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Abstract: In this study, our primary objective was to analyze the tradeoff between accuracy and complexity in 

machine learning models, with a specific focus on the impact of reducing complexity and entropy on the 

production of landslide susceptibility maps. We aimed to investigate how simplifying the model and reducing 

entropy can affect the capture of complex patterns in the susceptibility maps. To achieve this, we conducted a 

comprehensive evaluation of various machine learning algorithms for classification tasks. We compared the 

performance of these algorithms in terms of accuracy and complexity, considering both "before" and "after" 

scenarios of dimensionality reduction using Principal Component Analysis (PCA). Our findings revealed that 

reducing complexity and lowering entropy can lead to an increase in model accuracy. However, we also 

observed that this reduction in complexity comes at the cost of losing important complex patterns in the 

produced landslide susceptibility maps. By simplifying the model and reducing entropy, certain intricate 

relationships and uncertain patterns may be overlooked, resulting in a loss of information and potentially 

compromising the accuracy of the susceptibility maps. The analysis encompassed a diverse range of machine 

learning algorithms, including Random Forest (RF), Extra Trees (EXT), XGboost, LightGBM, Catboost, Naive 

Bayes (NB), K-Nearest Neighbors (KNN), Gradient Boosting Machine (GBM), and Decision Trees (DT). Each 

algorithm was evaluated for its strengths and limitations, considering the tradeoff between accuracy and 

complexity. Before dimensionality reduction, the algorithms demonstrated promising results, with RF 

exhibiting excellent AUC/ROC scores and average accuracy. However, computational costs were noted as a 

potential drawback for RF, especially when dealing with large datasets. EXT showcased robust performance 

and good accuracy, while XGboost demonstrated its ability to handle complex relationships within large 

datasets, albeit requiring careful hyperparameter tuning. The efficiency and scalability of LightGBM made it a 

suitable choice for large datasets, although it displayed sensitivity to class imbalance. Catboost excelled in 

handling categorical features, but longer training times were observed for larger datasets. NB showcased 

simplicity and computational efficiency but assumed independence among features. KNN, known for its 

capability to capture local patterns and spatial relationships, was found to be sensitive to the choice of distance 

metric. GBM, while capturing complex relationships effectively, was prone to overfitting without proper 

regularization. DT, with its interpretability and ease of understanding, faced limitations in terms of overfitting 

and limited generalization. After dimensionality reduction, certain algorithms exhibited improvements in their 

AUC/ROC scores and average accuracy, including RF, EXT, XGboost, and LightGBM. However, for a few 
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algorithms, such as NB and DT, a decrease in performance was observed. This study provides valuable insights 

into the performance characteristics, strengths, and limitations of various machine learning algorithms in 

classification tasks. Researchers and practitioners can utilize these findings to make informed decisions when 

selecting algorithms for their specific datasets and requirements. We also aim to identify the potential factors 

contributing to the high accuracy rates obtained from these ensembled algorithms and explore possible 

shortcomings of non-ensembled algorithms that may result in lower accuracy rates. By conducting a 

comprehensive analysis of these algorithms, we seek to provide valuable insights into the benefits and 

limitations of ensembled approaches for landslide susceptibility mapping. Our study sheds light on the 

challenges faced when balancing accuracy and complexity in machine learning models for landslide 

susceptibility mapping. It emphasizes the importance of carefully considering the level of complexity and 

entropy reduction in relation to the specific patterns and uncertainties present in the data. By providing insights 

into this tradeoff, our research aims to assist researchers and practitioners in making informed decisions 

regarding model complexity and entropy reduction, ultimately improving the quality and interpretability of 

landslide susceptibility maps. 

Keywords: machine learning; accuracy; complexity; entropy; landslide susceptibility mapping; 

dimensionality reduction; principal component analysis (PCA) 

 

Introduction 

Landslides pose significant threats to human life, infrastructure, and the environment, making 

landslide susceptibility mapping a crucial task in assessing and mitigating these risks. Accurate 

identification of areas prone to landslides allows for proactive planning and effective implementation 

of measures to minimize potential damages. Machine learning algorithms have proven to be valuable 

tools in landslide susceptibility mapping due to their ability to analyze complex spatial relationships 

and patterns. Ensemble learning, a powerful approach that combines multiple models to make 

collective predictions, has gained prominence in various fields of machine learning. In this research 

paper, we investigate the effectiveness of ensemble algorithms, with a particular focus on gradient 

boosting algorithms such as GBM, LightGBM, and Catboost, in the context of landslide susceptibility 

mapping. These algorithms have demonstrated superior performance in diverse applications and are 

known for their ability to handle large datasets and capture intricate nonlinear relationships [1–

3].Furthermore, we compare the results of gradient boosting algorithms with other ensemble 

methods, specifically Random Forest (RF) and Extra Trees (EXT), which also belong to the ensemble 

family. Additionally, we explore the performance of non-ensemble machine learning algorithms, 

including Decision Tree (DT), K-Nearest Neighbors (KNN), and Naive Bayes (NB), which serve as 

representatives of standalone algorithms from different paradigms. 

The concept of entropy is often misunderstood in the scientific community [4,5], and there are 

speculations suggesting that reducing entropy automatically reduces the complexity of a model and 

improves accuracy. However, this assumption does not hold true in real-world scenarios, particularly 

when dealing with complex phenomena like landslides. In fact, when using reduced dimensionality 

datasets generated through techniques like PCA, important patterns may be lost, leading to 

incomplete maps that fail to capture crucial information obtained from more complex and variable 

datasets that is evident from the maps obtained through modified geospatial dataset with low 

dimensionality see Figure 6. Therefore, it is imperative to develop advanced methods that can 

effectively encompass the uncertainty and complex dynamics inherent in real-life scenarios, such as 

landslides. These methods should go beyond simplistic approaches that aim to reduce complexity 

and instead focus on accurately representing the complex nature of land sliding. To achieve this, it is 

crucial to explore sophisticated techniques that can handle uncertainty and complex effects. 

Ensemble modeling, for instance, combines multiple models to account for variability and capture 

different aspects of the intricate landslide processes. By leveraging the strengths of various models, 

ensemble techniques can address the limitations of individual models and provide more robust and 

accurate predictions. Furthermore, incorporating advanced modeling approaches like machine 
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learning algorithms, geostatistics, or hybrid models that integrate multiple data sources and consider 

spatial  dependencies can enhance the accuracy of landslide susceptibility mapping. These 

techniques enable us to better understand and simulate the complexities and uncertainties associated 

with landslides. 

In summary, the misguided notion that reducing entropy automatically improves accuracy by 

simplifying models is not applicable to complex phenomena like landslides verified from Figure 6. 

Instead, it is crucial to develop advanced methods that can effectively incorporate uncertainty and 

complex dynamics into our models. By adopting these sophisticated approaches, we can more 

accurately simulate and predict real-life complex scenarios, such as land sliding, ultimately leading 

to improved risk assessment and management strategies [4,6–9]. 

Principal Component Analysis (PCA) is a commonly used method for reducing the 

dimensionality of datasets. In our experiment, we employed PCA to reduce the dimensionality of the 

geospatial dataset. PCA is a technique that aims to transform a high-dimensional dataset into a lower-

dimensional space while preserving the most significant information. It achieves this by identifying 

the principal components, which are orthogonal directions that capture the maximum variance in the 

data. By selecting a subset of the principal components, you can effectively reduce the dimensionality 

of the dataset. In the context of our study on landslide susceptibility mapping, we use PCA to reduce 

the dimensionality of the geospatial dataset to analyze the impact reducing dimensionality by 

removing the variable with high variability in order to obtain a simple less complex geospatial dataset 

so that we can effective identify the impact of dimensionality reduction on geospatial dataset and 

susceptibility maps produce by dataset with reduce dimensionality[10–14]. 

The primary objective of this study is to evaluate the performance of various ensembled and 

non-ensembled algorithms for landslide susceptibility mapping. The study aims to reduce the 

entropy of a geospatial dataset and examine the impact of entropy reduction on the accuracy of the 

mentioned algorithms. Additionally, the study seeks to gain insights into the factors contributing to 

the high accuracy rates observed in ensembled algorithms and identify potential shortcomings of 

non-ensembled algorithms that may result in lower accuracy rates. To achieve these goals, a 

comprehensive experimental setup is employed. A carefully curated dataset is utilized, consisting of 

relevant geospatial and environmental features, which will be used to train and validate the selected 

algorithms. The geospatial dataset is modified using Principal Component Analysis (PCA) to reduce 

its complexity. The modified dataset obtained from PCA is then used to run both ensembled and 

non-ensembled algorithms. Performance metrics are employed to assess and compare the accuracy 

of each algorithm's landslide susceptibility predictions before and after dimensionality reduction. By 

comparing the performance of the algorithms on the original and reduced datasets, the study aims 

to determine the impact of dimensionality reduction on the overall accuracy of susceptibility maps 

and the accuracy of the algorithms themselves. 

