Pre prints.org

Article Not peer-reviewed version

Keypoint-Based Automated
Component Placement Inspection
for Printed Circuit Boards

Si-Tung Chung , Wen-Jyi Hwang‘* , Tsung-Ming Tai

Posted Date: 13 July 2023
doi: 10.20944/preprints202307.0814.v1

Keywords: Object Detection; Artificial Intelligence; Neural Networks; Internet of Things; Component
Placement Inspection

E E Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/9254

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Keypoint-Based Automated Component Placement
Inspection for Printed Circuit Boards

Si-Tung Chung !, Wen-Jyi Hwang *©© and Tsung-Ming Tai 2

1 Department of Computer Science and Information Engineering, National Taiwan Normal University,

Taipei 116, Taiwan; 61047009s@ntnu.edu.tw
Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy; tstai@unibz.it
*  Correspondence: whwang@ntnu.edu.tw

Abstract: This study aims to develop novel automated computer vision algorithms and systems for
component replacement inspection for Printed Circuit Boards (PCBs). The proposed algorithms are
able to identify locations as well as sizes of different components. They are object detection algorithms
based on keypoints of the target components. The algorithms can be implemented as neural networks
consisting of two portions: frontend networks and backend networks. The frontend networks are
used for the feature extractions of input images. The backend networks are adopted for producing
component inspection results. Each component class can has its own frontend and backend networks.
In this way, the neural model for the component class can be effectively reused for different PCBs.
To reduce the computation time for the inference of the networks, different component classes can
share the same frontend networks. A two-stage training process is proposed for effectively exploring
features of different components for accurate component inspection. The proposed algorithm has
the advantages of the simplicity for training data collection, high accuracy for defect detection, and
high reusability and flexibility for online inspection. The algorithm is an effective alternative for the
automated inspection in smart factory with growing demand for product quality and diversification.

Keywords: object detection; artificial intelligence; neural networks; internet of things; component
placement inspection

1. Introduction

With the increasing popularity of consumer electronics products, such as laptops, smartphones,
display cards, and tablets, high-quality Printed Circuit Board (PCB) manufacturing is important.
Because of this surge in the demand for PCBs in the market, manufacturers are required to produce
PCBs in large quantities. However, maintaining the quality of such large numbers of PCBs is
challenging. With the advent of computer vision [1] and artificial intelligence [2] techniques, automated
computer visual inspection methods are found to be beneficial for improving the performance for high
volume industrial production.

One typical approach for automated computer visual inspection is based on template-matching
method [3-5] with a flaw-free reference. Basic template-based approaches accomplish defect detection
by measuring the similarity (or dissimilarity) between the given test image and the reference. A
common drawback of some template matching approaches is that proper alignment between the test
image and template is desired for the correlation computation. However, for many applications, the
enforcement of alignment operations may be difficult, resulting in degradation in detection accuracy.
Furthermore, some of these technique focus only on the inspection of solder joints or bare PCBs
without components. Nevertheless, component placement inspection is a significant and challenging
problem for PCB manufacturing. Many defects are caused by errors in PCB component placement,
such as missing or misaligned components, or the incorrect rotation of the components.

Automated component placement inspection on a PCB can be achieved by the employment of
sematic segmentation or object detection methods. The sematic segmentation techniques [6,7] aim to
separate images under examination into regions. Each individual region belongs to an independent

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0003-4003-1568
https://doi.org/10.20944/preprints202307.0814.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

20f17

component on PCB [8,9]. One challenging issue for the segmentation-based is the dense and/or
uneven distributions of components on a board. It may be difficult to detect a component in a densely
populated region on the PCB [8,9]. In addition, large varieties of components may further degrade the
accuracy for component detection. For the components with small sizes, lower segmentation accuracy
may be introduced due to the class-imbalanced problem [10,11]. Therefore, it would be difficult to
adopt the segmentation-based surface defect detection techniques [12] for the component placement
inspection.

The region-based Convolutional Neural Networks (CNNs) [13-16] for object detection have
also been found to be effective. Many of the techniques attains high detection accuracy by the
employment of anchor boxes as detection candidates [17-19]. Anchor boxes are the boxes with various
sizes and aspect ratios. A large set of anchor boxes [11] may be required for accurate detection.
Subsequently, high computation overhead is usually introduced for both training and inference. In
addition, expensive manual labeling efforts are required when the varieties of components are high
[20].

Alternatives to the anchor based approaches are to represent each object as a single [21] or multiple
keypoints [22,23]. For the technique with a single keypoint, the keypoint of an object is the center of
the bounding box of the object. When an object is represented by a pair or a triplet of keypoints, each
keypoint represents the center or corners of the bounding box. The corresponding object detection
operations are equivalent to finding the keypoints of the objects. The need for anchor boxes is then
bypassed.

Although the keypoint-based methods have the advantages of simplicity and high detection
accuracy, the reusability of network models are not taken into consideration. As a result of supply chain
management for components, even for the same products, it is likely that the corresponding PCBs are
constantly updated by the accommodation of new component classes and removal of old ones. When
the Neural Network (NN) models are shared by all the classes, it would then be necessary to re-train the
networks for the updated PCBs. For the component classes which are shared by original and updated
PCBs, the variations in detection accuracy would be likely due to the re-training. Therefore, robustness
in inspection accuracy would be an important issue. Although the reusability and robustness can be
improved by training a dedicated NN for each component class, the number of NNs will grow. As
a result, similar to anchor-based approaches, high computational complexities for both training and
inference may be necessary for the keypoint-based methods for the component detection.

