
Article

Not peer-reviewed version

Minor and Major Deformations.

Equations of Equilibrium of a

Planar Domain with an Angular

Cutout of the Boundary

Lyudmila Frishter 

*

Posted Date: 7 July 2023

doi: 10.20944/preprints202307.0477.v1

Keywords: elastic boundary value problem; finite deformations; temperature deformations; polar coordinate

system; angular cutout in the boundary of a planar domain; relations of deformation orders; equations of

equilibrium

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2753331


 

Article 
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Abstract: Large values and gradients of stresses and deformations, triggering concentrations of 

stresses and deformations, arise in the corner areas of a structure. The action of forced deformations, 

leading to the finite rupture of the contact between the elements of a structure, also triggers the 

concentration of stresses, while the rupture reaches an irregular point, a line on the area boundary. 

The theoretical analysis of the stress-strain state (SSS) of areas with angular cutouts in the boundary 

under the action of discontinuous forced deformations is reduced to the study of singular solutions 

to the homogeneous problem of the elasticity theory that has power-related features. The calculation 

of stress concentration coefficients in the domain of a singular solution to the elastic problem makes 

no sense. It is experimentally proven that the zone, that is close to the vertex of the angular cutout 

in the area boundary, has substantial deformations, rotations, and it corresponds to rising values of 

the first and second derivatives of displacements along the radius in cases of sufficiently small radii 

in the neighbourhood of the irregular point of the boundary. For such areas, it is necessary to 

consider the plane problem of the elasticity theory, taking into account the geometric nonlinearity 

under the action of forced deformations. This will allow analyzing the effect of relations between 

orders of values of deformations, rotations, and forced deformations on the form of the equation of 

equilibrium. The purpose of this work is to analyze the effect of relations of deformation orders, 

rotations, forced deformations on the form of the equilibrium equation in the polar coordinate 

system for a V-shaped area under the action of forced temperature-induced deformations with 

regard for the geometrical non-linearity and physical linearity. 

Keywords: elastic boundary value problem; finite deformations; temperature deformations; polar 

coordinate system; angular cutout in the boundary of a planar domain; relations of deformation 

orders; equations of equilibrium 

 

1. Introduction 

Large values and gradients of stresses and strains, leading to concentrated stresses and 

deformations, arise in the corner zones of a structure. The action of forced deformations leading to 

the finite rupture along the contact between the elements composing the structure, also causes the 

concentration of stresses, given that the rupture reaches an irregular point, a line on the boundary of 

the area. The theoretical analysis of the stress-strain state (SSS) of areas with angular cutouts in the 

boundary under the action of discontinuous forced deformations is reduced to the study of singular 

solutions to the homogeneous problem of the theory of elasticity that has power-related features [1–

14]. Calculation of stress concentration coefficients in the area of the singular solution to the elastic 

problem makes no sense.  

Figure 1 shows interference fringes for a planar model with different angles of cutout in the 

boundary.  

An experimental solution to the elastic problem of forced deformations in the planar domain is 

illustrated by the case of a composite model of a planar domain with the length of 180 mm and the 
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width of 24 mm. The experimental solution is obtained using methods of deformation defrosting and 

photo-elasticity [15–20]. 

Temperature-induced deformations ijTα δ are made in one part of model 2Ω , while the other 

part 1Ω  is not loaded. A spike of temperature deformations along the contact surface of the areas 

reaches irregular point O (0,0) of the boundary, the vertex of the cutout. Different patterns of fringes 

are obtained at different angles of the cutout in the boundary (Figure 1). 

 

Figure 1. Interference fringes for a planar model with cutout angles of 90˚ and 60˚ and with 

temperature-induced deformations in one part of the model. 

It is experimentally shown [15–20] that substantial deformations and rotations are observed in 

the zone close to the top of the angular cutout of the boundary area, which corresponds to increasing 

values of first and second derivatives of displacements along the radius when radii in the 

neighbourhood of the irregular point of the boundary are small enough. For such areas, it is necessary 

to consider the plane problem of the elasticity theory, taking into account geometric nonlinearity 

under the action of forced deformations. 

General methods for solving problems in mechanics of deformable solids based on a solution to 

the nonlinear problem of the elasticity theory were developed in the fundamental works of V. V. 

Novozhilov [21,22], P.A. Lukash [23], and A.I. Lurie [24], and in works [25–29]. Geometric relations, 

containing quadratic terms, are used in the nonlinear elasticity theory. Equilibrium equations are 

formulated as the post-deformation equilibrium of an oblique parallelepiped [21,22,27,28]. 

Physical equations for the geometrically nonlinear problem of the elasticity theory establish the 

relationship between stress and deformation components after deformation, so they must be 

formulated as generalized stresses and nonlinear deformations [21–28]. Therefore, the nonlinear 

problem of the elasticity theory must be formulated taking into account nonlinear geometric relations 

and generalized stresses. 

In geometrically nonlinear expressions of deformations, different relations may be established 

between the orders of linear deformations, displacements, rotation angles, and pre-set forced 

deformations.  

The experimental data, obtained using the photo-elasticity method [15–19], show that areas with 

small deformations and areas with large stress and strain gradients are identified in the area of the 

angular cutout in the boundary. 

The purpose is to analyze the effect of relations of the orders of deformations, rotations, and 

forced deformations on the form of the equilibrium equation in the polar coordinate system for the 

V-shaped area under the action of forced temperature-induced deformations with regard to 

geometric nonlinearity and physical linearity. 

Objectives of the work: 

1) formulate equilibrium equations for the deformed scheme, obtain equilibrium equations in 

generalized stresses, deformations for the planar domain, taking into account geometrical 

nonlinearity and physical linearity. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2023                   doi:10.20944/preprints202307.0477.v1

https://doi.org/10.20944/preprints202307.0477.v1


 3 

 

2) formulate equilibrium equations for the deformed scheme in terms of possible relations of 

orders of linear deformations, shears, angles of rotation, forced deformations. Analyze the effect of 

relations of deformation orders on the form of equilibrium equations. 

