Pre prints.org

Article Not peer-reviewed version

A Deep Learning Architecture for
Detecting SQL Injection Attacks
based on RNN Autoencoder
Model

Maha Alghawazi i , Daniyal Alghazzawi , Suaad Alarifi

Posted Date: 11 July 2023
doi: 10.20944/preprints202307.0679.v1

Keywords: SQL injection attacks; Recurrent neural network (RNN) autoencoderANN; CNN; Decision Tree;
Naive Bayes; SVM; Random Forest; Logistic Regression

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2341726
https://sciprofiles.com/profile/988370

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
A Deep Learning Architecture for Detecting SQL
Injection Attacks Based on RNN Autoencoder Model

Maha Alghawazi (), Daniyal Alghazzawi >} and Suaad Alarifi >* on behalf of the
Information Security Research Group, King Abdulaziz University

1 Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz

University, Jeddah 80200, Saudi Arabia; mmohammadalghtani@stu.kau.edu.sa

Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah 80200, Saudi Arabia; dghazzawi@kau.edu.sa

Correspondence: Salarifi@kau.edu.sa

Abstract: SQL injection attacks are one of the most common types of attacks on web applications.
These attacks exploit vulnerabilities in the application’s database access mechanisms, allowing
attackers to execute unauthorized SQL queries. In this study, we propose an architecture for detecting
SQL injection attacks using a recurrent neural network (RNN) autoencoder. The proposed architecture
was trained on a publicly available dataset of SQL injection attacks. Then compared with several other
machine learning models, including ANN, CNN, Decision Tree, Naive Bayes, SVM, Random Forest,
and Logistic Regression. The experimental result showed that the proposed approach achieved an
accuracy of 94% and an F1 score of 92%, which demonstrate its effectiveness in detecting QL injection
attacks with high accuracy in comparison with other models covered in the study.

Keywords: SQL injection attacks; Recurrent neural network (RNN); autoencoder ANN; CNN;
decision tree; Naive Bayes; SVM; random forest; logistic regression

1. Introduction

SQL injection attacks (SQLIAs) pose a severe security threat to web applications. These attacks
involve the malicious execution of SQL queries on a server, enabling unauthorised access and retrieval
of restricted data stored within databases [1]. Figure 1 illustrates the basic process of an SQLIA.

% Mame : admin
Password : 123456
Mormal SQL

General Users Web Applcation Login Form Select * ¥om user where
r Name="admir’ AND Pwd="123456"
Name : | 5 s
Password : | . Hacker SQL
J Select * from user where Name="1" o
[——rx]

1=1-- AND Pwd="123
Name ; 1'or 1=1 T S MysaL
Password : 123 Dynamic SQL
Select * from user where Name ="{0]' AND Pwd="{1}'

Hacker

Figure 1. SQL injection attack process, adopted from [2].

Attackers exploit web applications by injecting SQL statements or using special symbols through
user input to target the database tier and gain unauthorised access to valuable assets [2]. Due to
the absence of proper validation in some web applications, which is usually the programmer fault,
attackers can bypass authentication mechanisms and gain access to databases, enabling them to retrieve
or manipulate data without appropriate authorisation [1].

Detection of such attacks is crucial to ensure the security and integrity of the web application and
its associated data. To address this issue, a deep learning architecture based on the Recurrent Neural
Network (RNN) Autoencoder model has been proposed for detecting SQL injection attacks. RNN
autoencoder is the special case of the RNN based Encoder-Decoder (RNN-ED) model. The autoencoder
consists of an encoder RNN that encodes the input sequence into a hidden state, and a decoder RNN

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0000-000-000X
https://doi.org/10.20944/preprints202307.0679.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

2 0f 10

that decodes the hidden state back into the original input sequence. The encoder and decoder RNNs
are trained jointly using backpropagation to minimize the reconstruction error between the input
and output sequences [3].In this study, we propose an architecture for an RNN autoencoder which
is a combination of an autoencoder and a recurrent neural network (RNN) for SQL injection attacks
detection. Figure 2 illustrates the architecture of the proposed model.

