Pre prints.org

Article Not peer-reviewed version

Minor and Major Deformations.
Equations of Equilibrium of a
Planar Domain with an Angular
Cutout of the Boundary

Lyudmila Frishter i
Posted Date: 7 July 2023
doi: 10.20944/preprints202307.0477v1

Keywords: elastic boundary value problem; finite deformations; temperature deformations; polar coordinate
system; angular cutout in the boundary of a planar domain; relations of deformation orders; equations of
equilibrium

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2753331

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2023 d0i:10.20944/preprints202307.0477.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Minor and Major Deformations. Equations of
Equilibrium of a Planar Domain with an Angular
Cutout of the Boundary

Lyudmila Frishter **

1 Department of advanced mathematics, National Research Moscow State Civil Engineering, University, 26,
Yaroslavskoye Shosse, 129337 Moscow, Russian Federation
* Correspondence: FrishterLY@mgsu.ru

Abstract: Large values and gradients of stresses and deformations, triggering concentrations of
stresses and deformations, arise in the corner areas of a structure. The action of forced deformations,
leading to the finite rupture of the contact between the elements of a structure, also triggers the
concentration of stresses, while the rupture reaches an irregular point, a line on the area boundary.
The theoretical analysis of the stress-strain state (SSS) of areas with angular cutouts in the boundary
under the action of discontinuous forced deformations is reduced to the study of singular solutions
to the homogeneous problem of the elasticity theory that has power-related features. The calculation
of stress concentration coefficients in the domain of a singular solution to the elastic problem makes
no sense. It is experimentally proven that the zone, that is close to the vertex of the angular cutout
in the area boundary, has substantial deformations, rotations, and it corresponds to rising values of
the first and second derivatives of displacements along the radius in cases of sufficiently small radii
in the neighbourhood of the irregular point of the boundary. For such areas, it is necessary to
consider the plane problem of the elasticity theory, taking into account the geometric nonlinearity
under the action of forced deformations. This will allow analyzing the effect of relations between
orders of values of deformations, rotations, and forced deformations on the form of the equation of
equilibrium. The purpose of this work is to analyze the effect of relations of deformation orders,
rotations, forced deformations on the form of the equilibrium equation in the polar coordinate
system for a V-shaped area under the action of forced temperature-induced deformations with
regard for the geometrical non-linearity and physical linearity.

Keywords: elastic boundary value problem; finite deformations; temperature deformations; polar
coordinate system; angular cutout in the boundary of a planar domain; relations of deformation
orders; equations of equilibrium

1. Introduction

Large values and gradients of stresses and strains, leading to concentrated stresses and
deformations, arise in the corner zones of a structure. The action of forced deformations leading to
the finite rupture along the contact between the elements composing the structure, also causes the
concentration of stresses, given that the rupture reaches an irregular point, a line on the boundary of
the area. The theoretical analysis of the stress-strain state (SSS) of areas with angular cutouts in the
boundary under the action of discontinuous forced deformations is reduced to the study of singular
solutions to the homogeneous problem of the theory of elasticity that has power-related features [1-
14]. Calculation of stress concentration coefficients in the area of the singular solution to the elastic
problem makes no sense.

Figure 1 shows interference fringes for a planar model with different angles of cutout in the
boundary.

An experimental solution to the elastic problem of forced deformations in the planar domain is
illustrated by the case of a composite model of a planar domain with the length of 180 mm and the
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width of 24 mm. The experimental solution is obtained using methods of deformation defrosting and
photo-elasticity [15-20].

Temperature-induced deformations 0.7;; are made in one part of model Q;, while the other
part Q) is not loaded. A spike of temperature deformations along the contact surface of the areas

reaches irregular point O (0,0) of the boundary, the vertex of the cutout. Different patterns of fringes
are obtained at different angles of the cutout in the boundary (Figure 1).

Figure 1. Interference fringes for a planar model with cutout angles of 90" and 60° and with
temperature-induced deformations in one part of the model.

It is experimentally shown [15-20] that substantial deformations and rotations are observed in
the zone close to the top of the angular cutout of the boundary area, which corresponds to increasing
values of first and second derivatives of displacements along the radius when radii in the
neighbourhood of the irregular point of the boundary are small enough. For such areas, it is necessary
to consider the plane problem of the elasticity theory, taking into account geometric nonlinearity
under the action of forced deformations.

