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Abstract: The intercomparison among different atmospheric monitoring systems is key for instrument
calibration and validation. Common cases involve satellites, radiosonde, radio occultation (e.g.
GNSS-RO) and atmospheric model outputs (e.g. ERADS reanalysis). Since instruments and/or
measures are not perfectly collocated, the miss-collocation uncertainty must be considered in the
related intercomparison uncertainty budgets. We consider temperature and its uncertainty rising
when we interpolate temperature to the ERA5 pressure levels using the same variable at GNSS-RO
levels. It may be observed that in addition to the difference in these pressure levels, ERA5 and
GNSS-RO temperatures have different spatial smoothing and temporal resolutions. In order to
assess the interpolation uncertainty neat of these additional factors, we use as "truth" the GRUAN
processed radiosonde observations which are available at high vertical resolution. In this paper,
we use an interpolation algorithm based on the Kalman filter, able to take into account the data
uncertainty provided by the GRUAN product and to give an estimate of the interpolation uncertainty.
Moreover, using the "true" GRUAN data at ERAS levels, we analyse the distribution of interpolation
errors. It is shown that the interpolation error is not Gaussian distributed, and a scaled Student’s t
distribution with about 4.3 degrees of freedom is appropriate for various altitudes, latitudes, seasons
and times of the day. In general, the interpolation uncertainty metrics have little variations, but due
to the high t-distribution tails, this may entail significant errors in some cases. Generally speaking,
the interpolation uncertainty is larger at the equator, MAE = 0.32 K and smaller at high latitude,
MAE = 0.21 K at —80° latitude. At lower altitudes, it is close to the measurement uncertainty, with a
mean absolute error MAE < 0.2 K below the tropopause. Around 300 hPa, it starts increasing and
reaches about 0.8 K above 100 hPa, except at the equator, where we observed MAE about 1 K.

Keywords: GRUAN data; radiosonde; temperature profiles; collocation uncertainty; Kalman
smoother interpolation; Student’s t distribution; GNSS-RO data; ERA5 reanalysis

1. Introduction

Nowadays, along with atmospheric parameters measured at a fixed point in space, an array
of meteorological quantities (e.g., wind speed and direction, temperature, pressure, humidity,
atmospheric composition, etc.) are acquired as vertical profiles describing the physical properties of a
column of air varying with altitude. This is made possible by major technological advances over the
past few decades regarding atmospheric sensors as well as sensor platforms. In high-resolution (=1 m)
applications, traditional instruments such as tethersondes, radiosondes, and dropsondes are used for
vertical profiling [1]. However, to a certain extent (although at relatively coarse vertical resolution),
these in-situ measurements can be complemented with different remote sensing techniques using
ground-based (e.g., lidars and microwave radiometers) and satellite-born instruments.

Investigating the vertical structure of the atmosphere by satellite instruments dates from the 1970s
[2]. The first publications on intercomparisons of satellite and radiosonde profiles proved the capability
of the new technique [3-6], which has largely compensated for the limitation of coverage over land
and oceans by balloon-born measurements [7]. Most notably, the datasets of temperature, humidity
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and pressure, available through Global Navigation Satellite System Radio Occultations (GNSS-RO)
[8,9] since the early 2000s and serving as the main input for numerical weather predictions (NWPs),
are reliable data sources supporting climate change assessments [10].

Although having a relatively coarse horizontal resolution (~300—400 km), the effective vertical
resolution of GNSS-RO measurements below 15 km altitude is from 100 m to 300 m [11], which is
suitable for resolving relatively small-scale atmospheric variability in vertical dimension [12-14].
In addition, hyperspectral infrared sounders such as the Atmospheric Infrared Sounder (AIRS)
onboard NASA’s Aqua satellite and the Infrared Atmospheric Sounding Interferometers (IASIs) on
the EUMETSAT MetOp satellites have become valuable data sources for a wide range of applications
[15-17]. Although having some known limitations [12,18-22], GNSS-RO, AIRS and IASI measurements
are now assimilated into operational NWP models and different reanalyses, which allow investigating
the state of the atmosphere in a three-dimensional grid of points [10]. Either an operative NWP or
reanalysis, the final product is a gridded representation of a geophysical quantity based on irregularly
spaced observations. For example, ERA5 — assessed as the most reliable reanalysis for climate trend
evaluation — provides hourly fields available at a horizontal resolution of 31 km on 37 pressure levels,
from the surface up to 1 hPa [10,23]. According to the standard atmosphere, the vertical resolution of
ERAS5 is <250 m at the lowest levels up to 1 km at tropopause height.