Vi Autoencoder
{ RNN

Encoder Decoder

LSTM Layer
'- Dense Layer

Predicted Data

L

/
s, InputData Reconstructed Data 7/ Binary classification predictions

~, -

Figure 2. The RNN autoencoder architecture for SQL injection attacks detection.

In Figure 2, the proposed architecture consists of two main parts: the autoencoder and the RNN.
The autoencoder contains an input layer, an encoder, and a decoder. The encoder takes the input data
and compresses it into a lower-dimensional representation, which is then fed to the decoder. The
decoder then reconstructs the input data from the encoded representation. The RNN is designed to
take the compressed representation of the input data learned by the autoencoder and use it to make
binary classification predictions [4]. RNN consists of an LSTM layer and a dense layer, which takes the
encoded data from the Autoencoder as input and processes it through an LSTM layer, which is then
fed to a dense layer to make a prediction on the output.

The aim of this study was to develop an architecture based on a recurrent neural network (RNN)
autoencoder to detect SQL injection attacks. Moreover, the proposed approach that addresses this
attack was discussed and compared. The research questions are:

Q1: Is the proposed RNN autoencoder based architecture effective for detecting SQL injection attacks?
(Q2: How can the RNN autoencoder be optimized to improve its performance for detecting SQL
injection attacks?

Q3: Can an RNN autoencoder outperform other SQL injection attacks machine learning detection
models?

The main contributions of this paper are as follows:

* Proposing an SQLIAs detection architecture based on a recurrent neural network (RNN)
autoencoder algorithm.

¢ A comparison between the proposed method and different machine learning techniques used for
detecting and preventing of SQLIAs.

The paper is structured as follows: Section 2 reviews the related works about research in this area.
The methodology is discussed in Section 3. Experiment results and discussion are shown in Section 4.
The last section is the conclusion and future work.

2. Literature Review

This section explores a variety of ML and DL techniques found in the literature for the detection
of SQL injection attacks.

https://doi.org/10.20944/preprints202307.0679.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

30f 10

Ketema [5] used a deep learning Convolutional Neural Network(CNN) to build a model to
prevent an SQLI using a public benchmark dataset. The model was trained using deep learning,
with different hyperparameters values and with five different scenarios. The model has achieved an
accuracy of 97%. Roy et al. [6] present a method for detecting SQL injection attacks using machine
learning classifiers. The authors use five ML classifiers: Logistic Regression, AdaBoost, Naive Bayes,
XGBoost, and Random Forest to classify SQL queries as either legitimate or malicious. The proposed
approach was trained and evaluated using a publicly available dataset of SQL injection attacks on
Kaggle. The results of the study showed that the best performance was given by Naive Bayes classifier
with accuracy of 98.33%.Finally, authors performed a comparison with previous work. Overall,
the study demonstrates the potential of machine learning classifiers in improving the accuracy and
efficiency of SQL injection attack detection.

S.S. Anandha Krishnan et al. [7]proposes a machine learning-based approach for detecting SQL
injection attacks. The authors argue that traditional signature-based approaches are ineffective against
advanced attacks, and machine learning can help address this issue. The authors first describe the
various types of SQL injection attacks and their impact on web applications. They then outline the
proposed framework, which consists of preprocessing the data, feature extraction, model training,
and evaluation. The results show that CNN classifier model performs better than the other classifiers
in terms of accuracy, precision, recall, and Fl-score. Rahul et al. [8] proposes a novel method of
protecting against SQL injection and cross-site scripting (XSS) attacks by augmenting a web application
firewall (WAF) with a honeypot. The WAF filters incoming traffic using established patterns, while the
honeypot is designed to attract attackers and capture information about their attack methods, which is
then used to improve the WAF’s ability to detect and prevent future attacks. The proposed method is
evaluated through experiments, and the results suggest that the combination of a honeypot and WAF
can effectively protect web applications from these types of attacks.

