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Abstract: In this study, our primary objective was to analyze the tradeoff between accuracy and complexity in
machine learning models, with a specific focus on the impact of reducing complexity and entropy on the
production of landslide susceptibility maps. We aimed to investigate how simplifying the model and reducing
entropy can affect the capture of complex patterns in the susceptibility maps. To achieve this, we conducted a
comprehensive evaluation of various machine learning algorithms for classification tasks. We compared the
performance of these algorithms in terms of accuracy and complexity, considering both "before" and "after"
scenarios of dimensionality reduction using Principal Component Analysis (PCA). Our findings revealed that
reducing complexity and lowering entropy can lead to an increase in model accuracy. However, we also
observed that this reduction in complexity comes at the cost of losing important complex patterns in the
produced landslide susceptibility maps. By simplifying the model and reducing entropy, certain intricate
relationships and uncertain patterns may be overlooked, resulting in a loss of information and potentially
compromising the accuracy of the susceptibility maps. The analysis encompassed a diverse range of machine
learning algorithms, including Random Forest (RF), Extra Trees (EXT), XGboost, LightGBM, Catboost, Naive
Bayes (NB), K-Nearest Neighbors (KNN), Gradient Boosting Machine (GBM), and Decision Trees (DT). Each
algorithm was evaluated for its strengths and limitations, considering the tradeoff between accuracy and
complexity. Before dimensionality reduction, the algorithms demonstrated promising results, with RF
exhibiting excellent AUC/ROC scores and average accuracy. However, computational costs were noted as a
potential drawback for RF, especially when dealing with large datasets. EXT showcased robust performance
and good accuracy, while XGboost demonstrated its ability to handle complex relationships within large
datasets, albeit requiring careful hyperparameter tuning. The efficiency and scalability of LightGBM made it a
suitable choice for large datasets, although it displayed sensitivity to class imbalance. Catboost excelled in
handling categorical features, but longer training times were observed for larger datasets. NB showcased
simplicity and computational efficiency but assumed independence among features. KNN, known for its
capability to capture local patterns and spatial relationships, was found to be sensitive to the choice of distance
metric. GBM, while capturing complex relationships effectively, was prone to overfitting without proper
regularization. DT, with its interpretability and ease of understanding, faced limitations in terms of overfitting
and limited generalization. After dimensionality reduction, certain algorithms exhibited improvements in their
AUC/ROC scores and average accuracy, including RF, EXT, XGboost, and LightGBM. However, for a few
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algorithms, such as NB and DT, a decrease in performance was observed. This study provides valuable insights
into the performance characteristics, strengths, and limitations of various machine learning algorithms in
classification tasks. Researchers and practitioners can utilize these findings to make informed decisions when
selecting algorithms for their specific datasets and requirements. We also aim to identify the potential factors
contributing to the high accuracy rates obtained from these ensembled algorithms and explore possible
shortcomings of non-ensembled algorithms that may result in lower accuracy rates. By conducting a
comprehensive analysis of these algorithms, we seek to provide valuable insights into the benefits and
limitations of ensembled approaches for landslide susceptibility mapping. Our study sheds light on the
challenges faced when balancing accuracy and complexity in machine learning models for landslide
susceptibility mapping. It emphasizes the importance of carefully considering the level of complexity and
entropy reduction in relation to the specific patterns and uncertainties present in the data. By providing insights
into this tradeoff, our research aims to assist researchers and practitioners in making informed decisions
regarding model complexity and entropy reduction, ultimately improving the quality and interpretability of
landslide susceptibility maps.

Keywords: machine learning; accuracy; complexity; entropy; landslide susceptibility mapping;
dimensionality reduction; principal component analysis (PCA)

Introduction

Landslides pose significant threats to human life, infrastructure, and the environment, making
landslide susceptibility mapping a crucial task in assessing and mitigating these risks. Accurate
identification of areas prone to landslides allows for proactive planning and effective implementation
of measures to minimize potential damages. Machine learning algorithms have proven to be valuable
tools in landslide susceptibility mapping due to their ability to analyze complex spatial relationships
and patterns. Ensemble learning, a powerful approach that combines multiple models to make
collective predictions, has gained prominence in various fields of machine learning. In this research
paper, we investigate the effectiveness of ensemble algorithms, with a particular focus on gradient
boosting algorithms such as GBM, LightGBM, and Catboost, in the context of landslide susceptibility
mapping. These algorithms have demonstrated superior performance in diverse applications and are
known for their ability to handle large datasets and capture intricate nonlinear relationships [1-
3].Furthermore, we compare the results of gradient boosting algorithms with other ensemble
methods, specifically Random Forest (RF) and Extra Trees (EXT), which also belong to the ensemble
family. Additionally, we explore the performance of non-ensemble machine learning algorithms,
including Decision Tree (DT), K-Nearest Neighbors (KNN), and Naive Bayes (NB), which serve as
representatives of standalone algorithms from different paradigms.

The concept of entropy is often misunderstood in the scientific community [4,5], and there are
speculations suggesting that reducing entropy automatically reduces the complexity of a model and
improves accuracy. However, this assumption does not hold true in real-world scenarios, particularly
when dealing with complex phenomena like landslides. In fact, when using reduced dimensionality
datasets generated through techniques like PCA, important patterns may be lost, leading to
incomplete maps that fail to capture crucial information obtained from more complex and variable
datasets that is evident from the maps obtained through modified geospatial dataset with low
dimensionality see Figure 6. Therefore, it is imperative to develop advanced methods that can
effectively encompass the uncertainty and complex dynamics inherent in real-life scenarios, such as
landslides. These methods should go beyond simplistic approaches that aim to reduce complexity
and instead focus on accurately representing the complex nature of land sliding. To achieve this, it is
crucial to explore sophisticated techniques that can handle uncertainty and complex effects.
Ensemble modeling, for instance, combines multiple models to account for variability and capture
different aspects of the intricate landslide processes. By leveraging the strengths of various models,
ensemble techniques can address the limitations of individual models and provide more robust and
accurate predictions. Furthermore, incorporating advanced modeling approaches like machine
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learning algorithms, geostatistics, or hybrid models that integrate multiple data sources and consider
spatial dependencies can enhance the accuracy of landslide susceptibility mapping. These
techniques enable us to better understand and simulate the complexities and uncertainties associated
with landslides.

In summary, the misguided notion that reducing entropy automatically improves accuracy by
simplifying models is not applicable to complex phenomena like landslides verified from Figure 6.
Instead, it is crucial to develop advanced methods that can effectively incorporate uncertainty and
complex dynamics into our models. By adopting these sophisticated approaches, we can more
accurately simulate and predict real-life complex scenarios, such as land sliding, ultimately leading
to improved risk assessment and management strategies [4,6-9].

Principal Component Analysis (PCA) is a commonly used method for reducing the
dimensionality of datasets. In our experiment, we employed PCA to reduce the dimensionality of the
geospatial dataset. PCA is a technique that aims to transform a high-dimensional dataset into a lower-
dimensional space while preserving the most significant information. It achieves this by identifying
the principal components, which are orthogonal directions that capture the maximum variance in the
data. By selecting a subset of the principal components, you can effectively reduce the dimensionality
of the dataset. In the context of our study on landslide susceptibility mapping, we use PCA to reduce
the dimensionality of the geospatial dataset to analyze the impact reducing dimensionality by
removing the variable with high variability in order to obtain a simple less complex geospatial dataset
so that we can effective identify the impact of dimensionality reduction on geospatial dataset and
susceptibility maps produce by dataset with reduce dimensionality[10-14].

The primary objective of this study is to evaluate the performance of various ensembled and
non-ensembled algorithms for landslide susceptibility mapping. The study aims to reduce the
entropy of a geospatial dataset and examine the impact of entropy reduction on the accuracy of the
mentioned algorithms. Additionally, the study seeks to gain insights into the factors contributing to
the high accuracy rates observed in ensembled algorithms and identify potential shortcomings of
non-ensembled algorithms that may result in lower accuracy rates. To achieve these goals, a
comprehensive experimental setup is employed. A carefully curated dataset is utilized, consisting of
relevant geospatial and environmental features, which will be used to train and validate the selected
algorithms. The geospatial dataset is modified using Principal Component Analysis (PCA) to reduce
its complexity. The modified dataset obtained from PCA is then used to run both ensembled and
non-ensembled algorithms. Performance metrics are employed to assess and compare the accuracy
of each algorithm's landslide susceptibility predictions before and after dimensionality reduction. By
comparing the performance of the algorithms on the original and reduced datasets, the study aims
to determine the impact of dimensionality reduction on the overall accuracy of susceptibility maps
and the accuracy of the algorithms themselves.