With the diversity of atmospheric sounding techniques, new challenges come for establishing
reference methods. This, in turn, requires assessing instrumental performance and quantifying
the biases and uncertainties. Such extensive knowledge is derived from laboratory tests and
intercomparisons, the latter being a common practice and a requirement for improving the global
climate observing system [24-26]. An intercomparison aims to determine whether different observing
systems agree within their known limitations [27].

Comparison of atmospheric profiles derived from two or more instruments must consider the
spatial displacement of the measurements. Generally, the instruments included in the analysis are
relatively close to each other but usually not measured at the same point in space and time (not the
case for twin radiosoundings, where different instruments are fixed to the same ascending balloon).
Typically, an assumption is made that within a few hours and some tens of kilometres in horizontal
displacement, the properties of the atmosphere do not vary significantly, allowing for the comparison
of two ground-based soundings within these limits without any horizontal and temporal interpolation
[28]. However, the criteria for comparing ground-based sounding with a satellite-born counterpart
is less strict to increase the number of satellite profiles suitable for co-location, the latter directly
depending on the position of the satellite(s). Then, the horizontal and temporal mismatch limits used
in earlier publications reach up to several hundreds of kilometres and 7 hours, respectively [29-35].

On the other hand, vertical mismatch of levels used in co-located profiles is often addressed
through interpolation of a profile with a higher vertical resolution (e.g., radiosonde) to the pressure
levels of another profile with a lower resolution (e.g., satellite product). For example, the GNSS-RO
observations are defined along a vertical grid (60 levels in the case of GNSS-RO products [29,36]),
which does not coincide with the irregular grid of the in-situ profiles (several thousand in the case
of raw radiosonde data). Therefore, the co-located profiles of radiosonde are usually interpolated to
the vertical levels of the GNSS-RO. Similar interpolation is inevitable while comparing instruments
with NWP models. For example, the IASI temperatures are given at 90 pressure levels (version 4
and 5 temperature profiles) or at 101 pressure levels (version 6 temperature profiles). For comparing
the profiles with ERAS5, the IASI temperature profiles are interpolated to the ERA5 pressure levels
[17]. This step introduces an interpolation uncertainty component that must be considered in the total
co-location uncertainty budget, including instrumental uncertainty and components from horizontal
and temporal mismatch [37,38].

It must be noted that intercomparisons can also be carried out between different numerical
models [39,40] and radiosonde types [41,42], between an instrument and any other type of instruments
suitable for measuring the same parameters in the same atmospheric conditions [43]. In the case
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of intercomparisons including a three-dimensional model, an additional horizontal interpolation of
model data to the locations of the data points from the instrument is applied [17,40].

This article is motivated by the comparison of GNSS-RO temperature with ERA5 outputs. We
notice that both GNSS-RO retrievals and ERA5 model outputs are spatially and temporally smoothed,
as discussed above. Hence, to separate interpolation uncertainty from the other collocation uncertainty
sources, we consider reference measurements at ERA5 levels with high quality and high resolution.
In fact, we use reference measurements given by GRUAN Data Processing (GDP) for Vaisala RS41
radiosonde [44], which are available at both the GNSS-RO and ERAS pressure levels, with, say,a 1s
accuracy.

The paper provides a novel interpolation algorithm based on a state space representation (e.g., [45]),
which has a performance equivalent to linear interpolation but provides an estimate of the interpolation
uncertainty.

The new algorithm and linear interpolation are tested in interpolating the 37 ERAS5 pressure levels
starting from the 60 GNSS-RO levels. We compare the interpolated values with the true ones and
assess the related interpolation uncertainty by latitude, altitude, season and time of the day.

