
Article

Not peer-reviewed version

A Cascade Network for Pattern

Recognition Based on Radar

Signal Characteristics in Noise

Environment

Jingwei Xiong , Jifei Pan 

*

 , Mingyang Du

Posted Date: 13 July 2023

doi: 10.20944/preprints202307.0886.v1

Keywords: signal analysis; mode recognition; noise coding; deep learning; attention mechanism

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2704315
https://sciprofiles.com/profile/2812221
https://sciprofiles.com/profile/2811426


Article

A Cascade Network for Pattern Recognition Based on
Radar Signal Characteristics in Noise Environment

Jingwei Xiong 1,2,‡ , Jifei Pan 1,2,‡,* and Mingyang Du 1

1 College of Electronic Engineering, National University of Defense Technology, Hefei, 230037, China
2 Key Laboratory of Electronic Countermeasures Information Processing, National University of Defense

Technology, Hefei, 230000, China

* Correspondence: panjifei17@nudt.edu.cn

‡ These authors contributed equally to this work.

Abstract: Target recognition mainly includes three approaches: optical image-based, echo

detection-based, and passive signal analysis-based methods. Among them, the passive signal-based

method is closely integrated with practical applications due to its strong environmental adaptability.

Based on passive radar signal analysis, we design an “end-to-end” model that cascades a noise

estimation network with a recognition network to identify working modes in noise environment.

The noise estimation network is implemented based on U-Net, which adopts a method of feature

extraction and reconstruction to adaptively estimate the noise mapping level of the sample, which

can help the recognition network to reduce noise interference. Focusing on the characteristics of

radar signal, the recognition network is realized based on Multi-Scale Convolutional Attention

Network (MSCANet). Firstly, the deep group convolution is used to isolate the channel interaction in

the shallow network. Then, through the multi-scale convolution module, finer-grained features of

the signal are extracted without increasing the complexity of the model. Finally, the self-attention

mechanism is used to suppress the influence of low-correlation and negative-correlation channels

and spaces. This method overcomes the problem that the conventional method is seriously disturbed

by noise. We validated the proposed method in 81 kinds of noise environments, achieving an average

accuracy of 94.65%. Additionally, we discussed the performance of six machine learning algorithms

and four deep learning algorithms. Compared to these methods, proposed MSCANet achieved an

accuracy improvement of approximately 17%. Our method demonstrates better generalization and

robustness.

Keywords: signal analysis; mode recognition; noise coding; deep learning; attention mechanism

1. Introduction

Through active or passive radiation such as light waves and microwaves, target recognition can

be achieved. And radar is a necessary electronic device for most aerial targets. With the development

of radar technology, airborne radar has possessed multiple capabilities such as aerial reconnaissance,

target imaging, and firepower strike. Radar working mode is a manifestation of its function. Radar

Mode Identification (RMI) refers to the process of obtaining radar style and parameters from unknown

electronic signals to analyze radar functions. As far as we know, people tend to pay more attention

to the optical features and echo characteristics of the target, ignoring the passive microwave signal

[1,2]. However, it should be noted that compared to optical and echo features, passive radar signals

have three advantages [3–5]: (1) signal reception is passive and has stronger stealth characteristics. (2)

Radar signals are less affected by inclement weather such as rain, snow, and fog, making the signal

more stable. (3) Radar signals can not only reflect the corresponding platform information, but also

analyze the radar working mode to know the target’s intention. Therefore, this paper focuses on the

passive radar signals to achieve recognizing working modes, which can help to quickly identify the

target’s threats and direct decision making. Its application scenario is shown in Figure 1.
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Figure 1. Working mode recognition from the perspective of passive radar signal. The aircraft must

employ corresponding radar working modes when conducting tasks such as air reconnaissance, ground

strikes, sea search, and SAR imaging. The passive electronic receiver can intercept and process the

signals, thereby analyzing the target’s intentions.

Nowadays, background signals are constantly increasing, and the impact of noise on signal

processing is becoming more severe. In recent studies of working mode recognition [6–8], the scenarios

with stable environments and small parameter ranges are mainly taking into account, but noise effects

are not fully considered. It is well known that noise has a significant impact on signals, especially

for airborne radar. Strong noise can cause the loss and errors of pulses, directly changing the pulse

repetition frequency and leading to identification errors. Under high signal-to-noise ratio conditions,

the signals are clear and the differences between working modes are apparent. A conventional

deep learning network is capable of effectively extracting features for classification. Under low

signal-to-noise ratio conditions, the following three challenges must be faced:

• Due to the uncertainty of scenarios, radar pulses may originate from different noise environments

or different radars, and their parameter ranges are beyond the scope of “training data”, belonging

to “unknown signals”. This seriously interferes with machine learning algorithms that are purely

data-driven.
• As the signal-to-noise ratio decreases, a large amount of redundant or erroneous information will

be mixed in the received radar pulses, resulting in wrong parameters. At this point, the effective

parameters cannot be determined, and originally traceable signals become chaotic.
• Defective radar signals differ from images in that the encoding and modulation styles of the

signals are more diverse. The two types of inputs exhibit significant differences in terms of

characteristics such as size, location, and shape. Noise has a more pronounced impact on signals,

and conventional deep learning networks for computer vision are challenging to effectively

process these differences. The comparison of the signal in a significant noise environment is

shown in Figure 2. It can be seen that the radar pulse pattern is difficult to distinguish under

noise.
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(a) Original signal (b) Noisy environment

Figure 2. Comparison of the signal in a noisy environment. (a) and (b) show six pulse modulation

styles in ideal and noisy environments respectively.

In this context, a dual-network cascaded model based on latent-space noise encoding is proposed

in this paper to address the aforementioned challenges. The main contributions of this paper are as

follows:

1. We employ a cascaded learning approach with a noise estimation network and a recognition

network, enhancing the algorithm’s adaptability in strong noise environments.
2. A noise estimation network based on U-Net is designed, which utilizes a symmetrical structure

of up-sampling and down-sampling to extract and reconstruct noise features. The network

achieves adaptive noise mapping relationships in different channel and spatial area.
3. The MSCANet, which is to address the characteristics of radar pulse signals, is presented. The

network is augmented with both deep-wise group convolution, multi-scale convolution, and

self-attention mechanisms, which serve to improve the network’s feature extraction capabilities

and make the model more lightweight.