The study intends to provide valuable insights into the reasons behind the high accuracy rates 

observed in ensembled algorithms compared to non-ensembled algorithms. It also aims to identify 

potential shortcomings of non-ensembled algorithms that may lead to lower accuracy rates. By 

analyzing the effect of dimensionality reduction on the accuracy of susceptibility maps and 

algorithms, the study aims to highlight the importance of data preprocessing techniques for 

improving the performance of landslide susceptibility mapping models. In summary, the study 

focuses on assessing the performance of ensembled and non-ensembled algorithms for landslide 

susceptibility mapping, analyzing the impact of entropy reduction on accuracy, and evaluating the 

effect of dimensionality reduction on both susceptibility maps and algorithm accuracy. The results of 

this study can contribute to improving landslide risk assessment and management strategies. The 

findings of this research paper contribute to the growing body of knowledge in landslide 

susceptibility mapping and provide valuable insights for decision-makers and researchers in the 

field. Understanding the strengths and weaknesses of ensembled algorithms compared to non-

ensembled algorithms can guide the selection and implementation of appropriate techniques for 

accurate and reliable landslide susceptibility mapping. In this research paper, the we aimed to 

compare and analyze the performance of different algorithms for landslide susceptibility mapping. 
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The algorithms evaluated in the study include Random Forest (RF), Extra Trees (EXT), XGboost, 

LightGBM, Catboost, Naive Bayes (NB), K-Nearest Neighbors (KNN), Gradient Boosting Machine 

(GBM), and Decision Tree (DT). The evaluation was based on the AUC/ROC score and average 

accuracy as performance metrics. Based on the results presented in the paper, the ensemble 

algorithms (RF, EXT, XGboost, LightGBM, Catboost, and GBM) generally achieved higher AUC/ROC 

scores and average accuracies compared to the non-ensemble algorithms (NB, KNN, and DT) [15–17] 

. This indicates that the ensemble algorithms, which combine multiple models, were more effective 

in capturing the complexities of landslide susceptibility mapping. Among the ensemble algorithms, 

RF obtained the highest AUC/ROC score of 0.96497, indicating its strong predictive capability. EXT, 

XGboost, LightGBM, and Catboost also performed well with AUC/ROC scores ranging from 0.95893 

to 0.96316. These algorithms consistently outperformed the non-ensemble algorithms in terms of both 

AUC/ROC score and average accuracy. On the other hand, the non-ensemble algorithms (NB, KNN, 

and DT) achieved relatively lower AUC/ROC scores and average accuracies. NB had the highest 

AUC/ROC score among the non-ensemble algorithms with 0.95410, followed by KNN with 0.84782, 

and DT with 0.83454. These results suggest that the non-ensemble algorithms may struggle to capture 

the intricate relationships between the features and landslide susceptibility accurately. 

Based on the AUC/ROC scores, the Random Forest algorithm (RF) achieves the highest score of 

0.96497, followed closely by CatBoost with a score of 0.96316. These two algorithms outperform the 

others in terms of their ability to distinguish between positive and negative classes. 

Regarding average accuracy, Random Forest (RF) also achieves the highest accuracy of 0.92020, 

followed by CatBoost with an accuracy of 0.91417. These algorithms perform better on average across 

the evaluation samples. It's important to note that the performance of an algorithm may vary 

depending on the specific task and dataset. Therefore, it's recommended to consider other factors 

such as computational efficiency, interpretability, and scalability when selecting an algorithm for a 

particular application. 

One possible reason why CatBoost performed similarly to Random Forest (RF) could be because 

both algorithms are ensemble methods that are designed to handle complex datasets and capture 

non-linear relationships. Both CatBoost and Random Forest have the ability to handle categorical 

features effectively. CatBoost incorporates a gradient boosting framework specifically designed to 

handle categorical variables by using a combination of ordered boosting and symmetric trees. 

Random Forest, on the other hand, builds an ensemble of decision trees and can handle categorical 

variables through techniques such as one-hot encoding or binary encoding. 

Additionally, both algorithms have a high capacity for capturing interactions and non-linear 

relationships in the data, which can contribute to their similar performance. They both excel in 

handling high-dimensional datasets and are robust to outliers and noise.It's important to note that 

while CatBoost and Random Forest achieved similar results in terms of AUC/ROC scores and average 

accuracy, they may have different strengths and weaknesses in other aspects such as computational 

efficiency, interpretability, or sensitivity to hyperparameters. It would be worthwhile to further 

analyze and compare these factors to make a more comprehensive assessment of their performance 

for a specific task or dataset. 

Ensemble algorithms outperformed non-ensemble algorithms: The ensemble algorithms, 

including RF, EXT, XGboost, LightGBM, Catboost, and GBM, consistently achieved higher 

AUC/ROC scores and average accuracies compared to the non-ensemble algorithms (NB, KNN, and 

DT). This pattern highlights the effectiveness of ensemble methods in improving the accuracy of 

landslide susceptibility mapping. RF demonstrated the highest performance: Among the algorithms 

evaluated, RF exhibited the highest AUC/ROC score of 0.97524, indicating its superior predictive 

capability for landslide susceptibility mapping. This suggests that RF may be particularly suitable for 

accurately identifying landslide-prone areas [18–20]. Gradient boosting algorithms performed 

consistently well: XGboost, LightGBM, and GBM achieved similar AUC/ROC scores and average 

accuracies, indicating their comparable performance in landslide susceptibility mapping. This 

suggests that gradient boosting algorithms can be reliable choices for accurate prediction in this 

context [21–24]. Non-ensemble algorithms had lower performance. The non-ensemble algorithms, 
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including NB, KNN, and DT, generally obtained lower AUC/ROC scores and average accuracies 

compared to the ensemble algorithms [25–27]. This suggests that standalone algorithms may struggle 

to capture the complex relationships and patterns associated with landslide susceptibility effectively. 

Overall, the paper demonstrates that ensemble algorithms, particularly RF and gradient boosting 

algorithms, are well-suited for landslide susceptibility mapping, providing high accuracy and 

reliable predictions before and after dimensionality reduction. The findings highlight the importance 

of considering ensemble methods when developing models for landslide risk assessment and 

mitigation.  

The primary objectives of this research paper are as follows: 

1. Evaluate the performance of gradient boosting algorithms, including GBM, LightGBM, and 

Catboost, for landslide susceptibility mapping. Analyze the differences in the implementation 

and optimization strategies of these gradient boosting algorithms. Assess the accuracy rates and 

predictive capabilities of these algorithms in identifying landslide-prone areas before and after 

dimensionality reduction of geospatial dataset. 

2. Compare the performance of ensemble methods, specifically Random Forest (RF) and Extra Trees 

(EXT), with gradient boosting algorithms for landslide susceptibility mapping. Investigate the 

strengths and weaknesses of each ensemble method in capturing complex spatial relationships 

and patterns related to landslides. Determine the effectiveness of ensemble methods in 

improving accuracy compared to standalone gradient boosting algorithms. 

3. Evaluate the performance of non-ensembled machine learning algorithms, including Decision 

Tree (DT), K-Nearest Neighbors (KNN), and Naive Bayes (NB), for landslide susceptibility 

mapping. Assess the accuracy rates and limitations of these non-ensembled algorithms in 

capturing the complexities of landslide-prone areas. Identify potential challenges and 

shortcomings of non-ensembled algorithms that may lead to lower accuracy rates. 

4. Identify the factors contributing to the high accuracy rates obtained from the ensembled 

algorithms and explore possible problems with non-ensembled algorithms that might lead to 

lower accuracy rates. Investigate the impact of dataset characteristics, feature selection, and 

algorithmic approaches on the performance of ensembled and non-ensembled algorithms. Gain 

insights into the reasons behind the superior performance of ensembled algorithms and potential 

limitations of non-ensembled algorithms. 

5. Provide valuable insights and recommendations for selecting appropriate algorithms for accurate 

and reliable landslide susceptibility mapping. Compare the strengths and weaknesses of 

ensemble algorithms and non-ensemble algorithms in the context of landslide susceptibility 

mapping. Discuss the implications of the findings for decision-makers, researchers, and 

practitioners involved in landslide risk assessment and mitigation. 

6. Provide a balance approach to handle complexity and accuracy together to efficiently represent 

the uncertainty in complex phenomena like land sliding. 

By achieving these objectives, this research paper aims to contribute to the understanding of the 

performance and effectiveness of ensembled and non-ensembled algorithms for landslide 

susceptibility mapping. The insights gained from this study can facilitate informed decision-making 

and help improve the accuracy and reliability of landslide risk assessment and mitigation strategies. 

In the following sections, we discuss the methodology, including the description of the dataset, 

the ensembled algorithms employed, and the non-ensembled algorithms selected and describe the 

modified geospatial dataset created using PCA with reduce dimensionality. We then present the 

experimental setup, the obtained results, and subsequent discussions. Finally, we conclude the paper 

by summarizing the key findings, discussing their implications, and obtained results before and after 

reduction of complexity of geospatial dataset. 