An important by-product is the study of the interpolation error distribution, which is shown to be
non-Gaussian. A scaled Student’s t distribution adapts well to our data. Due to this result, using a
coverage factor k=2 in Immler’s inequality [24] is questioned, and an alternative is provided.

2. Materials and Methods

2.1. Data

The current analysis considers collocated GRUAN-processed radiosonde (RS41-GDP1, [46,47],)
and GNSS-RO measurements from the Metop satellite collected during 2020. The Metop atmospheric
profile data were obtained from the publicly available archive of the Radio Occultation Meteorology
Satellite Application Facility; see the Data Availability Statement below. A horizontal distance of 300
km and a time difference of 3 h are used as collocation criteria. The data were categorized by time of
day based on the solar elevation angle (SEA), which depends on time, latitude, and longitude. The
SEA ranges for "day," "night," and "dusk//dawn" data were 7.5 to 90, —90 to —7.5, and —7.5t0 7.5
degrees, respectively. The season was determined based on the latitude and month to consider the
seasonal differences between the southern and northern hemispheres. The data included in this study
are summarised in Table 1.

Table 1. GRUAN stations and statistics of data used. RO Obs are used for learning, while ERA5 Obs
are used for testing.

Station Latitude Longitude ERA50Obs RO Obs Profiles

Lauder —45.05° 169.68° 9750 14 790 328
Lindenberg 52.21° 14.12° 11 104 16 564 374
Ny-Alesund 78.92° 11.93° 6 002 9040 202
Ross Island —77.85° 166.65° 4378 6777 174
Singapore 1.30° 103.80° 2829 4100 94
Overall 34 063 51271 1172

The data set is seasonally balanced for all stations but Ross Island, which has approximately
one-half in summer and fall of the observations in winter and spring; see Table 2. Considering the
time of the day, some stations are strongly unbalanced with only two or three profiles in dusk/dawn
or night; see Table 3. This will be considered in the subsequent analysis.
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Table 2. Number of profiles of GRUAN stations by season.

Station Spring Summer Autumn Winter
Lauder 91 74 84 79
Lindenberg 107 82 91 94
Ny-Alesund 75 36 30 61
Ross Island 57 66 23 28
Singapore 28 19 28 19
Overall 358 277 256 281

Table 3. Number of profiles of GRUAN stations by time of day.

Station Day Dusk/dawn Night

Lauder 163 3 162
Lindenberg 197 49 128
Ny-Alesund 81 54 67
Ross Island 98 40 36
Singapore 32 60 2

Overall 571 206 395

2.2. Interpolation by State Space models

In this section, we introduce a statistical model based on the well-known class of State Space
models [45] propagating the measurement uncertainty to interpolated points while taking into account
interpolation uncertainty.

Let y; denote the observation of the geophysical quantity of interest, e.g., Temperature [K], at
pressure level p;, i = 1, ..., n where n is the number of observations of the profile under consideration.
We assume a measurement equation error for y; given by

Yi =X & 1)

Here, x; is the "true" state and ¢; is the random measurement error with uncertainty u; = \/Var(g;)
where Var() is the variance operator. For the state x, we assume locally linear dynamics with respect
to pressure, given by

Xip = Xiop+a; X (pi—pi-1) + 1, @)
& = 1+ ®)

where 7, ; and 7, ; are independent innovation processes with zero mean and variance ¢ and o2
respectively. Equation 2 states that apart from the stochastic component 7y, the geophysical state has a
local linear variation with respect to the pressure levels. Equation 3 implies a smooth variation of the
coefficient a.

For any pressure level p* € [p;, p;_1] the optimal estimate of the corresponding state x* is given
by the following conditional expectation

ok

2 =EX"y1,.--,yn) 4)

which is readily computed by the Kalman smoother (KS) algorithm under Gaussian assumptions [rif].
In addition, the uncertainty at p* is given by

uks(2)? = Var(x*|y1, ..., yn) ()

which also is an output of the above-mentioned KS algorithm.
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2.3. Interpolation errors and uncertainty

For each single profile, let us denote by (y;, p;), i = 1,...,n the observations at GNSS-RO levels,
and by (y]’-‘,p]*-‘), i = 1,...,n" the true values at ERAS levels. Let Jr;n1; and §ks, be the linear
and Kalman smoother interpolations at ERA5 levels, respectively, and let e;;nT; and eks ; be the
corresponding interpolation errors, e.g. eLINT,j = JLINT,j — y}‘. In the sequel, we focus on altitudes
below 10 hPa. As a result, we have n* = 31 ERAS levels, and n < 46 GNSS-RO levels, depending on
missing data, the average being n = 44.

