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Abstract: Fluorinated compounds and co-enzymes are being widely researched and employed throughout 

research community because of their versatile physical, chemical and biological properties. In this work, we 

synthesized NiS-NiO/S-g-C3N4, a highly effective photocatalyst for C(sp3)-F bond activation and the 

regeneration of coenzyme (1,4-NADH) employing a new and ecologically acceptable route. The obtained 

photocatalyst exhibited important photocatalytic properties, such as good solar light harvesting ability, 

suitability of the optical band-gap, and facilitating efficient charge migrations. As a result, the newly designed 

NiS-NiO/S-g-C3N4 photocatalyst shows the excellent yield for regenerations of 1,4-NADH (51%). Further, a 

method of combining C(sp3)-F bond activation with photocatalysis has been demonstrated that represents a 

very powerful and sustainable approach, that can be a major breakthrough for the field of pharmaceutical. 

Keywords: NiS-NiO/S-g-C3N4 photocatalyst 1; C(sp3)-F bond activation 2; regeneration of coenzyme 

3; solar light 4; selectfluor 5 

 

1. Introduction 

The ever-increasing environmental concerns has led researchers worldwide to develop visible 

light responsive photocatalyst which is highly active and inexpensive for effective environmental 

remediation [1–4]. Among the several experimental methods, photocatalysis is being employed 

mostly for the solar-driven organic transformations because of abundant availability of solar energy 

which is renewable energy resource [5–7]. The formations of solar chemicals based on green 

technology has emerged as asignificant research area. In the numerous enzymes based photocatalytic 

reactions, the reduced forms of nicotinamide adenine dinucleotide (NADH) act as a proton donor 

along with electron. Although, NADH is an essential component for many enzymatic reactions still 

using the conventional method for the regeneration of NADH possess some limitations such as, poor-

selectivity, costly, excessive toxicity and poor long-term stability [8–12]. Hence for the regeneration 

of NADH, the synthesis of effective photocatalyst is of utmost importance. Moreover, with the 

growing requirement of fluorinated compounds which are used as pharmaceuticals and 

agrochemicals there is upsurge in research and development of new approaches to perform selective 

fluorination [13,14]. Amongst various enabling technologies, artificial photocatalysis is an effective 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 July 2023                   doi:10.20944/preprints202307.0866.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.0866.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

approach for the regeneration coenzyme of NADH and fluorinated compounds because of the use of 

sustainable and environment-friendly solar light [15-17]. To facilitate artificial photosynthetic process 

two-dimensional layered materials of graphitic carbon nitride (g-C3N4) has gained wide 

consideration due to its versatile property such as excellent optical characteristics and excellent 

thermal stability [18-20]. Although pristine g-C3N4 has been utilized in the photocatalytic 

applications, but wide optical band gap limits its advantageous properties [19]. Doping of heteroatom 

such as sulfur in g-C3N4 is one of the methods to tune the optical band gap forming so-called sulfur 

doped graphitic carbon nitride(S-g-C3N4). From previous studies, it has been reported that doping of 

sulfur into the g-C3N4 results in better charge separation as it brings about the separation among 

lowest unoccupied molecular orbitals (LUMOs) and highly occupied molecular orbitals (HOMOs) 

[21-23]. We believe that hybridizing NiS-NiO with S-g-C3N4 could again improve the action of the 

resultant photocatalyst under solar light. Therefore, in this study NiS-NiO/S-g-C3N4 photocatalyst 

was synthesized and used for efficient activation of C(sp3)-F bond and regeneration of 1,4-NADH. In 

this article, we reported an environmentally friendly, scalable, inexpensive and simple method for 

the synthesized of heterostructured NiS-NiO/S-g-C3N4 photocatalyst for regeneration of 1,4-NADH 

and activation of C(sp3)-F bond. The successful formation mechanism of NiS-NiO/S-g-C3N4 

photocatalyst is elucidated conferring to a series of structural characterizations and experiments. It is 

shown that the heterostructure composed of NiS-NiO and S-g-C3N4 exhibited improved catalytic 

activity. Further, a method of combining fluorination with photocatalysis (photo fluorination) has 

been demonstrated that signifies a very influential and greener approach has reported in literature 

[24,25].  

2. Materials and Methods 

2.1. Experimental Section 

The following chemicals, Thiourea (T), Dimethylformamide (DMF), Nickel acetate (Ni 

(CH3COO)2, elemental sulfur, buffer solution, Nicotinamide adenine dinucleotide (NAD+), Ascorbic 

acid (AsA), Selectofluor(F-TEDA), Acetonitrile (ACN), Potassium carbonate (K2CO3), 4-

formylbenzoic acid, Acetone (CH3COCH3), sodium sulphate (Na2SO4), were purchased from Sigma-

Aldrich and used as obtained. 