General methods for solving problems in mechanics of deformable solids based on a solution to
the nonlinear problem of the elasticity theory were developed in the fundamental works of V. V.
Novozhilov [21,22], P.A. Lukash [23], and A.I. Lurie [24], and in works [25-29]. Geometric relations,
containing quadratic terms, are used in the nonlinear elasticity theory. Equilibrium equations are
formulated as the post-deformation equilibrium of an oblique parallelepiped [21,22,27,28].

Physical equations for the geometrically nonlinear problem of the elasticity theory establish the
relationship between stress and deformation components after deformation, so they must be
formulated as generalized stresses and nonlinear deformations [21-28]. Therefore, the nonlinear
problem of the elasticity theory must be formulated taking into account nonlinear geometric relations
and generalized stresses.

In geometrically nonlinear expressions of deformations, different relations may be established
between the orders of linear deformations, displacements, rotation angles, and pre-set forced
deformations.

The experimental data, obtained using the photo-elasticity method [15-19], show that areas with
small deformations and areas with large stress and strain gradients are identified in the area of the
angular cutout in the boundary.

The purpose is to analyze the effect of relations of the orders of deformations, rotations, and
forced deformations on the form of the equilibrium equation in the polar coordinate system for the
V-shaped area under the action of forced temperature-induced deformations with regard to
geometric nonlinearity and physical linearity.

Objectives of the work:

1) formulate equilibrium equations for the deformed scheme, obtain equilibrium equations in
generalized stresses, deformations for the planar domain, taking into account geometrical
nonlinearity and physical linearity.
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2) formulate equilibrium equations for the deformed scheme in terms of possible relations of
orders of linear deformations, shears, angles of rotation, forced deformations. Analyze the effect of
relations of deformation orders on the form of equilibrium equations.

2. Materials and Methods

2.1. Problem Statement

The problem of the elasticity theory is considered for a planar domain with an irregular point
on the boundary, or the vertex of an angular cutout of the area. Forced - free temperature
deformations @T'6;, where &, is the Kronecker symbol, are provided in the planar domain

(Figure 1). In the domain Q=Q, UQ,, a spike (finite rupture) of forced deformations along the
contact line of domains I'=Q, NQ,, extending to the vertex of the angular cutout of the area

boundary, can be pre-set. For example, deformation discontinuity is triggered, if one of the
subdomains Q, of the Q=Q UQ, domain is subjected to pre-set temperature-induced

deformations a7d,, while the second subdomain €, is not loaded. Volumetric forces can be pre-

set in the planar domain £2. Concentrated forces are not considered. A homogeneous elastic body is
in the 2D deformed state [3,6,29]. Mechanical characteristics include the modulus of elasticity E,
Poisson's coefficient V; they are constant in the € domain. The linear expansion coefficient & in
the Q domain is constant. Boundary conditions for stresses are homogeneous.

Let’s consider a polar coordinate system with the pole of the polar system O (0,0) at the vertex
of the angular cutout of the area boundary. Let the displacement, deformation, and stress functions
and their derivatives of an appropriate order be continuous everywhere in the domain €, except at
the vertex of the angular cutout of the area boundary. If there is a discontinuity of deformations along
the contact line of domains I'=Q NQ,, then the continuity conditions for displacements and

normal stresses along the contact line of domains are fulfilled. The vertex of the angular cutout of the
boundary is removed, and its punctured neighbourhood in domain € 1is considered.

Figure 1. 2D V-shaped domain €.

Different relations for the orders of deformation values are considered depending on the zone
of approximation to the irregular point of the boundary to determine different kinds of the solving
system for equations of the elastic boundary value problem.

The objective is to formulate equations of equilibrium in the domain Q, taking into account
geometrical nonlinearity and physical linearity.

