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Abstract: Solid-state LiDAR offers multiple advantages over mechanism mechanical LiDAR,
including higher durability, improved coverage ratio, and lower prices. However, solid-state
LiDARs typically possess a narrow field of view, making them less suitable for odometry and
mapping systems, especially for mobile autonomous systems. To address this issue, we propose
a novel rotating solid-state LIDAR system that incorporates a servo motor to continuously rotate
the solid-state LiDAR, expanding the horizontal field of view to 360°. Additionally, we propose
a multi-sensor fusion odometry and mapping algorithm for our developed sensory system that
integrates an IMU, wheel encoder, motor encoder and the LiDAR into an iterated Kalman filter to
obtain a robust odometry estimation. Through comprehensive experiments, we demonstrate the
effectiveness of our proposed approach in both outdoor open environments and narrow indoor
environments.

Keywords: LiDAR; odometry and mapping; SLAM; urban environment

1. Introduction

Odometry and mapping, also known as simultaneous localization and mapping (SLAM) [1], is an
important task for autonomous mobile systems to localize themselves and interact with surroundings
in unknown environments. RGB cameras and light detection and ranging (LiDAR) are two commonly
used sensors for SLAM. RGB cameras capture detailed texture information of the environments, which
offers useful constraints for visual SLAM [2-6]. However, they are easily affected by environmental
lighting changes and lack depth information, which limits their effectiveness in 3D perception. LiDAR,
as an active sensor, is less susceptible to environmental changes and provides accurate 3D information
of the environment. Therefore, LIDAR-based SLAM has gained significant attention in applications
where reliable perception is critical for ensuring safety and achieving high performance, such as
autonomous driving and specialized robotics.

Solid-state LiDAR sensors [7,8] have recently made remarkable progress and gained increasing
attention for SLAM applications due to their numerous advantages over traditional mechanical LiDAR.
Firstly, solid-state LIDAR eliminates the need for a mechanical rotating mechanism, making it more
suitable for specialized environments with high/low temperatures and vibrations. Secondly, solid-state
LiDAR is generally less expensive and more lightweight than mechanical LiDAR, making it more
suitable for small mobile robots. Lastly, the most significant characteristic of solid-state LIDAR is
its non-repeating scanning pattern, which results in significantly higher point-cloud density with
increasing scan time compared to mechanism LiDAR.

However solid-state LIDAR typically has a narrower field of view (FOV) than mechanism LiDAR,
e.g. Livox HAP with 120° x 25° FOV and HESAI FT120 with 100° x 75°, which poses challenge for
scan registration. A narrow FOV represents the robot is difficult to get sufficient information from
the environment, making the SLAM system vulnerable to less featured and elongated environments.
Such a disadvantage is more severe for mobile robot where the sensor installation position is restricted
and installed height is commonly lower, resulting in less effective scanning information. Equipping
multiple LiDARs can solve this problem, but it goes against the original intention of using more
cost-effective solid-state LIDAR on mobile robots.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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To address this challenge, we present a novel solution for solid-state LIDAR-based SLAM in
mobile robot applications. Specifically, we designed and implemented an economical rotating sensory
platform that effectively expands the LiDAR'’s horizontal FOV to 360 degrees as shown in Figure 1.
We propose a multi-source information fusion odometry system that combines the rotation encoding
measurements of the rotating platform, IMU measurements, wheel speed odometry, and LiDAR
odometry in an iterative extended Kalman filter to obtain robust and accurate pose estimation. The
proposed solution overcomes the limitations of solid-state LIDAR by providing a wider FOV while
maintaining cost-effectiveness. The multi-source information fusion algorithm ensures accurate
and reliable localization even in challenging environments where feature degradation may occur.
Experimental results on outdoor, indoor and stair scenarios as Figure 1(c) demonstrate the effectiveness
and practicality of our proposed solution for mobile robot localization and mapping.

The following of this article is structured as follows: In Section 2, past relevant works are
discussed. Section 3 provides the detailed design of rotating platform and presents the kinematic
model of our experimental mobile robot. Our proposed LiDAR odometry system is detailed in Section 4.
In Section 5, we present the experimental results and evaluation. Finally, we conclude our work and
discuss directions for future research in Section 6.

LiDAR Frame Rotational Axis

(a) (b) ()
Figure 1. (a) Rotating solid-state LIDAR, (b) experimental robot, (c) mapping result of campus.
2. Related work

Many existing approaches for LIDAR SLAM have been proposed. In this work, we mainly focus
on the LiDAR-only odometry and mapping(LOM), LIDAR-IMU odometry and mapping(LIOM), and
LiDAR-IMU-Wheel odometry and mapping(LIWOM).

LiDAR-only odometry and mapping is based on the iterated closest points (ICP) [9-13] method,
which is proposed by Besl et al. [9] for registering scans. ICP provides good results for dense 3D
point-clouds, but it requires exact point matching, which may not be available in sparse LiDAR
measurements. To address this issue, Segal et al. [11] proposed a solution called Generalized-ICP,
which is based on the distance between points and planes. Building upon this method, Zhang et
al. [14] added point-to-edge matching and developed LOAM, a LiDAR odometry and mapping
framework, in 2014. After that, many works have been proposed for LOAM, such as LeGO-LOAM [15],
LOAM-Livox [16] and methods using semantic information [17,18], deep learning networks [19-21],
or most recent neural rendering techniques [22]. However, due to their reliance only on LiDAR
measurements, such methods may perform poorly in featureless environments. One solution to
this issue is to fuse the measurements of other sensors, such as IMU, GNSS, camera and LiDAR
measurements [23,24].