The rest of this paper is arranged as follows. Firstly, we review the relevant work in the

field of radar working mode recognition in Section 2. In Section 3, the proposed algorithm is

introduced with regard to various aspects, including noise encoding in latent space, group convolution

method, multi-scale convolutional modules, and self-attention mechanism. Section 4 reports data

sets, experimental designs, and experimental results to evaluate and compare the performance of the

proposed algorithm with other recognition technologies. Section 5 concludes this paper.

2. Related Work

Radar signal recognition can be mainly classified into traditional expert knowledge-driven

algorithms and data-driven algorithms represented by machine learning. With the diversification

of radar systems and the complexity of electromagnetic space, traditional methods are gradually

becoming ineffective, while data-driven algorithms have taken the lead in this field.

Data-driven methods optimize the known model by learning a large amount of data to achieve

classification and recognition. In recent years, algorithms represented by deep learning have been

widely used in computer vision, natural language processing and other fields. Convolutional Neural

Network (CNN) [9], Recurrent Neural Network (RNN) [10] and self-attention mechanism [11] are

three deep learning representative structures that each have advantages in radar signal recognition.

Convolutional neural networks can extract the potential information of signals through feature mining,

recurrent networks can preserve the semantic relationships, and self-attentive mechanisms are more

advantageous in signal restoration.In practical scenarios, deep learning algorithms are usually limited

by the following four aspects:
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• Recognition of unknown signals. [12,13] propose a comprehensive recognition approach based

on both traditional classifiers and deep learning networks. By utilizing the classifier to assist

in network training, the central vectors of known data are deduced and thus the feasibility of

recognizing unknown signals through known ones is verified.
• Few-shot learning problem. [14,15] explore the model training methods under the condition of

few-shot learning respectively by using the generated adversarial network and the auto-encoder

embedded with the feature extraction module, solving the problem of training data shortage.
• Interpret-ability of recognition. The problem is a challenging research issue in various fields.

From the perspective of integrating knowledge-driven and data-driven approaches, [16,17] have

defined the feature representation of radar signals in deep learning networks, and have achieved

embedded knowledge through prior knowledge assistance in network training.
• Low Signal-to-Noise Ratio (SNR) condition. SNR is a critical factor in the field of signal processing

[18], which must be considered. Reference [19] utilizes the characteristics of residual networks

and adopts the naive method of deepening the network to improve recognition performance

under low SNR, with no further improvement possible after network saturation. [20] employs

a fusion of CNN and Long Short-Term Memory (LSTM) network to retain signal features and

semantic relationships, but this method only focuses on short-term temporal dependencies and

cannot extract global information. Literature [21] proposes a lightweight combinational neural

network, which uses two networks for pre-recognition and fine recognition. SEBlock attention

module is embedded in the network to suppress noise interference. This method is suitable for

multi-label classification tasks.

We specifically focused on the challenges posed by low SNR environments in radiation source

identification. Based on the aforementioned research, the main difficulty lies in extracting radar signal

features in noisy environments. The above algorithms are essentially searching for differences among

data, without considering the characteristics of radar signals. In other words, they are general methods

in different fields, so their performance are significantly compromised when data is affected by noise.

Therefore, we propose a cascade network focusing on the characteristics of pulse signals in noisy

environment. Among them, the noise encoding sub-network is built on the basis of U-Net. It is a

classic network used for semantic segmentation in image processing, which has advantages in feature

extraction and reconstruction due to its symmetric structure of up-sampling and down-sampling

[22,23]. The recognition sub-network is an original design based on the characteristics of radar signals.

3. Radar Signal Detection in Noisy Environment

To find an appropriate method for measuring noise, the step is to establish a receive signal model

under the noisy environment.As a passive receiver, it is impossible to know the signal processing

method of the target.Therefore, a general representation of the received signal with added noise is as

follows:

vI (t) = A + nI (t) = r (t) cos ϕ (t) (1)

vQ (t) = nQ (t) = r (t) sin ϕ (t) (2)

where nI (t) and nQ (t) are in-phase and quadrature components of the noise and have the same

variance ψ2. A is the echo amplitude. The probability density functions for r (t) and ϕ (t) represent the

modulus and phase of signal v (t), respectively. Their joint probability density function is expressed as:

f (r, ϕ) = f
(

nI , nQ

)
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with

f
(

nI , nQ

)

=
1

2πψ2
exp

(

−
n2

I + n2
Q

2ψ2

)

=
1

2πψ2
exp

(

− (r cos ϕ − A)2 + (r sin ϕ)2

2ψ2

)

(4)

Therefore, the probability density function of the modulus r alone can be expressed as:

f (r) =
∫ 2π

0
f (r, ϕ)dϕ =

r

ψ2
I0

(

Ar

ψ2

)

exp

(

− r2 + A2

2ψ2

)

(5)

where I0 (·) is the modified zero-order Bessel function.

The target is detected when the modulus of the signal exceeds the threshold voltage VT .

Considering the relationship between VT and false alarm probability Pf , that is, VT =
√

2ψ2 ln 1/Pf .

The detection probability Pd can be written as:

Pd =
∫ ∞

√
2ψ2 ln 1/Pf

r

ψ2
I0

(

Ar

ψ2

)

exp

(

− r2 + A2

2ψ2

)

dr (6)

When the noise is Gaussian distribution and Pd is much larger than Pf , A, r and ψ in formula (6)

are replaced by the signal-to-noise ratio (SNR), the formula can be approximated as follows:

Pd = 0.5 × er f c
(√

− ln Pf −
√

SNR + 0.5
)

(7)

with complementary error function er f c (·) is:

er f c (x) = 1 − 2√
π

∫ x

0
e−y2

dy (8)

In summary, we can know that there will always be some loss or error radar pulse in noisy

environment. The relationship between detection probability and SNR is shown in Figure 3.