The objective of this study is to develop a novel automated computer vision algorithm for
component placement inspection on PCBs. The corresponding Internet of Things (IoT) systems will
also be built for field test. The proposed algorithm is a keypoint based technique. Therefore, it has
simple training and inference process without the requirement of anchor boxes. The efforts for manual
labelling can be significantly lowered. In addition, no templates are necessary. The alignment issues
for the template-based techniques can then be avoided. In the proposed algorithm, the inspection
for components from the same class is regarded as a single task. In the architecture, the tasks are
separated into more than one groups. Different tasks in the same group may share the same network
layers for feature extraction. Each task only has its own dedicated output layers. The network size and
computational complexities for the algorithm may still remain low even for a PCB consisting of large
number of component classes.

To alleviate the efforts for re-training when PCBs are updated and/or new PCB target are available,
the reuse of NNs of existing components are also taken into consideration for our training operations.
When a new component class is accommodated, training is necessary only for the network layers for
the new class, and for the classes sharing the same group with the new class. For the classes belonging
to other groups, the corresponding layers can be directly reused. In this way, the training efforts for
the inclusion of new classes can be lowered.


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

30f17

The remaining parts of the this study is organized as follows. In Section 2, we present the proposed
algorithm for component placement inspection in detail. Section 3 contains some experimental results
for the algorithm. The concluding remarks are then included in Section 4.

2. Proposed Algorithm

In this section, we start with the keypoint-based NN for the component placement inspection
with single class. The keypoint-based NN is then generalized to multiple classes with model reuse.
The two-stage training procedure for the model reuse is then presented in detail. A list of commonly
used symbols is shown in Table Al.

2.1. Component Placement Inspection for a Single Class

Figure 1 shows the block diagram of proposed NN model for the single-class component detection.
As shown in the figure, the network model can be separated into two portions: frontend network
and backend network. The frontend network is used for the feature extraction of the input image.
The backend network produces the results for component placement inspection. It provides the
heatmap indicating the likelihood of each pixel in the image belongs to the component. The size of the
component can also be predicted by the backend network.

Heatmap for

Network for i Component Locations
Heatmap Y
:nmzljgte —| Frontend Network
‘ Component
X Network for L, Sizes
Component Sizes '
S={Sy» S}

' Backend Network

Figure 1. The block diagram of proposed NN model for the single-class component detection.

Let X be an input image of width W and height H. Our goal is to produce a heatmap Y with
width W/R and height H/R, where R is the output stride size. Let Z be the ground truth of Y. The
ground truth is determined by the keypoint of each component on the input image. As shown in
Figure 2, the keypoint of a component is the centroid of the component. For the sake of simplicity,
assume that we only focus on the detection of components from a single class in the input image.
Let (p,q) be the location of a component from the class. We then compute Z for the component by
splatting the keypoint of the component using Gaussian kernel. That is,

Z(i,j)=e 22, )

where Z(i, ) is the (i, j)-th pixel of the ground truth image Z , and the ¢ is the standard deviation
dependent on the size of the component. In the case two or more components of the class are presented,
the overlapping of the corresponding kernels are likely. We then take the element-wise maximum
over the Gaussian kernels for components. Figure 3 shows an example of ground truth image for the
detection of capacitors on the PCB.


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

40f17

Figure 2. An example showing the keypoint of a component. In the example, the screw on the image is
the target component to be inspected. The centroid of the screw is the keypoint.

w w
R
®
H
R
H ®
oL
ﬁ Ground Truth for Components
from a Single Class (Capacitors)

VA
Input Image X

Figure 3. An example of ground truth of heatmap for the inspection of capacitors on a PCB.

Let J; be the loss function for heatmap the training of the proposed network model. A variant of
focal loss function [11] is adopted for the function J;. That is,

W/RH/R
h= Z M(i,j), (2)
i=1 j=1
where
o —a=YG))*log(Y(,))) Jif Z(i,j) = 1,
MG j) _{ —(1=2Z(,j))P(Y(i,j))*log(1—Y(i,j)) ,otherwise, ©)

where Y (i, ) is the (i, j)-th component of heatmap Y, and the parameters « > 0 and > 0 should be
pre-specified before the training.

In addition to the detection of component location by heatmap Y, it may be desired to find
the component size for inspection. This can be accomplished by appending a network branch in
the backend network, as shown in Figure 1. Let S = {Sy, Sy} be the output of the branch for size
estimation, where Syy and Sy are the images with width W/R and height H/ R. Furthermore, let K be
the number components, and Wy, Hy be the ground truth of width and height of the k-th component,
k=1,...,K. The loss function for the component sizes is defined as

K
J =Y Wi — Wi| + [Hi — Hyl, 4)
=1


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

50f17

where Wy and H; are the estimated width and height of component k from S. Let (i, jx) be the ground
truth location of the keypoint of the k-th component, k = 1, ..., K. The estimation Wk and H; can be

computed by
Wi = Sw ik, jx),  Hi = Sn(ix, ji)- ()
The total loss for the training of the proposed network model, denoted by ], for single class is then
given by
Jr=T+ . (6)

2.2. Component Placement Inspection for Multiple Classes

As shown in Figure 4, the NN model for the component placement inspection for multiple classes
can be viewed as an extension of its counterpart for single class. Let N be the number of component
classes for the inspection. Consequently, there are N heatmaps for the detection of components, where
the c-th heatmap Y is adopted for the detection of components in c-th class. Likewise, there are N
pairs of images for the estimation of component sizes, where the c-th pair {Sy, Sy} is used for the
estimation of component sizes.

