
$UWLFOH 1RW�SHHU�UHYLHZHG�YHUVLRQ

6KRUW�WHUP�(OHFWULFLW\�'HPDQG
)RUHFDVWLQJ�XVLQJ�'HHS�1HXUDO
1HWZRUNV��$Q�DQDO\VLV�IRU�7KDL
GDWD

.DPDO�&KDSDJDLQ� ���6DPXQGUD�*XUXQJ���3LVXW�.XOWKDQDYLW���6RPVDN�.LWWLSL\DNXO�

3RVWHG�'DWH�����-XO\�����

GRL�����������SUHSULQWV������������Y�

.H\ZRUGV��DFFXUDF\��GDWD�GULYHQ�DSSURDFK��IHHG�IRUZDUG�QHXUDO�QHWZRUN��JDWHG�UHFXUUHQW�XQLW��K\SHU�
SDUDPHWHUV�WXQLQJ��ORQJ�VKRUW�WHUP�PHPRU\��VKRUW�WHUP�GHPDQG�IRUHFDVWLQJ

3UHSULQWV�RUJ�LV�D�IUHH�PXOWLGLVFLSOLQH�SODWIRUP�SURYLGLQJ�SUHSULQW�VHUYLFH�WKDW
LV�GHGLFDWHG�WR�PDNLQJ�HDUO\�YHUVLRQV�RI�UHVHDUFK�RXWSXWV�SHUPDQHQWO\
DYDLODEOH�DQG�FLWDEOH��3UHSULQWV�SRVWHG�DW�3UHSULQWV�RUJ�DSSHDU�LQ�:HE�RI
6FLHQFH��&URVVUHI��*RRJOH�6FKRODU��6FLOLW��(XURSH�30&�

&RS\ULJKW��7KLV�LV�DQ�RSHQ�DFFHVV�DUWLFOH�GLVWULEXWHG�XQGHU�WKH�&UHDWLYH�&RPPRQV
$WWULEXWLRQ�/LFHQVH�ZKLFK�SHUPLWV�XQUHVWULFWHG�XVH��GLVWULEXWLRQ��DQG�UHSURGXFWLRQ�LQ�DQ\
PHGLXP��SURYLGHG�WKH�RULJLQDO�ZRUN�LV�SURSHUO\�FLWHG�

https://sciprofiles.com/profile/1091723
https://sciprofiles.com/profile/2612401
https://sciprofiles.com/profile/2912617


Article

Short-Term Electricity Demand Forecasting Using
Deep Neural Networks: An Analysis for Thai Data

Kamal Chapagain 1,2† , Samundra Gurung 1, Pisut Kulthanavit 3 and Somsak Kittipiyakul 4

1 School of Engineering, Kathmandu University, Dhulikhel, Nepal ;
3 Faculty of Economics, Thammasat University, Bangkok-10200, Thailand;
4 Dhurakij Pundit Univeristy, Bangkok, Thailand;
2 kamal.chapagain@ku.edu.np
* Correspondence: skittipiyakul@gmail.com
† Current address: PoB No 6250, Dhulikhel, Nepal

Abstract: Electricity demand forecasting plays a signi�cant role in energy markets. Accurate
prediction of electricity demand is the key factor to optimize power generation, consumption, saving
energy resources, and determining the energy prices. However, integrating energy mix scenarios,
including solar and wind power which are highly non-linear and seasonal, into an existing grid
increases uncertainty in generation, adds the challenges for precise forecast. To tackle these challenges,
state-of-the-art methods and algorithms have been implemented in literature. We have developed
Arti�cial Intelligence (AI) based deep learning models that can effectively handle the information
of long time-series data. Based on the pattern of dataset, four different scenarios were developed
and two best scenarios were selected for prediction. Dozens of models were developed and tested
in deep AI networks. In the �rst scenario ( Scenario1), data for weekdays excluding holidays was
taken and in the second scenario (Scenario2) all the data in the basket was taken. Remaining two
scenarios, weekends and holidays were tested and neglected because of their high prediction error.
To �nd the optimal con�guration, models were trained and tested within a large space of alternatives
called hyper-parameters. In this study, an Ariti�cial Neural Network (ANN) based Feed-forward
Neural Network (FNN) showed the minimum prediction error for Scenario1 while a Recurrent Neural
Network (RNN) based Gated Recurrent Network (GRU) showed the minimum prediction error for
Scenario2. While comparing the accuracy, the lowest MAPE of 2.47% was obtained from FNN for
Scenario1. When evaluating the same testing dataset (non-holidays) of Scenario2, the RNN-GRU
model achieved the lowest MAPE of 2.71%. Therefore, we can conclude that grouping of weekdays
as Senario1 prepared by excluding the holidays provides better forecasting accuracy compared to
the single group approach used in Scenario2, where all the dataset is considered together. However,
Scenario2 is equally important to predict the demand for weekends and holidays.

Keywords: accuracy; data-driven approach, feed forward neural network; gated recurrent unit;
hyper-parameters tuning; long short-term memory; short-term demand forecasting

1. Introduction

1.1. Background

An accurate Short-Term Load or Demand Forecast (STLF) system is essential to establish an
effective power planning & generation system, and for the real-time operation of utilities. By
providing accurate prediction of electricity demand, generators can produce optimal power, save
energy resources, and give utilities enough time to prepare for scheduling and balance the electricity
grid system.

A balanced grid system ensures a consistent electricity supply, electricity demand, market exercise,
which ultimately lowers costs for consumers, reduces the risk and protects the utility[ 1–4]. Accurate
load forecasts allow for more ef�cient power markets, and a better understanding of the demand
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pro�le with power dynamics. In the �eld of electrical engineering jargon, the term loadis commonly
used to refer to electricity demand[ 5]. Throughout this paper, both terms, loadand electricity demand,
are used interchangeably.

1.2. Challenges

Hourly variation of electricity demand shows that non-linear characteristics of electricity demand
side adds the challenges in balancing the gird. In addition, integration of solar power, wind power,
and other energy mix scenario increases the uncertainty of generation. Load pro�les are in�uenced
by seasonal and cyclic pattern of the atmosphere, as well as human behavior, and other external
factors[6,7]. While developing forecasting models, researchers included these variables in their models,
but still, the predicted value may not exactly match with the true value.

Depending on the impact of such in�uencing parameters, researchers are continuously improving
the forecasting model to minimize the under-and-over forecasting values [ 8]. Therefore, the major
challenges for researcher is to minimize such prediction error by developing sophisticated models
and testing them by using various dataset such as industrial loads, residential load, aggregated load
etc.[9,10]. Moreover, these challenges have motivated researchers to develop robust forecasting models
that can improve the electricity demand prediction accuracy and reduce the �nancial costs for utility
companies. The three major challenging areas that need to tackle are: forecasting accuracy, sensitivity
to parameters, and the complexity of training [ 1].

1.3. Model Categories

In STLF, both univariate and multivariate models have been discussed in literature [ 7,12,13].
A univariate model takes only the historical demand data for future prediction, while mulitvariate
model considers other variables such as atmospheric variations and calendars with the historical
demand data. Taylor et al. [ 12,13] developed both univariate and multivariate model and claimed
that univeriate model also had the capability of good prediction. In univariate time series models, the
historical electricity demand data are arranged with correlated past lags to capture the demand patterns.
McCulloch et al. [ 6] improved the accuracy by including temperature as a variable, recognizing that
weather conditions play a crucial role in forecasting performance.