Figure 3. The relationship between detection probability and SNR. The curve from left to right

represents the decreasing probability of false alarms.

Through the changing pattern of radar pulse, we can analyze the radar working modes. But due

to the interference of noise and the influence of hardware factors, radar pulse will have some deviation,

error and loss. Equation (7) shows that the detection probability, false alarm probability, and SNR are

related. As the SNR decreases, the pulse distortion becomes more severe, and the probabilities of false

alarm and missed detection increase. Therefore, for convenience of expression, we convert the impact

of SNR on radar full pulses into lost pulses and false pulses, as shown in Figure 4.
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Figure 4. The influence of noise on radar pulse. Lost pulses refer to pulses that are submerged in noise

and do not reach the detection threshold. False pulses refer to pulses in which noise is erroneously

detected as radar signals. Measurement error refers to the parameter drift generated compared with

true pulses.

4. Algorithm Model and Implementation

4.1. Dual-Network Cascade Model

In this section, We designed an “end-to-end” recognition model with a dual-network cascade to

address the problem of pulse pattern distortion in noisy environments. The model takes the full-pulse

signal from the radar as input and outputs the mode recognition result.

In radar signal processing, the receiver can observe the received signal from multiple dimensions,

such as radio frequency (RF), intermediate frequency (IF), base band, and full-pulse. Furthermore,

according to the Fourier transform principle, feature extraction can be performed simultaneously

from temporal and spectral domains. For example, in reference [24], the signal is transformed into

a spectrogram, resulting in continuity on the feature map, greatly enhancing the effectiveness of

convolutional layers. However, it should be noted that mode recognition relies more on the full-pulse

data, which has more pronounced discreteness and weaker global self-correlation. As a result, noise

more significantly disrupts the inherent pattern of the data, making conventional convolutional

networks difficult to apply.

Therefore, we design the model into two parts. The first part is a noise estimation sub-network

based on U-Net, which encodes the noise by down-sampling and up-sampling, and is used to

adaptively estimate the sample’s noise level. The second part is a radar working mode recognition

sub-network based on a multi-scale convolutional attention network, called MSCANet. It is trained

using both the radar full pulse and noise coding information. The general diagram of the proposed

scheme is shown in Figure 5.

Full radar pulse

PDW

PDW

PDW
Noise coding matrix

MSCANet

U-Net

Working mode Output

Loss

···

PDW

Loss

Recognition network

Noise estimation network

Receiver

Figure 5. The architecture of the proposed scheme.
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Regarding to the optimization of networks, we adopt a cascaded approach to jointly train the

noise estimation network and the classification recognition network to convergence, ensuring that both

two networks are optimized for accurate identification of working mode in noisy environments. At

this point, the objective function of cascaded training can be defined as the classification loss function:

Lc = − 1

N

N

∑
i=1

[yi ln ŷi + (1 − yi) ln (1 − ŷi)] +
γ

2m
∑l∑k∑jW

(l)2
k,j (9)

where yi represents the real label of N radar pulse samples within a batch size, ŷi represents the

prediction label. The second term of the formula is the regularization of the model, which is used

to reduce the over-fitting phenomenon , the regularization coefficient γ is set to 0.001, and W
(l)2
k,j

represents the jth convolution kernel corresponding to the kth feature map in the lth layer.

4.2. Noise Estimation Network Based on U-Net

Due to the uncertainty of noise environment, different signals are affected by noise to different

extents. This irregular fluctuation is detrimental to recognition networks, therefore, a measure that can

assess the level of signal noise is needed to help recognition networks filter out noise more effectively.

In 2018, [25] firstly introduced the concept of noise level mapping into computer vision, and proposed

FFDNet to help CNN complete image denoising and recognition. However, when the noise level of the

evaluation is wrong, it will have a more adverse effect on the subsequent signal recognition. Therefore,

in 2022, Du proposed a signal denoising classification network DNCNet [18] from the point of view of

signals. The algorithm pre-positioned a 5-layer convolutional network to quantize the noise level, and

then carried out denoising and identification. This method has better dynamic evaluation ability to

noise.

On the basis of the above research, we design a sub-network of hidden space noise coding, which

needs to meet the following requirements:

• Each channel in radar full pulse is affected by noise to different degrees, so it is necessary to

evaluate the noise separately.
• The effect function of noise on discrete radar pulse can be defined as an indicative function rather

than a continuous function, so the whole sequence cannot be evaluated by a continuous mapping

relationship.
• The purpose of noise evaluation is to help classification network to recognize working mode

rather than to obtain certain information. The output noise coding sequence should match the

input.

Based on the above requirements, we adopt U-Net structure, whose symmetrical down-sampling

and up-sampling structure can ensure that the output noise code is consistent with the input size. And

the coding point corresponds to the channel and time series in the pulse sequence. The process of

sub-sampling can be regarded as the extraction of noise features, which consists of convolution and

pooling. The up-sampling process is to restore the original size according to the noise characteristics,

which is realized by convolution and deconvolution. This progressive reduction structure can extract

and recover information by gradually increasing the receptive field of the network, and it is easier

to grasp the noise features at different scales. The proposed noise estimation network is shown in

Figure 6.
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Figure 6. Noise estimation network based on U-Net.

In detail, the input to the network is radar full pulses. The main structure consists of 16

convolutional layers, 2 deconvolution layers and 2 average pooling layers. In order to preserve

the independence of each channel during sampling, the network adopts one-dimensional convolution,

pooling and deconvolution, the kernel size is set to 3×1, the number of kernel is 64, 128 and 256 in

a progressive order. The ReLU function is used as activation function to correct the gradient. The

change of the the feature map size is realized by the Pooling layer and the deconvolution layer. And

the cascade pooling is adopted during down-sampling, that is, the pooling size is greater than the step

size, which can keep information interaction between adjacent data. The output of the network is a

noise coding matrix with the same size as input, which can be used for adaptive evaluation of the

sample noise level greatly.

