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Abstract: Target recognition mainly includes three approaches: optical image-based, echo
detection-based, and passive signal analysis-based methods. Among them, the passive signal-based
method is closely integrated with practical applications due to its strong environmental adaptability.
Based on passive radar signal analysis, we design an “end-to-end” model that cascades a noise
estimation network with a recognition network to identify working modes in noise environment.
The noise estimation network is implemented based on U-Net, which adopts a method of feature
extraction and reconstruction to adaptively estimate the noise mapping level of the sample, which
can help the recognition network to reduce noise interference. Focusing on the characteristics of
radar signal, the recognition network is realized based on Multi-Scale Convolutional Attention
Network (MSCANet). Firstly, the deep group convolution is used to isolate the channel interaction in
the shallow network. Then, through the multi-scale convolution module, finer-grained features of
the signal are extracted without increasing the complexity of the model. Finally, the self-attention
mechanism is used to suppress the influence of low-correlation and negative-correlation channels
and spaces. This method overcomes the problem that the conventional method is seriously disturbed
by noise. We validated the proposed method in 81 kinds of noise environments, achieving an average
accuracy of 94.65%. Additionally, we discussed the performance of six machine learning algorithms
and four deep learning algorithms. Compared to these methods, proposed MSCANet achieved an
accuracy improvement of approximately 17%. Our method demonstrates better generalization and
robustness.

Keywords: signal analysis; mode recognition; noise coding; deep learning; attention mechanism

1. Introduction

Through active or passive radiation such as light waves and microwaves, target recognition can
be achieved. And radar is a necessary electronic device for most aerial targets. With the development
of radar technology, airborne radar has possessed multiple capabilities such as aerial reconnaissance,
target imaging, and firepower strike. Radar working mode is a manifestation of its function. Radar
Mode Identification (RMI) refers to the process of obtaining radar style and parameters from unknown
electronic signals to analyze radar functions. As far as we know, people tend to pay more attention
to the optical features and echo characteristics of the target, ignoring the passive microwave signal
[1,2]. However, it should be noted that compared to optical and echo features, passive radar signals
have three advantages [3-5]: (1) signal reception is passive and has stronger stealth characteristics. (2)
Radar signals are less affected by inclement weather such as rain, snow, and fog, making the signal
more stable. (3) Radar signals can not only reflect the corresponding platform information, but also
analyze the radar working mode to know the target’s intention. Therefore, this paper focuses on the
passive radar signals to achieve recognizing working modes, which can help to quickly identify the
target’s threats and direct decision making. Its application scenario is shown in Figure 1.
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Figure 1. Working mode recognition from the perspective of passive radar signal. The aircraft must
employ corresponding radar working modes when conducting tasks such as air reconnaissance, ground
strikes, sea search, and SAR imaging. The passive electronic receiver can intercept and process the
signals, thereby analyzing the target’s intentions.

Nowadays, background signals are constantly increasing, and the impact of noise on signal
processing is becoming more severe. In recent studies of working mode recognition [6-8], the scenarios
with stable environments and small parameter ranges are mainly taking into account, but noise effects
are not fully considered. It is well known that noise has a significant impact on signals, especially
for airborne radar. Strong noise can cause the loss and errors of pulses, directly changing the pulse
repetition frequency and leading to identification errors. Under high signal-to-noise ratio conditions,
the signals are clear and the differences between working modes are apparent. A conventional
deep learning network is capable of effectively extracting features for classification. Under low
signal-to-noise ratio conditions, the following three challenges must be faced:

* Due to the uncertainty of scenarios, radar pulses may originate from different noise environments
or different radars, and their parameter ranges are beyond the scope of “training data”, belonging
to “unknown signals”. This seriously interferes with machine learning algorithms that are purely
data-driven.

* As the signal-to-noise ratio decreases, a large amount of redundant or erroneous information will
be mixed in the received radar pulses, resulting in wrong parameters. At this point, the effective
parameters cannot be determined, and originally traceable signals become chaotic.

¢ Defective radar signals differ from images in that the encoding and modulation styles of the
signals are more diverse. The two types of inputs exhibit significant differences in terms of
characteristics such as size, location, and shape. Noise has a more pronounced impact on signals,
and conventional deep learning networks for computer vision are challenging to effectively
process these differences. The comparison of the signal in a significant noise environment is
shown in Figure 2. It can be seen that the radar pulse pattern is difficult to distinguish under
noise.
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Figure 2. Comparison of the signal in a noisy environment. (a) and (b) show six pulse modulation
styles in ideal and noisy environments respectively.

In this context, a dual-network cascaded model based on latent-space noise encoding is proposed
in this paper to address the aforementioned challenges. The main contributions of this paper are as
follows:

1. We employ a cascaded learning approach with a noise estimation network and a recognition
network, enhancing the algorithm’s adaptability in strong noise environments.

2. A noise estimation network based on U-Net is designed, which utilizes a symmetrical structure
of up-sampling and down-sampling to extract and reconstruct noise features. The network
achieves adaptive noise mapping relationships in different channel and spatial area.

3. The MSCANet, which is to address the characteristics of radar pulse signals, is presented. The
network is augmented with both deep-wise group convolution, multi-scale convolution, and
self-attention mechanisms, which serve to improve the network’s feature extraction capabilities
and make the model more lightweight.

The rest of this paper is arranged as follows. Firstly, we review the relevant work in the
field of radar working mode recognition in Section 2. In Section 3, the proposed algorithm is
introduced with regard to various aspects, including noise encoding in latent space, group convolution
method, multi-scale convolutional modules, and self-attention mechanism. Section 4 reports data
sets, experimental designs, and experimental results to evaluate and compare the performance of the
proposed algorithm with other recognition technologies. Section 5 concludes this paper.

2. Related Work

Radar signal recognition can be mainly classified into traditional expert knowledge-driven
algorithms and data-driven algorithms represented by machine learning. With the diversification
of radar systems and the complexity of electromagnetic space, traditional methods are gradually
becoming ineffective, while data-driven algorithms have taken the lead in this field.