2.2. Design of an Artificial Photosynthetic System 

In this study we utilized NiS-NiO/S-g-C3N4photocatalyst for the production of NADH from 

NAD+ by consuming solar rays. (Scheme 1). shows the NAD+ to NADH production in artificial 

photocatalytic system under solar light. The visible light absorption causes excitation of electron by 

NiS-NiO/S-g-C3N4 photocatalyst and transferred to rhodium complex [Cp*Rh(bpy)H2O]2+. Further 

the reduction of NAD+ to NADH take place as electrons are transferred from rhodium complex to 

NAD+. Hence between NiS-NiO/S-g-C3N4 photocatalyst and NAD+, rhodium complex act as a 

efficient mediator of electron[26,27]. 
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Scheme 1. Illustration of the mechanism of artificial photosynthetic pathway for 1,4-NADH 

regeneration and C(sp3)-F bond formation. 

2.3. Synthesis of S-g-C3N4 

The sulfur doped-g-C3N4 (S-g-C3N4) material was synthesized via the thermal condensation 

method as shown in Scheme 2. Initially 10g thiourea (T) was taken in crucible and treated at 300°C 

temperature for 2 h in muffle furnace under inert air (Scheme 2). As a result, yellow colour powder 

was obtained which was further dissolved in DMF and stirred for 24 hours and was deconned. For 

one week the same procedure of dissolving in DMF, stirring and deconning was repeated. Thereafter 

the product obtained after deconning was mixed with buffer solution by stirring for 30 min. Finally 

with continuous heating at 153°C for 1 hour the solvent was evaporated that resulted in formation of 

yellow precipitate. After filtration the compound obtained on filter paper was kept overnight at 70°C 

in oven for drying. The obtained soft powder was of S-g-C3N4 [28,29].  

 

Scheme 2. Synthesis of S-g-C3N4powder. 

2.4. Synthesis of NiS-NiO/S-g-C3N4 photocatalyst 

To synthesis the NiS-NiO/S-g-C3N4photocatalyst, 500 mg S-g-C3N4 powder, 150mg nickel acetate 

as source of nickel, and 150mg elemental sulfur were crushed using ball milling method till the 

formation of green-yellowish fine mixture powder. After the formation of mixture powder, we placed 

the mixture in muffle furnace for 2 hrs. at 400°C for calcination process. Finally, we get 

heterostructured NiS-NiO/S-g-C3N4 photocatalyst in the form of  powder, In the last step we wash 

the heterostructured NiS-NiO/S-g-C3N4 photocatalyst with distilled water (Scheme 3) [26,27].  

 

Scheme 3. Synthesis of NiS-NiO/S-g-C3N4 composite photocatalyst. 
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3. Results 

The optical band gap in NiS-NiO/S-g-C3N4 photocatalyst system was investigated using diffuse 

reflectance spectroscopy (DRS). The optical property of NiS-NiO/S-g-C3N4 photocatalyst was studied 

by UV visible absorption spectra as shown in (Figure 1) and compared with S-g-C3N4 by literature 

[28]. The broad peak at 538 nm was obtained for NiS-NiO/S-g-C3N4 photocatalyst. Whereas a peak at 

455 nm was obtained for S-g-C3N4by previous study [28]. Using Scherrer equation the optical band 

gap of S-g-C3N4 and NiS-NiO/S-g-C3N4 photocatalysts were calculated to be 2.72eV and 2.30 eV, 

respectively. The optical band gap value of NiS-NiO/S-g-C3N4 photocatalysts was also confirmed 

using Tauc plot (shown in inset Figure 1). The decrease optical band gap of the NiS-NiO/S-g-C3N4 

photocatalysts performs excellent result in the visible light for C(sp3)-F Bond Activation and 

Regeneration of Coenzyme [29,30]. 

 

Figure 1. UV-Visible Spectroscopy and Tauc Plot of NiS-NiO/S-g-C3N4 photocatalyst. 

The FTIR spectra of S-g-C3N4 and NiS-NiO/S-g-C3N4 photocatalysts are shown in (Figure 2), 

confirming the presence of NiS and NiO in the nanocomposite. The vibrational spectrums of S-g-C3N4 

in which the stretching vibration of the C-N bond is assigned to the representative characteristic 

peaks at 2065, 1045, 920, 870, and 775 cm-1 [28,31]. The broad absorption peaks in the range 3600-2555 

cm-1 shows its non-crystalline nature and associated to N-H stretching vibration modes. Furthermore, 

multiple peaks from 1635-1325 cm-1 can be accredited to C-N and C=N stretching mode of the 

aromatic unit, whereas some peaks at 775 cm-1 verified with triazine unit. Further, the broad peak at 