Background 

Landslides are natural hazards that result from the downward movement of rocks, soil, and 

debris on sloping terrains. They are triggered by various factors, including heavy rainfall, seismic 

activity, slope instability, and human-induced activities. Landslides have severe consequences, 

leading to loss of life, destruction of infrastructure, and ecological damage. Therefore, accurately 
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assessing landslide susceptibility is crucial for effective land management, urban planning, and 

disaster risk reduction. Traditionally, landslide susceptibility mapping relied on expert knowledge, 

geological surveys, and field observations. However, these methods often lacked objectivity and 

struggled to handle the complex relationships and spatial patterns associated with landslides. With 

the advancement of machine learning techniques and the availability of geospatial data, automated 

approaches have gained prominence in landslide susceptibility mapping. Machine learning 

algorithms offer the ability to analyze large volumes of geospatial data and identify complex patterns 

and relationships that are difficult to capture using conventional methods. These algorithms learn 

from historical landslide occurrences and associated factors to generate predictive models. By 

considering various environmental, geological, and topographical features, machine learning models 

can accurately assess the susceptibility of an area to landslides [28–31]. 

Ensemble learning has emerged as a powerful approach in machine learning, particularly for 

complex prediction tasks. Ensemble algorithms combine multiple models to make collective 

predictions, leveraging the strengths of individual models and reducing the impact of their 

weaknesses. This approach has been successful in improving accuracy and robustness in various 

domains, including image recognition, natural language processing, and data mining. 

Gradient boosting algorithms, such as GBM (Gradient Boosting Machine), LightGBM, and 

Catboost, have become popular choices for ensemble learning tasks . These algorithms construct a 

series of weak learners (decision trees) sequentially, with each subsequent learner focusing on the 

errors made by the previous ones. By iteratively minimizing the prediction errors, gradient boosting 

algorithms produce highly accurate models that can effectively handle complex relationships in the 

data[21,32,33].In addition to ensemble methods, non-ensembled machine learning algorithms have 

also been employed for landslide susceptibility mapping. Decision Tree (DT) is a standalone decision-

based algorithm that constructs a tree-like model, making decisions based on feature values. K-

Nearest Neighbors (KNN) is a distance-based algorithm that classifies samples based on the 

proximity to their neighboring instances. Naive Bayes (NB) is a probabilistic classifier that assumes 

independence between features. While previous studies have explored the application of both 

ensembled and non-ensembled algorithms in landslide susceptibility mapping, a comprehensive 

comparison and analysis of their performance and the factors contributing to their accuracy rates are 

still needed. This research paper aims to bridge this gap by conducting a systematic investigation of 

various ensembled algorithms, including gradient boosting methods, as well as non-ensembled 

algorithms for landslide susceptibility mapping. By evaluating their performance and identifying 

their strengths and weaknesses, we can provide valuable insights for improving landslide risk 

assessment and mitigation strategies. 

Entropy is a concept originating from information theory that quantifies the uncertainty or 

randomness in a dataset. In the context of machine learning and data analysis, entropy measures the 

impurity or disorder of a set of samples with respect to their class labels. In the context of capturing 

complex phenomena, entropy plays a crucial role. High entropy indicates a higher degree of 

uncertainty or complexity in the dataset. It suggests that the dataset contains diverse patterns, 

variations, and uncertain relationships between variables. By capturing and incorporating this 

complexity through high entropy, machine learning models can better represent and understand the 

underlying intricate relationships and patterns within the data. High entropy enables the model to 

capture the nuances and uncertainties inherent in complex phenomena. It allows the model to flexibly 

adapt to the diverse patterns present in the data, thereby enhancing its ability to generalize and make 

accurate predictions or classifications. By considering the full range of possibilities and variations 

reflected in high entropy, the model becomes more robust and capable of handling complex, real-

world scenarios. However, it is important to note that there is a tradeoff between complexity and 

model interpretability. Very high entropy or complexity can make it challenging to understand and 

interpret the model's decision-making process. Therefore, finding the right balance between 

capturing complex patterns through high entropy and maintaining interpretability is a key 

consideration in model development and analysis. Thus entropy is important for capturing complex 

phenomena as it quantifies the uncertainty and diversity in the dataset. It enables machine learning 
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models to adapt to the complex patterns and variations present in the data, improving their ability to 

make accurate predictions and classifications. Balancing entropy with model interpretability is 

crucial for gaining insights and understanding the underlying relationships within complex systems 

[34–37]. 

Entropy is highly important when it comes to land sliding because landslides are complex 

phenomena that involve various factors and uncertainties. Landslides can be influenced by geological 

characteristics, topography, soil properties, precipitation patterns, vegetation cover, and human 

activities, among other factors. By considering entropy in landslide analysis, we can capture the 

diversity and variability present in the dataset, which is crucial for understanding and predicting 

landslides. High entropy indicates a higher degree of complexity and uncertainty in the data, which 

aligns with the multifaceted nature of landslides. It allows machine learning models to capture the 

diverse patterns, interactions, and relationships between different variables involved in landslides. 

Including entropy in landslide analysis helps to account for the inherent uncertainties and variations 

associated with landslides can be observed by landslide susceptibility maps created with complex 

dataset before dimensionality reduction in Figure 5. It enables models to consider different 

combinations of factors and their potential influences on landslides. This can lead to more accurate 

landslide susceptibility mapping, hazard assessment, and early warning systems. Furthermore, 

landslides can exhibit spatial and temporal variations, making it essential to capture the complexity 

and uncertainty through entropy. High entropy helps to account for these variations and provides a 

more comprehensive understanding of landslides across different regions and time periods. Thus 

entropy is of significant importance in land sliding as it enables the consideration of complex 

relationships and uncertainties associated with landslides. By incorporating entropy in landslide 

analysis, we can improve our understanding, prediction, and management of landslides, ultimately 

contributing to effective landslide risk reduction and mitigation strategies [38–40]. 

Methodology 

Obtain a comprehensive dataset consisting of geospatial and environmental features relevant to 

landslide susceptibility mapping. Include features such as slope gradient, elevation, land cover, 

geological characteristics, distance to road , distance to streams , distance to fault lines and past 

landslide occurrences. Ensure the dataset covers a diverse range of geographical locations and 

includes both landslide-prone and non-landslide-prone areas. We selected two different groups of 

machine learning algorithms ensembled and non-ensembled. And we also examine the effect of 

eliminating the principle component with highest variance ratio that is aspect in our case study  and 

examine its effect on overall accuracy of ensembled and non-ensembled algorithms. For that purpose 

we remove the "Aspect" and “Fault” feature from our dataset that capture most of the variability, 

creating a modified dataset without this component. Optionally, you can perform any other 

necessary preprocessing steps, such as handling missing values, scaling the data, or encoding 

categorical variables etc. Split the modified dataset into training and testing sets to evaluate the 

performance of the algorithms. Select the ensembled algorithms you want to experiment with, such 

as Random Forest, Extra Trees, XGBoost, Gradient Boosting, or other non-ensembled such as such as 

Naive Bayes, K-Nearest Neighbors, Decision Tree. Train and evaluate the ensembled and non-

ensembled algorithms using the modified dataset without the "Aspect" feature. Measure the accuracy 

and any other relevant evaluation metrics. Based on the results, we can assess the effect of eliminating 

the "Aspect" feature on the overall accuracy of the ensembled and non-ensembled algorithms. Draw 

conclusions about the importance of the "Aspect" and ‘’Fault”feature and its contribution to the 

accuracy of the algorithms. Consider potential implications, such as improvements in computational 

efficiency or changes in the models' interpretability. 

The variable with the highest variance ratio represents the feature that contributes the most to 

the overall variability in the dataset. Removing it may result in a loss of significant information, 

potentially impacting the accuracy of the algorithms. The high variance ratio suggests that the 

variable contains valuable information that may be relevant for the prediction task but in this 

experiment our main objective is to  reduce the dimensionality and complexity of our dataset. PCA 
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is a dimensionality reduction technique that aims to capture the most important patterns and 

variability in the data using a smaller number of orthogonal principal components. The principal 

components are derived from linear combinations of the original features, and each component 

represents a different direction in the feature space. The variance ratio associated with each principal 

component indicates the proportion of total variance in the dataset that can be explained by that 

component. The component with the highest variance ratio captures the most significant variability 

in the data. 

When we remove the principal component with the highest variance ratio, we are effectively 

discarding the information that it represents. This can lead to a reduction in the dimensionality of the 

dataset, as one less feature is considered for analysis. Removing a principal component with high 

variance ratio implies that it contributes less to the overall variability in the dataset result in reducing 

the complexity of the dataset. 

However, it's important to note that removing a principal component is a trade-off between 

dimensionality reduction and the potential loss of information. The impact on the accuracy of 

subsequent analysis or modeling tasks should be carefully evaluated, as some important patterns or 

relationships captured by the removed component may be lost but our major aim in this experiment 

is find the impact of dimensionality and complexity reduction of geospatial data on accuracy and 

performance of ensembled and non-ensembled algorithms. 

One of the main reasons for using PCA is to reduce the dimensionality of the dataset. By 

eliminating the principal component with the highest variance ratio, you are reducing the 

dimensionality by one. This can be beneficial in terms of computational efficiency, memory usage, 

and model interpretability. However, it is important to assess the impact on the overall accuracy of 

your algorithms. 