4.3. Recognition Network Based on MSCANet

According to the characteristics of radar pulse and the influence of noise, we design the following

network structures in MSCANet. (1) Depth-wise group convolution. Independent convolution kernels

are used for each channel in the shallow network. (2) Multi-scale 1-D convolution. The multi-scale

features of radar pulses are extracted by convolution kernel of multiple parallel mutual primes. (3)

Channel attention module (CAM) and spatial attention module (SAM). Adaptive weights of channels

and spatial regions are implemented, enabling the network to focus on high-impact features. The

structure of MSCANet is illustrated in Figure 7.
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Figure 7. Recognition network based on MSCANet. The network mainly consists of 5 parallel deep

convolution modules and self-attention modules, which both adopt multi-scale convolutional units.

Each convolutional unit contains 6 multi-scale convolution layers. The convolution layers are composed

of 4 mutually prime convolution kernels, in combination with Batch Normalization layers and ReLU

activation functions.

The network also employs global average pooling to replace fully connected layers and adopts

residual structures to establish shortcut connections between modules. Deeper networks are more

efficient in extracting features, while the above structures help alleviate over-fitting in deep networks.

4.3.1. Depth-Wise Group Convolution

Radar pulse data is a set of discrete parameters on a time series, with no reliable correlations

between channels. However, conventional convolution combines the feature maps of these channels,

which is inefficient for extracting features from full-pulse data and results in substantial computational

waste. Therefore, we adopt depth-wise group convolution to realize feature extraction.

Group convolution was firstly applied in AlexNet to solve the problem that a single GPU could

not support simultaneous computation on feature maps. Therefore, designers split the channels

and compute them separately on separate GPUs. Subsequently, with the prevalence of lightweight

networks, reference [26] combined group convolution with ResNet to propose the ResNeXt network.

In comparison to contemporaneous networks such as Inception v4 and Inception-ResNet v2, the

proposed model exhibits simpler and more lightweight architecture at equivalent recognition accuracy

on the ImageNet dataset.

Using the same idea, we divide the pulse data into 5 groups, each group contains a dimension and

the corresponding noise coding vector. Independent convolution kernel is used for feature extraction

among the groups to ensure the independence of each channel in the shallow network. Channel

concatenation is performed before the last convolution layer to preserve the correlation between

channels. The specific structure is shown in Figure 8.

The advantage of depth-wise group convolution lies in not only isolating information interaction

between different groups, but also reducing computational complexity and parameter quantity to 1/5

comparing with conventional convolution. This makes the network more lightweight and faster.
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Figure 8. The structure of depth-wise group convolution. A dimension of full pulses is programmed

into a group with its corresponding noise coding vector. After passing through the shallow network, it

is spliced by groups.

Taking 1-D convolution as an example in this paper, let Cin and Cout represent input and output

channel number respectively, K is the size of kernel, the computational complexity of kernel at a point

for conventional convolution O1 can be expressed as:

O1 = Cin ×
[

K2 +
(

K2 − 1
)]

+ 1 = Cin ×
(

2K2 − 1
)

+ 1 (10)

then, the computational complexity of the entire convolutional layer is:

Oc = Cout × (O1 × Sout) = Cout ×
[

Cin ×
(

2K2 − 1
)

+ 1
]

× Sout (11)

where Sout is the size of the output feature map. In the same way, the number of parameters for the

convolution layer Pc can be written as:

Pc = Cout × (Cin × K + 1) (12)

When using depth-wise group convolution, assuming that the input feature map is split into g

groups, the corresponding input and output feature map channels are reduced to 1/g. Due to parallel

calculations of g groups, this reduction is canceled out. However, corresponding to the change in

the number of channels in the feature map, the number of channels in the convolution kernel also

decreases to Cin/g. Therefore, the computational complexity Og and the number of parameters Pg are

expressed as:

Og = Cout ×
[

Cin

g
×
(

2K2 − 1
)

+ 1

]

× Sout (13)

Pg = Cout ×
(

Cin

g
× K + 1

)

(14)

It is not difficult to see that the computational complexity and the number of parameters are

reduced to 1/g approximately comparing to conventional convolution, which proves the advantage of

deep-wise group convolution.

4.3.2. Multi-Scale 1-D Convolution

In convolution layer, using kernels of the same size will compute the same region in the feature

map. The difference between the kernels lies in their kernel parameters, but their receptive fields are

the same. This is not conducive to adapting to pulse patterns under uncertain noise. Inspired by the

application of short-time Fourier transform (STFT) with different window functions [27,28], we use

parallel multi-scale convolution kernel instead of conventional one. By using the parallel computation
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of multi-scale convolutional kernels, the network has different “perspectives”, so it can extract more

scale signal features when the number of convolutional kernel is the same. This idea is also reflected

in the Inception network for image recognition [29]. Figure 9 shows the structure of the multi-scale

convolution module.

4 different 
kernel sizes

Feature map

F=(h,w,c)

O
u
tp

u
t 

featu
re m

ap

V1

Conv

1*1

V2

3*1

V3

8*1

V4

17*1

F *V1

F *V2

F *V3

F *V4

Concat

Figure 9. The structure of the multi-scale convolution module.

In addition to using 1x1 convolutions to preserve the original feature map scale, the module

adopts three types of 1-D convolution kernels with sizes of 3x1, 8x1, and 17x1 that are mutually

prime. This design more efficiently extracts fine-grained features of the original signal. Different-scale

convolution kernels are equivalent to mapping feature values at different window sizes. So the

mapping z
xy
ij of the ith layer and jth feature map at location (x, y) can be expressed as:

z
xy
ij = f

(

K

∑
k=1

Hm−1

∑
h

Wm−1

∑
w

ωhw
ijk z

(x+h)(y+w)
(i−1)k

+ bij

)

(15)

where K is the number of feature maps at i − 1 layer, Hm × Wm is the size of the convolution kernel,

ωhw
ijk is the convolution kernel parameter matrix connected to the kth feature map at i − 1 layer, bij is

the bias, and f (·) is the ReLU activation function. Write the matrix of z
xy
ij as F, then the output feature

map is:

F′ = Concat (F ∗ V1, F ∗ V2, F ∗ V3, F ∗ V4) (16)

where Concat is a operation of channel concatenation. Different from the pyramid-type feature maps

obtained by conventional convolution, multi-scale convolution can obtain more receptive fields of

different sizes and have richer feature levels.