2. Materials and Methods 

2.1. Problem Statement 

The problem of the elasticity theory is considered for a planar domain with an irregular point 

on the boundary, or the vertex of an angular cutout of the area. Forced - free temperature 

deformations ijTα δ , where ijδ  is the Kronecker symbol, are provided in the planar domain Ω  

(Figure 1). In the domain 1 2Ω = Ω ∪ Ω , a spike (finite rupture) of forced deformations along the 

contact line of domains 1 2Γ = Ω ∩ Ω , extending to the vertex of the angular cutout of the area 

boundary, can be pre-set. For example, deformation discontinuity is triggered, if one of the 

subdomains 2Ω  of the 1 2Ω = Ω ∪ Ω  domain is subjected to pre-set temperature-induced 

deformations ijTα δ , while the second subdomain 1Ω  is not loaded. Volumetric forces can be pre-

set in the planar domain Ω . Concentrated forces are not considered. A homogeneous elastic body is 

in the 2D deformed state [3,6,29]. Mechanical characteristics include the modulus of elasticity E, 

Poisson's coefficient ν ; they are constant in the Ω  domain. The linear expansion coefficient α  in 

the Ω  domain is constant. Boundary conditions for stresses are homogeneous.  

Let’s consider a polar coordinate system with the pole of the polar system O (0,0) at the vertex 

of the angular cutout of the area boundary. Let the displacement, deformation, and stress functions 

and their derivatives of an appropriate order be continuous everywhere in the domain Ω , except at 

the vertex of the angular cutout of the area boundary. If there is a discontinuity of deformations along 

the contact line of domains 1 2Γ = Ω ∩ Ω , then the continuity conditions for displacements and 

normal stresses along the contact line of domains are fulfilled. The vertex of the angular cutout of the 

boundary is removed, and its punctured neighbourhood in domain Ω  is considered. 

 

θ

O −α

( , )M rθ  

α , E, , F,TvΩ

r

r
σ

θσ

rθτ  

 

Figure 1. 2D V-shaped domain Ω . 

Different relations for the orders of deformation values are considered depending on the zone 

of approximation to the irregular point of the boundary to determine different kinds of the solving 

system for equations of the elastic boundary value problem. 

The objective is to formulate equations of equilibrium in the domain Ω , taking into account 

geometrical nonlinearity and physical linearity. 

2.2. Equilibrium Equations 

A spatial curvilinear orthogonal coordinate system [17,21,22] iα  is considered, i=1,2,3, ik


 are 

unitary vectors directed toward the positive direction of the iα  axes or basis vectors of the domain 

before the deformation. An infinitesimal element (Figure 1) is selected. This element is limited by six 

coordinate planes; before deformation this element is a rectangular parallelepiped with edges 

i i iH k dα


, where iH  are the Lame parameters. After the deformation, the rectangular parallelepiped 
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transforms into an oblique one with edges *(1 )i i i iH E k dα α+


, where iEα  are relative elongations 

along the iα  axes after deformation, and ik


 are basis vectors of the domain after the deformation. 

Equations of equilibrium of all forces acting on the oblique parallelepiped after the deformation 

[21,22,24] have the form: 

       1 2 3

* * *

2 3 3 1 1 2
1 2 3 1 2 3

1 ( ) ( ) ( ) 0n n nH H H H H H F
H H H

σ σ σ
α α α

 ∂ ∂ ∂
+ + + = 

∂ ∂ ∂ 

   
,               (1) 

where * *
ni ni i iS Sσ σ=
 

 are generalized stresses on the edges of the oblique parallelepiped, 

* ,i iS S  are the areas of edges of the parallelepiped after and before deformation, F


 are generalized 

volume forces after deformation. Having formulated the forces on the edges of the parallelepiped 

after the deformation in the initial basis of vectors ik


 before the deformation, equations (1) will 

take the form: 

    

1 1
2 3 11 3 1 12 1 2 31 3 12 2 13

1 2 3 2 3

2 3
3 22 2 33 1 2 3 1

1 1

( ( ) ( ) ( )

0

H H
H H s H H s H H s H s H s

H H
H s H s H H H F

α α α α α

α α

∂ ∂ ∂ ∂ ∂
+ + + + −

∂ ∂ ∂ ∂ ∂

∂ ∂
− − + =

∂ ∂

   ,           (2) 

        

2 2
2 3 12 3 1 22 1 2 32 1 23 3 21

1 2 3 3 1

3 1
1 33 3 11 1 2 3 2

2 2

( ) ( ) ( )

0

H H
H H s H H s H H s H s H s

H H
H s H s H H H F

α α α α α

α α

∂ ∂ ∂ ∂ ∂
+ + + + −

∂ ∂ ∂ ∂ ∂

∂ ∂
− − + =

∂ ∂

  ,            (3) 

    

3 3
2 3 13 3 1 23 1 2 33 3 31 1 32

1 2 3 1 2

1 2
2 11 1 22 1 2 3 3

3 3

( ) ( ) ( )

0

H H
H H s H H s H H s H s H s

H H
H s H s H H H F

α α α α α

α α

∂ ∂ ∂ ∂ ∂
+ + + + −

∂ ∂ ∂ ∂ ∂

∂ ∂
− − + =

∂ ∂

  .               (4) 

Here iF  are projections of the generalized volumetric force on directions , 1,2,3ik i =


. 