The study intends to provide valuable insights into the reasons behind the high accuracy rates
observed in ensembled algorithms compared to non-ensembled algorithms. It also aims to identify
potential shortcomings of non-ensembled algorithms that may lead to lower accuracy rates. By
analyzing the effect of dimensionality reduction on the accuracy of susceptibility maps and
algorithms, the study aims to highlight the importance of data preprocessing techniques for
improving the performance of landslide susceptibility mapping models. In summary, the study
focuses on assessing the performance of ensembled and non-ensembled algorithms for landslide
susceptibility mapping, analyzing the impact of entropy reduction on accuracy, and evaluating the
effect of dimensionality reduction on both susceptibility maps and algorithm accuracy. The results of
this study can contribute to improving landslide risk assessment and management strategies. The
findings of this research paper contribute to the growing body of knowledge in landslide
susceptibility mapping and provide valuable insights for decision-makers and researchers in the
field. Understanding the strengths and weaknesses of ensembled algorithms compared to non-
ensembled algorithms can guide the selection and implementation of appropriate techniques for
accurate and reliable landslide susceptibility mapping. In this research paper, the we aimed to
compare and analyze the performance of different algorithms for landslide susceptibility mapping.
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The algorithms evaluated in the study include Random Forest (RF), Extra Trees (EXT), XGboost,
LightGBM, Catboost, Naive Bayes (NB), K-Nearest Neighbors (KNN), Gradient Boosting Machine
(GBM), and Decision Tree (DT). The evaluation was based on the AUC/ROC score and average
accuracy as performance metrics. Based on the results presented in the paper, the ensemble
algorithms (RF, EXT, XGboost, LightGBM, Catboost, and GBM) generally achieved higher AUC/ROC
scores and average accuracies compared to the non-ensemble algorithms (NB, KNN, and DT) [15-17]
. This indicates that the ensemble algorithms, which combine multiple models, were more effective
in capturing the complexities of landslide susceptibility mapping. Among the ensemble algorithms,
RF obtained the highest AUC/ROC score of 0.96497, indicating its strong predictive capability. EXT,
XGboost, LightGBM, and Catboost also performed well with AUC/ROC scores ranging from 0.95893
t0 0.96316. These algorithms consistently outperformed the non-ensemble algorithms in terms of both
AUC/ROC score and average accuracy. On the other hand, the non-ensemble algorithms (NB, KNN,
and DT) achieved relatively lower AUC/ROC scores and average accuracies. NB had the highest
AUC/ROC score among the non-ensemble algorithms with 0.95410, followed by KNN with 0.84782,
and DT with 0.83454. These results suggest that the non-ensemble algorithms may struggle to capture
the intricate relationships between the features and landslide susceptibility accurately.

Based on the AUC/ROC scores, the Random Forest algorithm (RF) achieves the highest score of
0.96497, followed closely by CatBoost with a score of 0.96316. These two algorithms outperform the
others in terms of their ability to distinguish between positive and negative classes.

Regarding average accuracy, Random Forest (RF) also achieves the highest accuracy of 0.92020,
followed by CatBoost with an accuracy of 0.91417. These algorithms perform better on average across
the evaluation samples. It's important to note that the performance of an algorithm may vary
depending on the specific task and dataset. Therefore, it's recommended to consider other factors
such as computational efficiency, interpretability, and scalability when selecting an algorithm for a
particular application.

One possible reason why CatBoost performed similarly to Random Forest (RF) could be because
both algorithms are ensemble methods that are designed to handle complex datasets and capture
non-linear relationships. Both CatBoost and Random Forest have the ability to handle categorical
features effectively. CatBoost incorporates a gradient boosting framework specifically designed to
handle categorical variables by using a combination of ordered boosting and symmetric trees.
Random Forest, on the other hand, builds an ensemble of decision trees and can handle categorical
variables through techniques such as one-hot encoding or binary encoding.

Additionally, both algorithms have a high capacity for capturing interactions and non-linear
relationships in the data, which can contribute to their similar performance. They both excel in
handling high-dimensional datasets and are robust to outliers and noise.It's important to note that
while CatBoost and Random Forest achieved similar results in terms of AUC/ROC scores and average
accuracy, they may have different strengths and weaknesses in other aspects such as computational
efficiency, interpretability, or sensitivity to hyperparameters. It would be worthwhile to further
analyze and compare these factors to make a more comprehensive assessment of their performance
for a specific task or dataset.

Ensemble algorithms outperformed non-ensemble algorithms: The ensemble algorithms,
including RF, EXT, XGboost, LightGBM, Catboost, and GBM, consistently achieved higher
AUC/ROC scores and average accuracies compared to the non-ensemble algorithms (NB, KNN, and
DT). This pattern highlights the effectiveness of ensemble methods in improving the accuracy of
landslide susceptibility mapping. RF demonstrated the highest performance: Among the algorithms
evaluated, RF exhibited the highest AUC/ROC score of 0.97524, indicating its superior predictive
capability for landslide susceptibility mapping. This suggests that RF may be particularly suitable for
accurately identifying landslide-prone areas [18-20]. Gradient boosting algorithms performed
consistently well: XGboost, LightGBM, and GBM achieved similar AUC/ROC scores and average
accuracies, indicating their comparable performance in landslide susceptibility mapping. This
suggests that gradient boosting algorithms can be reliable choices for accurate prediction in this
context [21-24]. Non-ensemble algorithms had lower performance. The non-ensemble algorithms,


https://doi.org/10.20944/preprints202307.0529.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 July 2023 do0i:10.20944/preprints202307.0529.v1

5

including NB, KNN, and DT, generally obtained lower AUC/ROC scores and average accuracies

compared to the ensemble algorithms [25-27]. This suggests that standalone algorithms may struggle

to capture the complex relationships and patterns associated with landslide susceptibility effectively.

Overall, the paper demonstrates that ensemble algorithms, particularly RF and gradient boosting

algorithms, are well-suited for landslide susceptibility mapping, providing high accuracy and

reliable predictions before and after dimensionality reduction. The findings highlight the importance
of considering ensemble methods when developing models for landslide risk assessment and
mitigation.

The primary objectives of this research paper are as follows:

1. Evaluate the performance of gradient boosting algorithms, including GBM, LightGBM, and
Catboost, for landslide susceptibility mapping. Analyze the differences in the implementation
and optimization strategies of these gradient boosting algorithms. Assess the accuracy rates and
predictive capabilities of these algorithms in identifying landslide-prone areas before and after
dimensionality reduction of geospatial dataset.

2. Compare the performance of ensemble methods, specifically Random Forest (RF) and Extra Trees
(EXT), with gradient boosting algorithms for landslide susceptibility mapping. Investigate the
strengths and weaknesses of each ensemble method in capturing complex spatial relationships
and patterns related to landslides. Determine the effectiveness of ensemble methods in
improving accuracy compared to standalone gradient boosting algorithms.

3. Evaluate the performance of non-ensembled machine learning algorithms, including Decision
Tree (DT), K-Nearest Neighbors (KNN), and Naive Bayes (NB), for landslide susceptibility
mapping. Assess the accuracy rates and limitations of these non-ensembled algorithms in
capturing the complexities of landslide-prone areas. Identify potential challenges and
shortcomings of non-ensembled algorithms that may lead to lower accuracy rates.

4. Identify the factors contributing to the high accuracy rates obtained from the ensembled
algorithms and explore possible problems with non-ensembled algorithms that might lead to
lower accuracy rates. Investigate the impact of dataset characteristics, feature selection, and
algorithmic approaches on the performance of ensembled and non-ensembled algorithms. Gain
insights into the reasons behind the superior performance of ensembled algorithms and potential
limitations of non-ensembled algorithms.

5. Provide valuable insights and recommendations for selecting appropriate algorithms for accurate
and reliable landslide susceptibility mapping. Compare the strengths and weaknesses of
ensemble algorithms and non-ensemble algorithms in the context of landslide susceptibility
mapping. Discuss the implications of the findings for decision-makers, researchers, and
practitioners involved in landslide risk assessment and mitigation.

6. Provide a balance approach to handle complexity and accuracy together to efficiently represent
the uncertainty in complex phenomena like land sliding.