4.3.3. Self-Attention Mechanism

The influence of different parameters and regions on the operating modes in radar pulses varies

greatly, but convolution is local and indiscriminate. Therefore, it is necessary to adopt different selection

strategies. In order to extract signal features with emphasis and preserve semantic relationships, we

introduce channel self-attention module (CAM) and spatial self-attention module (SAM) to achieve

adaptive weight allocation, enabling the network to pay more attention to valuable channels and

regions [30].

The structure of CAM is shown in Figure 10. Firstly, parallel maximum pooling and average

pooling are utilized to compress the feature maps along the spatial dimensions, yielding channel-wise

vectors and resulting in two 1 × 1 × C feature maps, where C represents the number of channels, H

and W represent the height and width of the feature map respectively. Then, the obtained feature maps

are input into a shared two-layer perceptron, with a ReLU activation function in between, and the

number of neurons in the second layer equal to the number of output channels, which enhances the
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trainability of CAM. Finally, an element-wise operation is applied to the two kinds of pooling graphs,

and the output feature map Mc is written as:

Feature map F

H×W×C

Global maximum 
pooling

Global Average 
Pooling Shared MLP

Sigmoid

CAM feature map
Mc

MaxPool map

AvgPool map

Element-wise

Figure 10. The structure of channel self-attention module.

Mc (F) = f
(

W0 ⊗ W1 ⊗ Fc
avg + W0 ⊗ W1 ⊗ Fc

max

)

(17)

where f (·) is sigmoid activation function, W0 and W1 are the weight vectors of the two-layer shared

perceptron, ⊗ is Kronecker product. Fc
avg and Fc

max represent global average pooling and global

maximum pooling, respectively. The two pooling operations ensure that the model generates feedback

on global region and maximum region of the feature map, so the performance is better than that of

SENet [31] using only average pooling.

The structure of SAM module is shown in Figure 11. SAM is calculated on the basis of CAM,

the module compresses the channel information and retains the attention to the spatial information.

Firstly, global average pooling and global maximum pooling based on channel dimension are used

to calculate feature maps. After it is splicing into H × W × 2 feature maps, the average pooling and

maximum pooling information are extracted by 3×1 convolution, and the feature maps are reduced to

1 dimension again. The expression for Ms is as follows:

CAM output feature map 
F

H×W×C

Channel concat
[Max pooling，Average pooling]

3×3 Conv layer

Sigmoid

SAM feature map
Ms

Figure 11. The structure of spatial self-attention module.

Ms (F) = f
(

Conv3
1D

[

Fs
avg , Fs

max

])

(18)

Where Conv3
1D is 1-D convolution of 3×1, Fs

avg and Fs
max represent global average pooling and global

maximum pooling, respectively.

What’s more, multi-scale convolution is used to obtain more multivariate feature maps, which

better improves the performance of the self-attention mechanism. The CAM enables the network to

focus on more efficient feature maps in multi-scale convolution, such as local information of modulation

laws. The SAM can filter out the information redundancy or error area caused by interference at

different sizes. All these can help the network to improve the recognition performance under significant

noise environment.
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5. Experiments and Results

In this section, the effectiveness of the proposed algorithm in significant noise environment is

demonstrated through simulation experiments, which include four parts:

• Considering different application scenarios, 10 kinds of typical radar working modes that have

appeared are constructed for the demonstration of subsequent experiments.
• The performance of traditional machine learning algorithms and deep learning algorithms

is tested to prove the limitations of conventional artificial intelligence algorithms in noisy

environments.
• By introducing noise estimation sub-network, the performance of single classification model and

dual-network cascade model is compared.
• The performance of the proposed MSCANet network is compared with that of the classical deep

learning network, and the influence of noise environment on radar working mode is analyzed.

5.1. Dataset

Due to the confidentiality of radar parameters, there is no available public data set at present.

Therefore, on the basis of public literature [32–34] and referring to authoritative books such as Radar

Manual, Airborne Radar Manual and Pulse Doppler Radar, we simulated and constructed radar full

pulse data sets, namely RPDWS-I, which covers the typical modes of reconnaissance, search, tracking,

moving target indication, SAR.

The dataset includes the following 10 kinds of radar working modes: Velocity Search (VS), Range

While Search (RWS), Velocity-Range Search (VRS), Multiple-Target Tracking (MTT), Beam Riding (BR),

Ground Moving Target Indication (GMTI), Ground Moving Target Tracking (GMTT), Sea Surface

Search (SSS), Sea Surface Tracking (SST), Synthetic Aperture Radar (SAR). The training set includes

4,000 samples for each model. The test set has a total of 81 test environments, the range of miss pulse

and false pulse is set to 0∼80%, the interval is 10%, 1000 samples for each environment. In order to

present the experimental results succinctly and clearly, the baseline algorithm only tests the model

performance under 0∼50% lost pulse and false pulse environments, the proposed algorithm is tested

under all environments. The signal parameters in the data set are shown in Table 1, and the following

parameter range and modulation style are confirmed in [35].

Table 1. RPDWS-I data set. Each working mode sample is random within the given range to simulate

uncertain radar parameters.