Data-driven methods optimize the known model by learning a large amount of data to achieve
classification and recognition. In recent years, algorithms represented by deep learning have been
widely used in computer vision, natural language processing and other fields. Convolutional Neural
Network (CNN) [9], Recurrent Neural Network (RNN) [10] and self-attention mechanism [11] are
three deep learning representative structures that each have advantages in radar signal recognition.
Convolutional neural networks can extract the potential information of signals through feature mining,
recurrent networks can preserve the semantic relationships, and self-attentive mechanisms are more
advantageous in signal restoration.In practical scenarios, deep learning algorithms are usually limited
by the following four aspects:
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* Recognition of unknown signals. [12,13] propose a comprehensive recognition approach based
on both traditional classifiers and deep learning networks. By utilizing the classifier to assist
in network training, the central vectors of known data are deduced and thus the feasibility of
recognizing unknown signals through known ones is verified.

¢ Few-shot learning problem. [14,15] explore the model training methods under the condition of
few-shot learning respectively by using the generated adversarial network and the auto-encoder
embedded with the feature extraction module, solving the problem of training data shortage.

¢ Interpret-ability of recognition. The problem is a challenging research issue in various fields.
From the perspective of integrating knowledge-driven and data-driven approaches, [16,17] have
defined the feature representation of radar signals in deep learning networks, and have achieved
embedded knowledge through prior knowledge assistance in network training.

¢ Low Signal-to-Noise Ratio (SNR) condition. SNR is a critical factor in the field of signal processing
[18], which must be considered. Reference [19] utilizes the characteristics of residual networks
and adopts the naive method of deepening the network to improve recognition performance
under low SNR, with no further improvement possible after network saturation. [20] employs
a fusion of CNN and Long Short-Term Memory (LSTM) network to retain signal features and
semantic relationships, but this method only focuses on short-term temporal dependencies and
cannot extract global information. Literature [21] proposes a lightweight combinational neural
network, which uses two networks for pre-recognition and fine recognition. SEBlock attention
module is embedded in the network to suppress noise interference. This method is suitable for
multi-label classification tasks.

We specifically focused on the challenges posed by low SNR environments in radiation source
identification. Based on the aforementioned research, the main difficulty lies in extracting radar signal
features in noisy environments. The above algorithms are essentially searching for differences among
data, without considering the characteristics of radar signals. In other words, they are general methods
in different fields, so their performance are significantly compromised when data is affected by noise.

Therefore, we propose a cascade network focusing on the characteristics of pulse signals in noisy
environment. Among them, the noise encoding sub-network is built on the basis of U-Net. It is a
classic network used for semantic segmentation in image processing, which has advantages in feature
extraction and reconstruction due to its symmetric structure of up-sampling and down-sampling
[22,23]. The recognition sub-network is an original design based on the characteristics of radar signals.

3. Radar Signal Detection in Noisy Environment

To find an appropriate method for measuring noise, the step is to establish a receive signal model
under the noisy environment.As a passive receiver, it is impossible to know the signal processing
method of the target.Therefore, a general representation of the received signal with added noise is as
follows:

vr(t) =A+ny(t) =r(t)cose(t) 1)

vg (F) = ng (t) = r(t)sing (t) €

where n; (t) and ng (t) are in-phase and quadrature components of the noise and have the same
variance §?. A is the echo amplitude. The probability density functions for () and ¢ (t) represent the
modulus and phase of signal v (t), respectively. Their joint probability density function is expressed as:

anl ai’l[ .
_ or 99 | _ cos¢ —rsing|
f(r,9) = f (n1,nq) o ong| = f (n1,nq) sing  rcosg ‘ = f (n1,ng) r (t) ®)
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with

n% + n’ 1 — A2+ (rsi 2
f o) =5 wzex'g< IZIPZQ) ~ g (chosq) 2)1P2 e ) @)

Therefore, the probability density function of the modulus r alone can be expressed as:

r2 + AZ) )

fl=J f(r fp)dqv*lpz (::;)exxﬂ(—zwz

where [j (-) is the modified zero-order Bessel function.
The target is detected when the modulus of the signal exceeds the threshold voltage Vr.

Considering the relationship between Vr and false alarm probability Py, thatis, Vr = |/2¢2In1/Py.
The detection probability P; can be written as:

o A A2
Py = %10 <;> exp (—ﬂ) dr (6)
V2P 7\ Y 2y
When the noise is Gaussian distribution and P; is much larger than Pr, A, r and ¢ in formula (6)
are replaced by the signal-to-noise ratio (SNR), the formula can be approximated as follows:

Py = 0.5 x erfc (, /~InP; — VSNR+ 0.5) @)
with complementary error function erfc (-) is:
erfc(x) —1——/eydy 8)

In summary, we can know that there will always be some loss or error radar pulse in noisy
environment. The relationship between detection probability and SNR is shown in Figure 3.

Probability of detection

12 3 4 56 7 8 910111213 14 15 16 17 18
Single pulse SNR - dB
Figure 3. The relationship between detection probability and SNR. The curve from left to right
represents the decreasing probability of false alarms.

Through the changing pattern of radar pulse, we can analyze the radar working modes. But due
to the interference of noise and the influence of hardware factors, radar pulse will have some deviation,
error and loss. Equation (7) shows that the detection probability, false alarm probability, and SNR are
related. As the SNR decreases, the pulse distortion becomes more severe, and the probabilities of false
alarm and missed detection increase. Therefore, for convenience of expression, we convert the impact
of SNR on radar full pulses into lost pulses and false pulses, as shown in Figure 4.
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Figure 4. The influence of noise on radar pulse. Lost pulses refer to pulses that are submerged in noise
and do not reach the detection threshold. False pulses refer to pulses in which noise is erroneously
detected as radar signals. Measurement error refers to the parameter drift generated compared with
true pulses.