Ensembled Algorithms: 

Select gradient boosting algorithms, including GBM, LightGBM, and Catboost, as the primary 

focus of the study. Study and analyze the implementation and optimization strategies specific to each 

algorithm. Configure the hyperparameters of each algorithm, such as learning rate, number of trees, 

and tree depth, based on best practices and prior research. Include Random Forest (RF) and Extra 

Trees (EXT) as representative ensemble methods for comparison. 

Non-Ensembled Algorithms: 

Select Decision Tree (DT), K-Nearest Neighbors (KNN), and Naive Bayes (NB) as representative 

non-ensembled algorithms. Implement and configure these algorithms using appropriate settings 

and hyperparameters. Ensure that the decision tree depth, number of neighbors in KNN, and 

smoothing parameters in NB are appropriately determined. 

Conduct exploratory data analysis to understand the distribution and characteristics of the 

dataset. Handle missing values, outliers, and inconsistencies in the dataset through appropriate 

preprocessing techniques. Perform feature engineering, such as scaling, normalization, and 

transformation, to ensure compatibility and improve algorithm performance. In this research, the 

dataset was split into training and validation subsets using a sampling strategy that involved 

allocating 70% of the data for training purposes and 30% for testing. Additionally, a 3-fold cross-

validation technique was employed. This approach helps assess the model's performance by training 

and evaluating it on different subsets of the data. 

Validate the trained models using the validation subset and evaluate their performance using 

appropriate metrics such as accuracy, precision, recall, and area under the receiver operating 

characteristic curve (AUC-ROC). Compare the performance of ensembled algorithms (gradient 

boosting, RF, and EXT) with non-ensembled algorithms (DT, KNN, and NB). Identify the factors 

contributing to the high accuracy rates of ensembled algorithms and explore potential challenges 

with non-ensembled algorithms. Discuss the implications of the findings, including the strengths and 

limitations of each algorithm, in the context of landslide susceptibility mapping. By following this 

methodology, the study aims to provide a comprehensive analysis and comparison of ensembled and 
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non-ensembled algorithms for landslide susceptibility mapping. The approach ensures a fair 

evaluation of each algorithm's performance and facilitates the identification of key factors that 

contribute to their accuracy rates. 

Dataset Description 

The dataset used in this research paper comprises geospatial and environmental features 

relevant to landslide susceptibility mapping. The dataset is carefully curated to include a wide range 

of factors associated with landslide occurrences and covers diverse geographical locations. The 

following are the source and key features included in the dataset. 

Table 1. source of dataset. 

Data source Input variables Scale/Resolution Source 

Sentinel 2 satellite 

images 

landslide inventory, LCLU, 

Road network 
10m  

DEM 

Slope 

Aspect 

Stream 

Network 

30 m 

SRTM Shuttle 

Radar 

Topography 

Mission 

(USGS) United 

States 

Geological 

Survey 

Geological Map Geology Units and Fault lines 30 m 

Geological 

Survey of 

Pakistan 

Google Earth Maps 
Landslide Inventory Land 

Cover/Land Use Road Network 
2–5 m  

Field Survey GPS Points 1 m  

Table 2. key features included in the dataset. 

Factors Classes Class Percentage % Landslide Percentage % Reclassification 

Slope (°) 

Very Gentle Slope < 5° 17.36 21.11 

Geometrical 

interval 

reclassification 

Gentle Slope 5°–15° 20.87 28.37 

Moderately Steep Slope 15°–30° 26.64 37.89 

Steep Slope 30°–45° 24.40 10.90 

Escarpments > 45° 10.71 1.73 

Aspect 

Flat (−1) 22.86 7.04 

Remained 

unmodified (as 

in source data). 

North (0–22) 21.47 7.03 

Northeast (22–67) 14.85 5.00 

East (67–112) 8.00 11.86 

Southeast (112–157) 5.22 14.3 

South (157–202) 2.84 14.40 

Southwest (202–247) 6.46 12.41 

West (247–292) 7.19 16.03 

Northwest (292–337) 11.07 11.96 

Land 

Cover 

Dense Conifer 0.38 12.73 

Sparse Conifer 0.25 12.80 

Broadleaved, Conifer 1.52 10.86 

Grasses/Shrubs 25.54 10.3 

Agriculture Land 5.78 10.40 

Soil/Rocks 56.55 14.51 
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Snow/Glacier 8.89 12.03 

Water 1.06 16.96 

Geology 

Cretaceous sandstone 13.70 6.38 

Devonian-Carboniferous 12.34 5.80 

Chalt Group 1.43 8.43 

Hunza plutonic unit 4.74 10.74 

Paragneisses 11.38 11.34 

Yasin group 10.80 10.70 

Gilgit complex 5.80 9.58 

Trondhjemite 15.65 9.32 

Permian massive limestone 6.51 6.61 

Permanent ice 12.61 3.51 

Quaternary alluvium 0.32 8.65 

Triassic massive limestone and dolomite 1.58 7.80 

snow 3.08 2.00 

Proximity 

to Stream 

(meter) 

0–100 m 19.37 18.52 

Geometrical 

interval 

reclassification 

100–200 10.26 21.63 

200–300 10.78 25.16 

300–400 13.95 26.12 

400–500 18.69 6.23 

>500 26.92 2.34 

Proximity 

to Road 

(meter) 

0–100 m 81.08 25.70 

100–200 10.34 25.19 

200–300 6.72 27.09 

300–400 1.25 12.02 

400–500 0.60 10.00 

Proximity 

to Fault 

(meter) 

000–1000 m 29.76 27.30 

2000–3000 36.25 37.40 

>3000 34.15 35.03 

These features provide essential information about the terrain, climate, and geological 

conditions that contribute to landslide susceptibility. The dataset also includes a binary label 

indicating the presence or absence of landslides in each data point. It is worth noting that the dataset 

should be representative of the study area and cover a sufficient number of landslide occurrences to 

ensure robust model training and evaluation. Additionally, the dataset may undergo preprocessing 

steps to handle missing values, outliers, and inconsistencies, ensuring data quality and integrity for 

accurate analysis and model performance assessment. 

There are several other powerful operations and techniques used in machine learning and data 

analysis one of them is principal component analysis (PCA) is a dimensionality reduction technique 

used to transform high-dimensional data into a lower-dimensional space while preserving the most 

important information. It identifies the directions (principal components) along which the data varies 

the most and projects the data onto these components. PCA can help in reducing computational 

complexity, removing noise, and visualizing high-dimensional data. The Explained Variance Ratio 

indicates the proportion of the total variance in the dataset that is explained by each principal 

component. In our case, the explained variance ratio for the eight principal components is presented 

in table below. 

Principal Component Analysis (PCA) for Landslide conditioning factors used in our experiment. 

Components  Variance Ratio  

Aspect 27.22% 

Fault 18.17% 
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Geology 13.66% 

Land Cover 12.50% 

Precipitation  10.57% 

Road 9.70% 

Slope 4.71% 

Streams 3.48% 

 

Figure 1. The covariance matrix is computed to understand the relationships between the features in 

the dataset. It represents how each feature changes with respect to the others. 

The transformed data represents the dataset in the reduced-dimensional space. Each principal 

component corresponds to a combination of the original features and can be interpreted as new 

"synthetic" features. These components capture different patterns or structures in the data. selection 

can be based on the explained variance ratio, where a higher ratio implies a better representation of 

the original data. PCA is a powerful technique for reducing the dimensionality of data while retaining 

the most important information, making it a valuable tool in exploratory data analysis and machine 

learning tasks. 
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Figure 2. Variance Ratio indicates the proportion of the total variance in the dataset that is explained 

by each principal component. 

These mappings indicate the contribution of each original feature to the corresponding principal 

component. It helps in interpreting the principal components and understanding the underlying 

patterns or structures captured by each component. Aspect explains the most variance in the dataset 

(27.22%). This suggests that the "Aspect" feature plays a significant role in the variability of the data. 

Similarly, the other features contribute to the variance explained by their respective principal 

components. By analyzing the explained variance ratio we can gain insights into the relative 

importance of each feature and the patterns present in the data. 

In our  case study "Streams" has low variance suggests that it does not vary significantly across 

the dataset, and thus it has a limited impact on the overall variability captured by the principal 

components. This could be due to several reasons, such as a lack of variation in the data, the presence 

of missing values, or the nature of the feature itself. 

It's important to note that the variance of a feature and its contribution to the principal 

components are relative to the other features in the dataset. A low variance for one feature does not 

necessarily imply that the feature is unimportant or irrelevant for the overall analysis. The importance 

of a feature should be assessed based on the specific context and the goals of the analysis. 

Principal Component Analysis (PCA) can have both positive and negative effects on the overall 

accuracy of ensembled and non-ensembled machine learning algorithms. The impact of PCA 

depends on various factors such as the dimensionality of the dataset, the amount of variance 

explained by the principal components, and the characteristics of the underlying data. 

Ensembled algorithms, such as Random Forests or Gradient Boosting, are generally robust to 

high-dimensional data. In some cases, using PCA to reduce the dimensionality of the input features 

can have a positive impact on the accuracy of ensembled algorithms that can be evident from our 
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experiment. By reducing the number of features, PCA can help to alleviate the curse of 

dimensionality, mitigate overfitting, and improve the algorithm's generalization performance. 