"Observed" interpolation uncertainty is computed using root mean square error (RMSE) and
mean absolute error (MAE). Consider a subset of all profiles, e.g. a station or a season, and denote it by
S, with profile identifiers id € S. For methods m = LINT,KS, we have

1 2
RMSEy; s = \/”*HSH Z em,id,j

j<n*ideS

and

1
MAEm,S = m Z | |em,id,j
j<n*,ideS
It is well known that RMSE, being a quadratic metric, is suited for Gaussian errors but is prone to
outliers and high tails. Instead, MAE is a robust metric suitable for outliers resistance and high tails.

2.4. Non-Gaussian errors

In collocation comparisons, two measurements 1 and 1, with uncertainties #; and up, are said
to be in agreement [24] if the error e = mq — my, is small, namely

le| <k x u, (6)

for k = 2. In this formula, u, is the collocation uncertainty. If the uncertainties are uncorrelated and no
collocation mismatch affects the measurements, then 1, = |/u? + u3. It is well known that k = 2(3)
has the interpretation of a statistical test with false rejection probability & 2 5%(0.27%) if e is Gaussian
distributed.

If the error distribution has higher tails than the Gaussian distribution, the interpretation of k
may be different. Considering a scaled Student’s t distribution, with v > 4 degrees of freedom and
scale parameter 1, = \/var(e), it is worth noting that the 97.5% percentile is close to the corresponding
Gaussian percentile, namely 1.96, for any v > 4. Instead, the probability of large errors, related to
k > 3, for the mentioned t distribution is much larger than the Gaussian counterpart, even if the two
measurements come from the same instrument. See some examples in Table 4.

Table 4. k-values of Eq. (6) based on Student’s t distribution for # = 0.05 and 0.0027, and tail
probabilities for various degrees of freedom v compared to the Gaussian case.

v x=005 a=00027 P(ItI>3) P(Itl>4)
4 1.96 468  132E2  4.80E-3

5 1.99 427  117E2  3.59E-3

10 1.99 354  730E-3  1.19E-3
20 1.98 325  490E-3  4.00E-4
300 1.96 3.02 28E-3  1.00E-4

Gaussian 1.96 3 2.70E-3 1.00E-4
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2.5. Inference for the Student’s t distribution

Our case study found that errors have kurtosis, say k(e), well above the Gaussian value of three.
In fact, the KS error distribution, shown in Figures 1 and 2, has the typical behaviour of a large
t-distributed dataset with little degrees of freedom.

KS error distribution
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Figure 1. Frequency distribution of KS errors at ERAS5 levels.
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Figure 2. QQ-plots of KS errors at ERA5 levels. Top panel: scaled Student’s t distribution, bottom
panel: Normal distribution.
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It is interesting to note that the Student’s t distribution may be seen as the compound of the
Gaussian distribution with variance given by an inverse Gamma random variable. This evidence could
bring us to extend the Gaussian State Space model of Section 2.2. Recently, Kalman filters have been
developed using the Student’s t distribution for the measurement error in Equation 1, see, e.g. [48]. In
our case, we have a sampling issue since, apart from the testing case on GRUAN data, we do not have
the availability of measurements on ERAS levels. As a result, the RMSE on ERA5 levels is much larger
than that on GNSS-RO levels.

For this reason, we postpone the full non-Gaussian State Space model to further research. Instead,
in this paper, we use a two-step approach. First, we compute Linear and (Gaussian) KS interpolation.
Second, we fit the errors by a scaled t distribution with degrees of freedom parameter, say v, and
standard error ¢, depending on the data. This approach allows us to better understand the uncertainty
of the data at hand.

In particular, the v > 4 parameter is estimated by the method of moments, say 7 = 4 + k(e)%l’:'
Then, the scale o parameter is estimated by the plug-in maximum likelihood method, say ¢ = 03.
Since the sample sizes are large, we do not mind about the loss in efficiency related to the method of
moments.