1100 cm-1 appears, which confirm the stretching vibration of the C-S bond, confirming the doping of 

sulfur (S) within the graphitic carbon nitride (C–N) lattice. For vibrational spectrums of NiS-NiO/S-

g-C3N4, all the transmittance peaks reduced and shows blue shifting which confirms the loading of 

NiS and NiO nanoparticles on S-g-C3N4. Herein, the characteristic peaks are found at 2154, 1100, 885, 

805, 679 cm-1. The sulphide has an absorption band at 1100 cm-1. The presence of Ni-S bond is 

indicated by absorption band at 679 cm-1 [32-34]. 
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Figure 2. Fourier-Transform Infrared (FT-IR) spectra of S-g-C3N4 powder and NiS-NiO/S-g-C3N4 

photocatalyst. 

The average particle size (d) and zeta potential (ξ) of S-g-C3N4 and NiS-NiO/S-g-C3N4 

photocatalysts were investigated using the dynamic light scattering (DLS) approach. The particle size 

(Figure 3) of NiS-NiO/S-g-C3N4 photocatalysts was approx. five time smaller than S-g-C3N4, it’s 
clearly showed that there was successfully formation of NiS-NiO/S-g-C3N4 photocatalyst from S-g-

C3N4. In other words, NiS-NiO/S-g-C3N4 photocatalyst is more efficient than S-g-C3N4 due to the 

smaller particle size and fast charge transfer rate of NiS-NiO/S-g-C3N4 photocatalyst. The formation 

of NiS-NiO/S-g-C3N4 photocatalyst is also supported by zeta potential studies. Zeta potential (ξ) 
(Figure 4) of S-g-C3N4 (-35.60 mV) is less negative than zeta-potential of NiS-NiO/S-g-C3N4 

photocatalyst (-5.30 mV) which clearly indicated the successful formation of NiS-NiO/S-g-C3N4 

photocatalyst from S-g-C3N4 [35,36]. 

 

Figure 3. Particle size of (a) S-g-C3N4 powder and (b) NiS-NiO/S-g-C3N4 photocatalyst. 
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Figure 4. Zeta potential of (a) S-g-C3N4 powder and (b) NiS-NiO/S-g-C3N4 photocatalyst. 

Figure 5(a) and 5(b) shows the cyclic voltammetry and Latimer diagram of NiS-NiO/S-g-C3N4 

photocatalyst that estimated the electrochemical properties of the photocatalyst. From CV study, Ered, 

Eoxd, and electronic band gap of NiS-NiO/S-g-C3N4 photocatalyst were obtained as -0.91 V, 1.36V, and 

2.27 V, respectively. This value is also satisfied by Tauc plot and represented through Latimer 

diagram. Therefore, the HOMO and LUMO energy levels of NiS-NiO/S-g-C3N4 photocatalyst were 

obtained as -5.86 eV and -3.59 eV respectively. Under solar light, electron transfer from the increased 

HOMO value of the photocatalyst allows for selective radical–radical coupling. It indicates the 

suitable energy band gap for NADH regeneration and C(sp3)-F bond activation [37,38].  

 

Figure 5. (a) Cyclic Voltametric and (b) Latimer diagram of NiS-NiO/S-g-C3N4 photocatalysts. 

4. Applications of NiS-NiO/S-g-C3N4 photocatalyst 

4.1. A Plausible mechanism for the 1,4-NADH co-factor regeneration through a [Cp*Rh(bpy)Cl] Cl 

Mechanism studies for the solar light induced NADH regeneration using NiS-NiO/S-g-C3N4 

photocatalyst is depicted in Scheme 4. During solar light induced catalytic reaction, the cationic state 

of Rh complex formed undergo hydrolysis, which give the water coordinated complex (A). The 

formate (HCOO_) react with the complex (A) via hydride elimination process to produce complex (B) 

with removal of CO2molecule. The reduced form of complex (D)is formed after the suppling of 

charges to the complex C by the NiS-NiO/S-g-C3N4 photocatalyst. Finally, NAD+ is reacts with the 

reduced complex (D) through its amide group and hydride ion transfer also takes place 

simultaneously (complex E and F) to regenerates selective NADH co-factor [39,40]. 
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Scheme 4. The mechanistic pathways through for regioselective 1,4-NADH cofactor regeneration. 

4.2. The route of carrier formation and migration in an artificial photocatalytic system 

The charge carrier generation and transfer during artificial photocatalysis is depicted in (Scheme 

6). Initially, solar light irradiation results the formation of photoexcited electron-hole in the valence 

band of NiS-NiO/S-g-C3N4 [energy, −5.86 eV]. The electron-hole is quenched by ascorbic acid (AsA) 

[energy, -5.25 eV] and transporting the photoexcited electrons into the conduction band [energy− 3.59 
eV] of NiS-NiO/S-g-C3N4 and then to NAD+ [energy, − 4.20 eV] via rhodium complex mediator 
[energy, -3.96 eV] and take part in regioselective 1,4-NADH regeneration [41-44]. 