2.2. Equilibrium Equations

A spatial curvilinear orthogonal coordinate system [17,21,22] ¢, is considered, i=1,2,3, lgl are
unitary vectors directed toward the positive direction of the ¢, axes or basis vectors of the domain

before the deformation. An infinitesimal element (Figure 1) is selected. This element is limited by six
coordinate planes; before deformation this element is a rectangular parallelepiped with edges

H, k, do,, where H, aretheLame parameters. After the deformation, the rectangular parallelepiped


https://doi.org/10.20944/preprints202307.0477.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2023 d0i:10.20944/preprints202307.0477.v1

transforms into an oblique one with edges H,(1+E,)k da,, where E,, are relative elongations

along the ¢, axes after deformation, and k, are basis vectors of the domain after the deformation.
Equations of equilibrium of all forces acting on the oblique parallelepiped after the deformation
[21,22,24] have the form:
1
H H,H,

where G, =G, S//S, are generalized stresses on the edges of the oblique parallelepiped,

d
H, H,0, H, H,0,
{a ( G')+aa( 62)+aa

(HHO',,K)}+I?=O, 1)

3

S/,S, are the areas of edges of the parallelepiped after and before deformation, F are generalized
volume forces after deformation. Having formulated the forces on the edges of the parallelepiped
after the deformation in the initial basis of vectors Igl before the deformation, equations (1) will

take the form:

0 0 oH, 0H,
(T(H2H3511)+7(H3H1312)+ (H, Hysy)+Hy— LSy, + Hy—— Si3—
o aa, 8053 oa, o, @)
-H, ZH —HZ?S33+H1H2H3F} =0
Q
0 0H, o0H
T(H2H3S12)+87(H3H1S22)+a (H, Hysp)+ H—= ) 323+H3872321_
(24 , a o al 3)
—H, 3H3 S33—H3?811+H1H2H3F2 =0
a, a,
0 0 oH, oH,
—(H,H,;s,)+—(H,H;s,,)+ H H,s;)+ H,— s+H —
aal( 2 Hss,5) aaz( 3 Hs5) 3013( 1) 30!1 31 a(Zz S3 "
i “—ngH s+ HH,HF =0
o

*da,
Here F, are projections of the generalized volumetric force on directions £, ,i=1,2,3.
In relations (2), (3), (4) expressions s, are formulated using generalized stresses 0; , deformation

parameters e, , rotations @, :

Si =0-11(1+eu)+o-12(§e12 _wz)+0-13(5313 +t@) sy =0-21(5613 _wz)"'o-zz(zezs +@)+0y(1+ey)

« 1 . <1 . | .1
Sy :0-11(5612 +a)3)+0'12(1+e22)+0'13(5e23 -@) 5 =O-31(1+311)+0-32(§elz _wz)+0-33(5613 +@)

®)

Si3 =O-11(5613 _a)z)+o-12(5623 +a)+o,(I+e;) sy =0-31(5612 +a)3)+0'32(1+e22)+0'33(5e23 -a)
$21 =O'21(1+e11)+0'22(5e12 _a)z)+o-23(§el3 +w) sy =O-31(5613 _@)+032(Eez3 +ay)+oy(l+ey)

2 :621(5812 +a)3)+0'22(1+e22)+0'23(§e23 -a)

By substituting (5) into equations (2)-(4), one can obtain equations of equilibrium in the
curvilinear orthogonal coordinate system ¢, ,«, ,o; with account taken of finite deformations for
generalized stresses and deformation parameters (5).

We consider a plane problem of the elasticity theory [3,4,6.29] for the state of plane deformation,
when the points of the body move in the planes that are perpendicular to the OZ axis:

u =u(0,0,,0), u, =u, (e, ,,0), u;(e,,0,,0)=0. (6)
For the polar coordinate system:
o=r, o,=¢, 0;=z. (7)

Lame parameters are:
H=1,H,=r,H =1 8)
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Equilibrium equations (2), (3), (4) will be formulated as follows:

ds;, 10s, s, —s
11 4+ 21+ 11 22

+F =0, 9
or r dQ r : ©)
lasi+%+—s‘z+sz‘+l?2=0, (10)
roQ  or r
where relations for generalized stresses (5) in equations (9), (10) will be revised as follows:
. .1 . .1
Sy = 0-11(1+611)+O-12(5612 -@),8y, = 0'22(1+622)+0'21(5612 + ), (11)
.1 . . . 1
S = O.ll(zelz +o)+0,(l+ey,), 5, = 0-21(1+e11)+0'22(5612 —@). (12)

Taking into account (11), (12), equations of equilibrium (9), (10) will formulated as follows:

o .. « 1 10 « .1
ar[o-u(l"'en)"'o—lz(zelz_a)s)]"'raq)[o—zl(l"'en)"'o-zz(zelz_ws)]"'
, (13)

1] . « 1 " « 1
+r|:o-l](l+el])+o-lz(2e]2_0)3)_0-22(1-'-622)_0-21(2612+a)3)i|+F{=0
1o . 1 . a( .1 .