Combining LiDAR data with IMU measurements is one of the popular solutions to address
the LiDAR SLAM degeneration problem in featureless environments [25]. Such methods can
be divided into two groups, loosely-coupled LiDAR-inertial odometry and mapping(LIOM) and
tightly-coupled LiDAR-inertial odometry. In the loosely-coupled approaches, scan registration and
data fusion are separated. For example, the method by Zhen et al. [26] first registers LIDAR scans and
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estimates robot poses, then fuses these estimates with IMU measurements. Another example is using
IMU measurements as the initial estimate for registering LiDAR scans, as presented in IMU-aided
LOAM [14]. The Loosely-coupled approach has lower computational requirements but neglects
the relationship between other states, such as velocity and pose of new LiDAR measurements. In
contrast, the tightly-coupled LiDAR-inertial odometry directly combines the raw feature points of
LiDAR with IMU measurements. Two main paths can be used for this approach, filter-based and
optimization-based methods. For instance, Geneva et al. [27] fuse IMU measurements and LiDAR
plane feature points using graph optimization, while LIOM [28] also uses graph optimization to
fuse plane and edge features of IMU and LiDAR measurements. Gaussian Particle Filters [29] have
also been used to fuse IMU and planar 2D-LiDAR. However, as the number of feature points and
dimension of the system increase, the requirements for computational power quickly grow in both
graph optimization and Gaussian Particle Filter methods. Kalman filters and their variants, such as
extended Kalman filters [30,31] and iterated Kalman filters, have demonstrated a more efficient and
effective performance in real-time situations. Xu et al. [32,33] proposed the latest approaches, FAST-LIO
and FAST-LIO2, that adopt the iterated extended Kalman filter in LIOM field. Bai et al. [34,35] also
increased the speed of integrating the LIOM system by replacing ikd-tree with iVox.

In complex real-world environments, enhancing perception-based odometry methods by
integrating the robot’s kinematics model obtained from sensors such as wheel encoders can improve
the robustness of odometry and mapping results. In the field of visual SLAM, there are instances where
wheel encoder messages have been incorporated into existing odometry and mapping frameworks.
For example, Zhang et al. [5] employed an iterative optimization method based on sliding windows to
fuse visual, IMU, and wheel encoder measurements. Liu et al. [5] adopted a tightly-coupled approach,
integrating wheel encoder and IMU measurements during a pre-integration stage. However, the
utilization of both LiDAR and wheel encoders is relatively limited. Jtnior et al. [36] proposed an
approach that combines LiDAR measurements, IMU data, and wheel encoder information to establish
an odometry and mapping framework specifically designed for challenging environments. Yuan et
al. [37] introduced a framework based on bundle adjustment (BA) to achieve similar functionality.
Existing methods mainly focus on fixed LiDAR sensors and perform poorly when directly applied
with rotating LiDAR sensors due to the special motion characteristics.

To bridge this gap, we propose a tightly-coupled method to fuse rotating LiDAR data with IMU
and wheel encoder measurements to obtain an accurate odometry and dense mapping result. During
the motion compensation stage for rotating solid-state LIDAR scans, we combine IMU measurements
with motor encoder readings to generate undistorted point-clouds. We install this solid-state LIDAR
on a rotating platform and run our approach on a track robot designed by our lab. We tested our
odometry and mapping approach for rotating solid-state LIDAR in complex environments. To the
best of our knowledge, our approach is the first work that combines the rotating ability of solid-state
LiDARs with exclusive odometry and mapping frameworks for multiple complex environment SLAM
tasks.

3. Rotating Sensory Platform and Experimental Robot

3.1. Experimental Platforms

We first introduce our designed rotating sensory platform for solid-state LIDAR. As shown
in Figure 1(a), we use the Livox HAP solid-state LIDAR sensor which provides a horizontal FOV of
120° and vertical FOV of 25°. Note that, our rotating platform is not limited to this type of LiDAR,
and theoretically it can work with any type of LiDAR. Our rotating platform uses a servo motor to
continuously rotate around z-axis, expanding the LiDAR’s horizontal FOV to 360°. We use conductive
slip rings to achieve data transmission during the rotation process. In this paper, we set the motor
speed to 3000 rotations per minute (RPM) with a reduction ratio of 100, thus resulting in a speed of
30 RPM for the solid-state LIDAR. We visualize the point cloud obtained by the LiDAR sensor in a
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stationary state for 0.1 seconds (see in Figure 2(a)), 2 seconds (see in Figure 2(b)), and on our rotating
platform for 2 seconds (see in Figure 2(c)). As can be seen in Figure 2(a) and Figure 2(b), benefiting
from the non-repeating scanning characteristic of the solid-state LiDAR, a longer scanning period
resulting in higher coverage of the scene. Comparing Figure 2(b) and Figure 2(c), we can see that using
our rotating platform the point cloud collected by the LiDAR can cover more areas of the scene.