3. Results

Using data from Table 1 and methods detailed in the previous section, we computed linear and
KS interpolation and the related errors at ERA5 levels. The first important result is that the errors of
the two methods are equivalent. In fact, the mean difference is quite small, e; — ex = 0.004 K, the
Spearman correlation coefficient is quite large r(er, ex) > 0.95, and RMSE(er, ex) = 0.14 K. Hence in
the sequel, we focus on KS results and omit the subscript K wherever clear.

In this section, we assess the interpolation uncertainty by latitude, altitude, season and time of the
day. In particular, we consider the RMSE, which, for different reasons, may be prone to outliers and
non-Gaussianity. Also, we consider the robust metrics given by MAE and Student’s t standard error, .

3.1. Uncertainty by station

Since the GRUAN stations used are located in various continents and at latitudes spanning from
+78° to —78° an important question is related to the geographical stability of interpolation uncertainty.

Table 5 reports various uncertainty measures by station. As a reference, we give the median of the
measurement uncertainty reported by the GDP and the interpolation uncertainty given by KS. We also
report the RMSE, MAE, Student’s t scale and degrees of freedom parameters for the KS interpolation
errors. The standard errors of these uncertainties measures and t-distribution parameters are very
small, as shown in Table 6.

Table 5. KS uncertainty [K] by station. Column details: MED(u), Median measurement uncertainty;
MED (ugs), Median KS interpolation uncertainty; RMSEs, Root mean square interpolation error at
ERADS levels; MAEgg, Mean absolute interpolation error; &, Maximum t-likelihood scale estimate; 7,
moment estimate of degrees of freedom.

Station MED(u) MED(ugs) RMSExs MAEgs & v

Lauder 0.246 0.384 0.498 0284 0270 4.392
Lindenberg  0.118 0.374 0.456 0257 0243 4352
Ny-Alesund 0216 0.379 0.423 0245 0235 4.421
Ross Island 0.257 0.268 0.341 0211 0209 4526
Singapore 0.247 0.747 0.702 0321 0243 4.334

Overall 0.240 0.369 0.476 0.262 0242  4.307
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Table 6. Standard errors of KS uncertainty [K] by station. Column details: see Table 5.

Standard errors
Station RMSEgs MAEgg lid 1

Lauder 0.004 0.004 0.003 0.105
Lindenberg 0.003 0.004 0.002 0.137
Ny-Alesund 0.004 0.004 0.003 0.081

Ross Island 0.004 0.004  0.003 0.102
Singapore 0.009 0.012 0.005 0.044
Overall 0.002 0.002  0.001 0.037

It may be noticed from the last column of Table 5 that the tail parameter 7 is essentially constant
along the stations. Considering interpolation uncertainty, the tropic station of Singapore has the
highest interpolation uncertainty metrics even if the GDP uncertainty is not. The antarctic station of
Ross Island has the lowest metrics even if the GDP uncertainty is higher. The northern stations have
similar interpolation metrics, even if Lindenberg has a considerably lower GDP uncertainty.

From these figures, it is seen that the interpolation uncertainty is more influenced by atmospheric
dynamics than the measurement uncertainty. It is also interesting to observe the overestimation of the
uncertainty provided by the RMSE due to its sensitivity to large errors. Once the high tails are taken
into account using the t-distribution approach, the maximum likelihood estimate of the uncertainty;,
namely 0, is quite smaller than RMSE and close to the robust metric given by MAE.

3.2. Uncertainty by altitude

Figure 3 depicts the vertical behaviour of interpolation uncertainty assessed by MAE and
compared to the median of measurement uncertainty, #, and KS uncertainty, ugg, as in Equation
(5). Similarly, Figure 4 describes the RMSE behaviour and compares it to the quadratic means of # and
ugs.