 

Figure 6. The energy diagram demonstrating carrier formation and their migration in the artificial 

photocatalytic system. 

4.3. Photocatalytic Regenerations of NADH 

Using 450 W halogen lamp with a cutoff filter of 420 nm as source of light the photocatalytic 

NADH cofactor regeneration was performed. The procedure was performed at room temperature 
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under inert atmosphere. The photocatalytic reaction medium consists AsA (310 μL), β–NAD+ (248 

μL), electron mediator (124 μL), and NiS-NiO/S-g-C3N4 photocatalyst (31 μL) in 3.1 mL of sodium 
phosphate buffer 2387 μL (pH 7.0).The absorption peak at 340 nm shows the accumulation of NADH 
in the existence of NiS-NiO/S-g-C3N4 photocatalyst. From the literature data, the molar absorption 

coefficient of NADH is found to be e = 6300 mol-1 cm-1 (at 340 nm). As shown in Figure 7, When the 

experiment is performed in the dark it showed no reduction of oxidized form of NAD+. The 

regeneration yield of 51% of NiS-NiO/S-g-C3N4 photocatalyst was obtained in 2 hr. The 

photogeneration yield of S-g-C3N4 under the same conditions was obtained as 25%. This 

demonstrates that the NiS-NiO/S-g-C3N4 photocatalyst is more efficient for the regeneration of 

NADH than S-g-C3N4 [30,44-46]. 

 

Figure 7. Photocatalytic activity of S-g-C3N4 powder and NiS-NiO/S-g-C3N4 photocatalyst for NADH 

regeneration under solar light. 

4.4. Photocatalytic Generation of C(sp3)-F Bond 

C(sp3)-F bond activation of 4-formylbenzoic acid with selectofluor has been carried out at room 

temperature under solar light. We have developed a photocatalyst NiS-NiO/S-g-C3N4 to perform its 

photocatalytic action. For C(sp3)-F bond activation, the reaction medium was prepared by mixing 0.4 

mM Selectofluor, 0.23 mM K2CO3, 0.05 mM 4-formylbenzoic acid, 0.125 mM NiS-NiO/S-g-C3N4, 5 ml 

acetonitrile in 15 ml voil. The reaction was performed at room temperature under solar light. After 

workup, the crude product was obtained [16,17]. 

4.5. Activation of C(sp3)-F Bond via NiS-NiO/S-g-C3N4 Photocatalyst: Its mechanism 

Hammond firstly proposed a mechanism for the activation of C(sp3)-F bond in presence of 

expensive metal photocatalyst as per reported literature [24,25]. Traditionally, the creation of holes 

and electron was done by the photoexcitation of NiS-NiO/S-g-C3N4 photocatalyst. In the mechanistic 

route firstly, 4-formylbenzoic acid was oxidized by created holes (h+) and generating a radical 

undergoes very fast decarboxylation for creating the corresponding phenyl radical. Consequently, 

the desired fluorinated product was delivered by the phenyl radical interacting with selectofluor, and 

create TEDA2+* and acts as a radical chain carrier. Additionally, The NiS-NiO/S-g-C3N4 photocatalyst 

can access TEDA2+* through single electron transfer (SET) of select fluor for the resulting fluorinated 

product (shown in Scheme 5) [16,17,46-50]. 
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Scheme 5. Decarboxylative fluorination via NiS-NiO/S-g-C3N4 photocatalyst under solar light. 

5. Conclusions 

We have synthesized facile one-pot two-step synthesized S-g-C3N4 and NiS-NiO/S-g-C3N4 

photocatalysts for C(sp3)-F bond activation and coenzyme regeneration. The synthesized NiS-NiO/S-

g-C3N4 photocatalyst was analyzed by UV-vis spectroscopy, FT-IR, zeta potential analysis, cyclic 

voltammetry and particle size analysis. Due to the high stability and excellent light harvesting 

property of the NiS-NiO/S-g-C3N4 photocatalyst, displayed the outstanding activity during the 

C(sp3)-F bond activation reaction. The regeneration yield of 1,4-NADH coenzyme was achieved two-

fold (51%) by using NiS-NiO/S-g-C3N4 photocatalyst than S-g-C3N4in 2 hr. The heterostructured 

synthesis of NiS-NiO/S-g-C3N4 photocatalyst shows a benchmark example in multifarious 

photocatalytic application. 
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