While factors like humidity, wind, rainfall, and cloud cover have been identi�ed as in�uential
in meteorological analysis [ 8], temperature is widely recognized as the most crucial weather variable
[6]. In fact, the temperature variables alone are capable of explaining more than 70% of the load
variance in the GEF2012Com dataset[14,15]. Therefore, other weather variables has been excluded if
the temperature variable has been included in the model[ 6]. There are a few other reasons as well,
such as (i) other weather variables shows lower impact on electricity demand if temperature is already
included, (ii) cost of collecting the weather data is expensive when we need to install weather stations,
and the potential for collinearity problems can be observed when all weather variables are employed
simultaneously [ 8].

1.4. Model Approaches

The STLF models are developed based on two major approaches i.e statistical approach [8–10,16–
19] and Arti�cial Intelligence or data driven approaches[ 20,21,36,41,54,55].

1.4.1. Statistical approach

In the statistical approach, time series analysis including Auto Regressive (AR) and exponential
smoothing has long been considered as the baseline model for STLF. This approach is based on
well-established methods and is interpretable. However, selection of the appropriate and suf�cient
lagged inputs requires expertise. It may not capture the complex patterns present in data. While simple
averaging models like ARIMA and Triple Exponential Smoothing can be effective for long forecasting
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horizons, as discussed by Taylor et al. [12], they struggled with the non-linear characteristics presented
in electricity deamdn data.

1.4.2. Arti�cial Intelligence or data driven approach

To address the limitations of the statistical approach, data-driven methods have emerged as viable
alternatives. Machine learning techniques, including Support Vector Regression (SVR), Decision Tree
(DT), ensemble learning, and Arti�cial Neural Networks (ANNs), are commonly used as baseline
methods in data-driven approaches. These approaches have the capacity to fully capture the complex
non-linearity patterns. Hippert et al. [ 49] highlighted the ability of ANNs, fuzzy systems, SVM, and
ensemble learning methods to handle the non-linear nature of data. ANNs, particularly Feed-forward
Neural Networks (FNNs), offer many advantages in comparison to traditional time series models,
such as ARIMA, in handling nonlinear and non-normally distributed data commonly encountered
in real-world problems. However, one of the main drawbacks of ANNs is their assumption of
independence between inputs and outputs, even when dealing with sequential data like electric energy
consumption. FNNs are one of the most popular structures among ANNs and are used to model
complex input-output relationships through a trial-and-error based search for the best parameter
values. Despite their ef�cacy, FNNs are prone to over�tting, and their learning process may not
guarantee reaching the global optimum solution, which can result in trapping the network in a local
optimum. The back-propagation learning algorithm is a commonly used method for FNN learning in
various applications.

However, the problem of vanishing or exploding gradients exists in RNNs due to long-term
dependencies. To address this issue, the concepts of gated cells, known as Long Short-Term Memory
(LSTM) cells and Gated Recurrent Units (GRUs), were introduced.LSTM cells are well-suited for
tasks that require capturing long-term dependencies and sequence-dependent behavior, making them
suitable for applications like electricity load demand forecasting[ 20]. The LSTM structure is powerful
enough to encode all the historical information, and the gating functions in LSTM cells allow the
network to control the �ow of information well. Similarly, GRUs were designed to use a single path,
removing the output gating and outputting the cell state directly. The cell state can then be used for
both state updates and gating function computations in subsequent steps. That means the reset gate in
GRUs can be considered as a shifted output gate of LSTMs, shifting from the output of the current step
(in LSTMs) to the input of the next step (in GRUs)[ 20].

This paper is the extented version of our previously published research work [ 36], that was
focused on the development of a regression model to interpret the impact of temperature variation on
Thai electricity demand. Now, we have used the same dataset by reducing the existing four scenarios
into two scenarios as recomended in[36]. As the continuation of our previous work, Chatum et al.
[37] also tested the same dataset by developing machine learning models with an ensemble learning
approach. Therefore, one reason of the extension was to full-�ll the gap of DNN implementation and
this work mainly focus on �nding the best DNNs model on the basis of forecasting accuracy. The
major contributions of this paper are summarized as,

• comparative study of deep networks for FNNs, and RNN based LSTM and GRU are discussed on
the basis of testing and validation accuracy.

• implementation of the hyper-parameters (number of neurons, layers, dropout, epoch, lookback
period etc) tuning and cross validations strategy to select the best model.

• increasing the number of hidden layers does not ensure the improvement of forecasting accuracy.

• as this dataset has been tested in various methods such as Bayesian[32], Regression[32,36,45],
machine learning[ 33–35,48], ensemble learning[37] etc, the experimental gap on deep learning
network is now ful�lled by this paper.

The organization of this paper is as follows. Related works are discussed in Section 2. Modeling
strategy, theory behind DNNs, and estimation procedure of models are presented in Section 3. Section
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4 describes the characteristics of electricity demand data and also discussed the variables. Section5
demonstrates a model formulation, extensive experimental setup, and analysis of forecasting accuracy
and quality of the model �t based on the Thai dataset. Results and comprehensive discussions are
presented in Section6 and Section7 concludes this paper.

2. Related Works

The universal approximation theorem states that an ANN is capable of accurately approximating
any non-linear function. ANN models have been employed for electricity demand forecasting since
the 1990s and have consistently shown promising results.The computational advancement and state of
the art algorithm in recent years led to the development of DNNs as the leading methods on electricity
demand forecasting by increasing the feature abstraction capability of the model. The capability of
handling sequential data, long-term dependencies, and extracting the complex pattern of data by the
RNN based LSTM and GRU networks lead to their popularity among the researchers [ 20,21].

However, Hippert et al.[ 49] mentioned the important critics of ANN techniques. Despite
limitations, ANN models continue to be an important tool in electricity demand forecasting. Deep
neural networks possess the capability to acquire non-linear combinations of features in their deeper
layers [50]. These deep learning methodologies, which involve augmenting standard machine learning
neural networks with multiple hidden layers, hold great promise as the most effective approach
within the �eld of machine learning. The fundamental structure of feedforward networks (FNNs) and
recurrent neural networks (RNNs) remains the same except for feedback between nodes.

Feedforward Neural Networks (FNNs) are one of the popular models. Harun et al. [ 38] also
implemented a FNN for a comparative study between different data pre-processing schemes. The
authors got the best result with 72-hour lag loads. These studies demonstrate the signi�cance of FNNs
in electricity demand forecasting and highlight the importance of choosing appropriate inputs and
pre-processing techniques to improve the accuracy of the model. An example of a previous study by
Tee et al. [39] proposed a multi-linear FNN model with 51 inputs, including load lags, hours, day type
dummies, and temperature. The model achieved a Mean Absolute Percentage Error (MAPE) of 0.439%,
with the maximum MAPE of 7.986% observed during the month of December. Another study by Raza
et al. [2] presented a model utilizing an FNN trained with a gradient descent algorithm. The inputs for
their model included variables such as the day of the week, working day indicator, hour of the day,
dew point, dry bulb temperature, and loads for the current day, the day before, and the week before.
The forecast accuracy reported by the authors ranged from 3.81% in the spring to 4.59% during the
summer.

Li et al. [ 42] evaluated the performance of LSTM and FNN models in electricity demand
forecasting by comparing their prediction accuracy and robustness. They found that the LSTM
model outperformed the FNN in terms of accuracy and robustness, demonstrating the superiority
of the LSTM model in capturing complex long-term dependencies in electricity demand data. In
order to enhance the performance of the LSTM, the authors further proposed the use of multiple
parallel LSTMs, which were able to capture the multi-scale dependencies in the electricity demand
data, resulting in an even better prediction accuracy.