In relations (2), (3), (4) expressions ijs  are formulated using generalized stresses *
ijσ , deformation 

parameters ije , rotations iω : 

11 11 11 12 12 2 13 13 2
1 1(1 ) ( ) ( )
2 2

s e e eσ σ ω σ ω∗ ∗ ∗= + + − + +  23 21 13 2 22 23 1 23 33
1 1( ) ( ) (1 )
2 2

s e e eσ ω σ ω σ∗ ∗ ∗= − + + + +  
 

12 11 12 3 12 22 13 23 1
1 1( ) (1 ) ( )
2 2

s e e eσ ω σ σ ω∗ ∗ ∗= + + + + −  31 31 11 32 12 2 33 13 2
1 1(1 ) ( ) ( )
2 2

s e e eσ σ ω σ ω∗ ∗ ∗= + + − + +  
 

13 11 13 2 12 23 1 13 33
1 1( ) ( ) (1 )
2 2

s e e eσ ω σ ω σ∗ ∗ ∗= − + + + +  32 31 12 3 32 22 33 23 1
1 1( ) (1 ) ( )
2 2

s e e eσ ω σ σ ω∗ ∗ ∗= + + + + −  
(5) 

21 21 11 22 12 2 23 13 2
1 1(1 ) ( ) ( )
2 2

s e e eσ σ ω σ ω∗ ∗ ∗= + + − + +  33 31 13 2 32 23 1 33 33
1 1( ) ( ) (1 )
2 2

s e e eσ ω σ ω σ∗ ∗ ∗= − + + + +  
 

22 21 12 3 22 22 23 23 1
1 1( ) (1 ) ( )
2 2

s e e eσ ω σ σ ω∗ ∗ ∗= + + + + −  
  

 
By substituting (5) into equations (2)-(4), one can obtain equations of equilibrium in the 

curvilinear orthogonal coordinate system 1 2 3, ,α α α  with account taken of finite deformations for 

generalized stresses and deformation parameters (5). 

We consider a plane problem of the elasticity theory [3,4,6.29] for the state of plane deformation, 

when the points of the body move in the planes that are perpendicular to the OZ axis: 

            1 1 1 2 2 2 1 2( , ,0), ( , ,0),u u u uα α α α= = 3 1 2( , ,0) 0u α α = .                   (6) 

For the polar coordinate system: 

 1 rα = , 2α ϕ= , 3 zα = .                                              (7) 

Lame parameters are:  

                       1 2 31, , 1H H r H= = =                       (8) 
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Equilibrium equations (2), (3), (4) will be formulated as follows: 

                     11 21 11 22
1

1 0s s s s
F

r r r

∂ ∂ −
+ + + =

∂ ∂ϕ
,                (9) 

                   22 12 12 21
2

1 0s s s s
F

r r r

∂ ∂ +
+ + + =

∂ϕ ∂
,                 (10)  

where relations for generalized stresses (5) in equations (9), (10) will be revised as follows: 

* *
11 11 11 12 12 3

1(1 ) ( )
2

s e eσ σ ω= + + − , * *
22 22 22 21 12 3

1(1 ) ( )
2

s e eσ σ ω= + + + ,              (11) 

      * *
12 11 12 3 12 22

1( ) (1 )
2

s e eσ ω σ= + + + , * *
21 21 11 22 12 3

1(1 ) ( )
2

s e eσ σ ω= + + − .              (12) 

Taking into account (11), (12), equations of equilibrium (9), (10) will formulated as follows: 

      

* * * *
11 11 12 12 3 21 11 22 12 3

* * * *
11 11 12 12 3 22 22 21 12 3 1

1 1 1(1 ) ( ) (1 ) ( )
2 2

1 1 1(1 ) ( ) (1 ) ( ) 0
2 2

e e e e
r r

e e e e F
r

σ σ ω σ σ ω
ϕ

σ σ ω σ σ ω

∂ ∂   
+ + − + + + − +   

∂ ∂   
 

+ + + − − + − + + =  

,                (13) 

            

* * * *
21 12 3 22 22 11 12 3 12 22

* * * *
11 12 3 12 22 21 11 22 12 3 2

1 1 1( ) (1 ) ( ) (1 )
2 2

1 1 1( ) (1 ) (1 ) ( ) 0
2 2

e e e e
r r

e e e e F
r

σ ω σ σ ω σ
ϕ

σ ω σ σ σ ω

∂ ∂   
+ + + + + + + +   

∂ ∂   
 

+ + + + + + + − + =  

,               (14) 

where generalized stresses *
i jσ  are related to stresses i jσ  by the following relations at a point in the 

domain: 
*

*
i j , , 1, 2i

i j

i

S
i j

S
σ σ= = . 

The form of linear equilibrium equations in generalized stresses in the polar coordinate system 

of the form (9), (10) coincides with the form of equilibrium equations for minor deformations: 

                        1
1 0r r r F

r r r

θ θσ τ σ σ

θ

∂ ∂ −
+ + + =

∂ ∂
,         (15) 

                        2
1 2 0r r F
r r r

θθ θ θσ τ τ

θ

∂ ∂
+ + + =

∂ ∂
.           (16) 

Let’s formulate equations of equilibrium (13), (14) in deformations. 

2.3. Deformation Relations 

General deformation relations for the curvilinear orthogonal coordinate system are considered 

in [21,22,24]. Let’s take advantage of nonlinear relations for deformations in the polar coordinate 

system [21,30]. The relative elongation MNE  at an arbitrary point M of domain Ω  is as follows: 

                      
* **

MN

M N MNds ds
E

ds MN

−−
= = ,                 (17) 

where ds is the length of the segment MN before the deformation; *
ds  is the length of the segment 

* *
M N  obtained by moving points M and N after the deformation.    

Let’s consider a homogeneous elastic body in the state of plane deformation, for which [3,17,29] 

is satisfied: 

1 1 2 2 3 3( , ,0), ( , ,0), ( , ,0) 0u u r u u r u u rϕ ϕ ϕ= = = = , 
      33 0ε = , 13 31 0ε ε= = , 23 32 0ε ε= = , 13 31 23 32 330, 0, 0e e e e e= = = = = , 33 0e = ,      (18) 

* * * *
13 31 23 320, 0σ σ σ σ= = = = .       