Zhang et al. [9] proposes a method for detecting SQL injection attacks using a deep neural
network. The authors state that traditional methods of SQL injection attack detection have limitations,
prompting the development of this new approach. The authors gather a dataset of clean queries and
malicious queries and use it to train a deep neural network classifier with several layers. They then
compared the result of the proposed method with the traditional machine learning algorithms include:
KNN, DT, and LSTM algorithm.Liu et al. [10] proposes a new approach, called DeepSQLi, for the
automated detection of SQL injection vulnerabilities in web applications using deep semantic learning
techniques. DeepSQLi uses a deep neural network to learn the semantic meaning of SQL queries
and identify potential injection vulnerabilities. The model is trained using a dataset of benign and
malicious SQL queries and leverages multiple layers of convolutional and recurrent neural networks.
The experimental results show that DeepSQLi outperforms SQLmap, such that more SQLi attacks can
be identified faster with using a less number of test cases. Chen et al. [11] present a novel approach for
detecting and preventing SQL injection attacks on web applications using deep learning algorithms.
The authors train and evaluate the performance of a convolutional neural network (CNN) and a
multilayer perceptron (MLP) and compare them in terms of accuracy, precision, recall, and F1-score
metrics. The experimental results show that the CNN and MLP models both perform well for SQL
injection attack detection.

In summary, deep learning-based approaches, have shown great promise in detecting SQL
injection attacks. These approaches can learn the underlying patterns in the input data and detect any
anomalies, making them more effective in detecting disguised attacks. In this research our goal is to
explore the effectiveness of the proposed RNN Autoencoder in detecting SQL injection.

3. Materials and Methods

This study consists of three primary phases: data preparation, model training, and evaluation.

https://doi.org/10.20944/preprints202307.0679.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

40f10

3.1. Data Preparation

3.1.1. Data Preprocessing

The Kaggle dataset [12] is utilized in this research to train, evaluate, and compare the performance
of an RNN autoencoder with several classifiers. This dataset is specifically designed for SQLIAs and
consists of both benign (normal) and SQL injection (malicious) traffic collected from multiple websites.
The benign queries are labelled as 0s, while the malicious SQL injection queries are labelled as 1s. The
dataset comprises 30919 records, with 19537 normal statements and 11382 malicious SQL injection
statements.

In order to enhance the accuracy of our trained models, we performed data cleaning on the selected
dataset. This involved removing any null values and eliminating duplicate records. The removal
of missing or null values is crucial, as it prevents the model from learning incorrect relationships or
making predictions based on incomplete data. After completing the cleaning process, the dataset
consisted of a total of 30907 records, with 19529 normal statements and 11378 malicious statements as
shown in Figure 3. Each record contains two main features: ‘Query’, which represents the statement
itself, and ‘Label’, which indicates whether the statement is normal (0) or malicious (1).

Distribution of Benign and SQL injection attack in the dataset

SQL injection
11378

Statment types

Benign
19529

2500 5000 7500 10000 12500 15000 17500 20000
Number of occurences

Figure 3. Distribution of benign and SQL injection attacks in the dataset.

3.1.2. Balancing and Sampling

Stratified sampling was applied, which ensures that the training and testing sets have a similar
proportion of each class. This is important for imbalanced datasets like the SQL injection dataset,
where the number of malicious queries is much smaller than the number of benign queries [13].

3.2. Model Training

In this experiment, we divided the dataset into two parts: 80% for training and 20% for testing.
This division allows us to train the proposed approach on a majority of the data and assess their
performance on unseen samples.

3.3. Model evaluation

After training the RNN autoencoder model on the training set, we applied them to the testing
set and calculated various performance metrics such as (ROC) curve, accuracy, precision, recall, and
F1-score to measure the effectiveness of the RNN autoencoder in detecting SQLIAs.The mathematical
representation of these metrics are calculated as follows:

The accuracy metric measures the percentage of correctly classified samples [14], and it is

calculated as:
TP+ TN

TP+ TN+ FN + FP

Accuracy =

https://doi.org/10.20944/preprints202307.0679.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

50f 10

Precision, another important metric, represents the probability that a sample will be correctly

classified [14]. It is calculated as:
TP

Precision = —————
TP+ FP

Recall, also known as sensitivity or true positive rate, indicates the proportion of positive samples that
are correctly classified [14]. The recall score is calculated as:

(TP)

Recﬂll - m

The F1 score is a combined metric that considers both precision and recall, providing a balanced
measure of model performance [15]. It is calculated as:

Precision x Recall
Precision + Recall

F1Score = 2 %

TN is the true negative rate. It indicates the number of correctly predicted normal requests.

