditional k-d

tree structures, the iVox structure offers significantly faster insertion and retrieval speeds for voxels,

typically ranging from 1 to 2 orders of magnitude faster. This improvement is achieved by leveraging

hash algorithms.
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5. Experiments

We conduct experiments to evaluate the effectiveness of our RSS-LIWOM and rotating platform

under two challenging scenes, an indoor-outdoor mixed campus and an indoor stairway, as shown

in Figure 7. The campus environment presents several challenges, such as scene changes and the

presence of a long, narrow, symmetric corridor with limited structural features. This corridor

specifically poses a significant challenge for LiDAR odometry, which relies heavily on structural

information for accurate mapping. On the other hand, the odometry and mapping in the stairway

environment introduce additional complexities due to large motion vibrations and sharp turns.

(a) Real scene photos of our experimental environments

Figure 7. Cont.
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(a) The ground truth map of our experimental environments

Figure 7. Real scene and ground truth map of our experimental environments.

We choose three current state-of-the-art approaches as our baselines, FAST-LIO2 [33],

LIO-SAM [28], and EKF-LOAM [36]. For a fair comparison, we use the solid-state LiDAR Livox

HAP for all methods. However, EKF-LOAM was designed for mechanical LiDAR and failed to

work with solid-state LiDAR. We therefore additionally employ a more expensive mechanical LiDAR

Velodyne-VLP16 for EKF-LOAM, denoted as EKF-LOAM†. We also provide results of two variants of

our approach to show the effectiveness of our designs, where RSS-LIWOM∗ represent our RSS-LIWOM

without rotating platform, and RSS-LIWOM× represents RSS-LIWOM without wheel odometry. We

evaluate both the odometry and mapping results of all methods and all the experiments are performed

in real-time.

5.1. Evaluation on Odometry Estimation

It is hard to obtain the ground truth pose in indoor and outdoor mixed environments. Therefore,

we evaluate the odometry performance using accumulated position errors. Specifically, for the

stairway, we first measure the ground truth height between floors using Faro FocusS350 scanner, and

then calculate the difference between the estimated climbing height of each odometry method with the

ground truth height. For the campus environment, we control the robot to circumnavigate around the

area and return to the star position, and then compute the difference between the final pose and the

origin.

We present the odometry results in the campus scene in Table 2. As can be seen, Our approach

demonstrates superior performance in the campus scene, achieving the lowest accumulated error of

2.08 m and an error per meter of 0.01 m. Notably, our approach also achieves the smallest z axis drift

of 0.01 m. This advantage is particularly significant during the mapping stage, as precise estimation

of the z direction helps prevent layering artifacts. In comparison, EKF-LOAM struggles to function

effectively with a solid-state LiDAR, while FAST-LIO2 and LIO-SAM exhibit significant odometry drift.

Although EKF-LOAM† performs well with a more expensive mechanical LiDAR, our RSS-LIWOM

still outperforms it. Comparing our RSS-LIWOM with its variants, RSS-LIWOM∗ and RSS-LIWOM×,

it can be observed that the fusion with wheel odometry and our devised rotating sensory platform

contributes to improve performance. For long-distance scenes, the fusion of wheel encoder has a more

significant impact on performance improvement.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 July 2023                   doi:10.20944/preprints202307.0890.v1

https://doi.org/10.20944/preprints202307.0890.v1


14 of 21

Table 2. Odometry evaluation on campus.

approach x drift(m) y drift(m) z drift(m) accumulated errors(m) error per meter(m)

FAST-LIO2 2.23 0.45 3.77 4.40 0.02
LIO-SAM 22.16 19.21 6.69 30.06 0.12
EKF-LOAM - - - - -

EKF-LOAM† 1.72 0.01 1.60 2.36 0.01
RSS-LIWOM∗ 2.64 1.11 1.53 3.25 0.02
RSS-LIWOM× 2.74 4.75 0.79 5.54 0.03
RSS-LIWOM (Ours) 2.07 0.04 0.01 2.08 0.01

RSS-LIWOM∗ is RSS-LIWOM without rotating solid-state LiDAR and RSS-LIWOM× is RSS-LIWOM without wheel

encoder. EKF-LOAM† represents EKF-LOAM with mechanical LiDAR. Bold numbers indicate the best results and

underline indicate the second best.

The results obtained in the stairway scene are presented in Table 3. In this experiment, the robot

climbs multiple floors via stairs. As observed from the results, our RSS-LIWOM outperforms all

baseline methods. It is worth noting that FAST-LIO2, LIO-SAM, and EKF-LOAM all fail to produce

meaningful results. Although EKF-LOAM† using a more expensive mechanical LiDAR still works, its

performance is inferior to all our variants. Comparing our variants, we consistently observe that each

component of our approach contributes to improved performance. Specifically, the introduction of

the rotating platform leads to a significant performance enhancement, reducing the error from 0.43 m

to 0.06 m. This finding suggests that a wider FOV and additional information are crucial for narrow

scenes. By integrating all the modules, our approach achieves the best performance overall.