Figure 2. The scanning result of original solid-state LIDAR and our rotating solid-state LiDAR. (a)
is one scanning of original solid-state LiDAR. (b) is the result of two seconds scanning in the same
place of original solid-state LIDAR. (c) is the result of two seconds scanning obtained by our rotating
solid-state LIDAR.

We use our designed tracked robot for evaluating the proposed odometry and mapping
experiment in complex campus environments. Figure 1(b) shows the robot equipped with our rotating
sensory platform. The size of the rotating platform is 30cm x 16¢cm x 27cm, and when installed on the
robot, the height of LIDAR'’s optical center from the ground is 40cm. The robot is equipped with four
independently driven fins with strong obstacle-crossing abilities, allowing us to conduct experiments
in more complex terrains, such as indoor environments with steps even multi-floor stairs. The robot
also equips a wheel encoder enabling us to form its kinematic equation as:

[wz;zwl B l : ] l;l;] ' M

where vr and vy, are the velocity of the left and right of main track, and the L is the distance of two
main track centers. The final measurement of wheel encoder can be written as vp = [vx 0 0] and
wo = [0 0 wyaw]-

N| =M=
N~

3.2. Extrinsic Calibration

In this section, we introduce the extrinsic calibration process of our sensor system. Some notations
used in this paper are shown in Table 1. The definition of the sensor coordinate systems of our
experimental robot is given in Figure 1. We also define the coordinate system of LiDAR, IMU and
robot that the coordinate origin of the LIDAR coincides with the optical center, with the X-axis pointing
towards the scanning direction and the coordinate system of the IMU coincides with that of the
accelerometer. The coordinate origin of the robot locates at the center of gravity of the robot. For the
coordinate system of rotating platform, we define the z-axis pointing upward coinciding with the
rotating axis, and the x-axis and y-axis are coincided with robot’s. The center is defined at the same
height as LiDAR'’s optical center for convenience. Ideally, the rotating axis of the rotating platform
should coincide with the z-axis of the LIDAR. However, mechanical installation issues can cause errors
in both the distance from the LiDAR'’s center to the rotating axis and the angle between these two axes
as in Figure 3. Therefore, we need to calibrate the rotating platform with the LiDAR sensor. We denote
the extrinsic parameters between the LIDAR system and the rotating platform system as M Ty :
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cos(Ag) 0 sin(Ag)
MR, = | sin(Ag)sin(AS)  cos(AS) —cos(Ag)sin(Ad) |, (2)
| —sin(Ag)cos(AS)  sin(Ad)  cos(Ag)cos(Ad)
[Ax
MtL: Ay ’ (3)
_0
(M M
M _ |TRe T
TL=|, aE 4)

where [Ax, Ay] is the translation parameters and [Ag, Ad] is the rotating parameters represented in
Euler angles, i.e., the roll and pitch angle. We design an extrinsic calibration for our platform to obtain
the extrinsic parameters M Ty as follows.

Table 1. Notations in our paper.

Symbols Meaning
Ts;? The timestamp of the k — th measurements of senor A.
d . .
s, s4 scan and after downsampling in A frame.
A . true state variables, nominal state variables and error state variables calculated
x4, 84, 5xA

by measurement of senor A.

ATg, ARp, Mg T is transform from B to A that R is rotation and f is translation.

(Ow, O (), (Do, ()M The coordinate system of world, IMU, LiDAR, wheel odometry and rotating platform.

n
L)
I
Y, |
M db N
Ay
Zy X,

Figure 3. Assembly error between the LiDAR and motor.

We firstly collect scans at different rotating angles 6, of the platform and can obtain a related
transform as Equation (5).

cos(6,) —sin(6,) O
Ry, = |sin(6,) cos(6,) 0] . (5)
0 0 1
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Each angle is related to a LIDAR pose measurement T, = T(6,,)MT; in world frame which is
defined coincided with the original rotating platform frame. For each pair of angles {0;,0;}, we can
establish the relative pose measurement from 6; to 6; as Ging:

_|Rg, O
. _ -1
91T9]‘ = (T(Gi)MTL) 1 T(Gj)MTL = MTL T(Gi — Gj)MTL, )

6; . . . . .
By obtain the relative pose observation Tlg]- using point cloud registration, we can then establish the
optimization function as:

NN 91’ ! 0. P
MminZZH To; — " Tojl|r (i#7) (8)
T, j=1i=1
. N N 0 -1 Lo
=pin) ) I Ty —MTL T(6; — 0)MTL)|[£(i)). )
L j=li=1

which can be solved iteratively using Levenberg-Marquardt algorithm.

To obtain precise observation of relative pose GiT/e]-, we perform the extrinsic calibration in a
structured environment, and obtain the ground truth dense point cloud of the environment using a
Faro FocusS350 scanner!. FocusS350 is a high precision laser scanner with a measuring range of up to
350 m and a measurement accuracy of 1 mm.

For each rotating angle we keep the platform stationary and collect all the point clouds acquired
by the LiDAR within 5s as one scan. Each scan is registered to the ground truth point cloud of the
environment using ICP [9] to solve the precise pose T;i in Faro frame. The relative pose observation
is then obtained as % Ty;. As the registration is performed between the sparse scan and the ground
truth dense point clouds, we can obtain the relative transformation between the sparse scans even
without overlap to include more constraints in the optimization function Equation (9) to obtain a better
calibration result.