Deformations in the planar domain Ω  for this unit of elongation (17) will be formulated as 

follows: 

           2 2
11 11 11 12 3

1 1( )
2 2

e e eε ω
 

= + + +  
,  2 2

22 22 22 21 3
1 1( )
2 2

e e eε ω
 

= + + −  
,     (19) 
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                     12 21 12 11 12 3 22 12 3
1 1( ) ( )
2 2

e e e e eε ε ω ω= = + − + + .             (20) 

Here deformation parameters are formulated through displacements 1 2,u u  in the polar 

coordinate system: 

                  1
11

u
e

r

∂
=

∂
,  2

22 1
1 1u

e u
r rϕ

∂
= +

∂
, 2

12 3
1
2

u
e

r
ω

∂
+ =

∂
,           (21) 

          2 1 2 2 1
12 21

1 1u u u u u
e e r

r r r r r rϕ ϕ

∂ ∂ ∂∂  
= = + = − + ∂ ∂ ∂ ∂ 

, 1 2
12 3

1 1
2

u u
e

r r
ω

ϕ

∂
− = −

∂
.      (22) 

Then auxiliary expressions (11), (12) will be reformulated in displacements as follows:  

 * *1 1 2
11 11 12

1(1 ) ( )u u u
s

r r r
σ σ

ϕ

∂ ∂
= + + −

∂ ∂
,  * *2 2

22 21 22 1
u1 1( ) (1 u )u

s
r r r

σ σ
ϕ

∂
= + + +

∂

∂
∂

,          (23) 

            * *2 2
12 11 12 1

u1 1(1 u )u
s

r r r
σ σ

ϕ

∂
= + + +

∂

∂
∂

,  * *1 1 2
21 21 22

1(1 ) ( )u u u
s

r r r
σ σ

ϕ

∂ ∂
= + + −

∂ ∂
.   (24) 

Taking into account (21), (22), deformations in the polar coordinate system will be formulated 

as follows in terms of displacements: 

2 2
1 1 2

11
1
2

u u u

r r r
ε

    ∂ ∂ ∂
 = + +   

∂ ∂ ∂     
, 

                 
2 2

2 1 2 1 1 2
22

u1 1 1 1 ,
2

u u u u u

r r r r r r
ε

ϕ ϕ ϕ

 ∂   
= + + + + −    

∂     

∂ ∂
∂ ∂

       (25) 

                  2 2 1 1 1 2 2 2 1
12

1 1 1 .u u u u u u u u u

r r r r r r r r r
ε

ϕ ϕ ϕ

∂ ∂ ∂ ∂ ∂ ∂   
= − + + − + +   

∂ ∂ ∂ ∂ ∂ ∂   
 

Continuity equations for the elastic problem with finite deformations are provided in the general 

form in [21,22,24]. 

2.4. Physical Relations 

According to [21,22,27,28], it is assumed that the form of relation for generalized stresses and 

deformatioons is the same as in the Hooke's law in terms of minor deformations. Under the action of 

forced deformations - temperature deformations, the Dugamel-Neumann dependence will be 

formulated as follows: 

               * *1
1i j ij ij ijs T

E

ν ν
ε σ δ α δ

ν

+  
= − + 

+ 
,                       (26) 

where 0 * *1
1ij ij ijs

E

ν ν
ε σ δ

ν

+  
= − 

+ 
is the deformation caused by generalized stresses *

i jσ ; 

ij ijTε α δ′ =  are free temperature deformations; E is the modulus of elasticity; ν  is the Poisson's ratio; 
* *

kks σ=  is the sum of normal generalized stresses; α  is the linear expansion coefficient; ijδ  is the 

Kronecker symbol. 

With regard to (26), generalized stresses are formulated in the polar coordinate system as 

follows: 
*
11 112 (2 3 )G TЕσ ε λε µ λ α= + − + ,                            (27)  

*
22 222 (2 3 )G TЕσ ε λε µ λ α= + − + , * *

12 21 12Gσ σ ε= = ,              (28)  

Here 2 2
1

E
G µ

ν
= =

+
, 

(1 2 )(1 )
Eν

λ
ν ν

=
− +

,
12 3

1 2
µ λ

ν
+ =

−
, ijε  are defined as (19), (20), 

11 22ε ε ε= + .  

Let's substitute expressions of stresses (27), (28) into equations of equilibrium (13), (14): 
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( ) ( ) ( )11 12 11 22

11 11 12 12 3 12 11 22 12 3

11 11 12 12 3 12 12 3 22 22

1 1 12 2 2

1 1 1(2 ) ( ) (2 )( )
2 2

1 1 1 1(2 ) ( ) ( ) (2 )
2 2

(

G G G G
r r r r

G e G e G e G e
r r

G e G e G e G e
r r

ε λε ε ε λε ε λε
ϕ

ε λε ε ω ε ε λε ω
ϕ

ε λε ε ω ε ω ε λε

∂ ∂
+ + + + − + +

∂ ∂

∂ ∂   
+ + + − + + + − +   

∂ ∂   
   

+ + + − − + + + +   
   

+ ( )22 11 11

12 3 1

2 3 ) ( ) (2 3 ) (1 )

1 1(2 3 ) ( ) 0
2

TЕ
e e E T e

r r

Е T e F
r

µ λ α
µ λ α

µ λ α ω
ϕ

+ ∂
− − + + −

∂

∂  
− + − + = 

∂  

  ,        (29) 

( ) ( )22 12 12 12 12 3 22 22

11 12 3 12 22 11 12 3 12 22

*
12 11 22 12 3 1

1 2 1 12 ( ) (2 ) )
2

1 1 1(2 )( ) ) (2 )( ) )
2 2

1 1 1(2 )( ) (2 3 )
r 2

G
G G G e G e

r r r r

G e G e G e G e
r r

G e G e TЕe
r

∂ ∂ ∂  
ε + λε + ε + ε + ε + ω + ε + λε + 

∂ϕ ∂ ∂ϕ  
∂    

+ ε + λε + ω + ε + ε + λε + ω + ε   ∂    
 

+ ε + ε + λε − ω − µ + λ α  

( )

2

22 22 12 3 2
1 1(2 3 ) (1 ) (1 ) (2 3 ) ( ) 0

2
E e T e Е T e F

r r

−

∂ ∂  
− µ + λ + α + − µ + λ α + ω + = 

∂ϕ ∂  

.         (30) 

After the transformations, equilibrium equations (29), (30) will be formulated as follows: 