However, it's important to note that the extent of improvement depends on the specific dataset and 

the number of principal components retained. 

Non-ensembled algorithms, may benefit from PCA in certain scenarios. If the dataset has a high 

dimensionality with multicollinearity (correlation between features), PCA can help to remove the 

correlated features and reduce the noise in the data. This can lead to improved model interpretability, 

reduced computational complexity, and enhanced generalization performance. However, there are 

situations where PCA may negatively impact the accuracy of non-ensembled algorithms. If the 

dataset has low dimensionality or the majority of the variance is captured by a few principal 

components, applying PCA might result in loss of important information. This can lead to a decrease 

in accuracy since the reduced feature space may not contain all the discriminative information 

required for accurate predictions. 

Principal Component Analysis (PCA) can have different impacts on the accuracy and 

performance of various ensemble algorithms, including Random Forest (RF), Extra Trees (EXT), 

XGBoost, Gradient Boosting Machine (GBM), LightGBM, and CatBoost. We discuss the potential 

effects of PCA on each of these algorithms. Random Forest and Extra Trees are ensemble methods 

that rely on decision trees. These algorithms are generally robust to high-dimensional data and can 

handle multicollinearity to some extent. PCA can be useful in reducing the dimensionality of the 

input features, which can help in mitigating the curse of dimensionality and reducing overfitting. By 

selecting a subset of principal components that capture most of the variance, PCA can simplify the 

decision-making process for individual trees and improve the overall model performance that can be 

proven from our results where RF score highest accuracy rate. GBM is another ensemble algorithm 

that sequentially adds weak learners (decision trees) to improve model performance. PCA can be 

beneficial for GBM in cases where the dataset has a high dimensionality with correlated features. By 

reducing the dimensionality and removing collinearity through PCA, GBM can focus on the most 

informative features and improve model interpretability. However, it's crucial to find the right 

balance by selecting an appropriate number of principal components to retain, as too much 

dimensionality reduction can lead to loss of important information. 

LightGBM and CatBoost are gradient boosting frameworks that offer high-performance 

implementations of the gradient boosting algorithm. Similar to XGBoost and GBM, these algorithms 

can handle high-dimensional data, and PCA can potentially benefit them in similar ways. PCA can 

help in reducing the feature space, improving computational efficiency, and reducing overfitting. 

However, as with other ensemble algorithms, it's important to experiment and find the optimal 

number of principal components to retain for the best trade-off between dimensionality reduction 

and retaining important information. 

PCA can have positive effects on ensemble algorithms such as RF, EXT, XGBoost, GBM, 

LightGBM, and CatBoost by reducing dimensionality, alleviating overfitting, and improving model 

interpretability. However, it's essential to consider the specific characteristics of the dataset, 

experiment with different numbers of principal components, and evaluate the impact on the accuracy 

and performance of each algorithm. 

Naive Bayes is a probabilistic algorithm that assumes independence between features given the 

class variable. PCA may not have a significant impact on NB since it does not rely on feature 

interactions or correlations. However, if the dataset has a high dimensionality, PCA can help in 

reducing the number of features and improving computational efficiency. The impact of PCA on NB 

depends on the specific dataset and the level of feature correlation present. 

K-Nearest Neighbors is a non-parametric algorithm that relies on the distances between data 

points in the feature space. PCA can have mixed effects on KNN. On one hand, PCA can help in 

reducing dimensionality and removing noise, making the distance calculations more reliable and 

efficient. On the other hand, PCA may also result in the loss of discriminative information if the 

reduced feature space does not capture the essential characteristics for nearest neighbor classification. 
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It's important to experiment with different numbers of principal components and evaluate the impact 

on the accuracy of KNN. 

Decision Tree algorithms, such as CART or ID3, build a tree structure by splitting the feature 

space based on certain criteria. PCA may have limited impact on DT since decision trees can naturally 

handle high-dimensional data and feature interactions. However, PCA can still be beneficial in cases 

where the dataset has high dimensionality, multicollinearity, or noise. PCA can simplify the decision-

making process by reducing the feature space and improving model interpretability. It can also help 

in reducing overfitting and improving generalization performance by focusing on the most 

informative principal components. 

In summary, the impact of PCA on the overall accuracy of ensembled and non-ensembled 

algorithms is context-dependent. It is recommended to experiment with different settings, including 

different numbers of retained principal components, and assess the impact on the performance of the 

specific algorithm and dataset at hand. The impact of PCA on Naive Bayes, K-Nearest Neighbors, 

and Decision Tree algorithms can vary. While PCA may not have a significant impact on NB, it can 

help in reducing dimensionality and improving computational efficiency. For KNN, PCA can have 

mixed effects on accuracy, as it can both improve efficiency and potentially lead to the loss of 

important information. For DT, PCA can simplify the decision-making process, improve 

interpretability, and mitigate overfitting. As always, it's important to experiment and evaluate the 

impact of PCA on the specific dataset and algorithm being used. 

In our experiment we will eliminate the principle component with highest variance ratio that is 

aspect in our case study  and examine it’s effect on overall accuracy and performance of ensembled 

and non-ensembled algorithms.  

Ensembled Algorithms 

In this research paper, we focus on the evaluation and analysis of several ensembled algorithms 

for landslide susceptibility mapping. Ensemble algorithms combine multiple models to make 

collective predictions, harnessing the strengths of individual models to enhance overall performance 

[41–44]. The following ensembled algorithms are included in our study 

Gradient Boosting Algorithms 

XGBoost 

XGBoost is a popular ensemble algorithm known for its effectiveness in various machine 

learning tasks, including landslide susceptibility mapping. XGBoost is based on the gradient boosting 

framework, which sequentially adds weak learners (decision trees) to iteratively improve the model's 

predictive performance. It uses gradient descent optimization to minimize the loss function by 

updating the model's parameters, focusing on the instances that were misclassified or had high 

residuals in the previous iterations. The boosting process allows XGBoost to capture complex 

relationships and handle nonlinearities in the data effectively[45–47]. XGBoost is designed to handle 

large datasets efficiently and can handle a large number of features and samples. It incorporates 

various optimization techniques, such as column block partitioning and parallel computation, to 

speed up the training process and utilize the available computing resources effectively. XGBoost 

provides an estimate of feature importance, allowing users to identify the most influential features 

for landslide susceptibility mapping. The algorithm ranks the features based on their contribution to 

the model's performance, providing insights into the relevant factors affecting landslide occurrences. 

XGBoost offers several regularization techniques, such as L1 and L2 regularization, to control 

overfitting and enhance generalization. By penalizing complex models, these techniques prevent 

over-reliance on noisy or irrelevant features, leading to improved model performance. XGBoost 

provides a wide range of hyperparameters that can be tuned to optimize the model's performance. 

Parameters such as learning rate, tree depth, and subsampling rate can be adjusted to achieve the 

desired trade-off between model complexity and performance. XGBoost is known for its scalability 

and is widely used in industry applications [48–51]. Once the model is trained, it can be efficiently 
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deployed for making predictions on new data, making it suitable for real-time or batch processing 

scenarios.  

It is important to note that XGBoost's performance can vary depending on the dataset, 

hyperparameter tuning, and feature engineering. Therefore, it is recommended to experiment with 

different settings and perform cross-validation to obtain the best performance for landslide 

susceptibility mapping tasks. 

The mathematical details of a gradient boosting algorithm, such as XGBoost, can provide deeper 

insights into its inner workings. Mathematical formulation of gradient boosting for classification 

problems can be summarized as: 

1. Loss Function: 

o In a classification problem, a common loss function used in gradient boosting is the softmax loss 

or cross-entropy loss. 

o The softmax loss is defined as the negative log-likelihood of the true class label, given the 

predicted probabilities of each class. 

o The goal of the gradient boosting algorithm is to minimize this loss function iteratively. 

2. Ensemble Model: 

o Let's denote the training dataset as {(x1, y1), (x2, y2), ..., (xn, yn), where xi represents the input 

features and yi represents the true class label of the i-th instance. 

o The ensemble model in gradient boosting is represented as a weighted combination of weak 

learners (decision trees), denoted as F(x), which aims to approximate the true class probabilities. 

3. Gradient Descent: 

o At each boosting iteration, the algorithm computes the negative gradient of the loss function 

with respect to the current ensemble model's output for each instance. 

o This negative gradient represents the direction in which the loss function decreases the most, 

allowing the algorithm to update the model's parameters (weights) to minimize the loss. 

4. Tree Construction: 

o Decision trees are used as weak learners in gradient boosting. 

o At each boosting iteration, a new decision tree is constructed to model the negative gradient of 

the loss function. 

o The decision tree partitions the feature space into regions, assigning class labels based on 

majority voting in each leaf node. 

5. Learning Rate: 

o To control the contribution of each weak learner, a learning rate (η) is introduced. 

o The learning rate scales the contribution of each weak learner in the ensemble model. 

o Smaller learning rates reduce the impact of each tree, leading to more conservative updates and 

potentially better generalization. 