A Rotating axis

@ LiDAR position of each 6

Figure 4. Diagram of calibration showing the relationship of different measurements.

For the extrinsic parameters between the wheel odometry and the IMU T, we use the calibration
method described in [6]. For the extrinsic parameters between the rotating platform and the IMU Ty,
we opt a indirect way. We fix the rotating platform and adopt the LIDAR-IMU calibration method

1 http:/ /www.faro.com
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described in [38] to calculate the transformation between LiDAR frame and IMU frame T}, and then
calculate the extrinsic parameters as Iy =11 LTy

4. LiDAR-Inertial-Wheel Odometry and Mapping

4.1. System Overview

The overview of our approach is presented in Figure 5. The measurements of IMU, motor encoder,
wheel encoder and LiDAR are fed into our state estimation module for a fast state estimation. The
estimated pose is then used to register the point cloud with the built global map. The updated map is
finally used for registration in the next step.

Motor encoder Inputs LiDAR Inputs

Odometry Output Mapping Output

Updata
New Scan

Point-Cloud
Residual Computation
(Section 4.2.4)

KNN Search

|
|
|
|
|
T
|
|
|
|
|
|
|
L
|
|

Figure 5. System overview of our approach, the system can be separated into two parts: state estimation
and mapping. In state estimation, iterated Kalman filter is adopted to estimate state variables. IMU
measurements are used for integration to generate state prediction. It then updates velocity state by
fusing wheel encoder, transforms raw points from LiDAR frame to IMU frame and compensates for
motion distortion. LIDAR scanning after motion compensation is used to compute residual to optimize
the pose to obtain final odometry result. In mapping module, the new scan is then added to the map
that consists of hash structure and the updated mapping result.

4.2. State Estimation

We first model the state of our systemasx=[p 6 ©v b, b, g|, where pispose, vis velocity,
0 is Euler angel, b, is bias of accelerometer, b,, is bias of gyroscope, and g is gravity. We use the iterated
Kalman filter as the optimization framework. Instead of directly updating the state in a general Kalman
filter, iterated Kalman filter updates the errors of the state, i.e., dx = ¥ — &, where % is the nominal
state and ¥ is the true state. This allows for a smoother and more stable state estimation. The iterated
Kalman filter optimizes the estimation of x and incorporates it into the nominal state variables % to
obtain the final state estimation.

4.2.1. IMU Integration
In IMU integration stage, we use IMU measurements as inputs to predict the state estimation:

&l = &L+ Atf(3),u,0), (10)

where f(&!,u,0) = x] is the state equation of &} in continuous time with noise w set to 0, and
At = Ts! - Ts, refers to the time interval between consecutive IMU time-steps Ts. 41 and Tsl.
We follow [31] and calculate inl 41as
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oxl .1 = Fpox} + Guw, (11)
[T5x3 0 I3 3At 0 0 0
0 I35 + Lw — wa % 0 0 —I5x3At 0
0 0 0 I33 0 0
0 0 0 0 I3x3 0
L O 0 0 0 0 I3 1.8
[0 0 0 0 ]
0 I3z O 0
-R; 0 0 0
G, = , 13
! 0 0 Ioz O 13)
0 0 0 Isxs
L 0 0 0 0 Jigun
where u' = [w a]' is the measurements of gyrometer and accelerometer of IMU, and w =

[a, w, a) w,]' refersto the Gaussian noise of gyrometer and accelerometer, and bias of

gyrometer and accelerometer respectively. |-|x€R3x3 represents transferring 3D-vector to its
skew-symmetric matrix. I3y3 is the 3 x 3 identity matrix and R is the transformation from world
frame to IMU frame. b, and b, are the bias of gyrometer and accelerometer.

Using F,, and G, we can then propagate the covariance P, of state x; iteratively following:

A1 A1
P,.1=F.P,F, +(G,A)Q(GuAL) T, (14)

where Q € R1yx12 represents the covariance of noise w.

4.2.2. Wheel Encoder Residual Computation and State Update

After the IMU integration, we obtain the state estimation &, ; and the covariance matrix f’fl 11
at iteration n 4 1. In low velocity situation, the cumulative error of the IMU’s accelerometer can
greatly affect the velocity estimation. To eliminate this error év in dx and achieve a more stable velocity
estimation, we build the observation model to rectify velocity estimation 9,1 in the propagated state
X,+1 based on the measurements from wheel encoder:

I I o
hy(x) = (Rhovo + ltoxwo) — Ryydl, 4, (15)

where v, is the measurement of wheel encoder calculated as in Equation (1), and OR; and ©%; is the
extrinsic parameters between wheel encoder with IMU, and VR is the extrinsic parameters between
world frame with IMU. Based on the observation model, we can the formulate the optimization
function as:

r{;}cﬂHM p! + [[ho(x) +Jh05x||M51/ (16)

n+1
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where M61 is the noise of wheel encoder measurements, and J, , is the Jacobian w.r.t velocity v in state
variables x. Equation (16) can be solved by Kalman filter as follow:

KO = P, HI(HoP, Hf + Mp) !, 17)
(5x(n)+1 = H05x111+1 —ho (5‘111+1 + ‘5x111+1) (18)
%1 = Fyn + KOOx (19)
P\ = (1-K°Hp)P,,,, (20)

where Kalman gain KO is solved in Equation (17), SxS 41 is Equation (18), and used to update state
0 1 in Equation (19) and covariance f’f 1 in Equation (20).