In addition to LSTM and FNN, hybrid DNN models have also been applied in the area of electricity
demand forecasting. For example, [4] proposed �ve different architectures of recurrent neural networks
(RNNs) to enhance the accuracy of short-term electricity demand forecasting. The study showed
that GRU and bidirectional LSTM model outperformed the traditional FNN and RNN models in
terms of accuracy, demonstrating the potential of combining multiple machine learning techniques for
improved forecasting performance. This paper also sugested to implement hyper-parameter testing.
However, the accuracy depended on the data variation pattern. For example, Selvi et al. [ 16] got 2.90%
MAPE value by the ANN model and tested for DSO dataset (Delhi, India) with 1hr prediction horizon.
Whereas, Torabi et al. [22] got only 1.96% MAPE value from the same ANN model (Table 1). Such
variation of the MAPE result highly depends on the geographical region from where the demand
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comes. For example, the electricity mand coming from the industrial region is much more stable than
that coming from the residential, agricultural or the city areas. In residential area, demand is highly
�uctuated in nature due to the behavior of local people, ultimately . It is always a huge challenge for
researcher to address such uncertainty.

Table 1. Variation of prediction accuracy due to the uncertainty nature of demand dataset.

Model MAPE
Prediction
horizon

Data source Published year Reference

ANN model
2.90% 1hr DSO, Delhi, India 2018 Selvi et al. [16]

1.96% 1hr Bandar Abbas, Iran 2012 Torabi et al. [22]

CNN-LSTM
2.02% 1hr Public dataset, England,USA 2019 Pramono et.al. [23]

34.84% 1hr UCI ML dataset (households) 2019 Kim et al. [24]

1% 24hr Industrial area, China 2020 Qi et al. [25]

In the context of Thailand, several studies have been conducted to predict electricity demand
using various methods and techniques. Several authors, including our research team have produced
interesting results and published using the same EGAT dataset 2009 � 2013 recorded for the Bangkok
metropolitan region (Table 2). Dilhani et al. [ 48] used an Arti�cial Neural Network (ANN) method to
forecast electricity demand based on historical electricity demand and temperature data. However,
their results were only tested for one month, while the results in this study were tested for one year.
Parkpoom et al.[30] conducted a micro study on the effect of temperature on electricity demand using
a simple regression model, but the prediction accuracy was poor. Phyo et al. [ 33] and Su [34] both used
Deep Neural Network (DNN) methods to forecast electricity demand, with a focus on cleaning and
grouping the data into similar days. However, their results, as measured by Mean Absolute Percentage
Error (MAPE), were not very impressive.

Table 2. List of published work based on 2009-2013 EGAT dataset[37].

Method Result Reference

MLR with AR(2) Bayesian estimation provides consistent and better accuracy compared to OLS estimation [ 32]

PSO with ANN Implementing PSO on ANN model outperformed shallow ANN model [ 46]

OLS Interation of variable improves the prediction accuracy [31]

OLS and Bayesian estimation Including temperature variable in a model can improved the prediction accuracy upto 20% [ 45]

PSO & GA with ANN PSO+GA outperformed PSO with ANN [35]

OLS, GLSAR, FF-ANN OLS and GLSAR models showed better forecasting accuracy than FF-ANN [ 36]

Ensemble for regression and ML Lowers the test MAPE implementing blocked Cross Validation scheme. [ 37]

FNN, RNN based LSTM & GRU For weekdays and for aggregate data GRU shows better accuracy In this study

Weather conditions have a signi�cant impact on short-term electricity demand forecasting and are
commonly incorporated into forecasting models [ 43]. For short lead times of up to six hours, univariate
methods that do not include weather variables are often deemed adequate [ 12]. The advantage of
traditional univariate methods is their effectiveness even when there is limited data available [ 53].
However, due to dif�culties in accessing weather data and higher costs, univariate models are often
used [8,51].

It is worth mentioning that other regions with similar weather conditions to Thailand, such as
Malaysia, can provide useful insights into electricity demand forecasting for Thailand. For example,
Ismail [ 19] investigated the impact of weather variables, holidays, and other factors on daily and
monthly electricity demand in Malaysia and achieved a MAPE of 1.71%. The effect of air conditioning
systems on electricity demand was also studied in the US, where a 20% increase in cooling degree day
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was found to increase residential electricity consumption by 1% to 9% during the summer season and
5.4% during peak hours [ 44]. In Thailand, residential air conditioning also contributes signi�cantly to
electricity consumption.

3. Rationale of deep learning implementation

Deep learning architectures are particularly well-suited for tackling the unique challenges
presented in electric load forecasting, including non-linearity, periodicity, seasonality, and the
sequential dependencies within consumption data sequences. In contrast to shallow ANN architectures,
deep learning models have the capability to automatically learn complex temporal patterns by
employing non-linear transformations and extracting high-level abstractions.

3.1. Feed forward Neural Network (FNN)

The basic architecture of a FNN is depicted in Figure 1. In this architecture, input vector xi (t)
is associated with weight wi (t) and bias bi (t). The activation function f () is applied to each neuron,
and the network learns by adjusting the weights. The weight updates are accomplished through the
backpropagation error E, allowing the network to iteratively re�ne its predictions.

Figure 1. Architecture of a Feedforward Neural Networks [ 28].

Normally, FNN is constructed by applying the Back Propagation (BP) learning algorithm. Where
the BP learning neurons connecting weights are adjusted over the given input-output dataset 1. This
helps the FNN model to learn the behavior of the data very fast.

Suppose,Xl
i is the input vector, where x[1,..,L]

1,..,i for layers l 2 1, ..,L for input i represents the set
of half hourly demand data including the calendar and weather variables passing into the layers.
The output YL

i = X l
i is equivalent to hL[W [L]X [L� 1] + b[L]], where, h[l ](.) are the activation functions,

b[l ] = ( b[l ]
1 , ..,b[l ]

j )T are the bias, and W [l ] are the weights. These parameters are optimized using
gradient descent algorithm as,

pi+ 1 = p[i ] � l r E(p) (1)

where p represents the parameters, l represents learning rate, and E(p) represents the mean
square error (MSE), also called loss function. In Equation 2, xi is the predicted value, t i is the target
value and n is the number of half hourly demand data. The search for the loss function minimum is
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commonly performed by computing its gradient ¶
¶pE(p) that indicates how the function changes with

a small changes in parameters.

E(p) = MSE =
1
n

n

å
i= 1

( f (xi , p) � t i )
2 (2)

From above two equations Equation 1 and Equation 2, the �nal equation for updating the weight
and bias are,

for weight update

W [L]
[i+ 1] = W [L]

[i ] � l
¶E(p)
¶W [L]

for bias bias update

b[L]
[i+ 1] = b[L]

[i ] � l
¶E(p)
¶b[L]

(3)

The back-propagated error ¶E(p)
¶W[L] and ¶E(p)

¶b[L] for Equation 3 can be obtained using the chain rule.

¶E

¶W [L]
=

¶E

¶X [L]
�

¶X [L]

¶A [L]
.
¶A [L]

¶W [L]

T

¶E

¶b[L]
=

¶E

¶X [L]
�

¶X [L]

¶A [L]
.
¶A [L]

¶b[L]

T
(4)

where dot (.) symbol stands for matrix multiplication and the circle (� ) symbol represents for

Hadamard or element-wise product. The back-propagated error represented by d[L] = ¶E
¶X [L] � ¶X [L]

¶A [L]

is passed toL � 1 layer, and the updated back-propagated error in L � 1 layer, d[L� 1] = ¶A [L]T

¶X [L� 1] .d
[L] �

¶X [L� 1]

¶A [L� 1] , represented by dL� 1 is passed todL� 2 layer and so on. Finally, the general form of updated
error is represented as,

¶E

¶W [l ]
= d[l ].