TP is the true positive rate. It indicates the number of correctly predicted malicious requests.
FN is the false negative rate. It indicates the number of incorrectly predicted normal requests.
FP is the false positive rate. It indicates the number of incorrectly predicted malicious requests.

4. Results and Discussion

This section provides a description of the experimental results.The Python environment was
used to implement the system.Table 1 summarizes the performance of RNN autoencoder in terms of
evaluation metrics.

Table 1. Performance metrics for the proposed model.

Performance metrics Result

Accuracy 94%
Precision 95%

Recall 90%
F1-Scorel 92%

The results from Table 1, show that the RNN autoencoder approach does perform better in terms
of prediction accuracy.RNN autoencoder achieved an accuracy of 94% and an F1 score of 92%. Further,
we use the receiver operating characteristic (ROC) curve for checking the performance of the proposed
approach. It is a graph that shows the relationship between the true positive rate (TPR) and false
positive rate (FPR) for different classification thresholds [16].

The AUC value of the RNN autoencoder model is shown in Figure 4. We obtained the value of
0.94, which indicates that our model can successfully separate 94% of positive and negative rates.

https://doi.org/10.20944/preprints202307.0679.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

6 of 10

Receiver operating characteristic (ROC) curve
1.0
-
-
L
Bd
0.8 4 e
L
’/
o] e
£ 0.6 <4
e -

[t’
. 7
i -
£

0.4 .
E e

.
IJ’
0.2 .
/"
L ”l’
o4 ¥ —— ROC curve (area = 0.94}
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 4. Receiver Operating Curve (ROC) of our proposed approach.

Regarding (RQ1) based on the results provided, it appears that the proposed RNN autoencoder
model is performing well in correctly identifying instances of SQL injection attacks in the dataset and
can be effective for detecting SQL injection attacks.

Regarding (RQ2), one of the most used methods to optimize the RNN autoencoder to improve its
performance for detecting SQL injection attacks is to adjust the hyper-parameters of the model such as
epochs [16].To find the optimal number of epochs to train a model. We will be experimenting with
various numbers of epochs and checking how it will effects the accuracy . In the first iteration we
initialize epochs to 10.

At epochs = 10, we get an accuracy of 88%. From Figure 5, we can infer that the validation error
decreases. Next, we set the epochs to 50.

Training and Validation Loss

—— Training error
0.475 4 validation error

0.450 4

0.425 4

Loss

0.400 +

0.375 4

0.350 4

0.325 4

0.300 4

Epochs

Figure 5. Loss in SQL injection dataset using 10 epochs.

From Figure 6, the accuracy of the model increased to 94% at epochs 50.Next we try to increase
the number of epochs to 100.

https://doi.org/10.20944/preprints202307.0679.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

7 of 10

Training and Validation Loss

0.45 -
—— Training error

Validation error
0.40 1

0.35 1

0.30 4

Loss

0.25 4

0.20 4 \

0.15 \/\N\\’V__

Epochs

Figure 6. Loss in SQL injection dataset using 50 epochs.

From Figure 7, at epoch = 100 the accuracy increased to 95% but the validation error increases this
may case an overfitting. Using a small number of epochs the model cannot capture the underlying
patterns in the data and may cause underfitting. And training the model using many epochs it may
lead to overfitting where we the model is learning even noise or unwanted parts[17]. So from the this
experiment we can stop the training process early at around 50 epoch to get better permormance from
the model without underfitting or overfitting the model.In summary, Table 2 summarize the choice of
the different hyper-parameters.

Training and Validation Loss

—— Training error
0.40 4 Validation error
0.35 4
0.30 4
@
L]
0.25 4 \
0.20 4 _
0.15 A \N\—AMA__\

0 10 20 30 40 50
Epochs

Figure 7. Loss in SQL injection dataset using 100 epochs.