By achieving these objectives, this research paper aims to contribute to the understanding of the
performance and effectiveness of ensembled and non-ensembled algorithms for landslide
susceptibility mapping. The insights gained from this study can facilitate informed decision-making
and help improve the accuracy and reliability of landslide risk assessment and mitigation strategies.

In the following sections, we discuss the methodology, including the description of the dataset,
the ensembled algorithms employed, and the non-ensembled algorithms selected and describe the
modified geospatial dataset created using PCA with reduce dimensionality. We then present the
experimental setup, the obtained results, and subsequent discussions. Finally, we conclude the paper
by summarizing the key findings, discussing their implications, and obtained results before and after
reduction of complexity of geospatial dataset.

Background

Landslides are natural hazards that result from the downward movement of rocks, soil, and
debris on sloping terrains. They are triggered by various factors, including heavy rainfall, seismic
activity, slope instability, and human-induced activities. Landslides have severe consequences,
leading to loss of life, destruction of infrastructure, and ecological damage. Therefore, accurately
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assessing landslide susceptibility is crucial for effective land management, urban planning, and
disaster risk reduction. Traditionally, landslide susceptibility mapping relied on expert knowledge,
geological surveys, and field observations. However, these methods often lacked objectivity and
struggled to handle the complex relationships and spatial patterns associated with landslides. With
the advancement of machine learning techniques and the availability of geospatial data, automated
approaches have gained prominence in landslide susceptibility mapping. Machine learning
algorithms offer the ability to analyze large volumes of geospatial data and identify complex patterns
and relationships that are difficult to capture using conventional methods. These algorithms learn
from historical landslide occurrences and associated factors to generate predictive models. By
considering various environmental, geological, and topographical features, machine learning models
can accurately assess the susceptibility of an area to landslides [28-31].

Ensemble learning has emerged as a powerful approach in machine learning, particularly for
complex prediction tasks. Ensemble algorithms combine multiple models to make collective
predictions, leveraging the strengths of individual models and reducing the impact of their
weaknesses. This approach has been successful in improving accuracy and robustness in various
domains, including image recognition, natural language processing, and data mining.

Gradient boosting algorithms, such as GBM (Gradient Boosting Machine), LightGBM, and
Catboost, have become popular choices for ensemble learning tasks . These algorithms construct a
series of weak learners (decision trees) sequentially, with each subsequent learner focusing on the
errors made by the previous ones. By iteratively minimizing the prediction errors, gradient boosting
algorithms produce highly accurate models that can effectively handle complex relationships in the
data[21,32,33].In addition to ensemble methods, non-ensembled machine learning algorithms have
also been employed for landslide susceptibility mapping. Decision Tree (DT) is a standalone decision-
based algorithm that constructs a tree-like model, making decisions based on feature values. K-
Nearest Neighbors (KNN) is a distance-based algorithm that classifies samples based on the
proximity to their neighboring instances. Naive Bayes (NB) is a probabilistic classifier that assumes
independence between features. While previous studies have explored the application of both
ensembled and non-ensembled algorithms in landslide susceptibility mapping, a comprehensive
comparison and analysis of their performance and the factors contributing to their accuracy rates are
still needed. This research paper aims to bridge this gap by conducting a systematic investigation of
various ensembled algorithms, including gradient boosting methods, as well as non-ensembled
algorithms for landslide susceptibility mapping. By evaluating their performance and identifying
their strengths and weaknesses, we can provide valuable insights for improving landslide risk
assessment and mitigation strategies.

Entropy is a concept originating from information theory that quantifies the uncertainty or
randomness in a dataset. In the context of machine learning and data analysis, entropy measures the
impurity or disorder of a set of samples with respect to their class labels. In the context of capturing
complex phenomena, entropy plays a crucial role. High entropy indicates a higher degree of
uncertainty or complexity in the dataset. It suggests that the dataset contains diverse patterns,
variations, and uncertain relationships between variables. By capturing and incorporating this
complexity through high entropy, machine learning models can better represent and understand the
underlying intricate relationships and patterns within the data. High entropy enables the model to
capture the nuances and uncertainties inherent in complex phenomena. It allows the model to flexibly
adapt to the diverse patterns present in the data, thereby enhancing its ability to generalize and make
accurate predictions or classifications. By considering the full range of possibilities and variations
reflected in high entropy, the model becomes more robust and capable of handling complex, real-
world scenarios. However, it is important to note that there is a tradeoff between complexity and
model interpretability. Very high entropy or complexity can make it challenging to understand and
interpret the model's decision-making process. Therefore, finding the right balance between
capturing complex patterns through high entropy and maintaining interpretability is a key
consideration in model development and analysis. Thus entropy is important for capturing complex
phenomena as it quantifies the uncertainty and diversity in the dataset. It enables machine learning
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models to adapt to the complex patterns and variations present in the data, improving their ability to
make accurate predictions and classifications. Balancing entropy with model interpretability is
crucial for gaining insights and understanding the underlying relationships within complex systems
[34-37].

Entropy is highly important when it comes to land sliding because landslides are complex
phenomena that involve various factors and uncertainties. Landslides can be influenced by geological
characteristics, topography, soil properties, precipitation patterns, vegetation cover, and human
activities, among other factors. By considering entropy in landslide analysis, we can capture the
diversity and variability present in the dataset, which is crucial for understanding and predicting
landslides. High entropy indicates a higher degree of complexity and uncertainty in the data, which
aligns with the multifaceted nature of landslides. It allows machine learning models to capture the
diverse patterns, interactions, and relationships between different variables involved in landslides.
Including entropy in landslide analysis helps to account for the inherent uncertainties and variations
associated with landslides can be observed by landslide susceptibility maps created with complex
dataset before dimensionality reduction in Figure 5. It enables models to consider different
combinations of factors and their potential influences on landslides. This can lead to more accurate
landslide susceptibility mapping, hazard assessment, and early warning systems. Furthermore,
landslides can exhibit spatial and temporal variations, making it essential to capture the complexity
and uncertainty through entropy. High entropy helps to account for these variations and provides a
more comprehensive understanding of landslides across different regions and time periods. Thus
entropy is of significant importance in land sliding as it enables the consideration of complex
relationships and uncertainties associated with landslides. By incorporating entropy in landslide
analysis, we can improve our understanding, prediction, and management of landslides, ultimately
contributing to effective landslide risk reduction and mitigation strategies [38—40].

Methodology

Obtain a comprehensive dataset consisting of geospatial and environmental features relevant to
landslide susceptibility mapping. Include features such as slope gradient, elevation, land cover,
geological characteristics, distance to road , distance to streams , distance to fault lines and past
landslide occurrences. Ensure the dataset covers a diverse range of geographical locations and
includes both landslide-prone and non-landslide-prone areas. We selected two different groups of
machine learning algorithms ensembled and non-ensembled. And we also examine the effect of
eliminating the principle component with highest variance ratio that is aspect in our case study and
examine its effect on overall accuracy of ensembled and non-ensembled algorithms. For that purpose
we remove the "Aspect” and “Fault” feature from our dataset that capture most of the variability,
creating a modified dataset without this component. Optionally, you can perform any other
necessary preprocessing steps, such as handling missing values, scaling the data, or encoding
categorical variables etc. Split the modified dataset into training and testing sets to evaluate the
performance of the algorithms. Select the ensembled algorithms you want to experiment with, such
as Random Forest, Extra Trees, XGBoost, Gradient Boosting, or other non-ensembled such as such as
Naive Bayes, K-Nearest Neighbors, Decision Tree. Train and evaluate the ensembled and non-
ensembled algorithms using the modified dataset without the "Aspect" feature. Measure the accuracy
and any other relevant evaluation metrics. Based on the results, we can assess the effect of eliminating
the "Aspect" feature on the overall accuracy of the ensembled and non-ensembled algorithms. Draw
conclusions about the importance of the "Aspect" and ““Fault”feature and its contribution to the
accuracy of the algorithms. Consider potential implications, such as improvements in computational
efficiency or changes in the models' interpretability.