6. Gradient Boosting Algorithm: 

The gradient boosting algorithm proceeds as follows: 

Initialize the ensemble model F(x) to a constant value. For each boosting iteration: 

o Compute the negative gradient of the loss function for each instance. 

o Fit a weak learner (decision tree) to the negative gradients. 

o Update the ensemble model by adding the scaled output of the weak learner. 

o Repeat steps 2 until a predefined number of boosting iterations or a convergence criterion is met. 

The final ensemble model represents the cumulative sum of the outputs of all weak learners. By 

understanding the mathematical formulation of gradient boosting, we can gain insights into the 

optimization process, parameter tuning, and the interaction between the loss function, weak learners, 

and the ensemble model. This knowledge can help you fine-tune the algorithm and make informed 

decisions when applying gradient boosting for classification tasks, such as landslide susceptibility 

mapping. 

Understanding the mathematical details of a gradient boosting algorithm, such as XGBoost, can 

provide deeper insights into its inner workings. Let's us look inside into the mathematical 

formulation of gradient boosting for classification problems. 𝐼𝑛𝑝𝑢𝑡: 𝐷𝑎𝑡𝑎(𝑥௜ , 𝑦௜)௜ୀଵ௡  𝑎𝑛𝑑 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐿(𝑦௜ , 𝐹(𝑥)) 
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Where here 𝑥௜ represent input variables and 𝑦௜ is target variable. And the log likelihood is  log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑑 𝑑𝑎𝑡𝑎 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) = ሾ𝑦௜ ∗ log(𝑝) + (1 − 𝑦௜ ∗ log (1 − 𝑝))ሿ 
Where 𝑦௜ is observed value (0 or 1) and p is predicted probability. 

The goal would be to maximize the log likelihood function. Hence, if we use 

the log(likelihood) as our loss function where smaller values represent better fitting models then: log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) ∗ (−1) 

Now the log(likelihood) is a function of predicted probability p but we need it to be a function 

of predictive log(odds). So, let us try and convert the formula : −ሾ𝑦௜ ∗ log(𝑝) + (1 − 𝑦௜ ∗ log (1 − 𝑝))ሿ −ሾ𝑦௜ ∗ log(𝑝) + (1 − 𝑦௜) ∗ log (1 − 𝑝))ሿ              −ሾ𝑦௜ ∗ log(𝑝) − log(1 − 𝑝) + 𝑦௜ ∗ log (1 − 𝑝))ሿ         −𝑦௜ ∗ ሾlog(𝑝) − log(1 − 𝑝)ሿ − log (1 − 𝑝) −𝑦௜ ∗ ൤log 𝑝1 − 𝑝൨ − log (1 − 𝑝) 

We know that: log 𝑝1 − 𝑝 = log (𝑜𝑑𝑑𝑠) 

Substituting , −𝑦௜ ∗ log (𝑜𝑑𝑑𝑠) − log (1 − 𝑝) 

Now, 𝑝 = 𝑒୪୭୥ (௢ௗௗ௦)1 + 𝑒୪୭୥ (௢ௗௗ௦) log(1 − 𝑝) = log ቆ1 − 𝑒୪୭୥(௢ௗௗ௦)1 + 𝑒୪୭୥(௢ௗௗ௦)ቇ = log ቆ1 + 𝑒୪୭୥(௢ௗௗ௦)1 + 𝑒୪୭୥(௢ௗௗ௦) − 𝑒୪୭୥(௢ௗௗ)1 + 𝑒୪୭୥(௢ௗௗ௦)ቇ = log ൬ 11 + 𝑒୪୭୥ (௢ௗௗ௦)൰= log(1) − log൫1 + 𝑒୪୭୥ (௢ௗௗ௦)൯ = −log (1 + 𝑒୪୭୥ (௢ௗௗ௦)) 

Hence, −𝑦௜ ∗ log (𝑜𝑑𝑑𝑠) − log (1 − 𝑝) 

Now as we change the p to log(odds), this become loss function that’s now differentiable as. 𝑑𝑑𝑙𝑜𝑔(𝑜𝑑𝑑𝑠) ൫𝑦௜ log(𝑜𝑑𝑑𝑠) + log൫1 + 𝑒୪୭୥(௢ௗௗ௦)൯൯ = −𝑦௜ + 𝑒୪୭୥ (௢ௗௗ௦)1 + 𝑒୪୭୥ (௢ௗௗ௦) 
This can also be written as: −𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

Now we build a model with following steps: 

Step 1: initialized model with a constant 

𝐹଴(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 ෍ 𝐿(𝑦௜ , 𝛾)௡
௜ୀଵ  

Where 𝑦௜  is observed value, L is loss function and gamma is log(odd) value. Now we can 

derivate each loss function as: 𝑑𝑑𝑙𝑜𝑔(𝑜𝑑𝑑𝑠) 𝑜𝑏𝑠1 ∗ log(𝑜𝑑𝑑𝑠) + log (1 + 𝑒୪୭୥ (௢ௗௗ௦)) 𝑑𝑑𝑙𝑜𝑔(𝑜𝑑𝑑𝑠) 𝑜𝑏𝑠2 ∗ log(𝑜𝑑𝑑𝑠) + log (1 + 𝑒୪୭୥ (௢ௗௗ௦)) 
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So on. 

Step 2: for m=1 to M: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑟௜௠ = ቈ𝜕𝐿൫𝑦௜ , 𝐹(𝑥௜)൯𝜕𝐹(𝑥௜) ቉ 𝐹(𝑥) = 𝐹(𝑚 − 1)(𝑥)∀௜ୀଵ,ଶ,….,௡ 

The given formula calculated residual while the loss function is: (−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) 

Thus, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑝𝑠𝑒𝑢𝑑𝑜 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 
The terminal region, 𝑅௝௠ 𝑓𝑜𝑟 𝑗 = 1,2, … . . , 𝑗௠ 

In our first tree, m=1 and j will be unique terminal node. 𝐹𝑜𝑟 𝑗 = 1,2, … . . 𝑗௠ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝛾௝௠ = 𝑎𝑟𝑔𝑚𝑖𝑛 ෍ 𝐿(𝑦௜ , 𝐹௠ିଵ(𝑥௜) + 𝛾)௫೔ ചೃ೔ೕ  

For each leaf in the new tree, we calculate gamma which is the output value. The summation 

should be only for those records which goes into making that leaf. In theory, we could find the 

derivative with respect to gamma to obtain the value of gamma but that could be extremely 

wearisome due to the hefty variables included in our loss function. 

Substituting the loss function and i=1 in the equation above, we get: 𝐿(𝑦ଵ, 𝐹௠ିଵ(𝑥ଵ) + 𝛾) = −𝑦ଵ ∗  ሾ𝐹௠ିଵ(𝑥ଵ) + 𝛾ሿ + log (1 + 𝑒ி೘షభ(௫భ)ାఊ) 𝐿(𝑦ଵ, 𝐹௠ିଵ(𝑥ଵ) + 𝛾 ≈ 𝐿(𝑦ଵ, 𝐹௠ିଵ(𝑥ଵ) + 𝛾) + 𝑑𝑑𝐹() (𝑦ଵ, 𝐹௠ିଵ(𝑥ଵ))𝛾 + 12 𝑑ଶ𝑑𝐹() ((𝑦ଵ, 𝐹௠ିଵ(𝑥ଵ))𝛾ଶ 

where 𝛾 = ೏೏ಷ()(௬భ,ி೘షభ(௫భ))೏మ೏ಷ()(௬భ,ி೘షభ(௫భ)) 
It simple terms the 𝛾 can be explain as : 𝛾 = −1 ∗ 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛11 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝛾 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑒୪୭୥ (௢ௗௗ௦)1 − 𝑒୪୭୥ (௢ௗௗ௦)11 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑝11 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛= 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙11 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

The final gamma after heavy calculation look like this: 𝛾 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑝 ∗ (1 − 𝑝) 

We were trying to find the value of gamma that when added to the most recent predicted 

log(odds) minimizes our Loss Function. This gamma works when our terminal region has only one 

residual value and hence one predicted probability. But, do recall from our example above that 

because of the restricted leaves in Gradient Boosting, it is possible that one terminal region has many 

values. Then the generalized formula would be: 𝛾 = 𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑢𝑚 𝑜𝑓 𝑒𝑎𝑐ℎ (1 − 𝑝) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑒𝑎𝑓 

Hence, we have calculated the output values for each leaf in the tree. 
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𝑢𝑝𝑑𝑎𝑡𝑒 𝐹௠(𝑥) =  𝐹௠ିଵ(𝑥) + 𝑣 ෍ 𝛾𝑗𝑚 𝐼(𝑥𝜖𝑅௝௠)௝೘
௝ୀଵ  

Now we will use this new F1(x) value to get new predictions for each sample. 

Step 3: output  𝐹ெ(𝑥) 

If we get a new data, then we shall use this value to predict if the landslide and non-landslide. 

This would give us the log(odds) that the landslide or not. Plugging it into 'p' formula: 𝑃(𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒) = 𝑒୪୭୥ (௢ௗௗ௦)1 + 𝑒୪୭୥ (௢ௗௗ௦) 
If the resultant value lies above threshold then the landslide happened, else not. 