It may be noted that both MAE and RMSE interpolation uncertainties are close to the measurement
uncertainty below the tropopause, with MAE < 0.2 K. Instead, around 300 hPa, both show an increase
and an even steeper increase above that, with MAE near 0.8 K above 100 hPa. Additional insight is
provided by Figure 5, which depicts the vertical profile of MAE by station. It is clearly seen that the
equatorial station of Singapore has the larger uncertainty in the upper atmosphere. After excluding
this, the other stations agree with the above uncertainty limit of 0.8 K above 250 hPa. In particular, the
Antarctic station of Ross Island has the smallest interpolation uncertainty in the upper atmosphere.

It is interesting to note that the interpolation uncertainty may be smaller than the measurement
uncertainty. This is consistent with the fact that the temperature profile may be very smooth, and using
neighbouring observations may improve the measurement precision. Comparing the blue and green
lines of Figures 3 and 4, we see that KS and LINT are quite similar, but, at the tropopause, near 300
hPa, KS provides better interpolation.

The KS interpolation uncertainty (ugs) is larger than RMSE and/or MAE below 200 hPa and
smaller above. For operational use of ugg, we suggest the correction given by Equation (15) of [37].
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Interpolation uncertainty at ERA5 levels — MAE
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Figure 3. Robust uncertainty profiles. The blue line is the mean absolute error of the KS interpolation;

the green line is the mean absolute error of the linear interpolation; the red line is the Median of the KS
uncertainty; the black line is the median of GDP measurement uncertainty.
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Figure 4. RMSE uncertainty profiles. The blue line is the root mean square error of the KS interpolation;
the green line is the mean square error of the linear interpolation; the red line is the quadratic mean of
the KS uncertainty; the black line is the quadratic mean of GDP measurement uncertainty.
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MAE by Station
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Figure 5. MAE profile by station. Station colours are explained in the panel’s graphic legend. The blue

curve is the station average.

3.3. Uncertainty by season

After observing the uncertainty sensitivity to latitude in Section 3.1, we test for similar seasonal
effects in this section. Reading Table 7 from right to left and considering the related standard errors
reported in Table 8, we see that the t-distribution parameters v and ¢ are quite close for the different
seasons. The minimum interpolation uncertainty (either RMSE, MAE or o) is observed in summer
with a difference of 0.01—-0.02 K with respect to the overall quantity. Again, we have little uncertainty
variation among seasons.

Table 7. KS uncertainty [K] by season. Column details: see Table 5.

Season Profiles MED(L{) MED(uKs) RMSEKS MAEKS o 1

Spring 358 0.24 0.384 0.486 0.262 0.238 4.292
Summer 277 0.247 0.34 0.459 0.251 0.232  4.268
Autumn 256 0.239 0.357 0.479 0.272 0.258 4.494
Winter 281 0.215 0.404 0477 0.264 0.245 4.267
Overall 1172 0.24 0.369 0.476 0.262 0.242 4.307

Table 8. Standard errors of KS uncertainty [K] by season. Column details: see Table 5.

Standard errors

Season Profiles RMSEgs MAEgs I %

Spring 358 0.003 0.004 0.002 0.064
Summer 277 0.004 0.004 0.003 0.102
Autumn 256 0.004 0.005 0.003  0.07
Winter 281 0.004 0.004 0.003 0.062

Overall 1172 0.002 0.002 0.001 0.037
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3.4. Uncertainty by time of the day

Tables 9 and 10 report the interpolation uncertainty metrics and their standard errors classified
by time of the day for the entire data set and for the Lindenberg data alone. It is seen that during
dusk/dawn, the overall interpolation error distribution has higher tails, with lower degrees of freedom
v and a higher RMSE, exceeding by about 0.03 K the day and night counterparts. This is not the case
for Lindenberg data. To have further insight, Tables 11 and 12 provide MAE and RMSE by station and
time of the day. It is again clear that the variation of uncertainty is led more by geography rather than
by time of the day. Notice that Singapore shows a reduction in the nighttime, but the standard error is
higher due to the small profile number for this case, as mentioned in Section 2.1 and highlighted in
Table 3.

Table 9. KS uncertainty [K] by time of the day for the overall data set and for Lindenberg data. Column
details: see Table 5.