4. Algorithm Model and Implementation

4.1. Dual-Network Cascade Model

In this section, We designed an “end-to-end” recognition model with a dual-network cascade to
address the problem of pulse pattern distortion in noisy environments. The model takes the full-pulse
signal from the radar as input and outputs the mode recognition result.

In radar signal processing, the receiver can observe the received signal from multiple dimensions,
such as radio frequency (RF), intermediate frequency (IF), base band, and full-pulse. Furthermore,
according to the Fourier transform principle, feature extraction can be performed simultaneously
from temporal and spectral domains. For example, in reference [24], the signal is transformed into
a spectrogram, resulting in continuity on the feature map, greatly enhancing the effectiveness of
convolutional layers. However, it should be noted that mode recognition relies more on the full-pulse
data, which has more pronounced discreteness and weaker global self-correlation. As a result, noise
more significantly disrupts the inherent pattern of the data, making conventional convolutional
networks difficult to apply.

Therefore, we design the model into two parts. The first part is a noise estimation sub-network
based on U-Net, which encodes the noise by down-sampling and up-sampling, and is used to
adaptively estimate the sample’s noise level. The second part is a radar working mode recognition
sub-network based on a multi-scale convolutional attention network, called MSCANet. It is trained
using both the radar full pulse and noise coding information. The general diagram of the proposed
scheme is shown in Figure 5.

Recognition network

Full radar pulse

i_ __ _P_D_\Y_ - | Loss
" pDW | MSCANet —>{ Working mode

| |
e A !

S o B

| PDW | ? Loss

Y

Noise coding matrix

Noise estimation network

Figure 5. The architecture of the proposed scheme.
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Regarding to the optimization of networks, we adopt a cascaded approach to jointly train the
noise estimation network and the classification recognition network to convergence, ensuring that both
two networks are optimized for accurate identification of working mode in noisy environments. At
this point, the objective function of cascaded training can be defined as the classification loss function:

1Y . N Y 12
Lo= = Llningi+ (1=y) In (1= 9)) + oD Wy ©)
where y; represents the real label of N radar pulse samples within a batch size, §j; represents the
prediction label. The second term of the formula is the regularization of the model, which is used

to reduce the over-fitting phenomenon , the regularization coefficient vy is set to 0.001, and nglj)z
represents the jth convolution kernel corresponding to the kth feature map in the /th layer.

4.2. Noise Estimation Network Based on U-Net

Due to the uncertainty of noise environment, different signals are affected by noise to different
extents. This irregular fluctuation is detrimental to recognition networks, therefore, a measure that can
assess the level of signal noise is needed to help recognition networks filter out noise more effectively.
In 2018, [25] firstly introduced the concept of noise level mapping into computer vision, and proposed
FFDNet to help CNN complete image denoising and recognition. However, when the noise level of the
evaluation is wrong, it will have a more adverse effect on the subsequent signal recognition. Therefore,
in 2022, Du proposed a signal denoising classification network DNCNet [18] from the point of view of
signals. The algorithm pre-positioned a 5-layer convolutional network to quantize the noise level, and
then carried out denoising and identification. This method has better dynamic evaluation ability to
noise.

On the basis of the above research, we design a sub-network of hidden space noise coding, which
needs to meet the following requirements:

¢ Each channel in radar full pulse is affected by noise to different degrees, so it is necessary to
evaluate the noise separately.

¢ The effect function of noise on discrete radar pulse can be defined as an indicative function rather
than a continuous function, so the whole sequence cannot be evaluated by a continuous mapping
relationship.

¢ The purpose of noise evaluation is to help classification network to recognize working mode
rather than to obtain certain information. The output noise coding sequence should match the
input.

Based on the above requirements, we adopt U-Net structure, whose symmetrical down-sampling
and up-sampling structure can ensure that the output noise code is consistent with the input size. And
the coding point corresponds to the channel and time series in the pulse sequence. The process of
sub-sampling can be regarded as the extraction of noise features, which consists of convolution and
pooling. The up-sampling process is to restore the original size according to the noise characteristics,
which is realized by convolution and deconvolution. This progressive reduction structure can extract
and recover information by gradually increasing the receptive field of the network, and it is easier
to grasp the noise features at different scales. The proposed noise estimation network is shown in
Figure 6.
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Figure 6. Noise estimation network based on U-Net.

In detail, the input to the network is radar full pulses. The main structure consists of 16
convolutional layers, 2 deconvolution layers and 2 average pooling layers. In order to preserve
the independence of each channel during sampling, the network adopts one-dimensional convolution,
pooling and deconvolution, the kernel size is set to 3x1, the number of kernel is 64, 128 and 256 in
a progressive order. The ReLU function is used as activation function to correct the gradient. The
change of the the feature map size is realized by the Pooling layer and the deconvolution layer. And
the cascade pooling is adopted during down-sampling, that is, the pooling size is greater than the step
size, which can keep information interaction between adjacent data. The output of the network is a
noise coding matrix with the same size as input, which can be used for adaptive evaluation of the
sample noise level greatly.

4.3. Recognition Network Based on MSCANet

According to the characteristics of radar pulse and the influence of noise, we design the following
network structures in MSCANet. (1) Depth-wise group convolution. Independent convolution kernels
are used for each channel in the shallow network. (2) Multi-scale 1-D convolution. The multi-scale
features of radar pulses are extracted by convolution kernel of multiple parallel mutual primes. (3)
Channel attention module (CAM) and spatial attention module (SAM). Adaptive weights of channels
and spatial regions are implemented, enabling the network to focus on high-impact features. The
structure of MSCANeet is illustrated in Figure 7.


https://doi.org/10.20944/preprints202307.0886.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0886.v1

9of 23

Depth-Wise Group Conv

Radar Pulses Unit: 10

64@ 500x5|

r=51
[ 8@4000x1 16@2000x 1

Noise Coding RF
Matrix r=5, "1

mnding

SE=

Softmax

Surssaooidarg

N PNVISIN ‘
UONEZI[RULION
yoeg
Il
Surjooq
93e19AY [2q0[D

nun
AUOD-DIN

UONRZI[RULION YoIRg
diauo)-nmp
uoneZIEULION Yyoreg

Kernel: 16 ~ Multi-Conv “Kernel: 16
Stride: 2 Module Stride: 1

Figure 7. Recognition network based on MSCANet. The network mainly consists of 5 parallel deep
convolution modules and self-attention modules, which both adopt multi-scale convolutional units.
Each convolutional unit contains 6 multi-scale convolution layers. The convolution layers are composed
of 4 mutually prime convolution kernels, in combination with Batch Normalization layers and ReLU

activation functions.