The variable with the highest variance ratio represents the feature that contributes the most to
the overall variability in the dataset. Removing it may result in a loss of significant information,
potentially impacting the accuracy of the algorithms. The high variance ratio suggests that the
variable contains valuable information that may be relevant for the prediction task but in this
experiment our main objective is to reduce the dimensionality and complexity of our dataset. PCA
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is a dimensionality reduction technique that aims to capture the most important patterns and
variability in the data using a smaller number of orthogonal principal components. The principal
components are derived from linear combinations of the original features, and each component
represents a different direction in the feature space. The variance ratio associated with each principal
component indicates the proportion of total variance in the dataset that can be explained by that
component. The component with the highest variance ratio captures the most significant variability
in the data.

When we remove the principal component with the highest variance ratio, we are effectively
discarding the information that it represents. This can lead to a reduction in the dimensionality of the
dataset, as one less feature is considered for analysis. Removing a principal component with high
variance ratio implies that it contributes less to the overall variability in the dataset result in reducing
the complexity of the dataset.

However, it's important to note that removing a principal component is a trade-off between
dimensionality reduction and the potential loss of information. The impact on the accuracy of
subsequent analysis or modeling tasks should be carefully evaluated, as some important patterns or
relationships captured by the removed component may be lost but our major aim in this experiment
is find the impact of dimensionality and complexity reduction of geospatial data on accuracy and
performance of ensembled and non-ensembled algorithms.

One of the main reasons for using PCA is to reduce the dimensionality of the dataset. By
eliminating the principal component with the highest variance ratio, you are reducing the
dimensionality by one. This can be beneficial in terms of computational efficiency, memory usage,
and model interpretability. However, it is important to assess the impact on the overall accuracy of
your algorithms.

Ensembled Algorithms:

Select gradient boosting algorithms, including GBM, LightGBM, and Catboost, as the primary
focus of the study. Study and analyze the implementation and optimization strategies specific to each
algorithm. Configure the hyperparameters of each algorithm, such as learning rate, number of trees,
and tree depth, based on best practices and prior research. Include Random Forest (RF) and Extra
Trees (EXT) as representative ensemble methods for comparison.

Non-Ensembled Algorithms:

Select Decision Tree (DT), K-Nearest Neighbors (KNN), and Naive Bayes (NB) as representative
non-ensembled algorithms. Implement and configure these algorithms using appropriate settings
and hyperparameters. Ensure that the decision tree depth, number of neighbors in KNN, and
smoothing parameters in NB are appropriately determined.

Conduct exploratory data analysis to understand the distribution and characteristics of the
dataset. Handle missing values, outliers, and inconsistencies in the dataset through appropriate
preprocessing techniques. Perform feature engineering, such as scaling, normalization, and
transformation, to ensure compatibility and improve algorithm performance. In this research, the
dataset was split into training and validation subsets using a sampling strategy that involved
allocating 70% of the data for training purposes and 30% for testing. Additionally, a 3-fold cross-
validation technique was employed. This approach helps assess the model's performance by training
and evaluating it on different subsets of the data.

Validate the trained models using the validation subset and evaluate their performance using
appropriate metrics such as accuracy, precision, recall, and area under the receiver operating
characteristic curve (AUC-ROC). Compare the performance of ensembled algorithms (gradient
boosting, RF, and EXT) with non-ensembled algorithms (DT, KNN, and NB). Identify the factors
contributing to the high accuracy rates of ensembled algorithms and explore potential challenges
with non-ensembled algorithms. Discuss the implications of the findings, including the strengths and
limitations of each algorithm, in the context of landslide susceptibility mapping. By following this
methodology, the study aims to provide a comprehensive analysis and comparison of ensembled and
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non-ensembled algorithms for landslide susceptibility mapping. The approach ensures a fair
evaluation of each algorithm's performance and facilitates the identification of key factors that
contribute to their accuracy rates.

Dataset Description

The dataset used in this research paper comprises geospatial and environmental features
relevant to landslide susceptibility mapping. The dataset is carefully curated to include a wide range
of factors associated with landslide occurrences and covers diverse geographical locations. The
following are the source and key features included in the dataset.

Table 1. source of dataset.

Data source Input variables Scale/Resolution Source
Sentinel 2 satellite ~ landslide inventory, LCLU,
. 10m
images Road network
SRTM Shuttle
Radar
Slope Topography
Aspect Mission
DEM Stream 30m (USGS) United
Network States
Geological
Survey
Geological
Geological Map  Geology Units and Fault lines 30m Survey of
Pakistan
Landslide Inventory Land
Google Earth Maps Cover/Land Use RoadyNetwork 2-5m
Field Survey GPS Points 1m
Table 2. key features included in the dataset.
Factors Classes Class Percentage % Landslide Percentage % Reclassification
Very Gentle Slope < 5° 17.36 21.11
Gentle Slope 5°-15° 20.87 28.37 Geometrical
Slope (°) Moderately Steep Slope 15°-30° 26.64 37.89 interval
Steep Slope 30°-45° 24.40 10.90 reclassification
Escarpments > 45° 10.71 1.73
Flat (-1) 22.86 7.04
North (0-22) 21.47 7.03
Northeast (22-67) 14.85 5.00
East (67-112) 8.00 11.86
Aspect Southeast (112-157) 5.22 14.3
South (157-202) 2.84 14.40
Southwest (202-247) 6.46 12.41 Remained
West (247-292) 7.19 16.03 unmodified (as
Northwest (292-337) 11.07 11.96 in source data).
Dense Conifer 0.38 12.73
Sparse Conifer 0.25 12.80
Land Broadleaved, Conifer 1.52 10.86
Cover Grasses/Shrubs 25.54 10.3
Agriculture Land 5.78 10.40

Soil/Rocks 56.55 14.51
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Snow/Glacier 8.89 12.03
Water 1.06 16.96
Cretaceous sandstone 13.70 6.38
Devonian-Carboniferous 12.34 5.80
Chalt Group 1.43 8.43
Hunza plutonic unit 4.74 10.74
Paragneisses 11.38 11.34
Yasin group 10.80 10.70
Geology Gilgit complex 5.80 9.58
Trondhjemite 15.65 9.32
Permian massive limestone 6.51 6.61
Permanent ice 12.61 3.51
Quaternary alluvium 0.32 8.65
Triassic massive limestone and dolomite 1.58 7.80
SNOwW 3.08 2.00
0-100 m 19.37 18.52
o 100-200 10.26 21.63
Proximity 200-300 10.78 25.16
to Stream
300-400 13.95 26.12
(meter)
400-500 18.69 6.23
>500 26.92 2.34 )
0-100 m 81.08 25.70 Geometrical
interval
Proximity 100-200 10.34 25.19 reclassification
to Road 200-300 6.72 27.09
(meter) 300-400 1.25 12.02
400-500 0.60 10.00
Proximity 000-1000 m 29.76 27.30
to Fault 2000-3000 36.25 37.40
(meter) >3000 34.15 35.03

These features provide essential information about the terrain, climate, and geological
conditions that contribute to landslide susceptibility. The dataset also includes a binary label
indicating the presence or absence of landslides in each data point. It is worth noting that the dataset
should be representative of the study area and cover a sufficient number of landslide occurrences to
ensure robust model training and evaluation. Additionally, the dataset may undergo preprocessing
steps to handle missing values, outliers, and inconsistencies, ensuring data quality and integrity for
accurate analysis and model performance assessment.

There are several other powerful operations and techniques used in machine learning and data
analysis one of them is principal component analysis (PCA) is a dimensionality reduction technique
used to transform high-dimensional data into a lower-dimensional space while preserving the most
important information. It identifies the directions (principal components) along which the data varies
the most and projects the data onto these components. PCA can help in reducing computational
complexity, removing noise, and visualizing high-dimensional data. The Explained Variance Ratio
indicates the proportion of the total variance in the dataset that is explained by each principal
component. In our case, the explained variance ratio for the eight principal components is presented
in table below.

Principal Component Analysis (PCA) for Landslide conditioning factors used in our experiment.

Components Variance Ratio
Aspect 27.22%
Fault 18.17%
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Geology 13.66%
Land Cover 12.50%
Precipitation 10.57%
Road 9.70%
Slope 4.71%
Streams 3.48%

Principal Components
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Figure 1. The covariance matrix is computed to understand the relationships between the features in

the dataset. It represents how each feature changes with respect to the others.

The transformed data represents the dataset in the reduced-dimensional space. Each principal
component corresponds to a combination of the original features and can be interpreted as new
"synthetic" features. These components capture different patterns or structures in the data. selection
can be based on the explained variance ratio, where a higher ratio implies a better representation of
the original data. PCA is a powerful technique for reducing the dimensionality of data while retaining
the most important information, making it a valuable tool in exploratory data analysis and machine

learning tasks.
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Explained Variance Ratio per Variance
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Figure 2. Variance Ratio indicates the proportion of the total variance in the dataset that is explained
by each principal component.