Working mode PRI(us) PW(us) Duty ratio(%) Pulse num in CPI Bandwidth(MHz) Modulation

VS 3.3∼10 1∼3 10∼30 500∼2000 0.3∼10 Consatnt
RWS 3.3∼10 1∼3 10∼30 500∼2000 0.3∼10 D & S
VRS 50∼165 1∼20 1∼25 30∼256 1∼10 Constant, D & S
MTT 3.3∼125 0.1∼20 0.1∼25 1∼64 1∼50 Stagger, Sliding
BR 3.3∼125 0.1∼20 0.1∼25 1∼64 1∼50 Wobbulated

GMTI 120∼500 2∼60 0.1∼25 20∼256 0.5∼15 Stagger
GMTT 62∼160 2∼40 0.1∼25 20∼256 0.5∼15 Stagger

SSS 1000∼2000 1∼200 0.1∼10 1∼8 0.2∼500 Stagger
SST 500∼1000 1∼200 0.1∼20 20∼256 0.2∼10 Stagger
SAR 100∼1000 3∼60 1∼25 70∼20000 10∼500 Constant

5.2. Performance of Conventional Artificial Intelligence Algorithms

Conventional artificial intelligence algorithms learn radar signal features in noisy environment

by using noisy samples. Therefore, we randomly select 20% of the samples in the training set, and

successively add 10∼30% ratio of the lost and false pulses as data enhancement measures to help the

classifier extract data features in a noisy environment.

5.2.1. Traditional Machine Learning Algorithms

We selected 6 kinds of widely used machine learning classifiers for validation, as follows:
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Linear support vector machine (SVM). The classifier uses linear kernel as a mapping function,

which has the best effect in linearly separable data sets. However, the radar full pulse feature is

high-dimensional data and linear indivisible, which cannot meet the requirements. Therefore, the

model should have a certain tolerance for misclassification, the penalty factor C is set at 0.025.

Radial basis function (RBF) SVM. The classifier uses Gaussian kernel as a mapping function,

which is suitable for high-dimensional and linearly inseparable full pulse features. Therefore, the focus

of the research is to improve the recognition accuracy and avoid wrong classification, the standard

deviation of the kernel parameter σ = 0.01, and the penalty factor C = 1.

Decision tree. In the algorithm, the data is divided by splitting the data set down into smaller,

the number of splits being the depth of the decision tree. In this paper, Gini coefficient is used as the

decision condition for dividing node data set. “Node” contains at least two samples, “leaf” contains at

least one sample, and the maximum depth is 5.

Random forest. The algorithm is based on Bagging ensemble learning method, which divides the

data set into multiple random subsets, trains on multiple base models, and finally gets the classification

result by “voting”. Therefore, the algorithm can better eliminate the bias of a single model and prevent

overfitting. In the algorithm, the base model is the Decision Tree classifier mentioned above, and the

number of base models is 100.

Multi-layer perceptron (MLP). As an early neural network, MLP is mainly composed of fully

connected layers. The maximum number of neurons in this paper is set at 1000.

Naive Bayes. Based on Bayes’ theorem, the posterior probability of classification is obtained by

calculating prior probability, marginal likelihood estimation and likelihood estimation. The algorithm

does not need to perform iterative calculation and has no preset parameters, which is suitable for large

data sets.

According to the above parameter settings, the performance of the classifiers is tested under

different proportions of lost and false pulses. The results are shown in Figure 12. The gray dashed line

represents the invalid recognition line. The average accuracy of six classifiers, including Linear SVM,

RBF SVM, Decision Tree, Random Forest, MLP, and Naive Bayes, in identifying radar operating modes

in a 0∼50% lost pulse environment are 77.2%, 77.3%, 78.4%, 78.9%, 74.5%, and 71.2%, respectively.

In a 0∼50% false pulse environment, the average accuracy is 72.2%, 75.3%, 82.8%, 82.6%, 73.1%, and

69.6%, respectively. When the interference pulse ratio is below 30%, the recognition accuracy of the

aforementioned classifiers remains relatively stable, but it significantly declines after exceeding 30%.
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Figure 12. Recognition performance of traditional machine learning classifiers. (a) under the condition

of lost pulse, (b) under the condition of false pulse.

The results show that: (1) the overall recognition accuracy of the classifiers is not high, and the

representation ability of traditional machine learning classifiers is not enough to support the extraction

of radar features. (2) There is little difference in recognition ability between the two environments,
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and the classifier cannot take specific anti-interference measures for different environments. (3) The

classifier relies heavily on the data distribution of the training set, and the recognition performance

deteriorates significantly after it exceeds the range.

5.2.2. Conventional Deep Learning Algorithms

We selected 4 kinds of classic convolutional networks for testing, which have won championships

in the ILSVRC competition and have been successfully applied in the field of radiation source

identification. These models are ConvNet[12], ResNet[24], AlexNet[36], and VGGNet[37]. Among

them, ResNet adopts the same basic structure as MSCANet, and the structures of ConvNet, AlexNet,

and VGGNet are shown in Figure 13. To adapt to the radar pulse dataset, all convolution and pooling

operations in the above networks are adjusted to 1-D. The networks use the Adam optimizer, and

the learning rate decreases from 10−2 to 10−4 every 40 epochs. The batch size is set to 256, and each

training consists of 160 epochs. The networks are regularized by L2 regularization with value of 10−4.
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Figure 13. The structures of conventional deep learning networks.

We conducted experiments in the same environment to test the deep learning algorithms. The

accuracy of the four algorithms on the training set is shown in Table 2, all of which are above 90%.

However, the performance of the networks on the test set is unstable, as shown in Figure 14.
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Table 2. Accuracy of deep learning networks in training set.

AlexNet ConvNet-18 ResNet-18 VGGNet

96.9% 90.7% 90.5% 99.7%

0 5 10 15 20 25 30 35 40 45 50 55

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

Lost pulse ratio (%)

 AlexNet

 ConvNet-18

 ResNet-18

 VGGNet

(a) Lost pulse condition

0 5 10 15 20 25 30 35 40 45 50 55

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy

False pulse ratio (%)

 AlexNet

 ConvNet-18

 ResNet-18

 VGGNet

(b) False pulse condition

Figure 14. Accuracy of deep learning networks in test set. (a) under the condition of lost pulse, (b)

under the condition of false pulse.