Inspection Results

for Class 1
Input Image Inspection Results
x ——*| Frontend Network I_’I Backend Network for Class 2

Inspection Results
for Class N

(a) Model 1

Inspection Results

Backend Network for Class 1 for Class 1

Inspection Results
for Class 2

Input Image

x —| Frontend Network

Backend Network for Class 2

Inspection Results

I_.
|_>
Backend Network for Class N |——' for Class N
|__>
|_.

(b) Model 2
Inspection Results
_’I Backend Network for Class 1 for Class 1
Inspection Results
Frontend Network for —-l Backend Network for Class 2 for Class 2
Group 1
: Inspection Results
—
Input Image _.l Backend Network for Class i I for Class i
X

Inspection Results

—'l Backend Network for Class j for Class

Frontend Network for
Group P

—

Inspection Results

—'l Backend Network for Class N |——‘ for Class N

(c) Model 3

Figure 4. Three network models for the multi-class component placement inspection.

From Figure 4, we can see that there are three network models for multiple classes. For the first
approach, as shown in Figure 4a, is a direct employment of the model for a single class for multiple
classes. That is, all the classes share the same frontend network and backend network. When the
number of component classes N increases, the model size and computation latency for inference can


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

6 of 17

be maintained. However, the shared frontend network and/or backend network may not be matched
to a particular class. Therefore, the detection accuracy for the class may be degraded. Furthermore,
the reusability of the model may be in important issue. Because all the classes in the model are jointly
trained, the incorporation of new classes may result in the re-training of all the classes. Large overhead
may then be required for the inspection of new PCBs, where the accommodation of new classes for
component inspection is necessary.

The second model allows all the classes share the same frontend network for feature extraction.
Furthermore, each class has its own dedicated output branches in the backend network, as shown in
Figure 4b. Because of the sharing of the frontend network, the overall model size and computation
complexities can still be low for large number of classes N. In addition, because there is a dedicated
backend network for each class in the second model, it may outperform the first model for component
inspection. Nevertheless, when the incorporation of new classes is desired, it may still be necessary to
re-train all the existing classes because the shared frontend network needs to be fine tuned for the new
class as well as the existing classes.

The third model can be viewed as an extension of the second model. We separate N classes of
components into P groups in the third model. The classes belonging to the same group share the
same frontend network for feature extraction. Therefore, there are P frontend networks in the third
model, as shown in Figure 4c. One simple approach for carrying out the grouping is based on the
shapes of the components. For example, components with similar shapes can be grouped together.
The shape information for each group can then be fully exploited for producing accurate heatmaps
for component placement prediction. Because there is a dedicated frontend network for each group
for feature extraction, the third model may have superior performance over the first and the second
model for component inspection. Moreover, the networks in the third model could be re-used. That is,
the accommodation of a new component class may require the training of only the NNs in the group
the new class belongs to. The networks in the other groups can be effectively re-used.

2.3. Two-Stage Training Process

The proposed two-stage training process can be applied for the three models proposed in Section
2.2. There are two stages for the training of the models. The training operations at the first stage can be
viewed as the pre-training operations for the frontend networks. Based on the results from the first
stage, the goal at the second stage is for the refinement for the frontend networks and the complete
training for the backend networks. The two-stage training operations is based on the training set with
a training images, denoted by A.

2.3.1. First Stage Training

The goal for training at the first stage for each network model is to provide an effective frontend
network for feature extraction. This training process can be viewed as a representation learning process
[24] to fully exploit the features for subsequent generation of heatmaps for the backend networks.
For each training image in .4, data augmentation operations are employed to produce b images. The
employment of data augmentation is able to include more variations for the training set. Let 5; be
the set of augmented images derived from the i-th image in \A. For a fixed i, it is desired that the
frontend network will produce similar features for the augmented images from the set of augmented
images B;. Conversely, images from different augmented sets should produce different features. For
the PCB inspection, it is usually desired that the impacts on illumination to the inspection accuracy
can be minimized. Therefore, the data augmentation in this study is to provide images with different
illuminations. In this way, the proposed frontend networks for are less sensitive to the variations in
illuminations on the PCBs.


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

7 of 17

The training at the first stage is carried out on tuple-by-tuple basis. For each training image X;, a
number of tuples are formed, where each tuple contains (a + 1) elements. Let

T = (X;, By, ..., By) 7)

be a tuple for X;, where B; is an image drawn randomly from the set B;,j = 1, ..., a. Let 7; be the set of
tuples from training image X;. The loss function for the training at the first stage is given as

v 1o exp(F(X;)TF(By))
L_i:ZlTeZTi log i1exp(F(X;)TF(B)))’ ®)

where the function F denotes the frontend network.

2.3.2. Second Stage Training

At the second stage, both the frontend and the backend networks are trained by the training set
A. The frontend networks acquired from the first stage are served as the initial frontend networks at
the second stage. The initial backend networks are randomly generated. The loss function in (6) is also
adopted for the training at the second stage. That is,

N

J =Y (1(c) + J2(c)), )

c=1

where J;(c) and J(c) are the J; and ], defined in (2) and (4) for the components in class ¢, respectively.