¶A [l ]

¶W [l ]

T

¶E

¶b[l ]
= d[l ].

¶A [l ]

¶b[l ]

T
(5)

Now, Equation 3 is continuously updated using Equation 5, known as back-propagation approach
and it has been implemented for energy consumption prediction due to two major attributes on
learning capability of (i)highly non-linear relationships and (ii) shared uncertainties [ 50].

3.2. RNN-Long Short Term Memory (LSTM)

Long-term training of RNNs using the back-propagation algorithm often encounters dif�culties
due to the issue of vanishing gradient descent. A RNN based LSTM networks were specially designed
to overcome these problems by introducing new gates which allow for better control over the gradient
�ow and enable better preservation of long-range dependencies (Figure 2). Apart from traditional
RNN cells, LSTM architecture consists of a special sharing parameter vector called the memory
parameter vector ht and that is deployed to keep memorized information. Therefore, it can addresses
the challenge of vanishing gradient descent by incorporating internal self-loops, which enable the
network to maintain a longer-term memory and effectively store information.
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Figure 2. Architecture of LSTM [ 26].

Let, X t = [ x1
t , x2

t , ...,xN
t ] be the input data, ht = [ h1

t , h2
t , ...,hK

t ] be the hidden units, and Ct =
[c1

t , c2
t , ...,cK

t ]be the memory state of LSTM network at time t (Figure 2). For each timestamp t, forget
gate ft , input gate i t , and output gate Ot are involved for the following operations,

1. forget gate f (t) = s(W f X t + U f ht � 1 + bf is controlled based on the input xt and the previous
hidden state ht � 1 that decides which of the previous information is to be discarded.

2. input gate i t = s(Wi X t + Ui ht � 1 + bi ) is the degree to which the new content added to the
memory cell is modulated. i.e. selectively reads in the information controlled based on the input.
The weights of input gates are independent of those in the forget gate.

3. output Ot = s(WoX t + Uoht � 1 + bo) modulates the amount of memory content.

Finally, the information of current LSTM cell ht is calculated as,ht = Ot � tanh(Ct ) to pass to the
next LSTM cell, where Ct = ft � Ct � 1 + i t � Ĉt , and Ĉt = tanh(WcX t + Ucht � 1 + bc) by updating the
previous information ht � 1, where, W f ,Wi ,WC,Wo are the weights matrices corresponding to the input
X t and U f ,Ui ,UC,Uo are the recurrent weights matrices associated with previously hidden state ht � 1

and bf , bi , bC, and bo are the bias vectors for forget gate, input gate, candidate solution, and output
gate, respectively.

RNN and LSTM architectures excel in capturing temporal features, making them well-suited
for time series forecasting tasks. However, tuning the hyperparameters of LSTM networks can be
a challenging task, involving considerations such as the number of hidden layers, nodes per layer,
batch size, number of epochs, learning rate, and optimization of connection weights and biases [ 26].
Interestingly, during our experiments with the Thai dataset, we found that training LSTM models
was not overly complex. As a result, we have proposed an RNN cell that effectively manages the
computation of input information and memory, leading to favorable convergence during the training
process and producing excellent results.

3.3. RNN-Gate Recurrent Unit (GRU)

Similar to the LSTM cell, the GRU also has gating units that modulate the �ow of information
inside the unit. It has only two gate structures: the reset gateand the update gate. Two different gates of
LSTM, forget and input gates, are combined into a single update gate in GRU cell so that both gates
decided together which information to forget and which information to add.

At time t, let, X t = [ x1
t , x2

t , ...,xN
t ] be the input data and Ht = [ H1

t , H2
t , ...,HK

t ] be the hidden units
of the memory state of GRU network (Figure 3). When input vector X t is provided to the cell, it
is divided into three branches: (i) one towards the reset gate, (ii) another towards the update gate,
and (iii) towards the outputs. The reset gate r t = s(Wr X t + Ur Ht � 1) is similar to the forget gate
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in LSTM. When r t is close to 0, it allows to forget the previously computed state. The update gate
zt = s(WzX t + UzHt � 1) decides how much the unit updates its activation Ht = ( 1 � zt )Ht � 1 + zt Ĥt ,
which is the linear interpolation between previous activation Ht � 1 and candidate activation Ĥt . The
procedure of taking a linear sum between the existing state and the newly computed state is similar to
the LSTM unit.

Figure 3. Architecture of GRU: �ow of information [ 27].

4. Electricity Demand Pro�le on Study Area

The scope of our study encompasses the metropolitan region of Thailand, which includes Bangkok
and the surrounding provinces: Pathum Thani, Nonthaburi, Nakhon Pathom, Samut Sakhon, and
Samut Prakan. This metropolitan region alone accounts for approximately 70% of the total electricity
consumption in Thailand [ 30]. Within these provinces, numerous factories, industrial parks, of�ces,
and universities are situated, contributing to the overall electricity demand.

This study utilized half-hourly demand data obtained from EGAT, spanning from 1 March 2009
to 31 December 2013. Out of the total 84,618 observation samples, only eight half-hour samples were
found to be missing on 10 March 2012. These missing values were addressed through a straightforward
interpolation method to ensure the completeness of the dataset. The complete half-hour non-holiday
and holiday demand pro�le over a year for 2012 is presented in Figure 4a. The dataset exhibits various
patterns including trends, seasonal �uctuations, weekly and daily patterns, as well as holiday effects.
These patterns are inherent in electricity demand data and are commonly observed in many tropical
countries [9,51].

4.1. Seasonal and Holiday Pattern

The hourly aggregate demand pro�le is plotted in Figure 4b. To observe the stable variation of
data over time, a rolling window of 365 samples were taken for moving average. This plot indicates
that the overall demand grows with a linear trend and is in�uenced by seasonality. The pattern of
peak demand and off-peak demand describes the signi�cant effect of peak working hours, holidays or
some special event.
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Figure 4. (a) Complete demand pro�le for a year: 2012 (b) Overall demand pro�le with trend.

The massive Bangkok �ood in the north and central Thailand from October, 2011 until December
2011 caused a long period of signi�cant demand drop. During that time many factories, universities,
of�ces in Bangkok and surrounding provinces were closed for a few months. Figure 5a indicates that
the measure of the demand drop compared with respect to previous year's demand, shows that the
peak demand was reduced approximately by 2000MW and can be considered the similar stage of
Covid-19 lockdown situation[ 36,56].
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Figure 5. (a) Decrease of load during Bangkok-�ood (b) Day type (calendar) variation on load.

Each year, there is a noticeable decrease in electricity demand during holidays and special events.
Particularly, the extended holidays such as the �rst week of January (New Year holiday) and the
second week of April (Songkran holiday) have a signi�cant impact on reducing demand, as illustrated
in Figure 6(a)(b)). During these periods, factories, universities, and other of�ces remain closed for
approximately a week, while many Thai people return to their homes outside the metropolitan region.
Additionally, holidays like Mother's Day (August 12) and Father's Day (December 5) also contribute
to the �uctuation in electricity demand, although their effect is not as substantial as that of Songkran
and New Year. These variations in electricity demand due to holidays are commonly referred to as
holiday_e f f ectsand play a crucial role in the modeling process and pose a signi�cant challenge for
researchers aiming to achieve high forecasting accuracy.
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Figure 6. (a) Electricity demand during Songkran period (b) Decrease of electricity demand during
New Year period.