The updated &, ; and PS 1 will be then used for motion compensation and the next optimization
of the state.

4.2.3. Motion Compensation

In order to address the distortions and deviations caused by the movement of the robot and the
rotation of the motor in LiDAR scanning results, a kinematic analysis is performed. This analysis
aims to compensate for the motion effects and determine the position of all points at the end of the
scanning in the IMU frame system. The kinematic analysis assumes a constant velocity and utilizes
the transformation information obtained from the extrinsic calibration process.

The first step in motion compensation involves establishing a motion model for each point within
a single scanning. By transforming the points from the LiDAR frame to the world frame as:

Wo ="R;('Rp bp + ) + Mty (21)
The kinematic relationship between the velocities "V p and Lpp can be derived as:
. W I+ . ; ;

Wp="R(R Ep+ ) + VRICRL P+ TR g+ T ) + M (22)

where 'R; = 'Ry, RgiMRL and 't; = 'Ry RgthL + Ity are the transformations from LiDAR frame

to IMU frame. Assuming the environment is perfectly stationary, i.e, Wp = 0, we can further

derive Equation (22) to solve the velocity of the point in LiDAR frame as:

I TWo T I W tWe 7. T W tw, I.t7. I.7l.T
Lp= =R "RI"R/R L p— R R VR — R R Wi — Rl 't — R} R Lp, (23)

M I M i
= — R/ Ry Ry |wi |, "RyRy MR p — "RI Ry Ryr|wr ], ("RyReMtr + "tu)

M I+ WoTw. M I
—"R{ Ry Ry R/t —"R{Ry Ry 'RyRg |wm], Mt — lom]  "p, (24)

where wy is the measurements of IMU gyrometer, and w, is the reading of motor encoder and "t; is
the velocity of robot in the real world that can be obtained by state optimization. Using the timestamp

of each point p;‘ in a single scan, we can then compensate the motion distortion for each point by
projecting it to the end of the scan as:

L _ L .
proend = "pk 4 Lp(1— &)t (25)

where ¢€; = (tlL — Ts,%) / (Ts,% — TSI%—l) is the scanning time duration of a k-th scan, and At = Ts,% — TS;%,V

. . ., L
and t} is the timestamp of a point p¥.
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4.2.4. Point-cloud Residual Computation and State Update

After the motion compensation, we obtain the undistorted point cloud denoted as S% and use it
to construct the residual. Assuming the current iteration of the iterated Kalman filter is #n + 1, and the
corresponding state estimation is kg 41 and the covariance matrix is IA’S +1.When new scanning S Lis
. . d .
input, a downsample process will be executed that generate * S%. Then we transform the point cloud

d
Sk into world frame as:
deW _ W I 9oL
S, ="TrT, S;. (26)
d
After downsampling and transforming, the nearest points of S}/ in hash map are retrieved.

Each set of nearest points is used to fit a plane and calculate the distance between the plane with the
corresponding point in the downsampled point cloud, as shown in Figure 6.

Figure 6. LIDAR measurements model. Red point is the point in scan, blue points are the points in
map nearby red point, and the vector from plane to red point is the normal and residual.

Specifically, for each point P, (xj,yj, 7)) € dS W, we find its nearest points set A in built map:

A=[q g, - 4qlixs 27)

We then calculate the normal vector # to fit the plane formed by A as:

ATA)TATD
n= ( - ) - (28)
[(A"A)~TA b2
where b = —[I3x1 I3x1 ... I3x1]ix3- The residual of LIDAR measurements can be then calculated
as:
L Wo L w
hi(x) =) n-(p;—4q,).p;= Ri'p;+ "t q, = mean(A). (29)
j=1

We construct an optimization equation for Jx as:

min [lox]] o 1 e (x) + Ju Oxllpg 1 (30)

n+1
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where Mil is the noise of LIDAR measurements, and J,, is the Jacobian w.r.t position p and posture 6.
Similarly, we use iterated Kalman filter to solve Equation (30) as follows:

KL = (H/M;'HL + (P)) ") TH M, (31)
0xypq = Hpox) o — hy (370 +0x7)1) (32)
X1 = Ry + Koxg (33)
Pl =(I- KLHL)PS+1, (34)

where Kalman gain K" is solved in Equation (31), Jx% 41 1s Equation (32), and used to update state
xﬁ 41 in Equation (33) and covariance P% 41 in Equation (34).
The overall procedure of state estimation can be summarized in Algorithm. 1

Algorithm 1 State Estimation Algorithm

Require: Last optimal estimation x, and covariance matrix P,, LiDAR scan S,%, the sequence of
IMU measurements u, = [w, day,], wheel encoder measurements uy,, = [vx, wyawn] and the

measurements of motor encoder uyy, = [wyy,] in scan Sk.