Table 3. Odometry evaluation on stairway.

approach z drift(m) error per meter height(m)

FAST-LIO2 - -
LIO-SAM - -
EKF-LOAM - -

EKF-LOAM† 5.14 0.67
RSS-LIWOM∗ 3.29 0.43
RSS-LIWOM× 1.64 0.21
RSS-LIWOM (Ours) 0.44 0.06

RSS-LIWOM∗ is RSS-LIWOM without rotating solid-state LiDAR and RSS-LIWOM× is RSS-LIWOM without wheel

encoder. EKF-LOAM† represents EKF-LOAM with mechanical LiDAR. Bold numbers indicate the best results and

underline indicate the second best.

5.2. Evaluation on Mapping Quality

In this section, we evaluate the mapping quality of our RSS-LIWOM compared to the baselines

with respect to the ground truth map obtained by Faro FocusS350 scanner. The real scene and

corresponding ground truth map are shown in Figure 7. We employ two metrics to quantitatively

evaluate the accuracy of reconstructed maps of each methods. The first metric measures the accuracy

of the reconstructed map using Chamfer distance, which computes the average distance between

each point in the reconstructed map to its nearest counterpart in the ground truth map. The second

metric is the mapping coverage rate, which represents the percentage of map points that are accurately

reconstructed. We define accurately reconstructed map points as those whose distance to the nearest

point in the ground truth map is below a threshold of 0.2 m. To ensure a fair comparison, the mapping

results of all the methods are voxelized using a consistent voxel size of 0.1 m. Additionally, we provide

the number of points in the mapping result for each method.

The quantitative mapping results for both scenes are presented in Table 4. As can be seen,

our RSS-LIWOM utilizing a rotating solid-state LiDAR, benefits from a larger FOV and accurate

odometry estimation, resulting in the highest mapping accuracy and coverage rate in both the campus

and stairway scenes. Specifically, in the campus scene, our approach achieves the lowest Chamfer
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Distance of 0.67 m and the highest coverage rate of 70.2 %. In the stairway scene, our approach

consistently achieves a lowest Chamfer Distance of 0.37 m and a coverage rate of 70 %. In contrast,

FAST-LIO2 is limited by its narrow FOV solid-state LiDAR, which leads to inaccurate odometry

estimation. Consequently, FAST-LIO2 exhibits suboptimal mapping accuracy in the campus scene

and fails to produce meaningful results in the stairway scene. The performance of EKF-LOAM varies

significantly between the two scenes. It achieves comparable mapping accuracy to our approach in

the campus scene but does not perform well in the stairway scene. EKF-LOAM also suffers from the

issue of feature degeneration in narrow scenes, which contributes to its poor performance. Overall, the

larger FOV and accurate odometry estimation provided by our rotating solid-state LiDAR enable our

approach to outperform FAST-LIO2 and EKF-LOAM in terms of mapping accuracy and coverage rate

in both scenes.

Table 4. Comparison of mapping quality.

Scene Method Chamfer Distance cover rate(%) number of points

Campus
FAST-LIO2 1.44 16.2 4.3×105

EKF-LOAM† 0.69 62.7 2.7×105

RSS-LIWOM (Ours) 0.67 70.2 4.8×105

Stairway
FAST-LIO2 - - -

EKF-LOAM† 1.50 36.2 3.1×104

RSS-LIWOM (Ours) 0.37 70.0 4.4×104

The threshold for cover rate is 0.2m. Faro FocusS350 scanner points number is 5.5×104 in stairway scene and is

4.3×105 in campus scene. EKF-LOAM† represents EKF-LOAM with mechanical LiDAR. Bold numbers indicate the

best results.

To better demonstrate the advantages of our RSS-LIWOM in mapping, we provide more

qualitative visualization results of different methods compared against the ground truth maps. We

first visualize the mapping result in campus scene in Figure 8. The red dots represent the mapping

results of our RSS-LIWOM and baseline methods, while the white dots represent the ground truth map

points. As can be seen, our reconstructed maps align better than other methods with the ground truth

maps, which reveals that benefiting from high-quality point cloud and accurate odometry estimation,

RSS-LIWOM performs better and captures more environmental details than the baseline methods.