4.2. Monthly, Weekly and Daily Patterns

Residential electricity demand seems to be more volatile compared to industrial load. However,
such residential demands are dominated by factories, of�ces, and industrial loads during on weekday.
On weekend and holidays, all governmental and private of�ces and factories are closed. Therefore,
residential demand is dominated by the industrial demand (Figure 5b). Since the residential
demands are quite volatile and dif�cult to predict, this is the main reason of getting low accuracy
of forecasting result on weekends and holidays. On weekdays, it is normal to see similar day-time
and before-midnight electricity demand patterns. Moreover, the demand between midnight to early
morning is almost same for weekday and weekend.
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Figure 7. Variation of demand over a year and months.

The box plot in Figure 7a describes the level of electricity consumption demand for individual
years. Each box represents the variation of demand whether it lies on �rst quartile ( Q1: 0 to 25% of
demand data), third quartile ( Q3: 50-75% of demand data) or within the median range (50% of demand
data) as shown by the line in the box. In 2011 and 2012, a few outliers indicates the possibility of very
low demand may exist. Similarly, Figure 7b represents the level of electricity consumption demand for
individual months, where December shows very high variation with relatively lower demand than the
rest of the months.

4.3. Temperature

Weather conditions, particularly temperature, are commonly utilized variables in short-term or
mid-term demand forecasting models [ 8,18,30]. In Thailand, a signi�cant portion of electrical energy
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is consumed, especially during the summer season, to combat the rising temperatures. During the
winter season, temperatures are slightly lower, leading to a slight decrease in demand. Geographical
variations play a role as well, with cold countries experiencing strong heating effects and warm
countries experiencing strong cooling effects [8]. Thailand, being a tropical country, maintains a
warm climate even during the winter season and becomes noticeably hot in the summer. The average
temperatures range from approximately 25 � C in December to 30� C in May. Additionally, Thailand's
economic development has resulted in an increased use of cooling devices like air-conditioners.
However, for short-term electricity demand forecasting, geographic variability and economic activities
are not considered.

Figure 8a illustrates the impact of temperature on electricity demand during both working days
and holidays. It reveals that there is a signi�cant variation in demand when the temperature drops
below 30� C or rises above 35� C on holidays. In contrast, the demand follows a sharp and linear
pattern during working days. Furthermore, since we are employing separate models for individual
hours, Figure 8b presents the characteristics of electricity demand at two different hours: 2pm and
11pm. This �gure compares the relationship between temperature and peak electricity demand during
these two time periods. Notably, Figure 8b highlights that the demand at 11pm exhibits a more linear
relationship with temperature compared to the demand at 2pm.
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Figure 8. (a) Effect of temperature during peak hour (b) Effect of temperature at two different hours
[36].

5. Methods

This section presents the description of the proposed methods, as illustrated in Figure 9. The
proposed methods can be categorized into three frameworks: data pre-processing, model design
and estimation, and comparative study. Since this work is the extended version of [ 36,37], we have
excluded details of data characteristics, variable identi�cation procedure and their pre-processing
stage to avoid an ambiguous presentation. However, carefully grouped datasets, hereafter named the
scenariosare considered for further discussion. Each model is trained and tested for each scenario and
divided as,

This section provides a description of the proposed methods, outlined in Figure 9. The methods
can be categorized into three frameworks: data pre-processing, model design and estimation, and
comparative study. Due to the extended nature of this work from previous studies[ 36,37], speci�c
details regarding data characteristics, variable identi�cation procedures, and pre-processing stages
have been omitted to ensure clarity. However, for further analysis, we have carefully grouped the
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datasets into speci�c scenarios. Each model is trained and tested for each scenario, and the division is
as follows,

• Scenario1 : demand, only for working days where, training and validation length is 911 days,
testing length is 239 days.

• Scenario2 : demand, all dataset where, training length is 1365 days, and testing length is 365 days.

• Scenario3 : demand, only for weekends where, training and validation length is 342 days, testing
length is 87 days.

• Scenario4 : demand, only holiday and highly �uctuating demand from December 24 to New
Year's eve where, training and validation length is 142 days, testing length is 39 days only.

For each scenario, various models have been fed for FNN, RNN based LSTM, and GRU models and
the comprehensive analysis has been conducted. However, based on the forecasting accuracy, our
previous study [ 36] with regression analysis recommended two scenarios: Scenario1 to predict the
demand of weekdays, and Scenario2 to predict the demand of weekend and holidays. Now, further
analysis on these two scenarios using DNN techniques will full�ll the study gap.

Figure 9. Proposed forecasting methodology.

The input of data vectors for arti�cial intelligence modelsshown in Figure 9 is expanded in Figure
10. Both FNN and DNN models received the past observations of demand xt � t , ...,xt where t is the
length of the look back period. During the hyper parameter testing, length of sliding window was
varied with t > n. At any timestep t, possible target is yt+ k. The weather variables, calendar variables
also follow the sliding window procedure taking the same length of the lookback period.

(a) (b)

Figure 10. (a) Data input structure on FNN model. ( b) Data input structure on DNN.

Preprints  (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2023                   doi:10.20944/preprints202307.0789.v1

https://doi.org/10.20944/preprints202307.0789.v1


14 of 31

5.1. Feature Selection

In Thailand, the EGAT system makes forecasts at 2 pm for the next day, which is 10 to 34 hours
ahead. On Fridays, EGAT needs to forecast until Monday because the EGAT of�ce is closed on
weekends. For short-term forecasting, Thailand typically uses data up to 106 hours ahead, especially
during long holidays. This study, however, is limited to using data up to 2 pm to forecast only for the
next day.

Many authors such as [13,52] proposed and implemented feature selection strategy in their model.
They implemented cross-validation strategy for the selection of variable. In our study, various aspects
of data analysis was observed in section 4 such as seasonal patterns, holidays, weekly, and daily
patterns.

Figure 11. Demand prediction horizon: practice of EGAT, Thailand.

Our forecasting models explicitly incorporate external variables, such as weather variables
(speci�cally temperature), and their interactions with days and months. Previous studies have
suggested the inclusion of dummy variables and their interactions for improved forecasting accuracy.
For instance, Ramanathan et al. [17] proposed the use of dummy variables and their interactions, while
Cottet [47] applied different day-type dummy variables for each day of the week, considering Sunday
as a public holiday.

In our paper, the variables are grouped into four categories: deterministic, temperature, lagged,
and interactions, as presented in Table 3. To simplify the model, the lagged terms and prediction
horizon speci�c to Thailand's practice are illustrated in Figure 11. For forecasting the demand on
a particular day, the day-ahead demand dataset, which includes demand data from HH = 0 to
HH = 28 of the previous day and HH = 29 to HH = 47 of the day before that, is represented
by the variable load1d_cut2pm. Similarly, the lagged demand for two days ahead is included in our
model and represented by the variable load2d_cut2pm. Please note that the termsload3d_cut2pmRand
load4d_cut2pmRwere excluded from this paper as they were utilized by EGAT of�cials for forecasting
Sunday and Monday demand from Friday 2pm.
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Table 3. List of selected input variables.

