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Abstract: In recent times, the process control network (PCN) of oil and gas installation
has been subjected to amorphous cyber-attacks which include Denial-of-Service (DoS),
Distributed-Denial-of-Service (DDoS), Man-in-the-Middle (MitM) attacks, and this may have been
caused majorly by the integration of open network to Operation Technology (OT) as a result of
low-cost network expansion. The connection of the OT to the internet for firmware updates,
third-party support, or vendor interventions, has exposed the industry to attacks. The inability
to detect these unpredictable cyber-attacks exposes the PCN and a successful attack can lead to
devastating effects. This paper reviews the different forms of cyber-attacks in PCN of oil and gas
installations and proposes the use of machine learning algorithms to monitor data exchanges between
the sensors, controllers, processes, and the final control elements on the network so as to detect
anomalies in such data exchanges. Python 3.0 Libraries, Deep-Learning Toolkit, MATLAB, and Allen
Bradley RSLogic 5000 PLC Emulator software were used in the simulation of process control. The
outcome of the experiments show the reliability and functionality of the different machine learning
algorithms in detecting these anomalies with significant precise attack detections identified using a
coarse tree algorithm.

Keywords: Amorphous Cyber-attacks; Process Control Network; Anomaly Detection; Machine
Learning; Man-in-the-Middle Attacks; SCADA

1. Introduction

The Oil and Gas industry is termed critical infrastructure due to the fact that it is a major
contributor to the world’s energy needs, disruption to its operation could lead to a major impact on
the consumers and can lead to devastating effects ranging from catastrophic process safety incidence
which may lead to loss of lives, destruction of assets and destruction of the environment, to economic
issues to host nations. The choice of standard Information Technology (IT) open systems, their
associated communication protocols, and their preference over proprietary dedicated Operational
Technology (OT) systems has exposed PCN to insecure communications which have given room to
cyber-attacks [1]. The May 2021 Darkside Ransomware attack on the Colonial Pipeline in the USA
disrupted and stopped the transportation of gasoline and jet fuel when the computerized equipment
managing the pipeline was attacked. After gaining access to the company network of the Colonial
Pipeline, Darkside Ransomware was deployed against the company’s IT network by intruders [2]. The
process variables in the Process Control Network (PCN) serve as inputs to the controllers which make
real-time decisions on the final control elements to ensure a continuous and safe operation of the plant.
A real-time adjustment or modification of the input variables results in the controller affecting the
change in the operating conditions of the logic solvers which eventually results in altered outputs to

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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the final control elements. There is a need to ensure secure communication between the field sensors,
the controllers, and the final control elements [3].

Like all other sectors of the economy, continuous digital growth has impacted the Oil and Gas
industry. Industrial Control Systems (ICS) are used to operate in isolation, without bridging over
Information Technology (IT) infrastructures. Industry 4.0 enabled the integration of multiple industrial
technologies in ICT, the engineers can now be able to monitor operations remotely, as well as maintain
Supervisory Control and Data Acquisition (SCADA) systems in real-time. This digital revolution has
exposed the once air-gapped OT infrastructures to a myriad of new attack surfaces and vectors [4—6].
With the advancement in the Industrial Internet of Things (IIOT), early identification and prevention of
attacks that can lead to PCN disasters can be achieved by continuous monitoring using algorithm-based
smart monitoring systems [7-9].

ICS operational technology networks can be penetrated by malicious cyber-attackers. Even
though there are Intrusion detection systems (IDS), firewalls, demilitarized zones, and data diodes that
help in isolating ICS operational technology networks, these security measures cannot be assumed
sufficient to stop all malicious penetrations of the air-gapped OT networks. Hackers can access the
network through compromised software updates, insider attacks, infected thumb drives, and spear
phishing attacks to penetrate heavily isolated and air-gapped OT networks. The Stuxnet malware is a
famous example of a worm that penetrated an air-gapped network by exploiting a USB thumb drive
autorun vulnerability [10].