The network also employs global average pooling to replace fully connected layers and adopts
residual structures to establish shortcut connections between modules. Deeper networks are more
efficient in extracting features, while the above structures help alleviate over-fitting in deep networks.

4.3.1. Depth-Wise Group Convolution

Radar pulse data is a set of discrete parameters on a time series, with no reliable correlations
between channels. However, conventional convolution combines the feature maps of these channels,
which is inefficient for extracting features from full-pulse data and results in substantial computational
waste. Therefore, we adopt depth-wise group convolution to realize feature extraction.

Group convolution was firstly applied in AlexNet to solve the problem that a single GPU could
not support simultaneous computation on feature maps. Therefore, designers split the channels
and compute them separately on separate GPUs. Subsequently, with the prevalence of lightweight
networks, reference [26] combined group convolution with ResNet to propose the ResNeXt network.
In comparison to contemporaneous networks such as Inception v4 and Inception-ResNet v2, the
proposed model exhibits simpler and more lightweight architecture at equivalent recognition accuracy
on the ImageNet dataset.

Using the same idea, we divide the pulse data into 5 groups, each group contains a dimension and
the corresponding noise coding vector. Independent convolution kernel is used for feature extraction
among the groups to ensure the independence of each channel in the shallow network. Channel
concatenation is performed before the last convolution layer to preserve the correlation between
channels. The specific structure is shown in Figure 8.

The advantage of depth-wise group convolution lies in not only isolating information interaction
between different groups, but also reducing computational complexity and parameter quantity to 1/5
comparing with conventional convolution. This makes the network more lightweight and faster.
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Figure 8. The structure of depth-wise group convolution. A dimension of full pulses is programmed
into a group with its corresponding noise coding vector. After passing through the shallow network, it
is spliced by groups.

Taking 1-D convolution as an example in this paper, let C;;, and C,y; represent input and output
channel number respectively, K is the size of kernel, the computational complexity of kernel at a point
for conventional convolution O; can be expressed as:

olzcmx[K2+(1<2—1)}+1=cm><(21<2—1)+1 (10)

then, the computational complexity of the entire convolutional layer is:
Oc = Cout X (Ol X Sout) = Cout X [Cin X (ZKZ - 1) + 1] X Saut (11)

where S, is the size of the output feature map. In the same way, the number of parameters for the
convolution layer P, can be written as:

P, = Coyt X (Cin X K+ 1) (12)

When using depth-wise group convolution, assuming that the input feature map is splitinto g
groups, the corresponding input and output feature map channels are reduced to 1/g. Due to parallel
calculations of g groups, this reduction is canceled out. However, corresponding to the change in
the number of channels in the feature map, the number of channels in the convolution kernel also
decreases to C;;, /g. Therefore, the computational complexity Oy and the number of parameters P, are
expressed as:

Og = Cour X {Cm x (21<2 - 1) + 1} X Sout (13)
8
Cin
Pe = Cout X <g X K+ 1> (14)

It is not difficult to see that the computational complexity and the number of parameters are
reduced to 1/g approximately comparing to conventional convolution, which proves the advantage of
deep-wise group convolution.

4.3.2. Multi-Scale 1-D Convolution

In convolution layer, using kernels of the same size will compute the same region in the feature
map. The difference between the kernels lies in their kernel parameters, but their receptive fields are
the same. This is not conducive to adapting to pulse patterns under uncertain noise. Inspired by the
application of short-time Fourier transform (STFT) with different window functions [27,28], we use
parallel multi-scale convolution kernel instead of conventional one. By using the parallel computation
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of multi-scale convolutional kernels, the network has different “perspectives”, so it can extract more
scale signal features when the number of convolutional kernel is the same. This idea is also reflected
in the Inception network for image recognition [29]. Figure 9 shows the structure of the multi-scale
convolution module.

F *v;
Feature map
T
C C =0
Vi e Frv e = |58
(=1
é =3
)
F=(h,w,c) F *v;
4 different F *v,

kernel sizes

Figure 9. The structure of the multi-scale convolution module.

In addition to using 1x1 convolutions to preserve the original feature map scale, the module
adopts three types of 1-D convolution kernels with sizes of 3x1, 8x1, and 17x1 that are mutually
prime. This design more efficiently extracts fine-grained features of the original signal. Different-scale
convolution kernels are equivalent to mapping feature values at different window sizes. So the
mapping z;.y of the ith layer and jth feature map at location (x, ) can be expressed as:

xy Kt G ()

zij = f (Z )DEDY Wijk 2 (i-1)k + bif) (15)
k=1 h w

where K is the number of feature maps at i — 1 layer, H;, X Wy, is the size of the convolution kernel,

culh]%’ is the convolution kernel parameter matrix connected to the kth feature map ati — 1 layer, b;; is

the bias, and f () is the ReLU activation function. Write the matrix of zz.y as F, then the output feature

map is:

F’ = Concat (F % V1, F x Vo, F % V3, F x Vj) (16)

where Concat is a operation of channel concatenation. Different from the pyramid-type feature maps
obtained by conventional convolution, multi-scale convolution can obtain more receptive fields of
different sizes and have richer feature levels.