It can be observed that AlexNet and ResNet-18 have better overall accuracy than ConvNet-18

and VGGNet, but they are still lower than the accuracy on the training set. All four networks exhibit

a certain degree of overfitting. Although ConvNet-18 and VGGNet have deeper network structures

compared to AlexNet, they lack effective measures to alleviate overfitting, resulting in worse test

results. Deeper network structures can make the output closer to the training set, but it may not

be effective for the test set. Although ResNet-18 also adopts a deep network structure, its residual

connections help the network alleviate the overfitting problem.

A more concerning phenomenon is that the test accuracy of the four networks does not

monotonically decrease but instead exhibits “peaks” at different positions. Due to the interference

pulse ratio added in the training data ranging from 10% to 30%, when the test data has a similar

distribution to the training data, the accuracy is relatively high, but the recognition ability declines

in an ideal environment without interference. This means that the above four networks have not

“learned” the true characteristics of radar working mode, but instead fitted the data distribution in the

training set.

5.3. The Performance of Proposed Noise Estimation Sub-network

In order to verify the performance improvement brought by adaptive noise coding, we first

introduce noise estimation sub-networks in different noise environments for testing. The model which

combines the noise estimation sub-network and classification recognition network is called “cascade

model”, and the single recognition network is denoted as “independent model”. This part of the

experiment compares the recognition accuracy of the two kinds of models. The baseline models consist

of ConvNet-18, AlexNet, VGGNet, and ResNet-18, which are mentioned above. To match the noise

estimation sub-network, the cascaded models all adopt deep-wise group convolution.

The results are shown in Figure 15. Compared with the independent model, the average

recognition accuracy of the cascade models are improved by 10∼30%. And the fluctuation of

recognition accuracy in different test environments is further reduced. The more noise affected

the model, the more recognition rate improved after the introduction of noise estimation sub-network.

This fully demonstrates that adaptive noise estimation can help recognition models to reduce noise

interference.
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Figure 15. Performance comparison between independent model and cascade model. The networks

are tested in the environment of lost pulse and false pulse respectively. The dashed boxes in the figure

represent the improvement in accuracy of the cascaded models compared to the independent models.

5.4. The Performance of Proposed MSCANet

5.4.1. MSCANet Recognition Performance

To demonstrate the recognition performance of MSCANet in complex environments, this part of

experiment extends the ratio of lost pulse and false pulse to 0∼80%. The three-dimensional surface of

recognition accuracy is shown in Figure 16.
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Figure 16. MSCANet test accuracy surfaces in different environments. A total of 81 experimental

environments are included in the figure, with x and y axes representing lost pulse and false pulse

respectively, and z axes representing recognition accuracy.

Under different ratios of missed pulses and false pulses, MSCANet achieves an average

recognition rate of 94.65%, and the surface of test accuracy is relatively flat, indicating stable recognition

capability. In an ideal environment, the network achieves the highest recognition accuracy of 98.46%,

which indicates that the network truly extracts recognition features from radar pulse patterns. It

should be noted that the model is not immune to the interference of error terms, but in comparison to

the baseline network, MSCANet demonstrates stronger anti-interference capabilities.

To validate the performance improvement of the proposed MSCANet, Table 3 provides a

comparison of different networks under conditions of lost pulses and false pulses. It can be observed

that: (1) MSCANet achieves an average accuracy improvement of 5% to 20% compared to other

networks; (2) Except for AlexNet and MSCANet performing similarly under 40% and 50% false

pulse conditions, MSCANet exhibits the best recognition performance in other environments. (3)

MSCANet overcomes the issue of model overfitting, and the recognition accuracy decreases slowly as

the environment deteriorates.

Table 3. Recognition accuracy of several networks in different environments.

Model
Lost pulse ratio (%) False pulse ratio (%) Process

time (s)
Model

capacity
0 10 20 30 40 50 0 10 20 30 40 50

AlexNet 70.4 70.3 76.4 81.5 88.1 90.2 70.9 83.6 90.7 93.2 95.0 93.6 2.42 520K
ConvNet-18 65.2 73.5 76.6 82.8 92.1 88.3 65.2 66.8 71.3 77.3 86.9 86.1 11.46 954K
ResNet-18 79.1 84.2 87.7 89.3 89.4 87.5 79.1 85.6 90.3 90.2 88.4 86.1 11.93 1110K
VGGNet 68.0 92.3 88.7 82.8 81.7 80.1 68.1 89.2 88.2 86.9 84.7 80.3 9.15 1680K

MSCANet 98.4 97.8 97.5 97.1 96.2 94.3 98.4 97.8 97.1 95.4 93.7 92.1 14.50 849K

To visually demonstrate the feature extraction capability of the network, the output feature

maps of the last convolutional layer in the pre-trained AlexNet, VGGNet, ResNet-18, and MSCANet

models, are extracted for the same test samples. Principal Component Analysis (PCA) is used for

dimensionality reduction and visualization, and the results are shown in Figure 17.
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(a) AlexNet (b) VGGNet

(c) ResNet-18 (d) MSCANet

Figure 17. Dimensionality reduction visualization of output features for different models. The points

of different colors in the figure represent the 10 different working modes in the sample set. The stronger

the clustering of points of the same type and the farther the distance between points of different types,

the better the classification performance of the model.

It can be observed that the sample of AlexNet and VGGNet are scattered and unevenly distributed,

making them prone to confusion. The inter-cluster distance of ResNet-18 is relatively large, but there

is overlap among some samples, resulting in incomplete classification. The results generated by the

proposed MSCANet in this paper exhibit a neat distribution of the 10 classes, with strong intra-cluster

aggregation and large inter-cluster distances. Therefore, it can be concluded that the proposed method

outperforms other baseline models in UAV radar working mode recognition task.