An advantage of the two-stage training process is that the impact of illuminations for placement
inspection can be effectively lowered. Based on the representation learning scheme at the first stage,
features robust to illuminations can be provided for the subsequent heatmap generation. This is
beneficial for attaining high accuracy for detecting components on PCB boards without introducing
false alarms.

2.4. Examples of Frontend and Backend Networks

The frontend and backend networks considered in this study are not restricted to any specific
types of networks. However, for the evaluation purpose, examples of frontend and backend networks
are provided, as shown in Figure 5, where the block diagram of the model and the feature maps
produced by each layer of the model are revealed in Figure 5a,b, respectively.

We can see from Figure 5 that the complexities for the frontend network are higher than those
for the backend network. In the frontend network, the Residual Blocks (ResBlock) [25] and up-down
networks [26] are employed for compact and efficient feature representation. Each ResBlock contains a
shortcut [25] for efficient weight updating. The 2-dimenional Convolution (Conv) networks, together
with their transposed (Conv Trans) counterparts, are adopted for the implementation of up-down
networks. Both the Batch Normalization (BN) and REctified Linear Unit (RELU) activation functions
are also included in residual blocks and up-down networks.

Each backend network is dedicated to only a single class. To reduce the complexities for the entire
component inspection networks, each backend network has a simple architecture. We can observe
from Figure 5 that there are only two convolution layers for each backend network. The simplicity of
backend networks is beneficial for facilitating both the training and inference operations especially
when the number of classes N is large for component inspection.


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023

do0i:10.20944/preprints202307.0814.v1

8of 17
< n
=121 =
; o iy C
oll2Z |l e
- al Heatmap
- ~ 7 5
Input s g o = & = 2 ot % =
npu <] o llzl= =zl = 2Nzl = 2z =
Image HANERRE BN EEE EEREE
2] 3] g g () (W]
o o S S
(Lo ~
=21 =
clloll cpb—
Q o o
o b Component
Size
Frontend Network Backend Network
(a) Model
H Convolution2D
. Residual Block
. Convolution2D Transpose
BatchNormalization (BN)
RELU
Conv 1 ConvTrans2  Conv2 Conv4 Conv5
Resblock 1 Conv Trans 1 Conv3 Heatmap
Resblock 2 128x128x1
Input 128x128x128  128x128x1
Image
Conv6 Conv7
512x512x3 64x64x128
_— Component Size
128x128x64 128x128x128 128x128x64 128x128x2
128x128x128  128x128x2
256x256x32 256x256x64 256x256x64
Frontend Network Backend Network
(b) Feature Maps

Figure 5. Examples of frontend and backend networks for a single class, where each Conv layer is a
2-dimentional convolution layer, and each Conv Trans layer is a 2-dimensional transposed convolution

layer. In addition, ResBlock is a residual block with a short cut, BN denotes Batch Normalization, and
RELU is an activation function.

3. Experimental Results

This section provides the experimental results of the proposed work. The experimental setup is
first presented. The performance metrics are then discussed. This is followed by numerical results and
comparisons among the proposed and existing techniques.

3.1. Experimental setup

The setup of the experiments is shown in Figure 6, which is a simple inspection platform with a
high resolution industrial camera FLIR Blackfly S USB 3. The platform can be easily integrated into a
real production line for online inspection. The development of NN models is based on Keras built on
the top of Tensorflow 2.0.

In the experiment results, we consider only the inspection of components of screws, capacitors,
mounting holes, 3-pin chips and 8-pin chips of the PCB, as shown in Figure 7. That is, there are N = 5


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

9of17

component classes. In many assembly lines, some of these components such as screws may be placed
on the PCB manually. As a result, component misplacements are likely. Furthermore, it may be difficult
to perform accurate component inspection for components such as 3-pin chips because of the complex
background, and the small component sizes. Successful inspection of the components shown in Figure
7 would be a promising indication for accurate inspection of the other PCB components.

The images for our experiments have equal size 512 x 512. That is, the height and width of input
images are W = H = 512. However, the sizes of different PCBs may vary. Therefore, when their
sizes are larger, they will be divided into 512 x 512 subimages for the inspection. To increase the
varieties of training set, different cropping results from the training PCBs are adopted as training
images. Some examples are shown in Figure 8. The training set A contains 4 = 180 images. The i-th
image in the training set A is further augmented to from the set B; containing b = 16 images. After
different cropping and augmentation of images, 2880 images (e.g, a x b = 2880) with 512 x 512 are
created for the training of the proposed NN model.

Table 1 shows the parameters at each layer of the basic NN model considered in this study. For the
sake of simplicity, this model contains only one frontend network and one backend network for a single
class inspection, where the names of layers are defined in Figure 5. More frontend networks and/or
backend networks with the same specification can be appended in the model for the applications
requiring multiple groups with multiple classes. Table 2 shows the specification of Model 1, Model
2 and Model 3 for five component classes. For meaningful comparisons, as shown in Table 2, all the
models have the same dimension 512 x 512 for input image X. That is, original width and height
are W = H = 512. In addition, they have the same dimension 128 x 128 for output images Y and S.
Because W = H = 512, we see that the output stride size is R = 4 for heatmap generation.

Figure 6. The setup of the experiment. A high resolution industrial camera is adopted for the acquisition
of images from the PCBs.


https://doi.org/10.20944/preprints202307.0814.v1

do0i:10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023

10 of 17

S— &
. E
WED P & |
SIAW5 -t

(¢) Mounting (d) 3-pin Chip (e) 8-pin Chip
Hole

(a) Screw (b) Capacitor

Figure 7. The component classes considered in the experiments.