Table 2. Values of the several hyper-parameters.

Hyperparameters Value
Number of Hidden layers 3
Hidden layer size (neurons) 64 units
Optimizer Adam
Loss function binary cross-entropy
Activation function ReLU and sigmoid
Number of epochs 50
Batch size 128

The proposed model achieves the best performance when trained for 50 epochs using Adam
optimizer, and batch size of 128, ReLU activation function for encoder layer, and sigmoid activation
function for decoder layer in the autoencoder and output layer in the RNN.

https://doi.org/10.20944/preprints202307.0679.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

8 of 10

We compared the performance of the proposed approach with the performance of several
classifiers including ANN, CNN, Decision Tree, Naive Bayes, SVM, Random Forest, and Logistic
Regression. The results are presented in Figure 8.

BN |ogisticRegression
8 RandomForest
. sVM

B NaiveBayes

mmm DecisionTree

B CNN

N ANN

mmE RNN autoencoder

104

0.8 1

0.6

0.4 1

0.2 1

0.0 -

F1_Score Precision Recall Accuracy

Figure 8. The Evaluation Metrics Comparison for different ML algorithms.

The results in Figure 8 show that the RNN autoencoder and ANN are effective in detecting SQL
injection attacks, achieving high accuracy of 94% and F1 scores of 92%. The RF, LR, and DT models
also performed well, achieving accuracy scores of 92% , 93%, and 90% respectively, and F1 scores of
89%,90%, and 87%. The CNN model had the highest accuracy of 96% and F1 score of 49%, indicating
its potential for detecting SQL injection attacks. However, the Naive Bayes and SVM models had
the lower accuracy and F1 score, they achieving accuracy scores of 82% and 75% respectively, and F1
scores of 80% and 49%.

Regarding (RQ3), the results indicate that the RNN autoencoder approach outperforms some of
the other algorithms, including logistic regression, decision trees, random forest, SVM, and Naive
Bayes, in terms of accuracy, precision, recall, and Fl-score. The RNN autoencoder approach also
performs comparably to some of the other algorithms, including CNN, and ANN, in terms of these
metrics.

This suggests that the RNN autoencoder approach is a promising method for detecting SQL
injection attacks and may be more effective than some traditional machine learning algorithms. The
key advantage of the RNN autoencoder approach is that it can learn a compressed representation of the
input data, which can capture the underlying patterns and relationships in the data more effectively
than traditional methods.

5. Conclusions

A deep learning architecture model based on an RNN autoencoder has been proposed for
detecting SQL injection attacks. The autoencoder is trained to learn a compressed representation
of the input data, while the RNN uses this compressed representation to make binary classification
predictions. In this study, the RNN autoencoder was trained with different optimization techniques on
a public SQL injection dataset. The performance of the model is evaluated using standard evaluation
metrics such as accuracy, precision, recall, and Fl-score. Additionally, a ROC curve was calculated
to evaluate the model’s performance. The experimental result showed that the proposed approach
achieved an accuracy of 94% and an F1 score of 92%, which indicates that RNN autoencoder is a
promising method for detecting SQL injection attacks. As part of future research, we plan to explore the
use of a more complex architecture of RNN autoencoder to detect SQL injection attacks. Additionally,
we acknowledge that the dataset used in this study was relatively small, and we recommend expanding
the dataset and implementing the models in real-world scenarios for future investigations.

https://doi.org/10.20944/preprints202307.0679.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

9 of 10

Author Contributions: Conceptualization, M.A. and D.A.; methodology, M. A ; software, M.A; vali- dation, M.A.,
D.A. and S.A ; formal analysis, O.R.; investigation, M.A.; resources, M.A.; data curation, M.A.; writing—original
draft preparation, M.A.; writing—review and editing, S.A.; visualization, M.A.; supervision, D.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University,
Jeddah, under Grant No. IFPDP-284-22. The authors, therefore, acknowledge with thanks to DSR technical and
financial support.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SQLIA SQL injection attacks
RNN-ED RNN-based Encoder-Decoder

IDSs Intrusion detection systems
ML Machine learning

DL Deep learning

NB Naive Bayes classifier

DT Decision Tree

LR Logistic Regression

RF Random Forests

SVM Support Vector Machines
CNN Convolutional Neural Network
ANN Artificial Neural Networks
MLP Multi-layer Perceptron
RNN Recurrent Neural Networks
LSTM Long short-term memory
References

1. HR., YW, Kottegoda, H.; Andaraweera, D.; Palihena, P. A comprehensive review of methods for SQL
injection attack detection and prevention 2022.