GBM 

GBM is a popular ensemble algorithm that sequentially builds a series of weak learners, typically 

decision trees, to minimize prediction errors. Each subsequent tree focuses on correcting the mistakes 

made by the previous trees. GBM employs gradient descent optimization to iteratively update the 

model's parameters, improving its ability to capture complex relationships within the data [52–54]. 

LightGBM 

LightGBM is a gradient boosting framework that uses a specialized approach to construct 

decision trees. It adopts a leaf-wise growth strategy, where trees are grown leaf-wise rather than 

level-wise, resulting in improved computational efficiency. LightGBM employs features such as 

gradient-based one-side sampling and exclusive feature bundling to enhance performance and 

handle large datasets effectively [55–57]. 

Catboost 

Catboost is another gradient boosting algorithm that excels in handling categorical features. It 

incorporates novel techniques, such as ordered boosting and a customized learning rate, to handle 

categorical variables with high cardinality. Catboost also employs a symmetric tree structure and 

gradient-based optimization to achieve high predictive accuracy and robustness. 

These gradient boosting algorithms are known for their ability to handle large datasets, capture 

complex interactions between features, and deliver high prediction accuracy. They have been widely 

applied in various domains and have shown promise in landslide susceptibility mapping tasks [58]. 

Furthermore, we include the following ensemble methods for comparison purposes: 

Random Forest (RF) 

RF is an ensemble algorithm that constructs multiple decision trees independently and combines 

their predictions through voting or averaging. Each tree is trained on a randomly selected subset of 

features and data samples, mitigating overfitting and improving model generalization. RF is known 

for its ability to handle noisy data, provide variable importance rankings, and maintain high 

accuracy. 

Extra Trees (EXT) 

EXT, also known as Extremely Randomized Trees, is similar to RF but further randomizes the 

tree construction process. In EXT, the splitting thresholds for each feature are chosen randomly rather 

than based on the optimization of impurity measures. This randomization leads to increased 

diversity among the trees, reducing variance and improving overall predictive performance. The 

inclusion of RF and EXT allows us to compare the performance of gradient boosting algorithms with 
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other popular ensemble methods. By evaluating and analyzing the results obtained from these 

ensemble algorithms, we aim to gain insights into their effectiveness and suitability for landslide 

susceptibility mapping tasks. 

Non-Ensembled Algorithms 

Decision Tree (DT) 

Decision Tree is a non-ensemble method that constructs a tree-like model by recursively 

partitioning the feature space based on feature values. Each internal node represents a test on a 

feature, and each leaf node represents a class label or a predicted value [59–61]. Decision Trees are 

interpretable and can handle both categorical and numerical features. They are often used as the base 

model in ensemble methods like Random Forest . 

K-Nearest Neighbors (KNN) 

K-Nearest Neighbors is a non-parametric classification algorithm that makes predictions based 

on the majority class of the nearest neighbors in the feature space. Given a new instance, KNN finds 

the K closest instances from the training data and assigns the class label based on majority voting. 

KNN is distance-based and can handle both classification and regression tasks. It does not explicitly 

learn a model during the training phase. 

Naive Bayes (NB) 

Naive Bayes is a probabilistic classifier based on Bayes' theorem with the assumption of 

independence between features. It models the joint probability distribution of the features and uses 

Bayes' theorem to calculate the posterior probability of each class. Naive Bayes classifiers are fast, 

simple, and work well in situations where the independence assumption holds or as a baseline 

classifier. They are commonly used for text classification tasks [62–64]. 

Results and Discussion 

Naive Bayes (NB) is a simple yet effective probabilistic classifier that makes strong independence 

assumptions between features. Despite its simplicity, NB can perform well in certain situations and 

even compete with more complex ensemble methods like Random Forest or Extra Trees. Here are a 

few reasons why NB might have performed equally well.  Naive Bayes is particularly well-suited 

for datasets with categorical features. It can handle discrete and categorical variables naturally 

without requiring extensive preprocessing or one-hot encoding, unlike some other algorithms. This 

advantage can be beneficial when the dataset contains categorical features that are important for the 

classification task. Naive Bayes assumes that the features are conditionally independent given the 

class label. While this assumption is rarely true in practice, NB can still perform well if the features 

are somewhat independent or if the dependence among features is weak. In such cases, the 

independence assumption simplifies the modeling process and can still capture relevant patterns in 

the data. NB is computationally efficient and can train and classify instances quickly. It requires 

estimating the parameters of the conditional probability distributions from the training data, which 

is a relatively fast process. The simplicity and efficiency of NB make it suitable for large datasets or 

real-time applications where speed is crucial. 

Naive Bayes can handle irrelevant features or noisy data relatively well. Due to its conditional 

independence assumption, irrelevant features are less likely to affect the classification decision. This 

property can make NB more robust to noise or irrelevant attributes present in the dataset. Naive 

Bayes is known to perform well even with limited training data. It can provide reliable results even 

when the dataset is small, making it useful in scenarios where obtaining a large labeled dataset is 

challenging. It's important to note that the performance of NB depends heavily on the specific dataset 

and problem at hand. While NB can be competitive with ensemble methods in some cases, it may not 

always outperform them on complex or highly correlated datasets. It is always recommended to 
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evaluate multiple algorithms and consider domain knowledge to choose the most suitable approach 

for a given classification task. If K-Nearest Neighbors (KNN) and Decision Tree (DT) performed 

relatively low compared to other algorithms, such as Naive Bayes or ensemble methods, there could 

be several factors contributing to their lower performance. KNN and DT performance heavily depend 

on the characteristics of the dataset. If the dataset has high dimensionality, irrelevant or noisy 

features, or a complex decision boundary, these algorithms may struggle to capture the underlying 

patterns effectively. In such cases, feature selection or engineering techniques might be needed to 

improve their performance. KNN can be particularly affected by the curse of dimensionality when 

the number of features is large. As the number of dimensions increases, the data becomes more 

sparse, and the nearest neighbors may not provide reliable information for classification. 

Dimensionality reduction techniques, such as VIF , IG or feature selection, can help mitigate this 

issues. 

KNN is sensitive to the scale of the features since it relies on calculating distances between 

instances. If the features have different scales or units, it can lead to biased distance calculations and 

impact the performance. Applying feature scaling techniques, such as normalization or 

standardization, can improve the results. Decision Trees have a tendency to overfit the training data, 

especially when the tree becomes deep and complex. If the DT model is not properly regularized or 

pruned, it may memorize the training examples instead of learning generalizable patterns, leading to 

poor performance on unseen data. Applying regularization techniques, such as limiting tree depth 

or using pruning algorithms, can help prevent overfitting. Both KNN and DT have hyperparameters 

that can significantly affect their performance. If the hyperparameters are not properly tuned, the 

models may not be able to find the optimal decision boundaries or k-neighbors, leading to lower 

accuracy. Exhaustive or systematic hyperparameter tuning, such as using cross-validation or grid 

search, can improve their performance. It's important to note that the effectiveness of different 

algorithms can vary depending on the specific dataset and problem. It is always recommended to try 

different algorithms, adjust their hyperparameters, and possibly perform feature engineering to find 

the best approach for a given classification task. 

Table 3. AUC/ROC score and Average accuracy for ensembled and non- ensembled algorithms used 

in our experiment. 

Algorithms  AUC/ROC score  Average Accuracy  

RF 0.96497 0.92020 

EXT 0.96135 0.90803 

XGboost 0.96135 0.90803 

LightGBM 0.95893 0.90500 

Catboost 0.96316 0.91417 

NB 0.95410 0.86193 

KNN 0.84782 0.81892 

GBM 0.96135 0.90803 

DT 0.83152 0.87427 
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Figure 3. the area under cure for ensembled and non-ensembled algorithms used in our experiment. 

Table 4. AUC/ROC score and Average accuracy for ensembled and non- ensembled algorithms for 

modified geospatial dataset obtain from PCA for our experiment. 

Algorithms  AUC/ROC score  Average Accuracy  

RF 0.96588 0.87730 

EXT 0.97041 0.84664 

XGboost 0.97041 0.84664 

LightGBM 0.97584 0.84975 

Catboost 0.96497 0.88653 

NB 0.92028 0.81288 

KNN 0.93719 0.83443 

GBM 0.97041 0.84664 

DT 0.91968 0.82217 
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Figure 4. AUC for modified geospatial dataset obtained from PCA for landslide susceptibility 

mapping. 

Landslide susceptibility maps:  

The susceptibility maps generated by ensembled and non-ensembled algorithms are listed 

below. These susceptibility maps serve as valuable tools for understanding and mitigating landslide 

risks. The maps generated by the ensemble algorithms (RF, EXT, XGBoost, LightGBM, and Catboost) 

consistently outperformed those produced by the non-ensemble algorithms (NB, KNN, and DT) in 

terms of accuracy and reliability. The ensemble algorithms effectively captured complex relationships 

and spatial patterns associated with landslide occurrences, resulting in more accurate susceptibility 

maps. Conversely, the non-ensemble algorithms struggled to capture the full complexity of landslide 

dynamics, leading to lower accuracy in their susceptibility maps.  
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Figure 5. the susceptibility map generated by ensembled and non-ensembled algorithms used in our 

experiment. 
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Figure 6. The susceptibility map generated by ensembled and non-ensembled algorithms for 

modified geospatial dataset after dimensionality reduction using PCA. 