These mappings indicate the contribution of each original feature to the corresponding principal
component. It helps in interpreting the principal components and understanding the underlying
patterns or structures captured by each component. Aspect explains the most variance in the dataset
(27.22%). This suggests that the "Aspect” feature plays a significant role in the variability of the data.
Similarly, the other features contribute to the variance explained by their respective principal
components. By analyzing the explained variance ratio we can gain insights into the relative
importance of each feature and the patterns present in the data.

Inour case study "Streams" has low variance suggests that it does not vary significantly across
the dataset, and thus it has a limited impact on the overall variability captured by the principal
components. This could be due to several reasons, such as a lack of variation in the data, the presence
of missing values, or the nature of the feature itself.

It's important to note that the variance of a feature and its contribution to the principal
components are relative to the other features in the dataset. A low variance for one feature does not
necessarily imply that the feature is unimportant or irrelevant for the overall analysis. The importance
of a feature should be assessed based on the specific context and the goals of the analysis.

Principal Component Analysis (PCA) can have both positive and negative effects on the overall
accuracy of ensembled and non-ensembled machine learning algorithms. The impact of PCA
depends on various factors such as the dimensionality of the dataset, the amount of variance
explained by the principal components, and the characteristics of the underlying data.

Ensembled algorithms, such as Random Forests or Gradient Boosting, are generally robust to
high-dimensional data. In some cases, using PCA to reduce the dimensionality of the input features
can have a positive impact on the accuracy of ensembled algorithms that can be evident from our
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experiment. By reducing the number of features, PCA can help to alleviate the curse of
dimensionality, mitigate overfitting, and improve the algorithm's generalization performance.
However, it's important to note that the extent of improvement depends on the specific dataset and
the number of principal components retained.

Non-ensembled algorithms, may benefit from PCA in certain scenarios. If the dataset has a high
dimensionality with multicollinearity (correlation between features), PCA can help to remove the
correlated features and reduce the noise in the data. This can lead to improved model interpretability,
reduced computational complexity, and enhanced generalization performance. However, there are
situations where PCA may negatively impact the accuracy of non-ensembled algorithms. If the
dataset has low dimensionality or the majority of the variance is captured by a few principal
components, applying PCA might result in loss of important information. This can lead to a decrease
in accuracy since the reduced feature space may not contain all the discriminative information
required for accurate predictions.

Principal Component Analysis (PCA) can have different impacts on the accuracy and
performance of various ensemble algorithms, including Random Forest (RF), Extra Trees (EXT),
XGBoost, Gradient Boosting Machine (GBM), LightGBM, and CatBoost. We discuss the potential
effects of PCA on each of these algorithms. Random Forest and Extra Trees are ensemble methods
that rely on decision trees. These algorithms are generally robust to high-dimensional data and can
handle multicollinearity to some extent. PCA can be useful in reducing the dimensionality of the
input features, which can help in mitigating the curse of dimensionality and reducing overfitting. By
selecting a subset of principal components that capture most of the variance, PCA can simplify the
decision-making process for individual trees and improve the overall model performance that can be
proven from our results where RF score highest accuracy rate. GBM is another ensemble algorithm
that sequentially adds weak learners (decision trees) to improve model performance. PCA can be
beneficial for GBM in cases where the dataset has a high dimensionality with correlated features. By
reducing the dimensionality and removing collinearity through PCA, GBM can focus on the most
informative features and improve model interpretability. However, it's crucial to find the right
balance by selecting an appropriate number of principal components to retain, as too much
dimensionality reduction can lead to loss of important information.

LightGBM and CatBoost are gradient boosting frameworks that offer high-performance
implementations of the gradient boosting algorithm. Similar to XGBoost and GBM, these algorithms
can handle high-dimensional data, and PCA can potentially benefit them in similar ways. PCA can
help in reducing the feature space, improving computational efficiency, and reducing overfitting.
However, as with other ensemble algorithms, it's important to experiment and find the optimal
number of principal components to retain for the best trade-off between dimensionality reduction
and retaining important information.

PCA can have positive effects on ensemble algorithms such as RF, EXT, XGBoost, GBM,
LightGBM, and CatBoost by reducing dimensionality, alleviating overfitting, and improving model
interpretability. However, it's essential to consider the specific characteristics of the dataset,
experiment with different numbers of principal components, and evaluate the impact on the accuracy
and performance of each algorithm.

Naive Bayes is a probabilistic algorithm that assumes independence between features given the
class variable. PCA may not have a significant impact on NB since it does not rely on feature
interactions or correlations. However, if the dataset has a high dimensionality, PCA can help in
reducing the number of features and improving computational efficiency. The impact of PCA on NB
depends on the specific dataset and the level of feature correlation present.

K-Nearest Neighbors is a non-parametric algorithm that relies on the distances between data
points in the feature space. PCA can have mixed effects on KNN. On one hand, PCA can help in
reducing dimensionality and removing noise, making the distance calculations more reliable and
efficient. On the other hand, PCA may also result in the loss of discriminative information if the
reduced feature space does not capture the essential characteristics for nearest neighbor classification.
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It's important to experiment with different numbers of principal components and evaluate the impact
on the accuracy of KNN.

Decision Tree algorithms, such as CART or ID3, build a tree structure by splitting the feature
space based on certain criteria. PCA may have limited impact on DT since decision trees can naturally
handle high-dimensional data and feature interactions. However, PCA can still be beneficial in cases
where the dataset has high dimensionality, multicollinearity, or noise. PCA can simplify the decision-
making process by reducing the feature space and improving model interpretability. It can also help
in reducing overfitting and improving generalization performance by focusing on the most
informative principal components.

In summary, the impact of PCA on the overall accuracy of ensembled and non-ensembled
algorithms is context-dependent. It is recommended to experiment with different settings, including
different numbers of retained principal components, and assess the impact on the performance of the
specific algorithm and dataset at hand. The impact of PCA on Naive Bayes, K-Nearest Neighbors,
and Decision Tree algorithms can vary. While PCA may not have a significant impact on NB, it can
help in reducing dimensionality and improving computational efficiency. For KNN, PCA can have
mixed effects on accuracy, as it can both improve efficiency and potentially lead to the loss of
important information. For DT, PCA can simplify the decision-making process, improve
interpretability, and mitigate overfitting. As always, it's important to experiment and evaluate the
impact of PCA on the specific dataset and algorithm being used.

In our experiment we will eliminate the principle component with highest variance ratio that is
aspect in our case study and examine it’s effect on overall accuracy and performance of ensembled
and non-ensembled algorithms.

Ensembled Algorithms

In this research paper, we focus on the evaluation and analysis of several ensembled algorithms
for landslide susceptibility mapping. Ensemble algorithms combine multiple models to make
collective predictions, harnessing the strengths of individual models to enhance overall performance
[41-44]. The following ensembled algorithms are included in our study

Gradient Boosting Algorithms

XGBoost

XGBoost is a popular ensemble algorithm known for its effectiveness in various machine
learning tasks, including landslide susceptibility mapping. XGBoost is based on the gradient boosting
framework, which sequentially adds weak learners (decision trees) to iteratively improve the model's
predictive performance. It uses gradient descent optimization to minimize the loss function by
updating the model's parameters, focusing on the instances that were misclassified or had high
residuals in the previous iterations. The boosting process allows XGBoost to capture complex
relationships and handle nonlinearities in the data effectively[45-47]. XGBoost is designed to handle
large datasets efficiently and can handle a large number of features and samples. It incorporates
various optimization techniques, such as column block partitioning and parallel computation, to
speed up the training process and utilize the available computing resources effectively. XGBoost
provides an estimate of feature importance, allowing users to identify the most influential features
for landslide susceptibility mapping. The algorithm ranks the features based on their contribution to
the model's performance, providing insights into the relevant factors affecting landslide occurrences.
XGBoost offers several regularization techniques, such as L1 and L2 regularization, to control
overfitting and enhance generalization. By penalizing complex models, these techniques prevent
over-reliance on noisy or irrelevant features, leading to improved model performance. XGBoost
provides a wide range of hyperparameters that can be tuned to optimize the model's performance.
Parameters such as learning rate, tree depth, and subsampling rate can be adjusted to achieve the
desired trade-off between model complexity and performance. XGBoost is known for its scalability
and is widely used in industry applications [48-51]. Once the model is trained, it can be efficiently
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deployed for making predictions on new data, making it suitable for real-time or batch processing
scenarios.