( ) ( ) ( )11 12 11 22

11 11 12 12 3 12 11 22 12 3

11 11 12 12 3 12 12 3 22 22

1 1 12 2 2

1 1 1(2 ) ( ) (2 )( )
2 2

1 1 1 1(2 ) ( ) ( ) (2 )
2 2

(

G G G G
r r r r

G e G e G e G e
r r

G e G e G e G e
r r

ε λε ε ε λε ε λε
ϕ

ε λε ε ω ε ε λε ω
ϕ

ε λε ε ω ε ω ε λε

∂ ∂
+ + + + − + +

∂ ∂

∂ ∂   
+ + + − + + + − +   

∂ ∂   
   

+ + + − − + + + +   
   

+ 11
22 11 11

12 3 12 3 1

2 3 ) ( ) (2 3 ) (2 3 )

1 1 1 1(2 3 ) ( ) ( ) 0
2 2

TЕ T e T
e e E E T e

r r r r

TЕ T e e F
r r

µ λ α
µ λ α µ λ α

µ λ α ω ω
ϕ ϕ

+ ∂ ∂ ∂ 
− − + − + + − 

∂ ∂ ∂ 
 ∂ ∂

− + − + − + = 
∂ ∂ 

 ,          (31) 

( ) ( )22 12 12 12 12 3 22 22

11 12 3 12 22 11 12 3 12 22

*
12 11 22 12 3 1

1 2 1 12 ( ) (2 ) )
2

1 1 1(2 )( ) ) (2 )( ) )
2 2

1 1 1(2 )( ) (2 3 )
r 2

G
G G G e G e

r r r r

G e G e G e G e
r r

G e G e TЕe
r

∂ ∂ ∂  
ε + λε + ε + ε + ε + ω + ε + λε + 

∂ϕ ∂ ∂ϕ  
∂    

+ ε + λε + ω + ε + ε + λε + ω + ε   ∂    
 

+ ε + ε + λε − ω − µ + λ α  
2 22

22
12 3 12 3 2

1 (2 3 ) (1 )

1 1 1(2 3 ) ( ) (2 3 ) (2 3 ) ( ) 0
2 2

T
E e

r

T eЕ e ET TЕ e F
r r r

∂
− µ + λ α +

∂ϕ

∂ ∂ ∂
− µ + λ α + ω − µ + λ α − µ + λ α + ω + =

∂ ∂ϕ ∂

        (32) 

Equilibrium Equations (29), (30) or (31), (32) are formulated for the deformed scheme with 

account taken of geometrical nonlinearity (19), (20) and physical linearity (27), (28) under the action 

of forced deformations and volumetric forces. 

2.5. Relations of Orders for Deformations 

The classification of geometrically nonlinear solutions of elasticity theory problems was 

proposed by V.V. Novozhilov [21,22,31] and is discussed in [23,24,27,28]. Let’s consider deformations 

(19), (20) and equations of equilibrium (29), (30) depending on the orders of elastic body deformation 

for the state of plane deformation by using the classification developed by V.V. Novozhilov [21,22]. 

Let's consider the following options: 

Option I - elongations, shears, and rotations are small and small compared to unity, 

Option II - elongations, shears, rotations are not small compared to unity. 

Displacements in the zone of the angular cutout of the boundary are small and continuous. 

According to [21,22,31], angles of rotations, elongations and shears enter into deformation 

relations (19), (20) in the following ways: 
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1) parameters 11 22 12, ,e e e  are linear, 

2) products of parameters 2 2 2 2
11 12 22 12 11 22 12 21, , , , ,e e e e e e e e , 

3) square of the rotation parameter 2
3ω  , 

4) products of parameters 12 3e ω⋅ , 21 3e ω⋅ . 

Let’s consider option I.  

Case A) – the value of rotation 3ω  is small and of the same or higher order of smallness than 

i je . 

Case B) - values of deformation parameters i je are small and of the same or higher order of 

smallness than squares of rotation 2
3ω . 

Case A). 

Let’s consider small parameters i je  and small rotations 3ω , that are smaller than unity: 

2 ( )ij ije o e= , 2
3 3( )oω ω=  or 2

3ω << i je  We take values of the first order of smallness i je , 3ω  as initial 

values. 

The value of rotation 3ω  is small and of the same or higher order of smallness than i je , so 

i j 3 3 i j( ) ( )e o o eω ω= = . 

1
11 11 11 11( ) u

e о e e
r

ε
∂

= + ≈ =
∂

, 2 1
22 22 22 22

1( ) u u
e о e e

r r
ε

ϕ

∂
= + ≈ = +

∂
 ,               (33) 

2 2 1
12 21 12 12 12

1( ) u u u
e o e e

r r r
ε ε

ϕ

∂ ∂
= = + ≈ = − +

∂ ∂
.                                   (34)  

For these orders of smallness of deformation values, in the absence of volumetric forces equations of 

equilibrium (29), (30) are formulated as follows: 

( ) ( )

( )

11 12 11 22 22 11

11 12 3

1 2 (2 3 )2 ( ) ( )

(2 3 ) 1(2 3 ) (1 ) ( ) 0
2

G E
G G T e e

r r r r

E
E T e T e

r r

µ λ
ε λε ε ε ε α

ϕ

µ λ
µ λ α α ω

ϕ

∂ ∂ +
+ + + − + −

∂ ∂

∂ + ∂  
− + + − − = 

∂ ∂  

,                     (35) 

 

( ) ( )

( )

22 12 12 12

22 12 3

1 2 (2 3 )2

(2 3 ) 1(1 ) (2 3 ) ( ) 0
2

G TЕ
G G

r r r r

Е
T E T

r r

µ λ α
ε λε ε ε ε

ϕ

µ λ
α ε µ λ α ε ω

ϕ

∂ ∂ +
+ + + − −

∂ ∂

+ ∂ ∂  
− + − + + = 

∂ ∂  

.                        (36) 

Taking into account linear deformations (33), (34), equations (35), (36) 

will be formulated as follows: 

( ) ( )

( )

11 11 22 12 11 22 22 11

11 12 3

1 2 (2 3 )2 e (e e ( ) ( )

(2 3 ) 1(2 3 ) (1 ) ( ) 0
2

G E
G Ge e e T e e

r r r r

E
E T e T e

r r

µ λ
λ α

ϕ

µ λ
µ λ α α ω

ϕ

∂ ∂ +
+ + + + − + − −

∂ ∂

∂ + ∂  
− + + − − = 

∂ ∂  

 , (37) 

( ) ( )

( )

22 11 22 12 12 12

22 12 3

1 2 (2 3 )2 (

(2 3 ) 1(1 ) (2 3 ) ( ) 0
2

G TЕ
Ge e e Ge e e

r r r r

Е
T e E T e

r r

µ λ α
λ

ϕ

µ λ
α µ λ α ω

ϕ

∂ ∂ +
+ + + + − −

∂ ∂

+ ∂ ∂  
− + − + + = 

∂ ∂  

 .            (38)   

Case A1). 