4.3.3. Self-Attention Mechanism

The influence of different parameters and regions on the operating modes in radar pulses varies
greatly, but convolution is local and indiscriminate. Therefore, it is necessary to adopt different selection
strategies. In order to extract signal features with emphasis and preserve semantic relationships, we
introduce channel self-attention module (CAM) and spatial self-attention module (SAM) to achieve
adaptive weight allocation, enabling the network to pay more attention to valuable channels and
regions [30].

The structure of CAM is shown in Figure 10. Firstly, parallel maximum pooling and average
pooling are utilized to compress the feature maps along the spatial dimensions, yielding channel-wise
vectors and resulting in two 1 x 1 x C feature maps, where C represents the number of channels, H
and W represent the height and width of the feature map respectively. Then, the obtained feature maps
are input into a shared two-layer perceptron, with a ReLU activation function in between, and the
number of neurons in the second layer equal to the number of output channels, which enhances the
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trainability of CAM. Finally, an element-wise operation is applied to the two kinds of pooling graphs,
and the output feature map M, is written as:

Global maximum

pooling MaxPool map

Sigmoid

S

T | Element-wise CAM f%z,}tg re map

HxWxC

Global Average

. AvgPool map
Feature map F Pooling Shared MLP

Figure 10. The structure of channel self-attention module.

M (F) = f (Wo ® Wi ® Fiyg + Wo ® Wi ® Fi) 17)

where f (-) is sigmoid activation function, Wy and W are the weight vectors of the two-layer shared
perceptron, ® is Kronecker product. F,, and F,, represent global average pooling and global
maximum pooling, respectively. The two pooling operations ensure that the model generates feedback
on global region and maximum region of the feature map, so the performance is better than that of
SENet [31] using only average pooling.

The structure of SAM module is shown in Figure 11. SAM is calculated on the basis of CAM,
the module compresses the channel information and retains the attention to the spatial information.
Firstly, global average pooling and global maximum pooling based on channel dimension are used
to calculate feature maps. After it is splicing into H x W X 2 feature maps, the average pooling and
maximum pooling information are extracted by 3x1 convolution, and the feature maps are reduced to
1 dimension again. The expression for M; is as follows:

CAM output feature map
F’ 3x3 Conv layer

Sigmoid
HxWxC /
Channel concat SAM feature map
[Max pooling, Average pooling] Ms

Figure 11. The structure of spatial self-attention module.

M, (F) = f (COI’ZU?D [F;vgl Frfmx}) (18)

Where Conv‘;’ p is 1-D convolution of 3x1, F3,, and Fj,,, represent global average pooling and global
maximum pooling, respectively.

What’s more, multi-scale convolution is used to obtain more multivariate feature maps, which
better improves the performance of the self-attention mechanism. The CAM enables the network to
focus on more efficient feature maps in multi-scale convolution, such as local information of modulation
laws. The SAM can filter out the information redundancy or error area caused by interference at
different sizes. All these can help the network to improve the recognition performance under significant
noise environment.
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5. Experiments and Results

In this section, the effectiveness of the proposed algorithm in significant noise environment is
demonstrated through simulation experiments, which include four parts:

* Considering different application scenarios, 10 kinds of typical radar working modes that have
appeared are constructed for the demonstration of subsequent experiments.

* The performance of traditional machine learning algorithms and deep learning algorithms
is tested to prove the limitations of conventional artificial intelligence algorithms in noisy
environments.

¢ By introducing noise estimation sub-network, the performance of single classification model and
dual-network cascade model is compared.

¢ The performance of the proposed MSCANet network is compared with that of the classical deep
learning network, and the influence of noise environment on radar working mode is analyzed.

5.1. Dataset

Due to the confidentiality of radar parameters, there is no available public data set at present.
Therefore, on the basis of public literature [32-34] and referring to authoritative books such as Radar
Manual, Airborne Radar Manual and Pulse Doppler Radar, we simulated and constructed radar full
pulse data sets, namely RPDWS-I, which covers the typical modes of reconnaissance, search, tracking,
moving target indication, SAR.

The dataset includes the following 10 kinds of radar working modes: Velocity Search (VS), Range
While Search (RWS), Velocity-Range Search (VRS), Multiple-Target Tracking (MTT), Beam Riding (BR),
Ground Moving Target Indication (GMTI), Ground Moving Target Tracking (GMTT), Sea Surface
Search (SSS), Sea Surface Tracking (SST), Synthetic Aperture Radar (SAR). The training set includes
4,000 samples for each model. The test set has a total of 81 test environments, the range of miss pulse
and false pulse is set to 0~80%, the interval is 10%, 1000 samples for each environment. In order to
present the experimental results succinctly and clearly, the baseline algorithm only tests the model
performance under 0~50% lost pulse and false pulse environments, the proposed algorithm is tested
under all environments. The signal parameters in the data set are shown in Table 1, and the following
parameter range and modulation style are confirmed in [35].

Table 1. RPDWS-I data set. Each working mode sample is random within the given range to simulate
uncertain radar parameters.

Working mode PRI(us) PW(us) Dutyratio(%) Pulse numin CPI  Bandwidth(MHz) Modulation

\&) 3.3~10 1~3 10~30 500~-2000 0.3~10 Consatnt
RWS 3.3~10 1~3 10~30 500~-2000 0.3~10 D&S
VRS 50~165 1~20 1~25 30~256 1~10 Constant, D & S
MTT 3.3~125 0.1~20 0.1~25 1~64 1~50 Stagger, Sliding

BR 3.3~125 0.1~20 0.1~25 1~64 1~50 Wobbulated

GMTI 120~-500 2~60 0.1~25 20~256 0.5~15 Stagger
GMTT 62~160 2~40 0.1~25 20~256 0.5~15 Stagger

SSS 1000~2000  1~200 0.1~10 1~8 0.2~500 Stagger
SST 500~1000 1~200 0.1~20 20~256 0.2~10 Stagger
SAR 100~1000 3~60 1~25 70~20000 10~500 Constant

5.2. Performance of Conventional Artificial Intelligence Algorithms

Conventional artificial intelligence algorithms learn radar signal features in noisy environment
by using noisy samples. Therefore, we randomly select 20% of the samples in the training set, and
successively add 10~30% ratio of the lost and false pulses as data enhancement measures to help the
classifier extract data features in a noisy environment.