Time of day  Profiles MED(u) MED(ugs) RMSEgs MAEgs log 1
Overall
Day 571 0.252 0.342 0.469 0.259 0.241 4.300
Dusk/dawn 206 0.240 0.432 0.510 0.261 0.228 4.277
Night 395 0.239 0.396 0.467 0266 0.251 4.356
Lindenberg
Day 197 0.153 0.334 0.438 0254 0.252 4.729
Dusk/dawn 49 0.094 0.409 0.436 0.248 0.241 4.678
Night 128 0.081 0.448 0.490 0266 0.243 4.221

Table 10. Standard errors of KS uncertainty [K] by season. Column details: see Table 5.

Standard errors
Time of day  Profiles RMSExs MAEgg fog

<

Overall
Day 571 0.003 0.003  0.002 0.057
Dusk/dawn 206 0.005 0.006  0.003 0.048
Night 395 0.003 0.004  0.002 0.12
Lindenberg
Day 197 0.004 0.005  0.003 0.071
Dusk/dawn 49 0.008 0.009  0.007 0.091
Night 128 0.006 0.007  0.004 0.127

Table 11. MAE and its standard errors of KS uncertainty [K] by station and time of the day. Column
details: see Table 5.

MAEgs Standard errors
Day Dusk/dawn Night Day Dusk/dawn Night
Lauder 0.283 0.282 0.284  0.006 0.036 0.006
Lindenberg  0.254 0.248 0.266  0.005 0.009 0.007
Ny-Alesund  0.257 0.236 0.239  0.007 0.008 0.007
RossIsland  0.202 0.222 0.223  0.005 0.009 0.009

Singapore 0.333 0.316 0.281 0.021 0.014 0.063
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Table 12. RMSE and its standard errors of KS uncertainty [K] by station and time of the day. Column
details: see Table 5.

RMSEkgs Standard errors
Day Dusk/dawn Night Day Dusk/dawn Night
Lauder 0.507 0.444 0.489  0.005 0.033 0.005
Lindenberg  0.438 0.436 0.490  0.004 0.008 0.006
Ny-Alesund  0.444 0.411 0.406  0.006 0.007 0.006
RossIsland  0.337 0.353 0.336  0.005 0.008 0.008
Singapore 0.733 0.690 0.557  0.017 0.011 0.051

4. Discussion and conclusions

The interpolation of temperature at ERAS levels using data on GNSS-RO levels results in error
distributions with tails higher than the Gaussian distribution. The analysis based on GRUAN-processed
radiosonde data shows that, in general, a t-distribution with about v = 4.3 degrees of freedom is
appropriate. We suggest using MAE and/or ¢ to assess such a non-Gaussian uncertainty. Comparing
them to RMSE helps to highlight the high tail impact on uncertainty.

The overall uncertainty of temperature profiles is about 0.25 K for MAE and t-distribution scale
parameter ¢. Instead, it is about 0.5 K for RMSE. Such figures are mainly influenced by latitude and
geography, with higher values in the tropics and smaller ones near the poles. In particular, Ross
Island station at —78° Latitude gives uncertainties which are smaller than Ny-Alesund station at +78°
Latitude. This effect is more evident in the higher atmosphere, above 300 hPa, where MAE increases
up to 0.8 K for most stations except for the equatorial station of Singapore, where a discernible increase
in the degree of interpolation uncertainty within the upper troposphere /lower stratosphere is revealed,
exceeding 1 K. On the opposite, Ross Island has the smallest uncertainty at these altitudes. The findings
regarding temperature uncertainty dependence on latitude are consistent with previous research that
has observed a pronounced change in temperature lapse rate within the specified altitude range in
the tropics [19]. When the lapse rate undergoes rapid changes with altitude, it becomes increasingly
difficult to estimate temperatures accurately through interpolation. In such cases, larger interpolation
errors become inevitable.

It may be noted that the horizontal and vertical variations dominate the temporal sources of
variation considered. Namely, season and time of the day, which can be ignored in this respect.

We considered both linear interpolation and interpolation based on Kalman smoother. The two
methods resulted very close in terms of performance, but KS is slightly better near the tropopause.
In addition, KS provides interpolation uncertainties for individual profiles, which may be useful in
practice.

As a final remark, the KS interpolation uncertainty is often smaller than the measurement
uncertainty. This is due to the smoothness of the temperature profiles, so using neighbouring
information improves the understanding of the temperature state.
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