Types Variables Description

Deterministic

WD Week dummy [Mon <Tue ... <Sat<Sun]
MD Month dummy [Feb <Mar <... <Nov <Dec]
DayAfterHoliday Binary 0 or 1
DayAfterLongHoliday Binary 0 or 1
DayAfterSongkran Binary 0 or 1
DayAfterNewyear Binary 0 or 1

Temperature

Temp Forecasted temperature
MaxTemp Maximum forecasted temperature
Square temperature Square of the forecasted temperature
MA2pmTemp Moving avearage of temperature at 2pm

Lagged

load1d_cut2pm 1 day ahead untill 2pm and 2 day ahead after 2pm load
load2d_cut2pm 2 days ahead untill 2pm and 3 day ahead after 2pm load
load3d_cut2pmR 3 days ahead untill 2pm and 4 days ahead after 2pm load
load4d_cut2pmR 4 days ahead untill 2pm and 5 days ahead after 2pm load

Interaction

WD:Temp Interaction: week day dummy to temperature
MD:Temp Interaction: month dummy to temperature
WD:load1d_cut2pm Interaction: week day dummy to load1d_cut2pm
WD:load2d_cut2pm Interaction: week day dummy to load2d_cut2pm

5.2. Experimental setup

The sequence of electricity demand observations, denoted as x(t) = x1,x2, ..., captures the
demand values at different time steps, t. The objective is to predict the time series y(t), which
represents the predicted electricity demand for a speci�c time step.

In a supervised learning approach, the Deep Learning (DL) model is trained and tested to predict
future time steps. A predictor function, h, is utilized to estimate the energy consumption value for
the next step, y(t + 1). The model's parameters, such as epochs, number of layers, nodes per layer,
dropout rates, and recurrent dropout, are optimized using a validation set. Once optimized, the model
is retrained on the entire training set and tested on the test data.

Assuming a look-back duration of t , eachx(t) consists of a vector of variables including demand,
temperature, and other factors. The sample (t, t ) is de�ned as [x(t), x(t � t + 1), x(t � t + 2), ...,x(t)].
In our approach, each x(t, t ) is treated as a single batch with a batch_size. The target variable represents
the demand at a future day, denoted as target(t) = xD (t + d), where xD (t) represents the scalar
demand at time t. The target demand, target(t), is in�uenced by previous variables in sample(t, t ).
The look-back duration t is a parameter that requires optimization. It's important to note that the
target demand can be a vector, such astarget(t) = [ xD (t + d1), xD (t + d1 + 1), ...,xD (t + d2)], where
[t + d1,t + d2] indicates the time interval for prediction based on sample(t). Thus, we are predicting
d2 � d1 + 1 values of the target variable D into the future, based on t samples from the look-back
period. Determining the suitable value for t is crucial.

Assuming a batch prediction size of T = d2 � d1 + 1, where the �rst prediction starts d1 samples
ahead, the last prediction corresponds to d2 = d1 + T � 1, indicating a T � 1 sample offset. The goal is
to estimate the function f that maps sample(t) to target(t), given [x(t � t + 1), x(t � t + 2), ...,x(t)]
and [xD (t + d1), xD (t + d1 + 1), ...,xD (t + d2)]. It is assumed that this mapping f is independent of
time t, although a more general setting allows for a function f (t) that depends on time.

For a day-ahead prediction, a batch prediction with T = 48 is typically implemented. Following
the methodology used by EGAT for day-ahead forecasting, we predict demands for half-hour intervals
from HH = 0 to 47 for the next day, considering the latest demand at 2pm of the current day. In
this speci�c scenario, the delays are set asd1 = 48 � 28 = 20, and the batch_sizeshould include the
half-hour delayed data. Thus, the delay parameters are designed as d1 = 20, and d2 = d1 + T � 1 =
20+ 48 � 1 = 67.
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Figure 12. Breakdown of dataset into training, validation, and testing dataset.

In the case of a FNN, the input is transformed from [x(t � t + 1), x(t � t + 2), ...,x(t)] to [x1(t �
t + 1), x2(t � t + 1), ...,xk(t � t + 1), x1(t � t + 2), ...,xk(t � t + 2), ...,x1(t), ...,xk(t)]. Here, x(t) is
assumed to consist of k variables, denoted as [x1(t), x2(t), ...,xk(t)]. Thus, the FNN maps from kt
inputs to one output. In order to account for dummies that have the same value for a given day, we
retain only one value per day. Each x(t) in the samples should include the demand at time t, the
forecasted temperature at time t + d2, and DayO f Weekdummies for the next day (tomorrow, if t is
today). The prediction half-hours would range from t + d1 to t + d2. If we are interested in considering
the days after holidays, we should incorporate dummies for the two days following tomorrow. It is
important to note that due to holidays falling on weekdays, there are irregularities in the DayO f Week
dummies for adjacent days in the dataset. For example, it may follow a pattern such as Monday,
Tuesday, Thursday, Friday, Tuesday, and so on. As a result, the DayO f Weekdummies are not periodic
but rather random in nature.

When considering the historical data to predict target(t), particularly when the lookback t is
large, the LSTM model proves bene�cial by avoiding the issue of vanishing or exploding gradients.
However, it is important to note that including too much �uctuated information for a large t may
adversely impact the accuracy of the predictions, as depicted in Figure 13. In the case of holiday data,
it may be necessary to have a larget , spanning one or multiple years. Conversely, for non-holiday
data, the required lookback period is typically on the order of a few days or weeks, with the exception
of the days surrounding Songkran and New Year, which may require a lookback period on the order of
years. To address this, an approach of treating the interim days together with the holidays ( Scenario4)
was attempted, but it resulted in poor performance [ 36].

Figure 13. Visualization of pre-trained model, look-back period, and prediction.
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5.3. Hyper-parameter Tuning

Tuning the hyperparameter shapes the structure of the network and affects the performance of
deep networks because they represent the variables as their values are being constantly adjusted to
achieve optimal performance of the model [ 4]. In this experiment, the hyper-parameter optimization
process is conducted separately for each deep network. Major hyper-parameters that we considered
are,

The process of tuning hyperparameters plays a crucial role in shaping the structure of a network
and signi�cantly impacts the performance of deep networks. These hyperparameters represent the
variables whose values are continuously adjusted to optimize the model's performance [ 4]. In our
experiment, we conducted the hyper-parameter optimization process separately for each deep network.
The following are the major hyper-parameters:

1. number of hidden layers,

2. number of network training iterations,

3. mini-batch sizethat denotes the number of time series considered for each full back propagation
for each iteration;

4. epochthat denotes one full forwrd and backward pass through the whole dataset and number of
epoch denotes the number of such pass across the dataset are required for optimal training;

5. Dropout that dropout is a technique to prevent the problem of over-�tting by excluding the
negligible in�uenced neurons from the network. We applied the drop-out for both forward and
recurrent.

6. Look back periodthat denotes the number of previous timesteps taken to predict the subsequent
timestep. In our tuning, we have taken 5 to 10 days lookback period to predict the subsequent
timestep of 1 day ahead.

5.4. Critics on ANN

ANNs are highly criticized for their black-box nature and acknowledged in several studies.[ 1,3,
29,36,49]. Unlike multiple regression methods, ANNs are the black-box (lack of interpretability) and
they do not offer insights into the correlation of electricity demand and variables. Therefore, Hippert
et al. [49] concluded that without a solid understanding of the underlying relationships.

Possibility of over�tting and lack of interpretability are two major drawbacks highlight for ANN
domain. Over�tting can occur due to either over-training or over-parameterization. In such over�tted
model, training data may well �tted, leading to the poor generalization performance on unnknown
test data [1]. Critical comments by Hong et al. [ 1] mentioned that the good results from ANN is by
peeping the properties into the targets. For example, the non-linear autoregressive ANN model was
implemented in [ 11] and achieved 30% improvement on accuracy.