2. Chen, D,; Yan, Q.; Wu, C.; Zhao, J. SQL Injection Attack Detection and Prevention Techniques Using Deep
Learning. Journal of Physics: Conference Series 2021, 1757.

3. Yu, W;Kim, I.Y.; Mechefske, C. Analysis of different RNN autoencoder variants for time series classification
and machine prognostics. Mechanical Systems and Signal Processing 2021, 149, 107322.

4. Do,].S.; Kareem, A.B.; Hur,].W. LSTM-Autoencoder for Vibration Anomaly Detection in Vertical Carousel
Storage and Retrieval System (VCSRS). Sensors 2023, 23, 1009.

5. Ketema, A. DEVELOPING SQL INJECTION PREVENTION MODEL USING DEEP LEARNING
TECHNIQUE. PhD thesis, St. Mary’s University, 2022.

6. Roy, P; Kumar, R; Rani, P. SQL Injection Attack Detection by Machine Learning Classifier. 2022 International
Conference on Applied Artificial Intelligence and Computing (ICAAIC). IEEE, 2022, pp. 394-400.

7. Krishnan, S.A; Sabu, A.N.; Sajan, P.P.; Sreedeep, A. SQL Injection Detection Using Machine Learning.
REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS 2021, 11, 300-310.

8. Rahul, S.; Vajrala, C.; Thangaraju, B. A Novel Method of Honeypot Inclusive WAF to Protect from SQL
Injection and XSS. 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research
and Applications (CENTCON). IEEE, 2021, Vol. 1, pp. 135-140.

9. Zhang, W,; Li, Y,; Li, X.; Shao, M.; Mi, Y,; Zhang, H.; Zhi, G. Deep Neural Network-Based SQL Injection
Detection Method. Security and Communication Networks 2022, 2022.

10. Liu, M,; Li, K; Chen, T. DeepSQLi: Deep semantic learning for testing SQL injection. Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2020, pp. 286-297.

https://doi.org/10.20944/preprints202307.0679.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 July 2023 do0i:10.20944/preprints202307.0679.v1

10 of 10

11. Chen, D,; Yan, Q.; Wu, C.; Zhao, J. Sql injection attack detection and prevention techniques using deep
learning. Journal of Physics: Conference Series. IOP Publishing, 2021, Vol. 1757, p. 012055.

12. Shah, S.S.H. SQL Injection Dataset, 2021.

13. Chindove, H.; Brown, D. Adaptive Machine Learning Based Network Intrusion Detection. Proceedings of
the International Conference on Artificial Intelligence and its Applications, 2021, pp. 1-6.

14. Mwaruwa, M.C. Long Short Term Memory Based Detection Of Web Based Sql Injection Attacks. PhD thesis,
UoN, 2019.

15. Ahmad, M.S,; Shah, S.M. Supervised machine learning approaches for attack detection in the IoT network.
In Internet of Things and Its Applications; Springer, 2022; pp. 247-260.

16. Said Elsayed, M.; Le-Khac, N.A.; Dev, S.; Jurcut, A.D. Network anomaly detection using LSTM based
autoencoder. Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile
Networks, 2020, pp. 37-45.

17. Afagq, S.; Rao, S. Significance of epochs on training a neural network. Int. J. Sci. Technol. Res 2020, 9, 485-488.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202307.0679.v1

	Introduction
	Literature Review
	Materials and Methods
	Data Preparation
	Data Preprocessing
	Balancing and Sampling

	Model Training
	Model evaluation

	Results and Discussion
	Conclusions
	References