Let the temperature deformations ijTα δ  have the same order of smallness as i je  or a higher 

order of smallness than i je , i.e. 3 3( ), ( )ij ijT o T oα ε ε α ω ω= = , then equations (35), (36) are 

reformulated as follows: 

( ) ( )11 12 11 22
1 22 ( ) (2 3 ) 0G T

G G E
r r r r

ε λε ε ε ε µ λ α
ϕ

∂ ∂ ∂
+ + + − − + =

∂ ∂ ∂
,             (39) 

( ) ( )22 12 12
1 2 (2 3 )2 0G Е T

G G
r r r r

µ λ α
ε λε ε ε

ϕ ϕ

∂ ∂ + ∂
+ + + − =

∂ ∂ ∂
.                   (40) 
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If deformations (33), (34) are taken into account, equations (39), (40) will be formulated as follows: 

( ) ( ) ( )11 11 22 12 11 22
1 22 ( ) ( ) (2 3 ) 0G

Ge e e Ge e e E T
r r r r

λ µ λ α
ϕ

∂ ∂ ∂
+ + + + − − + =

∂ ∂ ∂
,       (41) 

( ) ( ) ( )22 11 22 12 12
1 2 (2 3 )2 ( 0G Е

Ge e e Ge e T
r r r r

µ λ
λ α

ϕ ϕ

∂ ∂ + ∂
+ + + + − =

∂ ∂ ∂
.              

(42) 

Case А2). 

If the temperature in one area is constant and the other area is free of loads, then for Case A1) we 

obtain the following homogeneous system of equations: 

( ) ( )11 11 22 12 11 22
1 22 ( ) ( ) 0G

Ge e e Ge e e
r r r

λ
ϕ

∂ ∂
+ + + + − =

∂ ∂
,                      (43) 

( ) ( )22 11 22 12 12
1 22 ( 0G

Ge e e Ge e
r r r

λ
ϕ

∂ ∂
+ + + + =

∂ ∂
.                            (44) 

Case B). 

Deformation parameters i je  are small and of the same order of smallness as 2
3ω : 2

i j 3e ω , or 

of a higher order of smallness than 2
3ω : i je << 2

3ω  or 2
i j 3( )e o ω= .  

Deformation relations (19), (20) will be formulated as follows: 

2
11 11 3

1 ( )
2

eε ω= + , 2
22 22 3

1 ( )
2

eε ω= + , 12 21 12eε ε= = , 2
11 22 3e eε ω= + + .             (45) 

In this case, equilibrium equations (31), (32) will be formulated as follows: 

             

( )

( )

2 2
11 3 11 22 3 12 22 11

11 12 3

1 1 (2 3 )2 ( ) ( ( )
2

(2 3 ) 1(2 3 ) (1 ) ( ) 0
2

E
G e e e Ge T e e

r r r

E
E T e T e

r r

µ λ
ω λ ω α

ϕ

µ λ
µ λ α α ω

ϕ

∂ ∂ + 
+ + + + + + − − 

∂ ∂ 
∂ + ∂  

− + + − − = 
∂ ∂  

,         (46) 

( )

( )

2 2
22 3 11 22 3 12 12

22 12

1 1 22 ( ) ( )
2

(2 3 ) (2 3 )(1 ) 0

G
G e e e Ge e

r r r

Е TЕ
T e e

r r

ω λ ω
ϕ

µ λ µ λ α
α

ϕ

∂ ∂ 
+ + + + + + − ∂ ∂ 

+ ∂ +
− + − =

∂

.                       (47) 

Case B1). 

Let the temperature deformations ijTα δ  have the same order of smallness as 3ω , i.e., 3Tα ω

, then the value 3Tα ω  has the order 2
3ω , which should be taken into account.  In this case equations 

(46), (47) will be formulated as follows: 

( )

( )

2 2
11 3 11 22 3 12

3

1 12 ( ) (
2

(2 3 )(2 3 ) 0

G e e e Ge
r r

E
E T T

r r

ω λ ω
ϕ

µ λ
µ λ α α ω

ϕ

∂ ∂ 
+ + + + + − 

∂ ∂ 
∂ + ∂

− + + =
∂ ∂

  ,                       (48)  

( )

( )

2 2
22 3 11 22 3 12 12

1 1 22 ( ) ( )
2

(2 3 ) 0

G
G e e e Ge e

r r r

Е
T

r

ω λ ω
ϕ

µ λ
α

ϕ

∂ ∂ 
+ + + + + + − ∂ ∂ 

+ ∂
− =

∂

.                  (49) 

Case B2).                 

Let the temperature deformations ijTα δ  have a higher order of smallness than 2
3ω , then 

equations (48), (49) will be formulated as follows: 

( )2 2
11 3 11 22 3 12

1 12 ( ) ( (2 3 ) 0
2

G e e e Ge E T
r r r

ω λ ω µ λ α
ϕ

∂ ∂ ∂ 
+ + + + + − + = 

∂ ∂ ∂ 
.       (50) 
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( )

( )

2 2
22 3 11 22 3 12 12

1 1 22 ( ) ( )
2

(2 3 ) 0

G
G e e e Ge e

r r r

Е
T

r

ω λ ω
ϕ

µ λ
α

ϕ

∂ ∂ 
+ + + + + + − ∂ ∂ 

+ ∂
− =

∂

 .                (51) 

If the temperature in one area is constant, the other area is free of loads, then the following 

homogeneous system of equations is obtained: 

( )2 2
11 3 11 22 3 12

1 12 ( ) ( 0
2

G e e e Ge
r r

ω λ ω
ϕ

∂ ∂ 
+ + + + + = 

∂ ∂ 
,                       (52) 

( )2 2
22 3 11 22 3 12 12

1 1 22 ( ) ( ) 0
2

G
G e e e Ge e

r r r
ω λ ω

ϕ

∂ ∂ 
+ + + + + + = ∂ ∂ 

.                 (52) 

Case С). 