5.2.1. Traditional Machine Learning Algorithms

We selected 6 kinds of widely used machine learning classifiers for validation, as follows:
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Linear support vector machine (SVM). The classifier uses linear kernel as a mapping function,
which has the best effect in linearly separable data sets. However, the radar full pulse feature is
high-dimensional data and linear indivisible, which cannot meet the requirements. Therefore, the
model should have a certain tolerance for misclassification, the penalty factor C is set at 0.025.

Radial basis function (RBF) SVM. The classifier uses Gaussian kernel as a mapping function,
which is suitable for high-dimensional and linearly inseparable full pulse features. Therefore, the focus
of the research is to improve the recognition accuracy and avoid wrong classification, the standard
deviation of the kernel parameter o = 0.01, and the penalty factor C = 1.

Decision tree. In the algorithm, the data is divided by splitting the data set down into smaller,
the number of splits being the depth of the decision tree. In this paper, Gini coefficient is used as the
decision condition for dividing node data set. “Node” contains at least two samples, “leaf” contains at
least one sample, and the maximum depth is 5.

Random forest. The algorithm is based on Bagging ensemble learning method, which divides the
data set into multiple random subsets, trains on multiple base models, and finally gets the classification
result by “voting”. Therefore, the algorithm can better eliminate the bias of a single model and prevent
overfitting. In the algorithm, the base model is the Decision Tree classifier mentioned above, and the
number of base models is 100.

Multi-layer perceptron (MLP). As an early neural network, MLP is mainly composed of fully
connected layers. The maximum number of neurons in this paper is set at 1000.

Naive Bayes. Based on Bayes’ theorem, the posterior probability of classification is obtained by
calculating prior probability, marginal likelihood estimation and likelihood estimation. The algorithm
does not need to perform iterative calculation and has no preset parameters, which is suitable for large
data sets.

According to the above parameter settings, the performance of the classifiers is tested under
different proportions of lost and false pulses. The results are shown in Figure 12. The gray dashed line
represents the invalid recognition line. The average accuracy of six classifiers, including Linear SVM,
RBF SVM, Decision Tree, Random Forest, MLP, and Naive Bayes, in identifying radar operating modes
in a 0~50% lost pulse environment are 77.2%, 77.3%, 78.4%, 78.9%, 74.5%, and 71.2%, respectively.
In a 0~50% false pulse environment, the average accuracy is 72.2%, 75.3%, 82.8%, 82.6%, 73.1%, and
69.6%, respectively. When the interference pulse ratio is below 30%, the recognition accuracy of the
aforementioned classifiers remains relatively stable, but it significantly declines after exceeding 30%.

1.0 1.0
T T
T AL T~
SRy
0.6 2°0.6 \'\Lﬁ
§ 0.6 \“ \2) 0.6
3054 —=— Lincar SYM 305 —=— Linear SVM
< — e RBFSVM < — e RBFSVM
0.4 0.4+ - -A- Decision Ti
- -A- Decision Tree ecision Tree
0.34 — v — Random Forest 0.34 — v— Random Forest
024 ~ & -MLP 02 -+ -MLP
¢ - Naive Bayes Naive Bayes
f— 1 —

T T T T T T T T T T !
0 5 10 15 20 25 30 35 40 45 50 55
Lost pulse ratio (%)

(a) Lost pulse condition

T T T T T T T T T T !
0 5 100 15 20 25 30 35 40 45 50 55
False pulse ratio (%)

(b) False pulse condition

Figure 12. Recognition performance of traditional machine learning classifiers. (a) under the condition

of lost pulse, (b) under the condition of false pulse.

The results show that: (1) the overall recognition accuracy of the classifiers is not high, and the
representation ability of traditional machine learning classifiers is not enough to support the extraction
of radar features. (2) There is little difference in recognition ability between the two environments,
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and the classifier cannot take specific anti-interference measures for different environments. (3) The
classifier relies heavily on the data distribution of the training set, and the recognition performance
deteriorates significantly after it exceeds the range.

5.2.2. Conventional Deep Learning Algorithms

We selected 4 kinds of classic convolutional networks for testing, which have won championships
in the ILSVRC competition and have been successfully applied in the field of radiation source
identification. These models are ConvINet[12], ResNet[24], AlexNet[36], and VGGNet[37]. Among
them, ResNet adopts the same basic structure as MSCANet, and the structures of ConvNet, AlexNet,
and VGGNet are shown in Figure 13. To adapt to the radar pulse dataset, all convolution and pooling
operations in the above networks are adjusted to 1-D. The networks use the Adam optimizer, and
the learning rate decreases from 10~2 to 10~* every 40 epochs. The batch size is set to 256, and each
training consists of 160 epochs. The networks are regularized by L2 regularization with value of 107%.
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(c) VGGNet

Figure 13. The structures of conventional deep learning networks.

We conducted experiments in the same environment to test the deep learning algorithms. The
accuracy of the four algorithms on the training set is shown in Table 2, all of which are above 90%.
However, the performance of the networks on the test set is unstable, as shown in Figure 14.
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Table 2. Accuracy of deep learning networks in training set.

AlexNet ConvNet-18 ResNet-18 VGGNet
96.9% 90.7% 90.5% 99.7%

Q . Q
<044 - —=— AlexNet < 0.4 -

P —=— AlexNet

03] ’ -—_0- - ConvNet-18 034 - — & ConvNet-18
* - ResNet-18 - & - ResNet-18

0.2 . 5] sNet-

[Cv— VGGNet 02 — v— VGGNet
0 l e e — — — —— — — — 0 l de e — — — —— ——————— e
0 5 10 15 20 25 30 35 40 45 50 55 0O 5 10 15 20 25 30 35 40 45 50 55

Lost pulse ratio (%) False pulse ratio (%)
(a) Lost pulse condition (b) False pulse condition

Figure 14. Accuracy of deep learning networks in test set. (a) under the condition of lost pulse, (b)
under the condition of false pulse.