Figure 8. Examples of different cropping results for the training images.

Table 1. The parameters of the example model containing only one frontend network and one backend
network for a single class inspection. The names of layers are defined in Figure 5. The layer size and

network size are the number of weights for a layer and a network, respectively.

Network Frontend Network Backend Network
Layer Conv1l Resblock1 Resblock 2 Conv Trans 1 Conv Trans2 Conv 2 Conv 3 Conv 4 Conv 5 Conv 6 Conv 7

Stride Size 2 2 2 2 2 1 2 1 1 1 1
Kernel Size 7x7 3x3 3x3 3x3 3x3 3x3 3x3 3x3 1x1 3x3 1x1
Input Tensor 512 x 512x 256 x 256x 128 x 128x 64 x 64x 128 x 128 x 256 x 256x 256 x 256 128 x 128x 128 x 128x 128 x 128 x 128 x 128 x
Dimension 3 32 64 128 128 64 64 64 128 64 128

Layer Size 4,736 29,856 119,104 147,584 73,792 36,928 36,928 73,856 129 73,856 258
Network Size 452,128 148,099

Table 2. The specifications of the proposed NN models for the inspection of 5 component classes. The

model size is defined as the number of weights in the whole model.

Model Type Model 1 Model 2 Model 3
Input X Dimension 512 x 512 x 3 512 x 512 x 3 512 x 512 x 3
Output Y Dimension 128 x 128 128 x 128 128 x 128
Output S Dimension 128 x 128 x 2 128 x 128 x 2 128 x 128 x 2
Model Size 600,743 1,192,623 1,644,751
Model Configuration 1 Frontend NN 1 Frontend NN 2 Frontend NNs
1 Backend NN 5 Backend NN 5 Backend NNs

We can also observe from Table 2 that Model 1 has smallest size as compared with Model 2 and
Model 3. This is because Model 1 has only a single frontend NN and a single backend NN shared


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

11 0f 17

by all the component classes. By contrast, in Model 2, a dedicated backend NN is assigned to each
component class. Furthermore, all the component classes are separated into P = 2 grounps in the
Model 3. In fact, the screws, mounting holes, and capacitors form the first group, and the 3-pin and
8-pin chips are in the second group. In Model 3, each group has its own fronend NN. The Model 3
therefore has largest size.

3.2. Performance metrics

The performance metrics considered in this study include the quality of component placement
inspection, network size, and the computation time of the proposed model. The component inspection
accuracy, such as Average Precision (AP) [27,28] value and F1 score [27,28], are used as the quality of
component placement inspection in experiments. Images of PCBs not belonging to training set are
adopted as the test set for the evaluation of AP value and F1 score. The network size is defined as the
number of weights in the network. The network size indicates the memory resources required for the
deployment of the network. The computation time is the inference latency for the model. It reveals the
promptness of the model for inspection.

Both the AP value and F1 score are evaluated by precision and recall rates. For a given component
class ¢, let TP (True Positive) and FN (False Negative) be the number of components of class c in the test
set which are detected and missed, respectively. Let FP (False Positive) be the number of components
from other classes in the test set which are falsely identified as components of class c. The precision
and recall [27] rates are then defined as

TP

Recall = m

Precision = (10)

TP
TP+FP’
The measurements of precision and recall rates are based on the testing images extracted from the
PCBs shown in Figure 9, which are different from the training images.

Figure 9. Test PCBs considered in this study. The test images are acquired from the PCBs.

Because different threshold values for detection may result in different pairs of precision and
recall rates, a Precision-Recall curve could be obtained by sweeping the threshold values. The AP


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

12 of 17

value is then defined as the area under the Precision-Recall curve. Higher AP values imply better
Precision-Recall performance.

Given a pair of precision and recall rates, the computation of the corresponding F1 score [27] is
given by

2

F1 Score = (11)

1 L1
Precision ' Recall

The score provides a comprehensive evaluation based on Precision and Recall. Given a Precision-Recall
Curve, the corresponding F1 score is obtained by finding the pair of precision and recall values on the
curve attaining the maximum F1 score.

3.3. Numerical Results and Comparisons

Table 3 shows the corresponding AP values and F1 scores of the proposed two-stage training
process for Model 1 for different components considered in this study. For comparison purpose, the AP
values and F1 scores with only single-stage training process for Model 1 are also included, where the
representation learning for the frontend network is omitted. The Model 1 by single-stage training can
be viewed as the basic key-point algorithm [21] for object detection. From Table 3, it can be observed
that two-stage training process is able to achieve higher AP values and F1 scores as compared with
its single-stage counterpart. This is because the representation learning operations are beneficial for
providing robust features for the subsequent heatmap generation and component size estimations.

The comparisons on AP values and F1 scores among Model 1, Model 2 and Model 3 are included
in Table 4. The proposed two-stage training process are adopted for the training of all the models. It
can be observed from Table 4 that Model 3 has superior AP values and F1 scores over Model 2 and
Model 1 for many of the component classes. Model 3 has higher accuracy because there is a dedicated
frontend NN for each group of the components. By contrast, a single frontend NN is shared by all the
component classes. It would then be difficult for Model 2 and Model 1 to carry out accurate detection
for each individual component class.