It is important to note that XGBoost's performance can vary depending on the dataset,
hyperparameter tuning, and feature engineering. Therefore, it is recommended to experiment with
different settings and perform cross-validation to obtain the best performance for landslide
susceptibility mapping tasks.

The mathematical details of a gradient boosting algorithm, such as XGBoost, can provide deeper
insights into its inner workings. Mathematical formulation of gradient boosting for classification
problems can be summarized as:

1.  Loss Function:

o Inaclassification problem, a common loss function used in gradient boosting is the softmax loss
or cross-entropy loss.

o The softmax loss is defined as the negative log-likelihood of the true class label, given the
predicted probabilities of each class.

o  The goal of the gradient boosting algorithm is to minimize this loss function iteratively.

Ensemble Model:

Let's denote the training dataset as {(x1, y1), (x2, y2), ..., (xn, yn), where xi represents the input

features and yi represents the true class label of the i-th instance.

o The ensemble model in gradient boosting is represented as a weighted combination of weak
learners (decision trees), denoted as F(x), which aims to approximate the true class probabilities.

3.  Gradient Descent:
At each boosting iteration, the algorithm computes the negative gradient of the loss function
with respect to the current ensemble model's output for each instance.

o  This negative gradient represents the direction in which the loss function decreases the most,
allowing the algorithm to update the model's parameters (weights) to minimize the loss.

4.  Tree Construction:

Decision trees are used as weak learners in gradient boosting.

o At each boosting iteration, a new decision tree is constructed to model the negative gradient of

the loss function.

The decision tree partitions the feature space into regions, assigning class labels based on

majority voting in each leaf node.

Learning Rate:

To control the contribution of each weak learner, a learning rate (1) is introduced.

The learning rate scales the contribution of each weak learner in the ensemble model.

Smaller learning rates reduce the impact of each tree, leading to more conservative updates and

potentially better generalization.

Gradient Boosting Algorithm:

N

00 0 W o o

a

The gradient boosting algorithm proceeds as follows:

Initialize the ensemble model F(x) to a constant value. For each boosting iteration:

Compute the negative gradient of the loss function for each instance.

Fit a weak learner (decision tree) to the negative gradients.

Update the ensemble model by adding the scaled output of the weak learner.

Repeat steps 2 until a predefined number of boosting iterations or a convergence criterion is met.

O O O O

The final ensemble model represents the cumulative sum of the outputs of all weak learners. By
understanding the mathematical formulation of gradient boosting, we can gain insights into the
optimization process, parameter tuning, and the interaction between the loss function, weak learners,
and the ensemble model. This knowledge can help you fine-tune the algorithm and make informed
decisions when applying gradient boosting for classification tasks, such as landslide susceptibility
mapping.

Understanding the mathematical details of a gradient boosting algorithm, such as XGBoost, can
provide deeper insights into its inner workings. Let's us look inside into the mathematical
formulation of gradient boosting for classification problems.

n

Input: Data(x;, y;)i=, and a dif ferential loss function L(y;, F(x))
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Where here x; represent input variables and y; is target variable. And the log likelihood is
log(likelihood of the observerd data given the prediction) = [y; * log(p) + (1 — y; *log (1 — p))]

Where y; is observed value (0 or 1) and p is predicted probability.
The goal would be to maximize the log likelihood function. Hence, if we use
the log(likelihood) as our loss function where smaller values represent better fitting models then:

log(likelihood) * (—1)

Now the log(likelihood) is a function of predicted probability p but we need it to be a function
of predictive log(odds). So, let us try and convert the formula :

—[yi *log(p) + (1 — y; *log (1 — p))]

—[yi *log(p) + (1 — y;) *log (1 — p))]

—[yi *log(p) —log(1 — p) + y; xlog (1 — p))]
—yi * [log(p) —log(1 — p)] —log (1 — p)

—Vi* [log1 fp] —log (1 —-p)
We know that:
log 1 fp = log (odds)
Substituting ,
—y; *log (odds) —log (1 — p)
Now,

olog (odds)
P = T3 ologtodds
elog(odds) 1 + elog(odds) elog(oda)
log(1 —p) = l°g<1 - W) = log (1 T elogodd 14 elog<odds>) =108 (T srogroaa)
=log(1) — log(1 + e'°8(©4d9)) = —|og (1 + e!08 (0dds))

Hence,

—y; * log (odds) —log (1 — p)

Now as we change the p to log(odds), this become loss function that’s now differentiable as.
elog (odds)

log(odds) + log(1 + e'08(°dds))) =

d
dlog(odds) (Yi it 1 + elog (0dds)

This can also be written as:
—observed + predicted

Now we build a model with following steps:

Step 1: initialized model with a constant

n
Fo(x) = argminz L(y.,v)

=1

Where y; is observed value, L is loss function and gamma is log(odd) value. Now we can
derivate each loss function as:

d
- - 1x1 1 1 log (odds)
dlog (0dds) obs1 xlog(odds) + log (1 + e )

log (odds)
dlog (0dds) obs2 *log(odds) +log (1 + e )
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So on.
Step 2: for m=1 to M

oL(yi, F(x))

compute 1y, = [ OF () ]F(x) = F(m — 1) (x)Vi=t2-n

The given formula calculated residual while the loss function is:
(—observed + predicted probability)
Thus,

observed — predicted = pseudo residual

The terminal region,
Rim forj=1.2,....,jm

In our first tree, m=1 and j will be unique terminal node.

For j =1.2,..... )y, compute yj, = argmin Z Ly, Fpe1 () +7)

Xi ERi]'

For each leaf in the new tree, we calculate gamma which is the output value. The summation
should be only for those records which goes into making that leaf. In theory, we could find the
derivative with respect to gamma to obtain the value of gamma but that could be extremely
wearisome due to the hefty variables included in our loss function.

Substituting the loss function and i=1 in the equation above, we get:

L(yy, Fe1 () +¥) = =y1 * [Fruoy(x1) +¥] + log (1 + efm-1&0+7)
2

d 1d
Ly, Fe1 () + v = L(yy, Fpm1 () +¥) + FO 01 Fn-1 (x))y + EF() (1, Fnea (x))y?

%O(YItFm—l(xl))

d2
aroYrFm-1(¥1))

where y =

It simple terms the y can be explain as :

derivative of loss function

V= 72" 11 derivative of loss function
elog (odds)
_ observed — T_oloetedds) observed — p
Y = 11 derivative of loss function 11 derivative of loss function
residual

~ 11 derivative of loss function
The final gamma after heavy calculation look like this:

_ residual
“pr(1-p)

We were trying to find the value of gamma that when added to the most recent predicted
log(odds) minimizes our Loss Function. This gamma works when our terminal region has only one
residual value and hence one predicted probability. But, do recall from our example above that

because of the restricted leaves in Gradient Boosting, it is possible that one terminal region has many
values. Then the generalized formula would be:

14

_ sum of residual
~ sumof each (1 — p) for each sample in the leaf

|4

Hence, we have calculated the output values for each leaf in the tree.
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Jm
update Fp(x) = Fp_1(x) + vz yjm I(x€Rjy,)

j=1
Now we will use this new F1(x) value to get new predictions for each sample.

Step 3: output
Fy (%)
If we get a new data, then we shall use this value to predict if the landslide and non-landslide.
This would give us the log(odds) that the landslide or not. Plugging it into 'p' formula:

elog (odds)

P(landslide) = 1+ olog (odds)

If the resultant value lies above threshold then the landslide happened, else not.

GBM

GBM is a popular ensemble algorithm that sequentially builds a series of weak learners, typically
decision trees, to minimize prediction errors. Each subsequent tree focuses on correcting the mistakes
made by the previous trees. GBM employs gradient descent optimization to iteratively update the
model's parameters, improving its ability to capture complex relationships within the data [52-54].

LightGBM

LightGBM is a gradient boosting framework that uses a specialized approach to construct
decision trees. It adopts a leaf-wise growth strategy, where trees are grown leaf-wise rather than
level-wise, resulting in improved computational efficiency. LightGBM employs features such as
gradient-based one-side sampling and exclusive feature bundling to enhance performance and
handle large datasets effectively [55-57].