It can be observed that AlexNet and ResNet-18 have better overall accuracy than ConvNet-18
and VGGNet, but they are still lower than the accuracy on the training set. All four networks exhibit
a certain degree of overfitting. Although ConvNet-18 and VGGNet have deeper network structures
compared to AlexNet, they lack effective measures to alleviate overfitting, resulting in worse test
results. Deeper network structures can make the output closer to the training set, but it may not
be effective for the test set. Although ResNet-18 also adopts a deep network structure, its residual
connections help the network alleviate the overfitting problem.

A more concerning phenomenon is that the test accuracy of the four networks does not
monotonically decrease but instead exhibits “peaks” at different positions. Due to the interference
pulse ratio added in the training data ranging from 10% to 30%, when the test data has a similar
distribution to the training data, the accuracy is relatively high, but the recognition ability declines
in an ideal environment without interference. This means that the above four networks have not
“learned” the true characteristics of radar working mode, but instead fitted the data distribution in the
training set.

5.3. The Performance of Proposed Noise Estimation Sub-network

In order to verify the performance improvement brought by adaptive noise coding, we first
introduce noise estimation sub-networks in different noise environments for testing. The model which
combines the noise estimation sub-network and classification recognition network is called “cascade
model”, and the single recognition network is denoted as “independent model”. This part of the
experiment compares the recognition accuracy of the two kinds of models. The baseline models consist
of ConvNet-18, AlexNet, VGGNet, and ResNet-18, which are mentioned above. To match the noise
estimation sub-network, the cascaded models all adopt deep-wise group convolution.

The results are shown in Figure 15. Compared with the independent model, the average
recognition accuracy of the cascade models are improved by 10~30%. And the fluctuation of
recognition accuracy in different test environments is further reduced. The more noise affected
the model, the more recognition rate improved after the introduction of noise estimation sub-network.
This fully demonstrates that adaptive noise estimation can help recognition models to reduce noise
interference.
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Figure 15. Performance comparison between independent model and cascade model. The networks

are tested in the environment of lost pulse and false pulse respectively. The dashed boxes in the figure

represent the improvement in accuracy of the cascaded models compared to the independent models.

5.4. The Performance of Proposed MSCANet

5.4.1. MSCANet Recognition Performance

To demonstrate the recognition performance of MSCANet in complex environments, this part of
experiment extends the ratio of lost pulse and false pulse to 0~80%. The three-dimensional surface of
recognition accuracy is shown in Figure 16.
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Figure 16. MSCANet test accuracy surfaces in different environments. A total of 81 experimental
environments are included in the figure, with x and y axes representing lost pulse and false pulse
respectively, and z axes representing recognition accuracy.

Under different ratios of missed pulses and false pulses, MSCANet achieves an average
recognition rate of 94.65%, and the surface of test accuracy is relatively flat, indicating stable recognition
capability. In an ideal environment, the network achieves the highest recognition accuracy of 98.46%,
which indicates that the network truly extracts recognition features from radar pulse patterns. It
should be noted that the model is not immune to the interference of error terms, but in comparison to
the baseline network, MSCANet demonstrates stronger anti-interference capabilities.

To validate the performance improvement of the proposed MSCANet, Table 3 provides a
comparison of different networks under conditions of lost pulses and false pulses. It can be observed
that: (1) MSCANet achieves an average accuracy improvement of 5% to 20% compared to other
networks; (2) Except for AlexNet and MSCANet performing similarly under 40% and 50% false
pulse conditions, MSCANet exhibits the best recognition performance in other environments. (3)
MSCANet overcomes the issue of model overfitting, and the recognition accuracy decreases slowly as
the environment deteriorates.

Table 3. Recognition accuracy of several networks in different environments.

Model | Lost pulse ratio (%) | False pulse ratio (%) | Eroce(si | Modgtl

| 0 10 20 30 40 50 | 0 10 20 30 40 50 | ‘me™ capaay
AlexNet 704 703 764 815 831 902 | 709 836 90.7 932 95.0 93.6 2.42 520K
ConvNet-18 | 652 735 766 828 921 883 | 652 668 713 773 869 86.1 11.46 954K
ResNet-18 791 842 877 893 894 875 | 791 856 903 902 834 86.1 11.93 1110K
VGGNet 68.0 923 887 828 8.7 80.1 | 681 892 882 869 847 803 9.15 1680K
MSCANet 984 978 975 971 962 943 | 984 978 971 954 937 921 14.50 849K

To visually demonstrate the feature extraction capability of the network, the output feature
maps of the last convolutional layer in the pre-trained AlexNet, VGGNet, ResNet-18, and MSCANet
models, are extracted for the same test samples. Principal Component Analysis (PCA) is used for
dimensionality reduction and visualization, and the results are shown in Figure 17.
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Figure 17. Dimensionality reduction visualization of output features for different models. The points
of different colors in the figure represent the 10 different working modes in the sample set. The stronger
the clustering of points of the same type and the farther the distance between points of different types,
the better the classification performance of the model.

It can be observed that the sample of AlexNet and VGGNet are scattered and unevenly distributed,
making them prone to confusion. The inter-cluster distance of ResNet-18 is relatively large, but there
is overlap among some samples, resulting in incomplete classification. The results generated by the
proposed MSCANet in this paper exhibit a neat distribution of the 10 classes, with strong intra-cluster
aggregation and large inter-cluster distances. Therefore, it can be concluded that the proposed method
outperforms other baseline models in UAV radar working mode recognition task.