Table 3. The inspection accuracy of various component classes of the Model 1 with single-stage and
two-stage training processes.

Training Process  Inspection Accuracy Screw  Mounting Hole  Capacitor  3-pin Chip  8-pin Chip

Single-Stage AP 0.9460 0.9316 0.9391 0.9682 0.9665
[21] F1 0.9283 0.8876 0.8867 0.9123 0.9055
Two-Stage AP 0.9695 0.9400 0.9532 0.9801 0.9755

F1 0.9482 0.8912 0.9320 0.9429 0.9296

Table 4. The AP values and F1 scores of various component classes for Model 1, Model 2 and Model 3.
The two-stage training process is employed for the models.

Component Class Model 1 Model 2 Model 3

AP F1 AP F1 AP F1
Capacitor 0.9532 0.9320 0.9739 0.9368 0.9605 0.9363
Screw 0.9695 0.9482 0.9709 0.9453 0.9710 0.9435
3-pin Chip 0.9801 0.9429 0.9930 0.9734 0.9925 0.9739
8-pin Chip 0.9755 0.9296 0.9892 0.9662 0.9920 0.9760
Mounting Hole 0.9400 0.8912 0.9437 0.9437 0.9723 0.9545

Figure 10 reveals the precision-recall curves for all the component classes considered in this study
for Model 3 with two-stage training operations. It can be observed from Figure 10 that the proposed
algorithm is able to maintain high precision even with high recall value. In particular, for the class
of screws, when the recall value achieves 0.916, the precision value is 0.973. Therefore, the proposed
algorithm is able to achieve high detection accuracy without triggering large number of false alarms.


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

13 of 17

Figure 11 shows examples of the inspection results for the capacitors for different PCBs. Accurate
locations and sizes of the capacitors can still be acquired even for the images from the testing set. To
further demonstrate the effectiveness of the proposed algorithm, Figure 12 reveals examples for the
joint inspection for screws, capacitors, mounting holes, 3-pin chips and 8-pin chips. It can be observed
from the figure that joint inspection of five components can also be effectively carried out. In fact, the
sizes of some of the components such as 3-pin chips are very small so that it may be difficult to identify
the components even by direct visual inspection. The proposed algorithm is able to provide accurate
inspection for small components for complex backgrounds. These examples reveal that the proposed
algorithm is effective for improving PCB inspection quality for automatic manufacturing in smart
factory.

In Table 5, comparisons of the proposed algorithm with existing works such as Faster
Region-based Convolutional Neural Network (Faster RCNN) [19], Single Shot Detection with
MobileNet (SSD+MobileNet) [29] and DEtection TRansformer (DETR) [30] are made for inspection
quality. Furthermore, because it is desired to deploy the NN models in embedded platforms with
limited computation capacity and/or storage size, computation speed for inference and model size are
then important concerns for the corresponding applications. Therefore, as shown in Table 6, we also
consider the comparisons on inference latency and model sizes among these algorithms in this study.
The inference latency is measured on a Personal Computer (PC) and an embedded platform. The PC is
with Intel Core 19-9900K CPU and nVidia GeForce RTX3080 Ti GPU. The embedded platform is the
Jetson Nano with ARM Cortex A57 CPU and nVidia Maxwell GPU.

00 — AP0.9710 00 — AP0.9605 00 — AP0.9723

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Recall Recall Recall

(a) Screw (b) Capacitor (c) Mounting Hole

00 — AP:0.9925 004 — AP:0.9920

00 02 04 06 08 10 00 02 04 06 08 10
Recall Recall

(d) 3-Pin Chip (e) 8-Pin Chip

Figure 10. Precision-Recall curves of the five component classes considered in this study. The
corresponding network model is Model 3 with two-stage training process.

Figure 11. Examples of the inspection results for the capacitors for different PCBs.


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

14 of 17

(b) 3-Pin Chips, 8-Pin Chips (c) Screws, Mounting Holes

i D :” ; £ :
(d) Capacitors, Mounting Holes  (e) 3-Pin Chips, 8-Pin Chips, Capac- (f) Screws, 3-Pin Chips, 8-Pin Chips,
itors, Mounting Holes Capacitors, Mounting Holes

Figure 12. Examples for the joint inspection for screws, capacitors, mounting holes, 3-pin chips and
8-pin chips.

We can see from Tables 5 and 6 that the proposed algorithm outperforms many of the existing
algorithms for the inspection of components. In fact, the proposed algorithm has higher AP value and
F1 score as compared with those of Faster-RCNN [19] and SSD+MobileNet [29] for the detection of all
components. The proposed algorithm also has comparable AP values and F1 scores to those of DETR
[30]. In addition, the proposed algorithm has significantly lower inference time for PC-based inference.
In particular, the inference time of the proposed algorithm and DETR are 21.4 ms and 206.5 ms for PC,
respectively. The throughput (in Frames Per Second, FPS) of the proposed algorithm and DETR are
then 46.73 and 4.84, respectively. The proposed algorithm has faster computation speed because it
has smaller network size as compared with its DETR counterpart. In addition, it would be difficult to
deploy DETR to low cost embedded devices such as Jetson Nano because of its large network size. By
contrast, we have successfully deployed the proposed algorithm to Jetson Nano. The latency of the
proposed algorithm for the Jetson Nano is 146.9 ms. That is, the algorithm achieves 6.81 FPS even for
low-cost embedded devices. The proposed algorithm therefore has the advantages of high inspection
accuracy, low inference latency, small model sizes, and low cost deployment. All these preliminary
evaluations reveal that the proposed algorithm is promising for the real-time high accuracy component
placement inspection.