However, due to elastic con�guration of ANN structures and non-linearity tackling capability of
periodicity, seasonality, and the sequential dependencies of electric demand data sequences, researcher
have been applied electricity demand forecasting use cases on ANN and deep learning architecture. In
many examples [28,39,41], ANNs already shown outstanding performance on accuracy of electricity
demand prediction, nevertheless they do not provide insight into the relationship between electricity
demand and its driving factors.

6. Results and discussion

In this section, we empirically determined the hyper-parameters for FNN, RNN � LSTM, and
RNN � GRU models for all the four scenarios ( Scenario1, Scenario2, Scenario3, and Scenario4 ).
However, our prime focus is for the initial two scenarios. The training dataset is a set of data utilized
to train the model. During each epoch, the model learns from this data repeatedly, allowing it to grasp
the underlying features within the dataset. When the trained model is deployed, it uses this acquired
knowledge to make predictions based on the learned patterns.
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To ensure the model's performance and optimize its hyperparameters, a separate validation
dataset is created by partitioning it from the training dataset. During the training process, simultaneous
validation steps are performed using this validation dataset. The model's weights are adjusted based
on the calculated loss from the validation dataset. One of the main reasons for having a validation
dataset is to prevent the model from over�tting the training data, as it provides an independent source
for assessing generalization performance.

The test dataset is used to evaluate the model's performance after it has been trained. This dataset
is separate from both the training and validation datasets. In our speci�c case, the training dataset
spans from 2009 to 2011, and the year 2012 is considered as the validation dataset (Figure12). For
testing, the training dataset includes data from 2009 to 2012, while the test dataset consists of data
from the year 2013.

6.1. FNN

For the sake of convenience, we have opted for Scenario1 in our analysis, which involves
excluding weekends and holidays from the original dataset. Additionally, we have disregarded
interim working days like Songkran1D and Newyear1D. In our experiment, we have compiled a list of
hyperparameter value sets to be tested speci�cally for FNN models. These hyperparameter values are
presented in Table 4.

Table 4. Experimental hyper-parameters testing setup for FNN.

Parameters value

Nos of nodes [2, 4, 8, 16, 32, 64, 128]
Nos of hidden layers [1, 2, 3, 4, 5]
Look back period [5 days,10 days]
Dropout [0, 0.05, 0.1, 0.15]
Epochs [upto 1 million]

(a) Hyper-parameters variations

Parameters value

T 48
Delay 20
Pred_batch_size 48
Nos of hidden layers 2
Dropout 0
Recurrent_dropout 0
Nos of Nodes 32
Epochs 400
Look back period 5 days
Train_fraction 1

(b) Tunned parameters

The parameters presented in Table4a were initially implemented to test the functionality and
validity of our function. After successfully verifying its performance, some of the parameters were
adjusted to observe their impact on the validation results, as shown in Table (Table 4b). was utilized as
the metric for measuring performance, and the set of parameters resulting in the minimum validation
MAE was selected as the optimal choice. Through our FNN experimental setup, we achieved a
minimum validation loss of 162.86 MWatt. This outcome was obtained by selecting a single-layer
network with 64 nodes, a look-back period of 5 days, and training the model over 372 epochs. A
dropout rate of 0.15 was also applied during the training process to prevent over�tting.
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Figure 14. Weekdays forecast using FNN.

Using the optimized parameters mentioned above, with a dataset size of 44,256 and a test size of
11,520, we conducted predictions for the electricity demand in 2013. The resulting MAPE was found
to be 2.47%. It's important to note that the data setup speci�cally excluded holidays and weekends,
focusing solely on weekdays.The result is presented in Figure 14, where the actual demand is denoted
as loadand forecasting result is denoted as load_pred.

6.2. RNN-LSTM

For RNN based LSTM, the look back period is kept �xed for 5 days because we already got the
best look back period. Therefore other parameters are varied as,

• Number of nodes =[32, 64]

• Number of layers =[1, 2]

• range of dropout=[0, 0.05, 0.1, 0.15]

• total trainable parameters=66320

The minimum validation loss of 200.75 MWatt is obtained in 51 epochs when 32 nodes of two
layer networks is chosen with dropout=0.
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Figure 15. Weekdays forecast using RNN-LSTM

By utilizing the optimized parameters mentioned earlier, with a dataset size of 44,256 and a
test size of 11,520, we conducted predictions for the electricity demand in 2013. The resulting Mean
Absolute Percentage Error (MAPE) was found to be 3.37%. It should be noted that the data setup
speci�cally excluded holidays and weekends, focusing solely on weekdays. The visualization of the
prediction results is presented in the accompanying Figure 15, where the actual demand is denoted as
loadand forecasting result is denoted as load_pred.

6.3. RNN-GRU

Keeping the �xed look back period as 5 days other hyper-parameters are varied as,

• Number of nodes=[32, 64]

• Number of layers=[1, 2]

• Range of dropout=[0, 0.05, 0.1, 0.15]

• Total trainable parameters=66320

This RNN based GRU experimental setup which gives the minimum validation loss of 195.31 MWatt
is obtained in 69 epochs when 32 nodes of single layer network is chosen with dropout=0.
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Figure 16. Weekdays forecast using RNN-GRU

Using the optimized parameters mentioned above, with a dataset size of 44,256 and a test size of
11,520, we conducted predictions for the electricity demand in 2013. The resulting MAPE was found to
be 2.58%. It should be noted that the data setup speci�cally excluded holidays and weekends, focusing
solely on weekdays. The visualization of the prediction results can be seen in Figure 16, where the
actual demand is represented asloadand the forecasting results are denoted asload_pred.

As the parameters for the GRU and LSTM models are still not fully optimized, the corresponding
test MAPEs are as follows,

Table 5. MAPE comparison for working days.

Methods MAPE MAE

FNN 2.47 163.9
GRU 2.58 169.5
LSTM 3.37 228.18
Naive 4.93 312.34

According to Table A2, the minimum loss of 170.41 MW is achieved when the parameters are
set as follows: nnodes = 32, nlayers = 2, look back = 10 days, and dropout = 0, over the course of 351
epochs. These optimized parameters were implemented, along with some trial and error values, to
assess the inclusion of certain variables and determine their impact on the model's performance.

For instance, excluding the month variable did not lead to a signi�cant improvement in MAPE
when using the FNN model. However, incorporating the maximum temperature variable resulted in
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an improvement of 1.39 MW in MAE and a MAPE of 2.54% (Figure 17). This indicates that including
the maximum temperature variable enhanced the model's predictive accuracy

Figure 17. Weekdays forecast using FNN using optimized parameters

Considering the entire dataset, which includes demand values for holidays, weekends, and
weekdays, we can set the lookback period to 8 days. By varying the parameters and optimizing the
models, we achieved the following results,

• For the FNN model, the minimum validation loss of 213.98 MW was obtained when nnodes=64,
nlayers=2, lookback=8 days, dropout=0, and epoch=161.

• For the GRU model, the minimum validation loss of 243.72 MW occurred when nnodes=64,
nlayers=2, lookback=8 days, dropout=0, and epoch=56.

• Similarly, for the LSTM model, the minimum validation loss of 234.22 MW was achieved when
nnodes=64, nlayers=2, lookback=8 days, dropout=0, and epoch=99.

Based on above tables, the best parameters are picked up and implemented for a day ahead
prediction. The overall results are summarized as,

Table 6. Implementation of best parameters: Day ahead forecast.