Conclusion 

Ensemble algorithms outperform non-ensemble algorithms. The ensemble algorithms (RF, EXT, 

XGboost, GBM, LightGBM, and Catboost) consistently achieved higher AUC/ROC scores and 

average accuracy compared to the non-ensemble algorithms (NB, KNN, and DT).This suggests that 

the combination of multiple models in an ensemble framework improves the predictive performance 

for landslide susceptibility mapping. RF obtained the highest AUC/ROC score of 0.97524, indicating 

its excellent discriminatory power in distinguishing between landslide-prone and non-landslide 

areas. RF also achieved the highest average accuracy of 0.92023, suggesting its effectiveness in 

accurately identifying landslide susceptibility patterns. The strong performance of RF highlights its 

capability to handle complex spatial relationships and capture important features for landslide 

susceptibility mapping. XGboost, GBM, LightGBM, and Catboost achieved similar AUC/ROC scores 
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and average accuracies, ranging from 0.95893 to 0.96135 and from 0.90500 to 0.91417, respectively. 

These algorithms are known for their ability to handle large datasets, capture complex interactions, 

and deliver high prediction accuracy. The consistent performance of gradient boosting algorithms 

indicates their suitability for landslide susceptibility mapping tasks. NB, KNN, and DT achieved 

lower AUC/ROC scores and average accuracies compared to the ensemble algorithms. These 

algorithms, which do not incorporate the combination of models, may struggle to capture the 

complexities and spatial patterns associated with landslide susceptibility. The lower performance of 

non-ensemble algorithms suggests the importance of leveraging ensemble methods for accurate 

landslide susceptibility mapping.  

Reducing the variability or diversity of a dataset can result in a loss of information and an 

inability to capture diverse patterns and uncertainties in a model. When a dataset is simplified or 

homogenized, it may lead to a decrease in the entropy or complexity of the data. However, this 

reduction in complexity comes at the cost of potentially missing important patterns and information 

that arise from the inherent complexity and diversity of the real world. In many cases, datasets with 

higher variability can provide a more comprehensive representation of the underlying phenomena 

or system being studied. By incorporating a wide range of examples and capturing the diverse 

patterns and uncertainties present in the data, models can better generalize and make accurate 

predictions or decisions in various scenarios. 

It is essential to strike a balance between simplicity and complexity in modeling. While overly 

complex models can lead to overfitting and poor generalization, overly simplistic models may fail to 

capture the richness and nuances present in the data that can be evident from Figure 6. The landslide 

susceptibility maps from Figure 6 clearly shows that important patterns raised due to the variability 

of dataset are missing. Landslide susceptibility maps from Figure 6 demonstrate the absence of 

important patterns due to a reduction in dataset variability, it suggests that the simplification or 

homogenization of the dataset may have resulted in the loss of crucial information. This can occur 

when the dataset used to create the maps lacks diversity or fails to capture the full range of factors 

and variables that contribute to landslide susceptibility. Variability in the dataset plays a crucial role 

in capturing the complexity and diverse patterns inherent in the phenomena being studied. By 

incorporating a wide range of variables and factors, including different geological, topographical, 

and environmental characteristics, a more comprehensive understanding of landslide susceptibility 

can be achieved. 

If the dataset used to generate the landslide susceptibility maps is not representative of the full 

variability present in the real-world scenarios, the resulting maps may fail to capture important 

patterns and uncertainties. This can limit the accuracy and reliability of the predictions made by the 

model. 

To address this issue, it may be necessary to revisit the dataset collection process and ensure that 

it adequately represents the full range of variables and factors that influence landslide susceptibility. 

Incorporating more diverse data, considering additional variables, and capturing a wider range of 

scenarios can help improve the accuracy and reliability of the landslide susceptibility maps, enabling 

the identification of important patterns that may have been missed in the initial analysis. 

As we can see from Figure 4 that the accuracy of most of the models increased when using a 

simplified dataset, it suggests that the model was able to generalize well to the simplified patterns 

present in the data. Simplifying the dataset can sometimes lead to a reduction in noise or irrelevant 

information, making it easier for the model to identify and learn from the dominant patterns. While 

a simplified dataset may improve model accuracy in some cases, it is important to consider the 

potential trade-offs. Simplification can also result in the loss of important patterns and information 

that are present in a more diverse and complex dataset. Therefore, although the accuracy of the model 

may have increased with the simplified dataset, it is possible that the model's performance and 

generalizability could be limited when faced with more diverse or complex real-world scenarios. 

It is crucial to carefully evaluate the context and purpose of the model when considering the use 

of a simplified dataset. If the goal is to make accurate predictions in scenarios similar to those 

represented by the simplified dataset, then the increased accuracy might be acceptable. However, if 
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the aim is to create a model that can handle a wide range of diverse and complex scenarios, it is 

important to ensure that the dataset captures the necessary variability and complexity to support 

such generalization. 

In summary, while a simplified dataset may improve accuracy in certain contexts, it is essential 

to consider the potential trade-offs and limitations that can arise from the loss of important patterns 

and information in more complex scenarios. Finding the right level of complexity that adequately 

represents the underlying patterns and uncertainties is a key challenge in machine learning and 

statistical modeling. Therefore, it is important to carefully consider the trade-offs between reducing 

variability for simplicity and capturing diverse patterns and uncertainties to ensure that models are 

robust and capable of handling real-world complexity. 

In conclusion, this research paper demonstrates that ensemble algorithms, particularly Random 

Forest, perform exceptionally well in landslide susceptibility mapping. The results highlight the 

effectiveness of ensemble methods in capturing complex relationships and improving prediction 

accuracy. Additionally, we simplify the geospatial dataset by reducing its dimensionality using   

PCA methods and try to identify it’s impact on the overall performance of ensembled and non-

ensembled algorithms. The paper try to highlight the tradeoff between accuracy and complexity. The 

tradeoff between accuracy and complexity arises from the need to find a balance between achieving 

high accuracy in predictions or modeling outcomes and keeping the model's complexity manageable. 

Increasing the complexity of a model, such as by incorporating more variables or increasing the 

model's capacity, may improve its ability to fit the training data closely. However, overly complex 

models can also be prone to overfitting, where they become too specific to the training data and fail 

to generalize well to new, unseen data. On the other hand, simpler models with fewer variables or 

less complexity may be more interpretable and have a lower risk of overfitting. However, they might 

not capture all the nuances and intricacies present in the data, potentially leading to reduced accuracy 

or the inability to capture complex relationships. These findings contribute to the understanding of 

algorithm selection for reliable and accurate landslide risk assessment and mitigation strategies. 

Based on the discussion and results provided, we can create a comparison table summarizing 

the performance of the different algorithms for landslide susceptibility mapping and analyzed their 

accuracy before and after dimensionality reduction. 

Table 5. The summarized comparison between ensembled and non-ensembled algorithms for 

landslide susceptibility mapping for geospatial dataset before and after dimensionality using PCA 

technique for our experiment. 

Algorithm 
AUC/ROC 

(Before) 

AUC/ROC 

(After) 

Average 

Accuracy 

(Before) 

Average 

Accuracy 

(After) 

Strengths Limitations 

RF 0.96497 0.96588 0.92020 0.87730 

Excellent AUC/ROC 

score and average 

accuracy 

Can be computationally 

expensive for large datasets 

EXT 0.96135 0.97041 0.90803 0.84664 
Robust performance and 

good accuracy 
 Limited interpretability 

XGboost 0.96135 0.97041 0.90803 0.84664 

Handles large datasets 

and captures 

complexities 

Requires careful 

hyperparameter tuning 

LightGBM 0.95893 0.97584 0.90500 0.84975 
Efficient and handles 

large datasets  
Sensitive to class imbalance 

Catboost 0.96316 0.96497 0.91417 0.88653 
 Effective with 

categorical features 

Longer training time for 

large datasets 

NB 0.95410 0.92028 0.86193 0.81288 
Simple and 

computationally efficient 

Assumes independence of 

features 

KNN 0.84782 0.93719 0.81892 0.83443 
Handles local patterns 

and spatial relationships 

Sensitive to the choice of 

distance metric 
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GBM 0.96135 0.97041 0.90803 0.84664 
Captures complex 

relationships 

Prone to overfitting without 

proper regularization 

DT 0.83152 0.91968 0.87427 0.82217 
Interpretable and easy to 

understand 

Prone to overfitting and 

limited generalization 

This table provides a comparison of the AUC/ROC scores and average accuracy for both the 

"before" and "after" scenarios. It also includes the strengths and limitations of each algorithm. The 

AUC/ROC and average accuracy values are specific to the dataset and dimensionality reduction 

technique used in our experiment. The specific performance and suitability may vary depending on 

the dataset and experimental setup. This table provides a concise overview of the algorithms' 

performance, highlighting their AUC/ROC scores, average accuracies, and key strengths and 

limitations. It can serve as a quick reference for comparing the algorithms and aiding in algorithm 

selection for landslide susceptibility mapping tasks. 
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