Catboost

Catboost is another gradient boosting algorithm that excels in handling categorical features. It
incorporates novel techniques, such as ordered boosting and a customized learning rate, to handle
categorical variables with high cardinality. Catboost also employs a symmetric tree structure and
gradient-based optimization to achieve high predictive accuracy and robustness.

These gradient boosting algorithms are known for their ability to handle large datasets, capture
complex interactions between features, and deliver high prediction accuracy. They have been widely
applied in various domains and have shown promise in landslide susceptibility mapping tasks [58].

Furthermore, we include the following ensemble methods for comparison purposes:

Random Forest (RF)

RF is an ensemble algorithm that constructs multiple decision trees independently and combines
their predictions through voting or averaging. Each tree is trained on a randomly selected subset of
features and data samples, mitigating overfitting and improving model generalization. RF is known
for its ability to handle noisy data, provide variable importance rankings, and maintain high
accuracy.

Extra Trees (EXT)

EXT, also known as Extremely Randomized Trees, is similar to RF but further randomizes the
tree construction process. In EXT, the splitting thresholds for each feature are chosen randomly rather
than based on the optimization of impurity measures. This randomization leads to increased
diversity among the trees, reducing variance and improving overall predictive performance. The
inclusion of RF and EXT allows us to compare the performance of gradient boosting algorithms with
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other popular ensemble methods. By evaluating and analyzing the results obtained from these
ensemble algorithms, we aim to gain insights into their effectiveness and suitability for landslide
susceptibility mapping tasks.

Non-Ensembled Algorithms

Decision Tree (DT)

Decision Tree is a non-ensemble method that constructs a tree-like model by recursively
partitioning the feature space based on feature values. Each internal node represents a test on a
feature, and each leaf node represents a class label or a predicted value [59-61]. Decision Trees are
interpretable and can handle both categorical and numerical features. They are often used as the base
model in ensemble methods like Random Forest .

K-Nearest Neighbors (KNN)

K-Nearest Neighbors is a non-parametric classification algorithm that makes predictions based
on the majority class of the nearest neighbors in the feature space. Given a new instance, KNN finds
the K closest instances from the training data and assigns the class label based on majority voting.
KNN is distance-based and can handle both classification and regression tasks. It does not explicitly
learn a model during the training phase.

Naive Bayes (NB)

Naive Bayes is a probabilistic classifier based on Bayes' theorem with the assumption of
independence between features. It models the joint probability distribution of the features and uses
Bayes' theorem to calculate the posterior probability of each class. Naive Bayes classifiers are fast,
simple, and work well in situations where the independence assumption holds or as a baseline
classifier. They are commonly used for text classification tasks [62-64].

Results and Discussion

Naive Bayes (NB) is a simple yet effective probabilistic classifier that makes strong independence
assumptions between features. Despite its simplicity, NB can perform well in certain situations and
even compete with more complex ensemble methods like Random Forest or Extra Trees. Here are a
few reasons why NB might have performed equally well. Naive Bayes is particularly well-suited
for datasets with categorical features. It can handle discrete and categorical variables naturally
without requiring extensive preprocessing or one-hot encoding, unlike some other algorithms. This
advantage can be beneficial when the dataset contains categorical features that are important for the
classification task. Naive Bayes assumes that the features are conditionally independent given the
class label. While this assumption is rarely true in practice, NB can still perform well if the features
are somewhat independent or if the dependence among features is weak. In such cases, the
independence assumption simplifies the modeling process and can still capture relevant patterns in
the data. NB is computationally efficient and can train and classify instances quickly. It requires
estimating the parameters of the conditional probability distributions from the training data, which
is a relatively fast process. The simplicity and efficiency of NB make it suitable for large datasets or
real-time applications where speed is crucial.

Naive Bayes can handle irrelevant features or noisy data relatively well. Due to its conditional
independence assumption, irrelevant features are less likely to affect the classification decision. This
property can make NB more robust to noise or irrelevant attributes present in the dataset. Naive
Bayes is known to perform well even with limited training data. It can provide reliable results even
when the dataset is small, making it useful in scenarios where obtaining a large labeled dataset is
challenging. It's important to note that the performance of NB depends heavily on the specific dataset
and problem at hand. While NB can be competitive with ensemble methods in some cases, it may not
always outperform them on complex or highly correlated datasets. It is always recommended to
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evaluate multiple algorithms and consider domain knowledge to choose the most suitable approach
for a given classification task. If K-Nearest Neighbors (KNN) and Decision Tree (DT) performed
relatively low compared to other algorithms, such as Naive Bayes or ensemble methods, there could
be several factors contributing to their lower performance. KNN and DT performance heavily depend
on the characteristics of the dataset. If the dataset has high dimensionality, irrelevant or noisy
features, or a complex decision boundary, these algorithms may struggle to capture the underlying
patterns effectively. In such cases, feature selection or engineering techniques might be needed to
improve their performance. KNN can be particularly affected by the curse of dimensionality when
the number of features is large. As the number of dimensions increases, the data becomes more
sparse, and the nearest neighbors may not provide reliable information for classification.
Dimensionality reduction techniques, such as VIF , IG or feature selection, can help mitigate this
issues.

KNN is sensitive to the scale of the features since it relies on calculating distances between
instances. If the features have different scales or units, it can lead to biased distance calculations and
impact the performance. Applying feature scaling techniques, such as normalization or
standardization, can improve the results. Decision Trees have a tendency to overfit the training data,
especially when the tree becomes deep and complex. If the DT model is not properly regularized or
pruned, it may memorize the training examples instead of learning generalizable patterns, leading to
poor performance on unseen data. Applying regularization techniques, such as limiting tree depth
or using pruning algorithms, can help prevent overfitting. Both KNN and DT have hyperparameters
that can significantly affect their performance. If the hyperparameters are not properly tuned, the
models may not be able to find the optimal decision boundaries or k-neighbors, leading to lower
accuracy. Exhaustive or systematic hyperparameter tuning, such as using cross-validation or grid
search, can improve their performance. It's important to note that the effectiveness of different
algorithms can vary depending on the specific dataset and problem. It is always recommended to try
different algorithms, adjust their hyperparameters, and possibly perform feature engineering to find
the best approach for a given classification task.

Table 3. AUC/ROC score and Average accuracy for ensembled and non- ensembled algorithms used
in our experiment.

Algorithms AUC/ROC score Average Accuracy
RF 0.96497 0.92020
EXT 0.96135 0.90803
XGboost 0.96135 0.90803
LightGBM 0.95893 0.90500
Catboost 0.96316 0.91417
NB 0.95410 0.86193
KNN 0.84782 0.81892
GBM 0.96135 0.90803

DT 0.83152 0.87427
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Figure 3. the area under cure for ensembled and non-ensembled algorithms used in our experiment.

Table 4. AUC/ROC score and Average accuracy for ensembled and non- ensembled algorithms for
modified geospatial dataset obtain from PCA for our experiment.

Algorithms AUC/ROC score Average Accuracy
RF 0.96588 0.87730
EXT 0.97041 0.84664
XGboost 0.97041 0.84664
LightGBM 0.97584 0.84975
Catboost 0.96497 0.88653
NB 0.92028 0.81288
KNN 0.93719 0.83443
GBM 0.97041 0.84664

DT 0.91968 0.82217
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Figure 4. AUC for modified geospatial dataset obtained from PCA for landslide susceptibility
mapping.

Landslide susceptibility maps:

The susceptibility maps generated by ensembled and non-ensembled algorithms are listed
below. These susceptibility maps serve as valuable tools for understanding and mitigating landslide
risks. The maps generated by the ensemble algorithms (RF, EXT, XGBoost, LightGBM, and Catboost)
consistently outperformed those produced by the non-ensemble algorithms (NB, KNN, and DT) in
terms of accuracy and reliability. The ensemble algorithms effectively captured complex relationships
and spatial patterns associated with landslide occurrences, resulting in more accurate susceptibility
maps. Conversely, the non-ensemble algorithms struggled to capture the full complexity of landslide
dynamics, leading to lower accuracy in their susceptibility maps.
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Figure 6. The susceptibility map generated by ensembled and non-ensembled algorithms for
modified geospatial dataset after dimensionality reduction using PCA.