Several supervised machine learning algorithms have shown good results in the detection
of signature-based attacks which normally are detected by Intrusion detection systems (IDS) but
behavior-based attacks which can be termed anomalies or outliers have been difficult to detect or
predict based on the dynamic attack strategies deployed by the attackers [11-14]. The choice of
the machine learning algorithm to use is influenced by some key factors which include: accuracy,
computational capability, prediction speed, false alarm rates, and their application to real-time
systems [5,15].

The following objectives are achieved in this research:

1. The process control network ensures effective communication between sensors, controllers, and
the final control elements [3]. There is a need to identify and mitigate false data signals that may
be introduced as man-in-the-middle (MitM) attacks [16].

2. Disgruntled employees pose a considerable threat to the OT as they can become insider threats
with good knowledge of the production facility. Intentional malicious insider attacks usually
have a huge impact with a high percentage of success [17].

3. Application of different machine learning algorithms for the detection and prevention of
amorphous cyber-attacks on these oil and gas facilities using real-time SCADA dataset.

4. The oil and gas industry in Nigeria is faced with a myriad of challenges ranging from pipeline
vandalism, theft, illegal bunkering, and now intrusion attacks [18,19]. This work is focused on
the detection and prevention of amorphous cyber-attacks on the networks

The paper is organized as follows: Section I is the introduction, Section II is the review of related
works, Section III is the comparison of different machine learning algorithms, Section IV is the results
and discussion and Section V is the conclusion and recommendation for future work. Acronyms used
in this article are listed in the abbreviations section.

2. Related Works

The integration of standard open network technology has continuously exposed process control
networks to malicious cyber-attacks. The need arises to ensure secured communication between the
process sensors, the controllers, and the final control elements [3,20]. The connection of the PCN to the
internet has also contributed to the growth of cyber-attack incidents with dangerous consequences [21].
The deployment of off-the-shelf IT equipment with its inherent vulnerabilities and associated failures


https://doi.org/10.20944/preprints202307.0747.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 July 2023 do0i:10.20944/preprints202307.0747.v1

30f13

has also contributed to the exposure of the PCN to cyberattacks [22]. Unstructured and unpredictable
attacks are termed outliers to signature-based detections. These nonconforming patterns are termed
anomalies, detection of their kind of activities could be done using unsupervised machine learning
algorithms [23].

Authors [11] noted that signature-based IDS are disadvantageous as they are unable to detect
unknown attacks [11]. The constant dynamic modes of attacks used by the attackers are the major
challenge of the work done by Authors [24] used machine learning classifiers as an effective IDS
where data was pre-processed to remove unrelated attributes from the dataset [24]. Authors [13]
proposed unsupervised machine learning techniques as a solution to unknown attacks including
zero-day attacks [13]. Several IDS solutions exist but they cannot detect these un pattern attacks
which may be in the form of DoS, DDoS, MitM, or even zero-day attacks [25]. Author [26] reviewed
different machine learning capabilities and concluded that the effectiveness and efficiency of a machine
learning algorithm-based solution depend on the features and characteristics of the data as well as the
performance of the algorithm [26].

Author [16] explained the different forms of MitM which include session hijacking, IP spoofing,
and replay attack in which any of the attack forms will lead to the attacker taking over the
communication between the sensors and the controllers with the intention of disrupting the process
control [27]. Author [28] explained that data trustworthiness, reliability, and availability are necessary
for the actualization of cyber-physical systems example smart cities with robust system architecture for
secured high bandwidth systems and low-latency diffusion [28]. While supervised machine learning
is taught by example and uses labeled data to detect known attacks [29,30], unsupervised machine
learning can analyze huge volumes of data to identify hidden patterns, clusters, and outliers, thereby
can be very effective in detecting anomalies in datasets which include process upsets, shutdowns
or faulty equipment as well as attacks [12,23,31-33]. Deep learning algorithms have shown great
results in supervised and unsupervised machine learning applications using very large datasets, timely
learning ability, produced great accuracy, and increased prediction speed with negligible false alarm
rates [34-36]. Author [36] with the NSL-KDD dataset showed the application of deep learning methods
in detecting APT attacks with high detection accuracy.