FAST-LIO2 performs sub-optimally with significant deviation from the ground truth map due to

feature degradation. Although EKF-LOAM has similar overall mapping performance as RSS-LIWOM,

it cannot capture as many details as RSS-LIWOM. We zoom in on two typical areas in campus scene, a

narrow corridor and the starting/ending points, our RSS-LIWOM overlaps better with the ground

truth map than the baselines and achieves a higher coverage rate.
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(b) Mapping results of FAST-LIO2

(c) Mapping results of EKF-LOAM†

(d) Mapping results of our RSS-LIWOM

Figure 8. The mapping results of (a) FAST-LIO2, (b) EKF-LOAM†, and (c) our RSS-LIWOM. The

white point-cloud is the ground truth map points measured by Faro FocusS350 scanner and the red

point-cloud is the estimated result.
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We also visualize the mapping results in the stairway scene. As shown in Figure 9(c), our

RSS-LIWOM performs well in the climbing stairway scene, achieving a high degree of overlap with

the ground truth map and clear distinction between different floors. In contrast, the mapping accuracy

of EKF-LOAM significantly decreases when climbing stairs (as shown in Figure 9(b)). This is mainly

due to the inaccurate vertical odometry estimation of EKF-LOAM.

(a) Ground truth map (b) Mapping results of EKF-LOAM† (c) Mapping results of our RSS-LIWOM

Figure 9. (a) The ground truth map and the mapping result of (b) EKF-LOAM† and (c) our RSS-LIWOM.

different approach in stair scene. White point cloud is ground truth map measured by Faro FocusS350

scanner and the red point cloud is the estimated result.

We furthermore provide qualitatively comparison of different methods in terms of heat maps

shown in Figure 10. In the figure, different colors represent the magnitude of Chamfer Distance for

each point, with cyan indicating smaller distances and orange indicating larger. The visualization

results provide a more intuitive demonstration of the advantages of our algorithm in terms of Chamfer

Distance in corridor and hall of campus, compared with FAST-LIO2 and EKF-LOAM.

(a) Mapping result of FAST-LIO2 in corridor

(b) Mapping result of EKF-LOAM† in corridor

Figure 10. Cont.
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(a) Mapping result of RSS-LIWOM in corridor

(b) Mapping result of FAST-LIO2 in hall (c) Mapping result of EKF-LOAM† in hall

(d) Mapping result of RSS-LIWOM in hall

Figure 10. The visual results of chamfer distance and cover rate in typical part of campus scene. (a) is

FAST-LIO2 in corridor, (b) is EKF-LOAM in corridor, (c) is RSS-LIWOM in corridor, (d) is FAST-LIO2 in

hall, (e) is EKF-LOAM in hall and (f) is RSS-LIWOM in hall.

5.3. Smoothness of Velocity Estimation

To further demonstrate the improvement of our method through the fusion wheel encoder

measurements, we compare RSS-LIWOM with RSS-LIWOM× in terms of the smoothness of the

velocity estimation.

We evaluate the velocity estimation based on the hypothesis that the robot’s movements should be

continual and smooth, rather than high-frequent oscillations. As shown in Figure 11, our RSS-LIWOM

achieves smoother velocity estimation by incorporating wheel encoder measurements, outperforming

methods that do not utilize such information.
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Figure 11. The velocity estimation of RSS-LIWOM (blue line) and RSS-LIWOM× (red line ). (a) The

velocity estimation in campus. (b) The velocity estimation in stairway.

6. Discussions

In this work, we design a rotating solid-state LiDAR sensory platform and develop a LIWOM

framework named RSS-LIWOM that fuses LiDAR, IMU, and wheel encoder data for odometry and

mapping on ground unmanned platforms such as track robots. The rotating solid-state LiDAR has

a larger scanning range and stronger ability to capture detailed information in the environment,

compared to original solid-state LiDAR and mechanism LiDAR. The LIWOM framework uses

wheel encoder measurements as an observation for velocity, which is not present in existing LIOM

frameworks. By combining the rotating solid-state LiDAR and LIWOM framework, our RSS-LIWOM

achieved a robust and accurate LIWOM system.

We conducted extensive experiments to thoroughly evaluate our approach using our

own-designed track robot, which navigated through both indoor-outdoor mixed campus and stairway

environments. In the campus environment, the robot followed a predetermined trajectory and returned

to the starting point. We compared our approach with the baseline in terms of odometry estimation

and mapping results, and our approach outperformed the baselines by exhibiting the lowest odometry

drift. In the stair scene experiment, we manipulated the robot to climb stairs across multiple floors. Our

approach demonstrated minimal odometry drift in estimating the vertical orientation. Additionally,

we generated a highly precise 3D map using Faro FocusS350 scanner as the ground truth for evaluating

mapping quality. When comparing the Chamfer Distance with the ground truth, our RSS-LIWOM

achieved the best results. These experiments validate the localization and mapping capabilities of our

approach on ground unmanned platforms within building scenes.

In future work, we aim to improve our approach by enhancing map management with a

confidence factor for greater robustness and adaptability. We also plan to integrate trajectory planning

and object recognition, enabling robots to navigate complex environments more efficiently. These

advancements will make our approach more valuable for applications such as search and rescue,

exploration, and transportation.
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