Conclusion

Ensemble algorithms outperform non-ensemble algorithms. The ensemble algorithms (RF, EXT,
XGboost, GBM, LightGBM, and Catboost) consistently achieved higher AUC/ROC scores and
average accuracy compared to the non-ensemble algorithms (NB, KNN, and DT).This suggests that
the combination of multiple models in an ensemble framework improves the predictive performance
for landslide susceptibility mapping. RF obtained the highest AUC/ROC score of 0.97524, indicating
its excellent discriminatory power in distinguishing between landslide-prone and non-landslide
areas. RF also achieved the highest average accuracy of 0.92023, suggesting its effectiveness in
accurately identifying landslide susceptibility patterns. The strong performance of RF highlights its
capability to handle complex spatial relationships and capture important features for landslide
susceptibility mapping. XGboost, GBM, LightGBM, and Catboost achieved similar AUC/ROC scores
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and average accuracies, ranging from 0.95893 to 0.96135 and from 0.90500 to 0.91417, respectively.
These algorithms are known for their ability to handle large datasets, capture complex interactions,
and deliver high prediction accuracy. The consistent performance of gradient boosting algorithms
indicates their suitability for landslide susceptibility mapping tasks. NB, KNN, and DT achieved
lower AUC/ROC scores and average accuracies compared to the ensemble algorithms. These
algorithms, which do not incorporate the combination of models, may struggle to capture the
complexities and spatial patterns associated with landslide susceptibility. The lower performance of
non-ensemble algorithms suggests the importance of leveraging ensemble methods for accurate
landslide susceptibility mapping.

Reducing the variability or diversity of a dataset can result in a loss of information and an
inability to capture diverse patterns and uncertainties in a model. When a dataset is simplified or
homogenized, it may lead to a decrease in the entropy or complexity of the data. However, this
reduction in complexity comes at the cost of potentially missing important patterns and information
that arise from the inherent complexity and diversity of the real world. In many cases, datasets with
higher variability can provide a more comprehensive representation of the underlying phenomena
or system being studied. By incorporating a wide range of examples and capturing the diverse
patterns and uncertainties present in the data, models can better generalize and make accurate
predictions or decisions in various scenarios.

It is essential to strike a balance between simplicity and complexity in modeling. While overly
complex models can lead to overfitting and poor generalization, overly simplistic models may fail to
capture the richness and nuances present in the data that can be evident from Figure 6. The landslide
susceptibility maps from Figure 6 clearly shows that important patterns raised due to the variability
of dataset are missing. Landslide susceptibility maps from Figure 6 demonstrate the absence of
important patterns due to a reduction in dataset variability, it suggests that the simplification or
homogenization of the dataset may have resulted in the loss of crucial information. This can occur
when the dataset used to create the maps lacks diversity or fails to capture the full range of factors
and variables that contribute to landslide susceptibility. Variability in the dataset plays a crucial role
in capturing the complexity and diverse patterns inherent in the phenomena being studied. By
incorporating a wide range of variables and factors, including different geological, topographical,
and environmental characteristics, a more comprehensive understanding of landslide susceptibility
can be achieved.

If the dataset used to generate the landslide susceptibility maps is not representative of the full
variability present in the real-world scenarios, the resulting maps may fail to capture important
patterns and uncertainties. This can limit the accuracy and reliability of the predictions made by the
model.

To address this issue, it may be necessary to revisit the dataset collection process and ensure that
it adequately represents the full range of variables and factors that influence landslide susceptibility.
Incorporating more diverse data, considering additional variables, and capturing a wider range of
scenarios can help improve the accuracy and reliability of the landslide susceptibility maps, enabling
the identification of important patterns that may have been missed in the initial analysis.

As we can see from Figure 4 that the accuracy of most of the models increased when using a
simplified dataset, it suggests that the model was able to generalize well to the simplified patterns
present in the data. Simplifying the dataset can sometimes lead to a reduction in noise or irrelevant
information, making it easier for the model to identify and learn from the dominant patterns. While
a simplified dataset may improve model accuracy in some cases, it is important to consider the
potential trade-offs. Simplification can also result in the loss of important patterns and information
that are present in a more diverse and complex dataset. Therefore, although the accuracy of the model
may have increased with the simplified dataset, it is possible that the model's performance and
generalizability could be limited when faced with more diverse or complex real-world scenarios.

It is crucial to carefully evaluate the context and purpose of the model when considering the use
of a simplified dataset. If the goal is to make accurate predictions in scenarios similar to those
represented by the simplified dataset, then the increased accuracy might be acceptable. However, if
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the aim is to create a model that can handle a wide range of diverse and complex scenarios, it is
important to ensure that the dataset captures the necessary variability and complexity to support
such generalization.

In summary, while a simplified dataset may improve accuracy in certain contexts, it is essential
to consider the potential trade-offs and limitations that can arise from the loss of important patterns
and information in more complex scenarios. Finding the right level of complexity that adequately
represents the underlying patterns and uncertainties is a key challenge in machine learning and
statistical modeling. Therefore, it is important to carefully consider the trade-offs between reducing
variability for simplicity and capturing diverse patterns and uncertainties to ensure that models are
robust and capable of handling real-world complexity.

In conclusion, this research paper demonstrates that ensemble algorithms, particularly Random
Forest, perform exceptionally well in landslide susceptibility mapping. The results highlight the
effectiveness of ensemble methods in capturing complex relationships and improving prediction
accuracy. Additionally, we simplify the geospatial dataset by reducing its dimensionality using
PCA methods and try to identify it's impact on the overall performance of ensembled and non-
ensembled algorithms. The paper try to highlight the tradeoff between accuracy and complexity. The
tradeoff between accuracy and complexity arises from the need to find a balance between achieving
high accuracy in predictions or modeling outcomes and keeping the model's complexity manageable.
Increasing the complexity of a model, such as by incorporating more variables or increasing the
model's capacity, may improve its ability to fit the training data closely. However, overly complex
models can also be prone to overfitting, where they become too specific to the training data and fail
to generalize well to new, unseen data. On the other hand, simpler models with fewer variables or
less complexity may be more interpretable and have a lower risk of overfitting. However, they might
not capture all the nuances and intricacies present in the data, potentially leading to reduced accuracy
or the inability to capture complex relationships. These findings contribute to the understanding of
algorithm selection for reliable and accurate landslide risk assessment and mitigation strategies.

Based on the discussion and results provided, we can create a comparison table summarizing
the performance of the different algorithms for landslide susceptibility mapping and analyzed their
accuracy before and after dimensionality reduction.

Table 5. The summarized comparison between ensembled and non-ensembled algorithms for
landslide susceptibility mapping for geospatial dataset before and after dimensionality using PCA
technique for our experiment.

AUC/ROC AUC/ROC Averase  Average

Algorithm (Before) (After) Accuracy  Accuracy Strengths Limitations
(Before) (After)
Excellent AUC/ROC Can be computationall

RF 096497 096588 092020 087730 score and average © comp Y

expensive for large datasets
accuracy
Robust performance and T e
EXT 0.96135 0.97041 0.90803 0.84664 Limited interpretability
good accuracy
Handles large datasets Requires careful
XGboost 0.96135 0.97041 0.90803 0.84664 and captures d .
. hyperparameter tuning
complexities
LightGBM 095893 097584 090500  0gdgrs ~ Lncientandhandles o e o class imbalance
large datasets
Catboost 096316 096497 091417  0.88653 Bifective with Longer training time for
categorical features large datasets
NB 095410 092028 086193  0.81288 Simpleand =~ Assumes independence of
computationally efficient features
KNN 0.84782 0.93719 0.81892 0.83443 Handles local patterns  Sensitive to the choice of

and spatial relationships distance metric
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CGBM 0.96135 0.97041 0.90803 0.84664 Captur?s Cor.nplex Prone to overflttm'g w#hout
relationships proper regularization

Interpretable and easy to  Prone to overfitting and

DT 0.83152 0.91968 0.87427 0.82217 . .2
understand limited generalization

This table provides a comparison of the AUC/ROC scores and average accuracy for both the
"before" and "after" scenarios. It also includes the strengths and limitations of each algorithm. The
AUC/ROC and average accuracy values are specific to the dataset and dimensionality reduction
technique used in our experiment. The specific performance and suitability may vary depending on
the dataset and experimental setup. This table provides a concise overview of the algorithms'
performance, highlighting their AUC/ROC scores, average accuracies, and key strengths and
limitations. It can serve as a quick reference for comparing the algorithms and aiding in algorithm
selection for landslide susceptibility mapping tasks.
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