Displacements 1 2,u u  in the area nearing the vertex of the angular area have a power form: 

( ), [0, 0.5]i iu r fλ θ λ= ∈ , the first derivatives of the displacement function along the radius are of 

order 1
1

1
r

r

λ

λ

−

−
= .  The value of  1

1
r λ−

 increases for small radii 0r → . Thus, at (0, 0.5)λ ∈  the 

value is 1

1 1 1,
rr r

λ−

 
∈  
 

, and the square of the value is 2 2 2

1 1 1,
rr rλ−

 
∈   

, so the nonlinear part of the 

deformation relations, which takes into account the squares of deformations and rotations (19), (20) 

at small radii is significant in value compared to the linear part of the deformation relations. 

For such a neighbourhood, excluding the very vertex of the angular cutout of the boundary, 

without taking into account the nonlinear part of the deformation relations, stresses and strains of 

order 1rλ − , i.e., 1
i j i j, ( )r fλσ ε ϕ− , (0, 0.5)λ ∈ , are observed. 

For such a neighbourhood, excluding the very vertex of the angular cutout of the boundary, we 

assume the deformations and rotations to be of the same order of variation along the radius. 

Deformations i je  have a higher order of smallness than 2
i je : 2

i j ( )i je o e= , rotations iω  are of the 

same order as deformations i je , i.e. 1
r

λω − , 2
i ( )ioω ω= , with the radius being sufficiently small. 

Deformations (19), (20), taking into account relations  2
i j ( )i je o e= , 2( )i ioω ω= , will be formulated as 

follows: 

2 2
22 22 21 3

1 1( )
2 2

e eε ω
 

≈ + −  
, 2 2

11 11 12 3
1 1( )
2 2

e eε ω
 

≈ + +  
,                      (53) 

 12 21 11 12 3 22 12 3
1 1( ) ( )
2 2

e e e eε ε ω ω= ≈ − + + , 2 2 2 2
11 22 12 3

1 1 2
2 2

e e eε ω
 

≈ + + +  
.         (54) 

Let the deformations and rotations be limited to the corresponding area of the angular cutout of 

the boundary and have the same second order of variation, taken as the initial one. We disregard 

values of the deformation parameters above the third order as those that are leading to a substantial 

increase in the potential energy of deformation. 

The first equation of general equilibrium (29) in the absence of volumetric forces: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

11 11 12 12 3

12 11 22 12 3

11 11 12 12 3

12 12 3 22 22

12 (2 3 ) (1 ) ( )
2

1 1(1 ) 2 (2 3 ) ( )
2

1 12 (2 3 ) (1 ) ( )
2

1 1( ) 2 (2 3 ) (1 )
2

G TЕ e G e
r

G e G TЕ e
r

G TЕ e G e
r

G e G TЕ e
r

ε λε µ λ α ε ω

ε ε λε µ λ α ω
ϕ

ε λε µ λ α ε ω

ε ω ε λε µ λ α

∂  
+ − + + + − + 

∂  
∂  

+ + + + − + − + 
∂  
 

+ + − + + + − − 
 

− + + + − + + 0 
= 

 

              (55) 

is reformulated for the pre-set relations of deformation orders (53), (54) of case C in the form: 
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( ) ( )11 12 11 22

11 12 3

11 22

1 12 2 ( )

1 1(2 3 ) (1 e ) (2 3 ) ( )
2

1 1(2 3 ) (1 ) (2 3 ) (1 ) 0

G G G
r r r

E T Е T e
r r

TЕ e TЕ e
r r

ε λε ε ε ε
ϕ

µ λ α µ λ α ω
ϕ

µ λ α µ λ α

∂ ∂
+ + + −

∂ ∂

∂ ∂
− + + − + − +

∂ ∂

− + + + + + =

.                   (56) 

The second equation of equilibrium in the general form (30) in the absence of volumetric forces: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

12 12 3 22 22

11 12 3 12 22

11 12 3 12 22

12 11 22 12 2

1 1( ) 2 (2 3 ) (1 )
2

12 (2 3 ) ( ) (1 )
2

1 12 (2 3 ) ( ) (1 )
2

1 1(1 ) 2 (2 3 ) ( )
2

G e G TЕ e
r

G TЕ e G e
r

G TЕ e G e
r

G e G TЕ e
r

ε ω ε λε µ λ α
ϕ

ε λε µ λ α ω ε

ε λε µ λ α ω ε

ε ε λε µ λ α ω

∂  
+ + + − + + + 

∂  
∂  

+ + − + + + + + 
∂  
 

+ + − + + + + + 
 

+ + + + − + − 0 
= 

 

              (57) 

after transformations for these relations of deformations order (53), (54) of case C will be formulated 

as follows: 

( )22 12 12 12

22 12 3

1 2 1(2 ) (2 3 )

1 1(2 3 ) (1 ) (2 3 ) ( ) 0
2

G
G G TЕ e

r r r r

Е T e Е T e
r r

ε λε ε ε µ λ α
ϕ

µ λ α µ λ α ω
ϕ

∂ ∂
+ + + − + −

∂ ∂

∂ ∂
− + + − + + =

∂ ∂

.                 (58)  

Please mind that the form of equilibrium equations (56), (58) for major deformations of the form (53), 

(54) coincides with the form of equilibrium equations (35), (36) for minor deformations (33), (34), the 

difference being determined by substituting the corresponding deformations (53), (54) or (33), (34). 