1: whilei < n do

2: integrate IMU measurements to obtain predict &/ 41 as Equation (10) and f*',l1 11 as Equation (14).
3: calculate the residual by Equation (16).

4: solving Equation (16) measurements to calculate ‘ng 11 as Equation (18).

5: update 5‘%1 by &gﬂ = &flﬂ + 5x9+1 and IA’SH by Equation (31)

6: i=i+1

7: end while

8

. distort the scan SL by state estimation of IMU integration and measurement of motor encoder
according to Equation (23) and Equation (25).
9: calculate normal vector and residual for every point in by Equation (29).

10: while Equation (30) < threshold do

11: solve Equation (30)

12: update x& 41 and pL 41 by Equation (33) Equation (34)

13: end while

. AL L
Ensure: x, and P, i

4.3. Mapping

In the mapping module, we adopt the iVox structure proposed in [34] to achieve storage and
management of the global map based on the hash algorithm [39].

When a new scan is fed into the mapping module, the first step is to compute a hash-index for
each point. Subsequently, we check whether a voxel in iVox shares the same hash-index as each point.
If a voxel with the same hash-index is found, the corresponding point is inserted into that voxel.
Conversely, if such a voxel does not exist, a new voxel is created based on the hash-index, and the
point is then inserted into it. Each voxel has a maximum capacity, and once this capacity is reached, no
additional points can be inserted.

Regarding the search and matching process, we primarily utilize the k-nearest neighbors search
(k-NN) method to identify voxels that fulfill the specified criteria. Compared to traditional k-d
tree structures, the iVox structure offers significantly faster insertion and retrieval speeds for voxels,
typically ranging from 1 to 2 orders of magnitude faster. This improvement is achieved by leveraging
hash algorithms.
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5. Experiments

We conduct experiments to evaluate the effectiveness of our RSS-LIWOM and rotating platform
under two challenging scenes, an indoor-outdoor mixed campus and an indoor stairway, as shown
in Figure 7. The campus environment presents several challenges, such as scene changes and the
presence of a long, narrow, symmetric corridor with limited structural features. This corridor
specifically poses a significant challenge for LIDAR odometry, which relies heavily on structural
information for accurate mapping. On the other hand, the odometry and mapping in the stairway
environment introduce additional complexities due to large motion vibrations and sharp turns.

(@) Real scene photos of our experimental environments

Figure 7. Cont.
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(a) The ground truth map of our experimental environments

Figure 7. Real scene and ground truth map of our experimental environments.

We choose three current state-of-the-art approaches as our baselines, FAST-LIO2 [33],
LIO-SAM [28], and EKF-LOAM [36]. For a fair comparison, we use the solid-state LIDAR Livox
HAP for all methods. However, EKF-LOAM was designed for mechanical LiDAR and failed to
work with solid-state LIDAR. We therefore additionally employ a more expensive mechanical LIDAR
Velodyne-VLP16 for EKF-LOAM, denoted as EKF-LOAM'. We also provide results of two variants of
our approach to show the effectiveness of our designs, where RSS-LIWOM?* represent our RSS-LIWOM
without rotating platform, and RSS-LIWOM™ represents RSS-LIWOM without wheel odometry. We
evaluate both the odometry and mapping results of all methods and all the experiments are performed
in real-time.

5.1. Evaluation on Odometry Estimation

It is hard to obtain the ground truth pose in indoor and outdoor mixed environments. Therefore,
we evaluate the odometry performance using accumulated position errors. Specifically, for the
stairway, we first measure the ground truth height between floors using Faro FocusS350 scanner, and
then calculate the difference between the estimated climbing height of each odometry method with the
ground truth height. For the campus environment, we control the robot to circumnavigate around the
area and return to the star position, and then compute the difference between the final pose and the
origin.

We present the odometry results in the campus scene in Table 2. As can be seen, Our approach
demonstrates superior performance in the campus scene, achieving the lowest accumulated error of
2.08 m and an error per meter of 0.01 m. Notably, our approach also achieves the smallest z axis drift
of 0.01 m. This advantage is particularly significant during the mapping stage, as precise estimation
of the z direction helps prevent layering artifacts. In comparison, EKF-LOAM struggles to function
effectively with a solid-state LIDAR, while FAST-LIO2 and LIO-SAM exhibit significant odometry drift.
Although EKF-LOAM? performs well with a more expensive mechanical LiDAR, our RSS-LIWOM
still outperforms it. Comparing our RSS-LIWOM with its variants, RSS-LIWOM* and RSS-LIWOM*,
it can be observed that the fusion with wheel odometry and our devised rotating sensory platform
contributes to improve performance. For long-distance scenes, the fusion of wheel encoder has a more
significant impact on performance improvement.
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Table 2. Odometry evaluation on campus.

approach x driftm) ydrift(m) zdrift(n) accumulated errors(m) error per meter(im)
FAST-LIO2 223 0.45 3.77 4.40 0.02
LIO-SAM 22.16 19.21 6.69 30.06 0.12
EKF-LOAM - - - - -
EKF-LOAMY 1.72 0.01 1.60 2.36 0.01
RSS-LIWOM* 2.64 1.11 1.53 3.25 0.02
RSS-LIWOM 2.74 4.75 0.79 5.54 0.03
RSS-LIWOM (Ours) 2.07 0.04 0.01 2.08 0.01

RSS-LIWOM* is RSS-LIWOM without rotating solid-state LIDAR and RSS-LIWOM* is RSS-LIWOM without wheel
encoder. EKF-LOAMT represents EKF-LOAM with mechanical LIDAR. Bold numbers indicate the best results and
underline indicate the second best.