5.4.2. Ablation Study

To further demonstrate the necessity of the deep group convolution, multi-scale convolution, and
self-attention mechanism proposed in this paper, a set of ablation experiments is conducted to evaluate
the network performance under different structures. Additionally, the performance improvement
brought by noise encoding has been proven in the previous part and will not be reiterated here.
This part of experiments is divided into four groups: (1) the complete structure MSCANet. (2) the
network without the deep-wise group convolution structure, referred to as “without GC”. (3) a network
without the multi-scale convolution and self-attention mechanism, referred to as “without CA”. (4) a
conventional convolutional network without the above design structures, which degenerates into the
initial deep residual network, referred to as “ResNet-initial”.

Taking the lost pulse environment as an example, the results are shown in Figure 18. It can be
observed that, except for the initial ResNet-initial, the other three networks with the designed structures
in this paper exhibit more stable recognition under different environments, and their recognition curves
show a monotonically decreasing trend, which aligns with objective cognition. In terms of accuracy
analysis, the average accuracy of the 4 structures are 96.9%, 85.0%, 84.4%, and 78.7% respectively.
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MSCANet has a significantly higher recognition capability than the other three networks. “Without

GC” has slightly higher accuracy than “without CA”. “ResNet-initial” has the lowest accuracy.
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Figure 18. Ablation experiment in lost pulse conditions. MSCANet is the network proposed in this
paper. On this basis, “without GC” means the lack of deep-wise group convolution, “without CA”
means the lack of multi-scale convolution and self-attention mechanism, “ResNet-initial” is the original
network architecture with only residual connections.

6. Discussion

In this paper, to address the problem of radar mode recognition in high-noise environments, we
proposed a dual-network cascaded model. The effectiveness of the proposed method is validated in 81
different noise environments. Our noise estimation sub-network effectively mitigates noise interference
through adaptive noise coding. With the assistance of this structure, the proposed MSCANet is more
suitable for feature extraction in radar pulse signals. This work is a further improvement compared
with the latest research[38,39] on radar working mode recognition.

Under the same signal processing approach, the deep learning models, such as ConvNet[12],
ResNet[24], AlexNet[36], and VGGNet[37], are superior to traditional machine learning classifiers, but
the transferability of the algorithms in different noise environments is poor. We observed over-fitting
on the test set through experiments. Taking VGGNet as an example, the recognition rate exhibits a
clear peak as the noise increases, indicating that the network only matches the signal data distribution
at the peak points. The addition of noise causes a single recognition model to fit the erroneous data
with superimposed noise, failing to learn the true characteristics of the signal. Therefore, although it
possesses some recognition ability, it cannot meet the practical requirements in terms of recognition
accuracy and environmental adaptability.

Deep learning models have strong feature representation capabilities, but due to the uncertainty
of noise, these models tend to exhibit varying degrees of over-fitting. Therefore, we designed a noise
estimation network to define the impact of noise on the data. We synchronized the defined noise
matrix with the pulse data as input to the recognition network, enabling the model to achieve a more
multidimensional representation. At this point, the model no longer needs to focus on the impact
of different noise environments but rather becomes more “focused” on the radar working mode
classification task. Additionally, this also indicates that a single recognition network is difficult to
simultaneously extract noise features and pulse regularity features.

In this paper, the noise estimation network and the recognition network are optimized using the
same objective function. The improvement in the performance of one network in the cascaded model
will enhance the performance of the other one, so as to establish the dependency between the noise
law and the data law, and the global optimal decision is made by the model. It can be seen from the
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comparison experiments that this method not only improves the overall accuracy of the network but
also significantly enhances the stability of recognition under different ratios of lost pulse and false
pulse.

The structures such as deep-wise group convolution, multi-scale convolution and self-attention
mechanism that we applied in MSCANet are all beneficial to radar working mode recognition. The
details of the ablation experiment are shown in Table 4. Analyzing the results, we can draw the
following conclusions: (1) the designed structures above can both improve the performance of radar
working mode recognition, mainly by mitigating the interference caused by noise. (2) Deep-wise
group convolution structure isolates the information interaction of shallow layers, making it easier
for the last convolutional layer to eliminate redundant feature maps, resulting in a similar effect to
feature selection. (3) The combination of multi-scale convolution and self-attention mechanism is more
advantageous for selecting features of different scales, facilitating the extraction of the essential laws
of radar working modes. (4) The design structures above have different emphases, and their effects
on improving recognition capability can be combined. Therefore, MSCANet achieves the highest
accuracy.

Table 4. Ablation Experimental results. “Noise Estimation” means noise estimation sub-network, “GC”
means the deep-wise group convolution, “CA” means the multi-scale convolution and self-attention

mechanism.
Model Noise Estimation GC GA  Accuracy
1 N N V4 96.9%
2 X V/ V/ 83.3%
3 V4 X N 85.0%
! YV 7 X 84.4%
5 X X X 78.7%

7. Conclusions

In significant noise environments, it is possible to know the working modes through the analysis
of radar signals. In this work, a cascade model consisting of a noise estimation network based on
U-Net and a recognition network based on MSCANet is proposed. The model employs adaptive noise
encoding to help the network adapt to harsh noise environments. Three improved network structures,
namely deep-wise group convolution, multi-scale convolution, and self-attention mechanism, are
designed to extract and classify signal features in noisy environments. Experiments show that the
proposed method improves the accuracy of conventional networks by approximately 17%. The
average accuracy under noise conditions reaches to 94.65%. Compared to baseline networks such as
AlexNet, ConvNet, ResNet, and VGGNet, the accuracy improvement ranges 5~20%. The algorithm
demonstrates better generalization and robustness. This work provides a new idea and method for the
application of passive microwave signals.

In the future, we can focus on the following two parts: (1) Through the radar signal, it can not only
identify the working modes, but also achieve aircraft type identification and fingerprint recognition.
(2) There are many types of passive microwave signals. Therefore, future research will not be limited to
radar signals. We can collect various types of radiation source signals, such as remote control signals,
communication signals, and navigation signals, to achieve richer identification.
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