Case С1) 

Let the temperature deformations ijTα δ  have the same order of variation as i je , 3ω . We take 

the second order of variation of the deformation parameters as the initial one in the corresponding 

neighbourhood of the vertex of the angular cutout of the boundary in case of sufficiently small radii: 

i.e., 2 2
3( ), ( )ij ijT o e T oα δ α ω= = . Equations (56), (58) are reformulated as follows: 

( ) ( )11 12 11 22 22 11

11 12 3

1 1 12 2 ( ) (2 3 ) ( )

1 1(2 3 ) e (2 3 ) ( ) 0
2

G G G TЕ e e
r r r r

E T Е T e
r r

ε λε ε ε ε µ λ α
ϕ

µ λ α µ λ α ω
ϕ

∂ ∂
+ + + − + + − −

∂ ∂

∂ ∂
− + − + − =

∂ ∂

,      (59) 

( )22 12 12 12

22 12 3

1 2 1(2 ) (2 3 )

1 1(2 3 ) ) (2 3 ) ( ) 0
2

G
G G TЕ e

r r r r

Е Te Е T e
r r

ε λε ε ε µ λ α
ϕ

µ λ α µ λ α ω
ϕ

∂ ∂
+ + + − + −

∂ ∂

∂ ∂
− + − + + =

∂ ∂

 .                  (60) 

where ijε  are defined in the form (53), (54). 

Further analysis is determined by comparing the orders of deformations, rotations with orders 

of forced deformations, similar to that provided for cases A), B) of minor deformations. The physical 

relations (27), (28) should be maintained. 

3. Results 

Equations of equilibrium, formulated according to the deformation scheme, were written in the 

general form (2), (3), (4). Equations of equilibrium, formulated according to the deformed scheme in 

generalized stresses and deformation parameters (13), (14) were obtained in the polar coordinate 

system. 

Equations of equilibrium in deformations (29), (30) are obtained under the action of forced 

temperature-induced deformations and volumetric forces with account taken of geometric 

nonlinearity (19), (20) and physical linearity (27), (28). 
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The following options of deformation relations are considered: 

Option I - elongations, shears, and rotations are small and small compared to unity, 

Option II - elongations, shears, rotations are not small compared to unity. 

For options I and II, various cases A), B), C) of the orders of values of deformations included in 

the nonlinear deformation relations (19), (20), as well as forced deformations, are considered. 

Equations of equilibrium (33), (34), or those taking the form (35), (36) were obtained for linear 

deformations, rotations, and forced deformations that are small and small compared to unity. 

For the case of small deformations (case A)), two option are considered. Case A1) - temperature 

deformations ijTα δ  have the same order of smallness as parameters i je  or a higher order of 

smallness than i je , equations of equilibrium take the form as in (39), (40) or in (41), (42). In case A2) 

temperature in one subarea is constant, another subarea is free from loads; hence, we obtain a 

homogeneous system of equations (43), (44).  

For large rotations (case B)) in the case of deformation relations (45), linear deformations, shifts 

i je  are small of the same order of smallness as 2
3ω , equations of equilibrium of the form (46), (47) 

are obtained. In equations (46), (47), rotations 3ω  can be either small or large. 

For the case of B two options of large rotations are considered. 

Case B1) - temperature deformations ijTα δ  have the same order of smallness as 3ω , 

equilibrium equations are obtained (48), (49). Case B2) - temperature deformations ijTα δ  have a 

higher order of smallness than 2
3ω , equilibrium equations will be the same as in (50), (51). If 

temperature in one subarea is constant, and the other subarea is free from loading, then we have a 

homogeneous system of equations (52), (53).  

For the case of C – the case of large deformation and rotation parameters as in (53), (54); equations 

of equilibrium (56), (58) are obtained. 

For the case C1) - temperature deformations ijTα δ  have the same order of variation as 

deformation parameters i je  and rotation 3ω , equilibrium equations (59), (60) were obtained. 

Conclusion. Equations of equilibrium in a planar V-shaped area were obtained taking into 

account geometrical nonlinearity and physical linearity under the action of free temperature 

deformations. The approach to analyzing the type of equations of the plane problem of elasticity 

theory in the polar coordinate system, presented in the paper, allows analyzing the relations of orders 

of deformations, rotations, and forced deformations in terms of the type of equilibrium equations for 

a uniform elastic body in the state of plane deformation. 

4. Discussion 

The formulation of the problem of the elasticity theory with regard to geometrical nonlinearity 

is determined by the type of geometrical relations which depend on relations of orders of linear 

deformations, shear, rotations, and pre-set forced deformations. In this case, the geometric relations, 

as well as equations of equilibrium in generalized stresses, do not depend on the mechanical 

properties of the continuous medium. The paper considers small, large deformations and analyzes 

the relations of the orders of their values.  

In the transition to equations of equilibrium in deformations and displacements, linear physical 

Duhamel-Neumann relations are applied. Equilibrium equations are formulated according to the 

deformed scheme for different ratios of orders of values of deformations. The scope application of 

such geometric relations is substantiated by the results of the photo-elasticity experiment for a planar 

domain with an angular cutout of the boundary.  

In the general case of the elasticity problem, the area of application of nonlinear geometric 

relations and physical relations should be adjusted by using the experimental data. 

It is noteworthy that under these assumptions, the form of equilibrium equations for the 

relations of orders of small and large deformations coincides; the difference consists in the 

expressions of linear and nonlinear deformations substituted into the equilibrium equation according 

to the deformed scheme. Therefore, the area of application of the corresponding deformation 
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relations and physical relations is substantial, and it is determined by the mathematical model of the 

continuous medium and the experimental data. 

5. Conclusions 

The considered approach to the analysis of equations of the elasticity theory problem enables 

researchers to analyze the effect of relations of orders of deformations, rotations, and forced 

deformations on the equilibrium equation in the polar coordinate system for the V-shaped area under 

the action of forced temperature-induced deformations with regard for geometric nonlinearity and 

physical linearity. The presented mathematical model of an elastic body is applicable to the numerical 

analysis of a solution to the elasticity problem with regard to geometric nonlinearity under the action 

of forced deformations. 
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