The results obtained in the stairway scene are presented in Table 3. In this experiment, the robot
climbs multiple floors via stairs. As observed from the results, our RSS-LIWOM outperforms all
baseline methods. It is worth noting that FAST-LIO2, LIO-SAM, and EKF-LOAM all fail to produce
meaningful results. Although EKF-LOAM' using a more expensive mechanical LiDAR still works, its
performance is inferior to all our variants. Comparing our variants, we consistently observe that each
component of our approach contributes to improved performance. Specifically, the introduction of
the rotating platform leads to a significant performance enhancement, reducing the error from 0.43 m
to 0.06 m. This finding suggests that a wider FOV and additional information are crucial for narrow
scenes. By integrating all the modules, our approach achieves the best performance overall.

Table 3. Odometry evaluation on stairway.

approach z drift(m) error per meter height(m)
FAST-LIO2 - -

LIO-SAM - -
EKF-LOAM - -
EKF-LOAM? 5.14 0.67
RSS-LIWOM* 3.29 0.43
RSS-LIWOM* 1.64 0.21
RSS-LIWOM (Ours) 0.44 0.06

RSS-LIWOM* is RSS-LIWOM without rotating solid-state LIDAR and RSS-LIWOM* is RSS-LIWOM without wheel
encoder. EKF-LOAM?* represents EKF-LOAM with mechanical LiDAR. Bold numbers indicate the best results and

underline indicate the second best.

5.2. Evaluation on Mapping Quality

In this section, we evaluate the mapping quality of our RSS-LIWOM compared to the baselines
with respect to the ground truth map obtained by Faro FocusS350 scanner. The real scene and
corresponding ground truth map are shown in Figure 7. We employ two metrics to quantitatively
evaluate the accuracy of reconstructed maps of each methods. The first metric measures the accuracy
of the reconstructed map using Chamfer distance, which computes the average distance between
each point in the reconstructed map to its nearest counterpart in the ground truth map. The second
metric is the mapping coverage rate, which represents the percentage of map points that are accurately
reconstructed. We define accurately reconstructed map points as those whose distance to the nearest
point in the ground truth map is below a threshold of 0.2 m. To ensure a fair comparison, the mapping
results of all the methods are voxelized using a consistent voxel size of 0.1 m. Additionally, we provide
the number of points in the mapping result for each method.

The quantitative mapping results for both scenes are presented in Table 4. As can be seen,
our RSS-LIWOM utilizing a rotating solid-state LiDAR, benefits from a larger FOV and accurate
odometry estimation, resulting in the highest mapping accuracy and coverage rate in both the campus
and stairway scenes. Specifically, in the campus scene, our approach achieves the lowest Chamfer
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Distance of 0.67m and the highest coverage rate of 70.2%. In the stairway scene, our approach
consistently achieves a lowest Chamfer Distance of 0.37 m and a coverage rate of 70 %. In contrast,
FAST-LIO2 is limited by its narrow FOV solid-state LiDAR, which leads to inaccurate odometry
estimation. Consequently, FAST-LIO2 exhibits suboptimal mapping accuracy in the campus scene
and fails to produce meaningful results in the stairway scene. The performance of EKF-LOAM varies
significantly between the two scenes. It achieves comparable mapping accuracy to our approach in
the campus scene but does not perform well in the stairway scene. EKF-LOAM also suffers from the
issue of feature degeneration in narrow scenes, which contributes to its poor performance. Overall, the
larger FOV and accurate odometry estimation provided by our rotating solid-state LIDAR enable our
approach to outperform FAST-LIO2 and EKF-LOAM in terms of mapping accuracy and coverage rate
in both scenes.

Table 4. Comparison of mapping quality.

Scene Method Chamfer Distance cover rate(%) number of points
FAST-LIO2 1.44 16.2 43x10°
Campus EKF-LOAM' 0.69 62.7 2.7x10°
RSS-LIWOM (Ours) 0.67 70.2 4.8x10°
FAST-LIO2 - - -
Stairway EKF-LOAM' 1.50 36.2 3.1x10%
RSS-LIWOM (Ours) 0.37 70.0 44x10*

The threshold for cover rate is 0.21m. Faro FocusS350 scanner points number is 5.5x10* in stairway scene and is
4.3x10° in campus scene. EKF-LOAM!' represents EKF-LOAM with mechanical LiDAR. Bold numbers indicate the
best results.