3. Materials and Methods

3.1. Intrusion Detection Using Machine Learning Models

The study reveals the different forms of unpattern attacks on the PCN with their resultant’s
effects on the people, assets, and the environment as depicted in Figure 1. The compromise of the
intercommunication between the sensors, controllers, and the final control elements could lead to
devastating outcomes which may range from fatality to environmental impact. The study reviewed
the application of different machine learning algorithms in the modeling of these attacks using the
68,722 real-time SCADA datasets from the oil and gas industry. The performance of the different
machine learning algorithms which include: Isolation Forest, k-nearest neighbor (kNN), Python Outlier
detection (PyOD) which incorporates Interquartile Range (IQR), kNN, Local Outlier Factor (LOF),
Long short-term memory, Support vector machines (SVM) and Decision Tree algorithms were all
applied. The 68,722 real-life SCADA data was extracted from an oil and gas facility.
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Figure 1. Interconnection of the PCN components under attack

In order to be able to simulate the impact of amorphous cyber-attacks on the oil and gas industry,
a 3-phase separator is selected as a case study (see Figure 2). Usually, the natural crude oil flowing from
the wellbore which contains entrapped gas and water is fed into a vessel called a three-phase separator.
This gravity vessel separates the crude into o0il, water, and gas based on their densities [37—40]. In
this study, a three-phase separator is used as a case study for ease of computation and simulation to
showcase the effect of false data injection in SCADA.

Figure 2 shows a three-phase separator that receives crude oil from the well bore through the
shutdown valve and separates the received crude oil into gas, oil, and water. The 3-phase separator
has three outlets namely: Gas outlet, Crude oil outlet, and Water outlet respectively. The process
variables measured from the vessel include supply pressure, discharge pressure, pressure in the vessel,
level of oil with water, level of 0il, the temperature of the supplied fluid, vessel temperature, and
temperature of the individual discharge lines, while the flow was measured on the respective outlet
lines. To prevent process upset and its escalation, there is need for the continuous monitoring of the
multivariable inputs with consideration to their interactions in the vessel during the retention time.
The 68,722 dataset used in this study simulation, is the 3-phase separator vessel pressure data. The
outcome of the simulations using the different machine learning algorithms on the same dataset is
documented in the results session. A detailed overview of the system model of this research is shown
in Figure 3.
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Figure 2. A three-phase separator
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4. Result Discussion and Performance Evaluation

The extracted real-time 68,722 pressure values which is an essential process variable from the
SCADA system were plotted against the Date and Time. Pressure is a critical process variable in this
process as over-pressurization could lead to explosion and under-pressurization could lead to the
implosion of the process vessel, either with catastrophic results which will impact adversely the people,
assets, and the environment. The features of the extracted real-time data plotted in Figure 4a show that
it does not contain extremely high or extremely low values of pressure for the period under review.
For the purpose of simulating the Man-in-the-Middle (MitM) attack, extreme values of pressure were
injected into the dataset on specific dates and times. Figure 4b shows the plot of SCADA pressure
against the date and time with the anomalies injected.
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(a) Plot of Pressure (value) against Date and Time (b) Plot of Pressure (value) against Date and Time,
with 68,722 raw data samples without anomaly 68,722 data samples with anomalies injected (v-axis
axis is the pressure while the x-axis is the Date and Time) is the pressure while the x-axis (s the Date and Time)

Figure 4. Visualization of the extracted pressure values from the SCADA with and without anomalies.

In Figure 5a, with the contamination parameter set to 0.1, the Isolation Forest Algorithm showed
high sensitivity in detecting changes in the pressure values for the period under review including the
extreme high-pressure values and detected all as anomalies. This can be termed high False Alarm
Rates (FAR). With the contamination parameter set to 0.01, the Isolation Forest was able to detect as
anomalies the extreme low-pressure values only with reduced FAR, but it was unable to identify the
extremely high anomalies in the dataset and this makes this algorithm for the purpose of real-time
detecting MitM attacks as shown in Figure 5b.
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(b) Plot of Isolation Forest Algorithm anomaly
detection with 68,722 dataset, contamination
parameter set to 0.01 (y-axis is the pressure
while the x-axis is the Date and Time)

Figure 5. Effect of contamination parameter on he isolation forest algorithm.