Model nnodes/layer nlayers dropout epoch Min MAE Test MAE Test MAPE(%)
FNN 64 2 0 161 214.0 212.8 3.15
GRU 64 2 0 56 243.7 210.3 2.44
LSTM 64 2 0 200 252.2 246.2 3.86
Naive - - - - - 669.0 -

Preprints  (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2023                   doi:10.20944/preprints202307.0789.v1



23 of 31

Since the performance is analyzed from the validation result, FNN shows the best MAE 214.0
MW. Nevertheless, test performances (both MAE and MAPE) are better in GRU model.

When the prediction was made on the FNN, LSTM, and GRU networks trained by using the
aggregate data and testing for 2013, obtained result is tabulated as in Table7.

Table 7. MAPE performance on the best parameters: day ahead forecast.

Daytype FNN GRU LSTM
non-holiday weekdays 2.97 2.71 3.76
non-holiday weekends 3.83 4.62 3.58

holidays 9.79 6.70 6.96
Overall 3.54 3.44 3.86

Figure 18. Prediction for 2013 using whole data set altogether for FFNN

When our analysis was limited to non-holiday weekdays, there was no need to include
holiday-type dummies or interim dummies in the modeling process. However, when dealing with
holidays, it becomes necessary to incorporate holiday-type dummies because different holidays can
have varying effects on electricity demand. For example, holidays like Songkran tend to signi�cantly
reduce the load. It's worth noting that networks with larger variables, such as capacity, generally pose
more challenges in terms of training, making it more dif�cult to achieve the minimum loss.
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Figure 19. Prediction of demand: using FFNN, GRU, & LSTM for whole data set altogether for 2013

7. Conclusion

This paper introduces a novel approach for STLF by constructing four different scenarios to train
the models using appropriate datasets. The selection of optimal parameters from the hyperparameters
was conducted through experiments. The results demonstrate that deep networks are highly in�uenced
by the number of hidden layers and neurons per layer. In the case of Scenario1, the FNN model
exhibited superior accuracy. Similarly, by �ne-tuning the hyperparameters, the best parameters were
determined for the other RNN models, such asLSTM and GRU. These obtained parameters were
then applied to all three models for day-ahead forecasting of electricity demand in the year 2013.

A comparative study was conducted to evaluate the forecasting accuracy across different scenarios.
When forecasting for non-holiday periods using the dataset from Scenario1, the FNN model achieved
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the lowest MAPE of 2.47%. In contrast, when predicting the same testing dataset (non-holidays)
using the dataset from Scenario2, the RNN � GRU model achieved a slightly higher MAPE of 2.71%,
approximately 10% higher. As the dataset for Scenario1 speci�cally consists of non-holiday weekdays,
it is evident that Scenario1 provides better accuracy compared to the dataset from Scenario2.

Based on these �ndings, we can implement STLF by categorizing the dataset into two distinct
scenarios. Scenario1 can be utilized to predict electricity demand for working days (Monday to
Friday), while Scenario2 can be employed to forecast demand for weekends (Saturday and Sunday)
and holidays with improved accuracy.

Acknowledgments: We would like to express our sincere appreciation to Assoc. Prof. Chawalit Jeenanunta, and
the EGAT for providing the necessary dataset used in this research.

Appendix. Tuning of Hyper-parameter

Hyper-parameter selection for Scenario1, is described in the Table A1, where FNN method
outperforms rest of other methods. Now the variation over following parameters are performed for
the outperformed FNN method to �nd out the best parameters value.

Table A1. Variation of parameters and corresponding results

Parameters FNN Results GRU Results LSTM Results
nnodes nlayers look back dropout MAE epochs MAE epochs MAE epochs

32 1 5 0 226.09 319 195.31 69 234.16 39
32 1 5 0.05 179.33 362 204.72 72 251.48 30
32 1 5 0.1 184.27 384 217.90 50 223.01 50
32 1 5 0.15 205.24 327 228.40 80 223.52 81
32 1 10 0 264.73 196 NA NA NA NA
32 1 10 0.05 231.74 302 NA NA NA NA
32 1 10 0.1 196.73 399 NA NA NA NA
32 1 10 0.15 197.42 348 NA NA NA NA
32 2 5 0 271.67 377 226.19 72 200.75 51
32 2 5 0.05 259.13 136 213.24 79 240.31 89
32 2 5 0.1 272.13 89 235.56 57 225.07 64
32 2 5 0.15 238.8 62 233.29 71 224.44 100
32 2 10 0 170.41 351 NA NA NA NA
32 2 10 0.05 185.37 395 NA NA NA NA
32 2 10 0.1 189.83 260 NA NA NA NA
32 2 10 0.15 200.49 328 NA NA NA NA
64 1 5 0 230.31 153 221.11 79 241.49 88
64 1 5 0.05 189.14 322 205.10 72 214.19 40
64 1 5 0.1 255.40 307 222.80 66 253.20 51
64 1 5 0.15 245.71 53 207.48 78 251.50 63
64 1 10 0 193.33 391 NA NA NA NA
64 1 10 0.05 198.98 142 NA NA NA NA
64 1 10 0.1 210.31 351 NA NA NA NA
64 1 10 0.15 191.81 399 NA NA NA NA
64 2 5 0 314.57 140 207.66 67 219.21 100
64 2 5 0.05 314.30 141 227.20 61 212.24 99
64 2 5 0.1 278.63 386 240.29 71 218.14 67
64 2 5 0.15 293.13 126 236.68 78 227.72 77
64 2 10 0 220.30 356 NA NA NA NA
64 2 10 0.05 192.39 340 NA NA NA NA
64 2 10 0.1 218.01 365 NA NA NA NA
64 2 10 0.15 216.56 349 NA NA NA NA
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Figure A1. Few graphs for hyper-parameter testing for Scenario1

Preprints  (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 July 2023                   doi:10.20944/preprints202307.0789.v1



27 of 31

Hyper-parameter selection for Scenario2,

Table A2. Variation of parameters and corresponding results

Parameters FNN Results GRU Results LSTM Results
nnodes nlayers dropout MAE epoch MAE epoch MAE epoch

32 1 0 323.95 83 269.42 71 265.85 57
32 1 0.1 387.77 164 251.01 41 276.99 34
32 1 0.2 409.22 174 281.80 76 267.53 55
32 2 0 243.30 352 251.17 53 305.92 97
32 2 0.1 266.86 304 278.23 67 274.52 97
32 2 0.2 276.40 349 280.47 99 265.23 52
32 3 0 227.40 96 284.14 97 306.19 58
32 3 0.1 232.65 374 293.56 98 281.66 38
32 3 0.2 273.96 209 274.05 73 275.03 99
64 1 0 339.85 59 263.20 82 284.72 68
64 1 0.1 327.44 51 275.22 99 319.13 19
64 1 0.2 388.25 68 290.82 97 269.69 43
64 2 0 224.12 324 243.72 56 234.22 99
64 2 0.1 277.33 289 281.96 77 254.63 97
64 2 0.2 311.62 369 296.06 80 279.30 92
64 3 0 237.82 180 266.50 95 296.79 88
64 3 0.1 279.02 288 286.08 92 281.90 87
64 3 0.2 296.57 66 290.56 93 260.95 100

Now for GRU, the min val loss of 243.72 happens when nnodes=64, nlayers=2, lookback=8 days,
dropout=0 and epoch=56.0. Similarly for LSTM, The min val loss of 234.22 happens when nnodes=64,
nlayers=2, lookback=8 days, dropout=0 and epoch=99.0.
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Figure A2. Few graphs for hyper-parameter testing for Scenario2
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