To better demonstrate the advantages of our RSS-LIWOM in mapping, we provide more
qualitative visualization results of different methods compared against the ground truth maps. We
first visualize the mapping result in campus scene in Figure 8. The red dots represent the mapping
results of our RSS-LIWOM and baseline methods, while the white dots represent the ground truth map
points. As can be seen, our reconstructed maps align better than other methods with the ground truth
maps, which reveals that benefiting from high-quality point cloud and accurate odometry estimation,
RSS-LIWOM performs better and captures more environmental details than the baseline methods.
FAST-LIO2 performs sub-optimally with significant deviation from the ground truth map due to
feature degradation. Although EKF-LOAM has similar overall mapping performance as RSS-LIWOM,
it cannot capture as many details as RSS-LIWOM. We zoom in on two typical areas in campus scene, a
narrow corridor and the starting/ending points, our RSS-LIWOM overlaps better with the ground
truth map than the baselines and achieves a higher coverage rate.
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(d) Mapping results of our RSS-LIWOM

Figure 8. The mapping results of (a) FAST-LIO2, (b) EKF-LOAMY, and (c) our RSS-LIWOM. The
white point-cloud is the ground truth map points measured by Faro FocusS350 scanner and the red
point-cloud is the estimated result.


https://doi.org/10.20944/preprints202307.0890.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0890.v1

17 of 21

We also visualize the mapping results in the stairway scene. As shown in Figure 9(c), our
RSS-LIWOM performs well in the climbing stairway scene, achieving a high degree of overlap with
the ground truth map and clear distinction between different floors. In contrast, the mapping accuracy
of EKF-LOAM significantly decreases when climbing stairs (as shown in Figure 9(b)). This is mainly
due to the inaccurate vertical odometry estimation of EKF-LOAM.

(a) Ground truth map (b) Mapping results of EKF-LOAM'  (c) Mapping results of our RSS-LIWOM

Figure 9. (a) The ground truth map and the mapping result of (b) EKF-LOAM' and (c) our RSS-LIWOM.
different approach in stair scene. White point cloud is ground truth map measured by Faro FocusS350
scanner and the red point cloud is the estimated result.

We furthermore provide qualitatively comparison of different methods in terms of heat maps
shown in Figure 10. In the figure, different colors represent the magnitude of Chamfer Distance for
each point, with cyan indicating smaller distances and orange indicating larger. The visualization
results provide a more intuitive demonstration of the advantages of our algorithm in terms of Chamfer
Distance in corridor and hall of campus, compared with FAST-LIO2 and EKF-LOAM.

(a) Mapping result of FAST-LIO2 in corridor

(b) Mapping result of EKF-LOAM? in corridor

Figure 10. Cont.
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(a) Mapping result of RSS-LIWOM in corridor

(d) Mapping result of RSS-LIWOM in hall

Figure 10. The visual results of chamfer distance and cover rate in typical part of campus scene. (a) is
FAST-LIO?2 in corridor, (b) is EKF-LOAM in corridor, (c) is RSS-LIWOM in corridor, (d) is FAST-LIO2 in
hall, (e) is EKF-LOAM in hall and (f) is RSS-LIWOM in hall.

5.3. Smoothness of Velocity Estimation

To further demonstrate the improvement of our method through the fusion wheel encoder
measurements, we compare RSS-LIWOM with RSS-LIWOM™ in terms of the smoothness of the
velocity estimation.

We evaluate the velocity estimation based on the hypothesis that the robot’s movements should be
continual and smooth, rather than high-frequent oscillations. As shown in Figure 11, our RSS-LINOM
achieves smoother velocity estimation by incorporating wheel encoder measurements, outperforming
methods that do not utilize such information.
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Figure 11. The velocity estimation of RSS-LIWOM (blue line) and RSS-LIWOM* (red line ). (a) The
velocity estimation in campus. (b) The velocity estimation in stairway.

6. Discussions

In this work, we design a rotating solid-state LIDAR sensory platform and develop a LIWOM
framework named RSS-LIWOM that fuses LiDAR, IMU, and wheel encoder data for odometry and
mapping on ground unmanned platforms such as track robots. The rotating solid-state LIDAR has
a larger scanning range and stronger ability to capture detailed information in the environment,
compared to original solid-state LIDAR and mechanism LiDAR. The LIWOM framework uses
wheel encoder measurements as an observation for velocity, which is not present in existing LIOM
frameworks. By combining the rotating solid-state LIDAR and LIWOM framework, our RSS-LIWOM
achieved a robust and accurate LIWOM system.

We conducted extensive experiments to thoroughly evaluate our approach using our
own-designed track robot, which navigated through both indoor-outdoor mixed campus and stairway
environments. In the campus environment, the robot followed a predetermined trajectory and returned
to the starting point. We compared our approach with the baseline in terms of odometry estimation
and mapping results, and our approach outperformed the baselines by exhibiting the lowest odometry
drift. In the stair scene experiment, we manipulated the robot to climb stairs across multiple floors. Our
approach demonstrated minimal odometry drift in estimating the vertical orientation. Additionally,
we generated a highly precise 3D map using Faro FocusS350 scanner as the ground truth for evaluating
mapping quality. When comparing the Chamfer Distance with the ground truth, our RSS-LIWOM
achieved the best results. These experiments validate the localization and mapping capabilities of our
approach on ground unmanned platforms within building scenes.

In future work, we aim to improve our approach by enhancing map management with a
confidence factor for greater robustness and adaptability. We also plan to integrate trajectory planning
and object recognition, enabling robots to navigate complex environments more efficiently. These
advancements will make our approach more valuable for applications such as search and rescue,
exploration, and transportation.
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