5.4.2. Ablation Study

To further demonstrate the necessity of the deep group convolution, multi-scale convolution, and

self-attention mechanism proposed in this paper, a set of ablation experiments is conducted to evaluate

the network performance under different structures. Additionally, the performance improvement

brought by noise encoding has been proven in the previous part and will not be reiterated here.

This part of experiments is divided into four groups: (1) the complete structure MSCANet. (2) the

network without the deep-wise group convolution structure, referred to as “without GC”. (3) a network

without the multi-scale convolution and self-attention mechanism, referred to as “without CA”. (4) a

conventional convolutional network without the above design structures, which degenerates into the

initial deep residual network, referred to as “ResNet-initial”.

Taking the lost pulse environment as an example, the results are shown in Figure 18. It can be

observed that, except for the initial ResNet-initial, the other three networks with the designed structures

in this paper exhibit more stable recognition under different environments, and their recognition curves

show a monotonically decreasing trend, which aligns with objective cognition. In terms of accuracy

analysis, the average accuracy of the 4 structures are 96.9%, 85.0%, 84.4%, and 78.7% respectively.
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MSCANet has a significantly higher recognition capability than the other three networks. “Without

GC” has slightly higher accuracy than “without CA”. “ResNet-initial” has the lowest accuracy.
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Figure 18. Ablation experiment in lost pulse conditions. MSCANet is the network proposed in this

paper. On this basis, “without GC” means the lack of deep-wise group convolution, “without CA”

means the lack of multi-scale convolution and self-attention mechanism, “ResNet-initial” is the original

network architecture with only residual connections.

6. Discussion

In this paper, to address the problem of radar mode recognition in high-noise environments, we

proposed a dual-network cascaded model. The effectiveness of the proposed method is validated in 81

different noise environments. Our noise estimation sub-network effectively mitigates noise interference

through adaptive noise coding. With the assistance of this structure, the proposed MSCANet is more

suitable for feature extraction in radar pulse signals. This work is a further improvement compared

with the latest research[38,39] on radar working mode recognition.

Under the same signal processing approach, the deep learning models, such as ConvNet[12],

ResNet[24], AlexNet[36], and VGGNet[37], are superior to traditional machine learning classifiers, but

the transferability of the algorithms in different noise environments is poor. We observed over-fitting

on the test set through experiments. Taking VGGNet as an example, the recognition rate exhibits a

clear peak as the noise increases, indicating that the network only matches the signal data distribution

at the peak points. The addition of noise causes a single recognition model to fit the erroneous data

with superimposed noise, failing to learn the true characteristics of the signal. Therefore, although it

possesses some recognition ability, it cannot meet the practical requirements in terms of recognition

accuracy and environmental adaptability.

Deep learning models have strong feature representation capabilities, but due to the uncertainty

of noise, these models tend to exhibit varying degrees of over-fitting. Therefore, we designed a noise

estimation network to define the impact of noise on the data. We synchronized the defined noise

matrix with the pulse data as input to the recognition network, enabling the model to achieve a more

multidimensional representation. At this point, the model no longer needs to focus on the impact

of different noise environments but rather becomes more “focused” on the radar working mode

classification task. Additionally, this also indicates that a single recognition network is difficult to

simultaneously extract noise features and pulse regularity features.

In this paper, the noise estimation network and the recognition network are optimized using the

same objective function. The improvement in the performance of one network in the cascaded model

will enhance the performance of the other one, so as to establish the dependency between the noise

law and the data law, and the global optimal decision is made by the model. It can be seen from the
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comparison experiments that this method not only improves the overall accuracy of the network but

also significantly enhances the stability of recognition under different ratios of lost pulse and false

pulse.

The structures such as deep-wise group convolution, multi-scale convolution and self-attention

mechanism that we applied in MSCANet are all beneficial to radar working mode recognition. The

details of the ablation experiment are shown in Table 4. Analyzing the results, we can draw the

following conclusions: (1) the designed structures above can both improve the performance of radar

working mode recognition, mainly by mitigating the interference caused by noise. (2) Deep-wise

group convolution structure isolates the information interaction of shallow layers, making it easier

for the last convolutional layer to eliminate redundant feature maps, resulting in a similar effect to

feature selection. (3) The combination of multi-scale convolution and self-attention mechanism is more

advantageous for selecting features of different scales, facilitating the extraction of the essential laws

of radar working modes. (4) The design structures above have different emphases, and their effects

on improving recognition capability can be combined. Therefore, MSCANet achieves the highest

accuracy.

Table 4. Ablation Experimental results. “Noise Estimation” means noise estimation sub-network, “GC”

means the deep-wise group convolution, “CA” means the multi-scale convolution and self-attention

mechanism.

Model Noise Estimation GC GA Accuracy
1

√ √ √
96.9%

2 × √ √
83.3%

3
√ × √

85.0%
4

√ √ × 84.4%
5 × × × 78.7%

7. Conclusions

In significant noise environments, it is possible to know the working modes through the analysis

of radar signals. In this work, a cascade model consisting of a noise estimation network based on

U-Net and a recognition network based on MSCANet is proposed. The model employs adaptive noise

encoding to help the network adapt to harsh noise environments. Three improved network structures,

namely deep-wise group convolution, multi-scale convolution, and self-attention mechanism, are

designed to extract and classify signal features in noisy environments. Experiments show that the

proposed method improves the accuracy of conventional networks by approximately 17%. The

average accuracy under noise conditions reaches to 94.65%. Compared to baseline networks such as

AlexNet, ConvNet, ResNet, and VGGNet, the accuracy improvement ranges 5∼20%. The algorithm

demonstrates better generalization and robustness. This work provides a new idea and method for the

application of passive microwave signals.

In the future, we can focus on the following two parts: (1) Through the radar signal, it can not only

identify the working modes, but also achieve aircraft type identification and fingerprint recognition.

(2) There are many types of passive microwave signals. Therefore, future research will not be limited to

radar signals. We can collect various types of radiation source signals, such as remote control signals,

communication signals, and navigation signals, to achieve richer identification.
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