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

15 of 17

Table 5. The inspection accuracy of various component classes for various algorithms.

Training Process Inspection Accuracy Screw Mounting Hole Capacitor 3-pin Chip 8-pin Chip

Proposed AP 0.9710 0.9723 0.9605 0.9925 0.9920
Model 3 F1 0.9435 0.9545 0.9363 0.9739 0.9760
Faster RCNN AP 0.9680 0.9335 0.9523 0.9734 0.9895
[19] F1 0.9078 0.8755 0.9018 0.9363 0.9702
SSD + MobileNet AP 0.9218 0.8986 0.9459 0.9585 0.9799
[29] F1 0.8425 0.8610 0.8930 0.9042 0.9833
DETR AP 0.9800 0.9472 0.9641 0.9944 0.9986
[30] F1 0.9469 0.9341 0.9389 0.9735 0.9946

Table 6. The weight sizes and computation time for inference for various algorithms.

Algorithm Weight Size Inference Latency

PC Jetson Nano
Proposed (Two-Stage) 1,644,751 21.4 ms 146.9 ms
Faster RCNN [19] 28,337,682 56.1 ms NA
SSD + MobileNet [29] 2,601,212 46.4 ms 167.6 ms
DETR [30] 41,487,306 206.5 ms NA

4. Conclusions

Experimental results have shown that the proposed algorithm is effective for component
displacement inspection for PCBs. The algorithm provides a simple labelling process for training. The
sizes of the proposed networks are also significantly lower than existing ones. The two-stage training
process is beneficial for the feature extraction for enhancing the inspection accuracy. Furthermore, the
algorithm has high model reusability, and low computation complexities for inspection. Real-time
component inspection with low deployment costs could then be implemented for a production
line. Finally, the algorithm is able to achieve high detection accuracy even when multiple classes
of components are presented on the PCBs. This advantage is beneficial for the deployment of the
algorithm for component inspection over large varieties of PCBs.

Author Contributions: Conceptualization, W.-].H. and T.-M.T.; methodology, S.-T.C. and W.-].H.; software,
S.-T.C.; validation, S.-T.C. and W.-].H,; investigation, S.-T.C. and T.-M.T.; resources, W.-].H.; writing—original draft
preparation, W.-J.H.; writing—review and editing, W.-J.H.; visualization, S.T.-C.; supervision, W.-].H.; project
administration, W.-].H. and T.-M.T.; funding acquisition, W.-].H. All authors have read and agreed to the published
version of the manuscript.

Funding: The original research work presented in this paper was made possible in part by National Science and
Technology Council, Taiwan, under grants MOST 111-2622-E-003-001 and MOST 111-2221-E-003-009-MY?2.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

16 of 17

AP Average Precision

BN Batch Normalization

CNN Convolutional Neural Network
Conv 2-Dimenional Convolution
DETR DEtection TRansformer

Faster RCNN  Faster Region-based Convolutional Neural Network
FN False Negative

FP False Positive

IoT Internet-of-Things

NN Neural Network

PC Personal Computer

PCB Printed Circuit Board

ResBlock Residual Block

RELU REctified Linear Unit

SSD Single Shot Detection

TP True Positive

Appendix A. Frequently Used Symbols

Table Al. A list of symbols used in this study.

b

Set of training images.

The number of training images in the training set A.

An augmented image randomly drawn from the set ;.

Set of augmented images derived from the i-th image X; of A.
The number of augmented images in set 13;.

The function F denotes the frontend network.

Hight of the input image X.

Ground truth of the height of the k-th component.

Estimated height of the k-th component. H can be obtained from Sy by (5).
Number of components.

Number of component classes for inspection.

Number of groups.

Output stride size.

S = {Sw, Si } are the results of size estimation for components.
Estimation of height of components.

Estimation of width of components.

A tuple containing (a + 1) elements for the first stage training.
An input image for component placement inspection.

the i-th image of the set A of training images.

Output heatmap produced by the proposed neural network.
The (i, j)-th pixel of the output heatmap Y.

Width of the input image X.

Ground truth of the width of the k-th component.

Estimated width of the k-th component. Wi can be obtained from Sy by (5).
Ground truth for the heatmap Y.

i,j)  The (i,)-th pixel of the ground truth image Z.

[so 5]

TmT TS

=

NNH;&DMWWZN

N N§>§ g;\ =>

References

1. Szeliski, R. Computer Vision: Algorithms and Applications; Springer-Verlag: London, UK, 2011.
Goodfellow, I; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.

3.  Chauhan, A.PS,; Bhardwaj, S.C. Detection of bare PCB defects by image subtraction method using machine
vision. In Proc. World Congress on Engineering, London, UK, 6-8 July 2011; vol. 2, pp. 6—S8.

4. Mogharrebi, M.; Prabuwono, A.S.; Sahran, S.; Aghamohammadi, A. Missing Component Detection on PCB
Using Neural Networks. In: Zheng D. (eds) Advances in Electrical Engineering and Electrical Machines.
Lecture Notes in Electrical Engineering, vol 134. Springer, Berlin, Heidelberg, 2011.

5. Tan,].S.; Mohd-Mokhtar, R. Neural Network for the Detection of Misplaced and Missing Regions in Images.
In Proc. IEEE Conf. on Automatic Control and Intelligent Systems, 2017, pp. 134-139.

6. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431-3440.

7. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In
Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, 2015.

8. Lim, D.U,; Kim, Y.G.; Park, T.H. SMD classification for automated optical inspection machine using
convolution neural network. In Proc. IEEE Int. Conf. Robotic Computing (IRC), Naples, Italy, pp. 395-398,
2019.


https://doi.org/10.20944/preprints202307.0814.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 July 2023 do0i:10.20944/preprints202307.0814.v1

17 of 17

9. Li, D.; Li, C.; Chen, C.; Zhao Z. Semantic Segmentation of a Printed Circuit Board for Component Recognition
Based on Depth Images. Sensors 2020, 8, https://doi.org/10.3390/s20185318.

10. Krawczyk, B. Learning from imbalanced data: open challenges and future directions. Progress in Artificial
Intelligence 2016, 5, pp. 221-232.

11.  Lin, T.Y,; Goyal, P;; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. arXiv Preprint 2017,
arXiv:1708.02002.

12. Lai, CW,; Zhang, L.; Tai, TM.; Tsai, C.C.; Hwang, WJ.; Jhang, Y.J. Automated Surface Defect
Inspection Based on Autoencoders and Fully Convolutional Neural Networks. Applied Sciences 2021, 11,
https://doi.org/10.3390/app11177838

13. Lin, Y.L.; Chiang, Y.M.; Hsu, H.C. Capacitor Detection in PCB Using YOLO Algorithm. In Proc. IEEE Int.
Conf. System Science and Engineering, 2018.

14. Jiao, L.; Zhang, F; Liu, F; Yang, S.; Li, L.; Feng, Z.; Qu, R. A Survey of Deep Learning Based Object Detection,
IEEE Access 2019, 7, pp. 128837-128868.

15. Adibhatla, V. A,; Chih, H-C.; Hsu, C.-C.; Cheng, J.; Abbod, M.E; Shieh, ]J.S. Defect Detection in
Printed Circuit Boards Using You-Only-Look-Once Convolutional Neural Networks. Electronics 2021,
9, https:/ /doi.org/10.3390/ electronics9091547

16. Li, J; Li, W,; Y. Chen, Y,; Gu, J. A PCB Electronic Components Detection Network Design Based on
Effective Receptive Field Size and Anchor Size Matching. Computational Intelligence and Neural Science 2021,
https://doi.org/10.1155/2021/6682710.

17. Ren, S.; He, K,; Girshick, R.; Sun J. Faster R-CNN: Towards Real- Time Object Detection with Region
Networks. In Proc. Advances in Neural Information Processing Systems (NIPS), 2015.

18. Fu, CY,; Liu, W,; Ranga, A.; Tyagi, A.; Berg, A.C. DSSD: Deconvolutional Single Shot Detector. arXiv Preprint
2017, arXiv: 1701.06659.

19. Huang, J.; Rathod, V.; Sun, C.; Zhu, M,; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama,
S.; Murphy, K. Speed/accuracy trade-offs for modern convolutional object detectors. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2017.

20. Kuo, C.W.,; Ashmore, ].D.; Huggins, D.; Kira, Z. Data-Efficient Graph Embedding Learning for PCB
Component Detection. In Proc. Winter Conf. Applications of Computer Vision, 2019.

21.  Zhou, X.; Wang, D.; Krahenbuhl P. Objects as Points. arXiv Preprint 2019, arXiv:1904.07850v1.

22. Law, H,; Deng, J. CornerNet: Detecting Objects as Paired Keypoints. In Proc. European Conf. Computer
Vision, pp. 734-750, 2018.

23. Duan, K, Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint Triplets for Object Detection. arXiv
Preprint 2019, arXiv:1904.08189.

24. Sohn, K. Improved Deep Metric Learning with Multi-class N-pair Loss Objective. In Proc. Advances in
Neural Information Processing Systems, 2016.

25. Wu, Z,; Shen, C.; van den Hengel, A. (2019). Wider or Deeper: Revisiting the ResNet Model for Visual
Recognition. Pattern Recognit. 2019, 90, pp. 119-133.

26. Chen, C,; Tian, X.; Xiong, Z.; Wu, F. UDNet: Up-Down Network for Compact and Efficient Feature
Representation in Image Super-Resolution. In Proc. IEEE Int. Conf. on Computer Vision (ICCV), pp.
1069-1076, 2017.

27.  Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for
Evaluation. Lecture Notes in Computer Science 2005, 3408, pp. 345-359.

28. Boyd, K.; Eng, KH.; Page, C.D. (2013). Area under the Precision-Recall Curve: Point Estimates and
Confidence Intervals. Lecture Notes in Computer Science 2013, 8190, pp. 451-466.

29. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

30. Carion, N.; Massa, F,; Synnaeve, G.; Usunier, N.; Kirilov, A.; Zagoruyko, S. End-to-End Object Detection with
Transformers, arXiv Preprint 2020, arXiv:2005.12872.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202307.0814.v1

	Introduction
	Proposed Algorithm
	Component Placement Inspection for a Single Class
	Component Placement Inspection for Multiple Classes
	Two-Stage Training Process
	First Stage Training
	Second Stage Training

	Examples of Frontend and Backend Networks

	Experimental Results
	Experimental setup
	Performance metrics
	Numerical Results and Comparisons

	Conclusions
	Appendix A
	References