In Figure 6a, with step set to 34361, batch size of 32 and 20 epochs, the Long Short-Term Memory
(LSTM) algorithm some of the extreme pressure values for the period under review. Changing the batch
size to 128 as in Figure 6b, the algorithm detected all the extreme high-pressure values as anomalies
though with FAR. The algorithm was unable to identify the extremely low anomalies in the dataset
which makes it unreliable for the purpose of real-time detection of MitM attacks.
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(b) Plot of LSTM Algorithm anomaly detection
with a dataset of 68,722, time step of 34361, batch
size of 128 and 20 epochs (y-axis is the pressure
while the x-axis is the Date and Time)

Figure 6. Effect of batch size variation on the LSTM algorithm.

Figure 7a—c show the plot of Python Outlier Detection (PyOD) which incorporates Inter Quartile
Range (IQR), k-nearest neighbor (kNN), and Local Outlier Factor (LOF). The results of this algorithm
show high sensitivity in detecting pressure value changes by all three algorithms. While IQR was able
to detect extreme high-pressure and low-pressure with high FAR, kNN and LOF were unable to detect
extreme high-pressure values correctly. Their accuracy is about 70% with high FAR which makes them

unsuitable for the detection of MitM attacks.
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(a) Plot of Inter Quartile Range
(IQR) Algorithm anomaly detection
with a dataset of 68,722 (y-axis is the
pressure while the x-axis is the Date
and Time)

(c) Plot of Local Outlier Factor
(LOF) Algorithm anomaly detection
with a dataset of 68,722 (y-axis is the
pressure while the x-axis is the Date
and Time)

(b) Plot of k Nearest Neighbor
(KNN) Algorithm anomaly detection
with a dataset of 68,722 (v-axis is the
pressure while the x-axis is the Date
and Time)

Figure 7. Plot of Local Outlier factor, KNN performance, and Inter quartile range result
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Applying the same 68,722 real-time SCADA pressure dataset to several other machine learning
algorithms and comparing their performance metrics which are: accuracy, Receiver Operator
Characteristics (ROC), confusion matrix, training time, mis-classification error (MCE) and prediction
speed, their outcome is as shown in Table 1. Based on these combined machine learning metrics as
shown in Table 1, it was concluded that the coarse tree algorithm has significant performance and can
detect MitM attacks effectively with negligible FAR.

Table 1. Behavior of SCADA Pressure Dataset using different Machine Learning algorithms

Algorithm Accuracy (%) Training Time (ms) MCE  Prediction Speed (obs/sec)
Decision Trees
Fine Tree (FT) 100 1.1708 0 1200000
Medium Tree (MT) 100 1.0781 0 1300000
Coarse Tree (CT) 100 0.45488 0 1000000
Optimizable Tree 100 21.323 0 1300000
Discriminnat Analysis

Linear Discriminant (LDR) 100 1.843 24 1100000
Quadratic Discriminat (QDR) 99.2 1.1597 518 1600000
Optimizable Discrimiant 100 25.029 24 1600000

Logistic Regression (LR) 100 3.205 N/A 1100000

Naive Bayes
Gaussian Naive Bayes (GNB) 99.2 1.4947 518 1400000
Kernel Naive Bayes (KNB) 100 65.633 8 4500
Optimizable NB 100 918.96 8 3800
Support Vector Machines (SVM)
Linear SVM 100 7.3065 25 780000
Quadratic SVM 100 383.79 17 1500000
Cubic SVM 80.2 1657.3 13588 930000
Fine Gaussian SVM 100 7.433 5 610000
Medium Gaussian SVM 100 5.3155 1 760000
Coarse Gaussian SVM 100 5.1452 20 1100000
Optimized SVM 100 7490.9 25 1100000
Nearest Neighbors

Fine KNN 100 3.6447 0 820000
Medium KNN 100 2.0989 5 460000
Coarse KNN 99.9 3.5228 35 130000
Cosine KNN 99.9 17.422 35 17000
Cubic KNN 100 2.3157 5 380000
Weighted KNN 100 2.1524 0 450000

Ensemble Learning (EL)
Boosted Trees 99.9 5.0025 35 1200000
Bagged Tree 100 8.5874 0 320000
Subspace Discriminant 100 4.5421 24 260000
Subspace KNN 100 12.777 0 93000
RUSBoosted Tree 100 2.4396 20 960000
Optimized Ensemble 100 232.87 0 530000
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In addition, a thorough comparison was made between the results achieved and that of the
other researchers who used WUSTL and ORNL datasets [30,41] in the training of their models. It is
important to state that the FAR recorded with the SCADA was zero as compared to other datasets
used by other researchers, this is as shown in Table 2.

Table 2. Top and Least Performed Machine Learning Algorithms on various Public Datasets

Datasets /Algorithm Accuracy (%) Training Time (ms) FAR  Prediction Speed (obs/sec)
SCADA Pressure Dataset
Coarse Tree 100 0.4549 0 1000000
Cubic SVM 80.2 1657.3 13588 930000

WUSTL-SCADA-2018 Datatset

Medium Tree 100 5.6605 412 4100000

Subspace Discrimiant 93.1 101.64 72009 110000
ORNL POWER GRID Dataset

Bagged Tree 95.1 4.8021 241 2500

Quadratic Discrimiant 52.4 1.6364 2339 120000

Figure 8a—c shows the plot of Confusion Matrix of the Tree Algorithm with Best Performance
using the 68,722 real-time SCADA pressure dataset which shows zero false positives as compared
to other WUSTL and ORNL datasets used by other researchers which produced 141 and 170 false
positives respectively.

Figure 9a—c shows the plot of Receiver Operator Characteristics (ROC) curve of the best performed
Tree Algorithm using the 68,722 real-time SCADA pressure dataset which shows coarse tree produced
best result with zero false positives and better Area Under Curve (AUC) while WUSTL and ORNL
showed in medium tree and bagged tree respectively with lesser AUC.

Coarse Tree Medium Tree Bagged Trees

0 271 Attack 71
o 5} o
5 s g
i = [
1 26 1 141 326745 Natural 170 1447
0 1 0 1 Attack Natural
Predicted Class Predicted Class Predicted Class
(a) Confusion Matrix of the Best Performed (b) Confusion Matrix of the Best Performed (c) Confusion Matrix of the Best Performed
Tree Algorithm in SCADA Pressure Dataset Tree Algorithm in WUSTL-SCADA-2018 Dataset Tree Algorithm in ORNL (Power Grid) SCADA

Dataset

Figure 8. Plot of Confusion Matrix of the Tree Algorithms
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5. Conclusion

The outcome of this study is the evaluation of different machine learning algorithms on the
68,722 SCADA real-time datasets using the following combined machine learning performance metrics:
high accuracy, earliest training time, fastest prediction speed, negligible MCE, and less computation
power requirement. Based on these combined machine learning performance metrics using the 68,722
datasets, it was concluded that the coarse tree algorithm showed the best performance, and is regarded
as the most suitable for the detection of MitM attacks in a process control network of an oil and gas
installation. This study can be improved upon by evaluating more machine learning algorithms as
well as the use of more real-time SCADA datasets which may go a long way in detecting other forms
of cyber-attacks.
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Abbreviations

The following abbreviations are used in this manuscript:

APT Advance Persistent Threats

AUC Area Under Curve

DDoS Distributed Denial-of-Service
DoS Denial-of-Service

FAR False Alarm Rates

ICS Industrial Control Systems

ICT Information and Communication Technology
IDS Intrusion detection systems

IIoT Industrial Internet of Things

IoT Internet of Things

IP Internet Protocol

IOR Interquartile Range

IT Information Technology

kNN k-Nearest Neighbours

LDR Linear Discriminant Regression
LOF Local Outlier Factor

LSTM Long Short-Term Memory
MATLAB  Matrix Laboratory

MCE Misclassification error

MitM Man-in-the-Middle

ORNL Oak Ridge National Laboratories
oT Operation Technology

PCN process control network

PLC Programmable Logic Controller
PyOD Python Outlier detection

ROC Receiver Operator Characteristics
SCADA Supervisory Control and Data Acquisition
SVM Support Vector Machines

USB Universal Serial Bus

WUSTL Washington University in St. Louis
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