—5| ou(zept @) +oy,(l+ey,) |[+—| oy(ze, +@)+0,(1+ey,) |+
r o 2 or 2 (14)
1 .1 . . .1 ’
+;|:O-11(Eelz+w3)+0-12(1+ezz)+0-21(1+en)+0-22(5612_(03):|+F2=0

where generalized stresses O'i*j are related to stresses o,; by the following relations at a point in the

*

S
domain: aij—?q. i

i

i,j=12.
The form of linear equilibrium equations in generalized stresses in the polar coordinate system

of the form (9), (10) coincides with the form of equilibrium equations for minor deformations:

90,  19%4 , 0,20, gy (15)
Jdr r 90 r

190, 07, 20y 1oy, (16)
r 90 or r ’

Let’s formulate equations of equilibrium (13), (14) in deformations.

2.3. Deformation Relations

General deformation relations for the curvilinear orthogonal coordinate system are considered
in [21,22,24]. Let’s take advantage of nonlinear relations for deformations in the polar coordinate
system [21,30]. The relative elongation E,, atan arbitrary point M of domain €2 is as follows:

ds" —ds |M*N* _|MN|
Eyy = = 17
W= = a7

where ds is the length of the segment MN before the deformation; ds” is the length of the segment
M’N’ obtained by moving points M and N after the deformation.
Let’s consider a homogeneous elastic body in the state of plane deformation, for which [3,17,29]
is satisfied:
U, :ul(r7¢)50)’ u, zuz(r,(p,O), Uy =u3(r,¢,0) =0 s
€;=0, £;=6,=0, £,=6,=0, ¢;=¢,=0,¢y=e,=0,¢,;,=0, ¢,=0, (18)
0,=0,=0, 0,=0,=0.
Deformations in the planar domain Q for this unit of elongation (17) will be formulated as
follows:

1 1 1 1
&, =¢ +5[6121 +(Eelz +w3)2:| s Ep=ey +E|:e§2 +(5621 —(03)2:| s (19)
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1 1
&, =&, =¢€, +eu(5612 _w3)+622(5612 +ay) . (20)

Here deformation parameters are formulated through displacements u,,u, in the polar

coordinate system:

ou 1ou, 1 1 ou
G :a—rl 55} :;a_g;"'_”]a 5612 + :a_2’ (2D
e]2=821=ri u_z +l%=aﬁ_u_2 18” lelz_a)j :l%_u_z' (22)
or\r) rop o r r 8(/) 2 rop r
Then auxiliary expressions (11), (12) will be reformulated in displacements as follows:
ou 1ou, u ou 10u, 1
=0, (1+ 1)+ 12( — -2, —021( 2)+ oy, (1+——2+—~ —u D, (23)
dgp r r 0p

au2

10u, 1 10u, u
_0'11 o 12(1+ 2 ——

d
+=u), 8y = 21(1+ - )+ 22( — ). (24)
o r do r

Taking into account (21), (22), deformations in the polar coordinate system will be formulated
as follows in terms of displacements:

ot 1[(au) (o)
"ar 2l or or

£ :l%+ﬂ+l lauz +u_'2+ l%_u_zz (25)
2 rop r 2/\rde r roQp r ’

e, 2O _w 10w Ouw(10u u,) ouf10u, w)
R rdp or or\rade r

rdg r
Continuity equations for the elastic problem with finite deformations are provided in the general
form in [21,22,24].

2.4. Physical Relations

According to [21,22,27,28], it is assumed that the form of relation for generalized stresses and
deformatioons is the same as in the Hooke's law in terms of minor deformations. Under the action of
forced deformations - temperature deformations, the Dugamel-Neumann dependence will be

formulated as follows:

£ :H_V(O'.*.—Ls*é‘,. j+aT5 (26)
I+v

ij E i [/

E 7

el.j'. =al 5,.1. are free temperature deformations; E is the modulus of elasticity; v isthe Poisson's ratio;

s =0, isthe sum of normal generalized stresses; « is the linear expansion coefficient; o, is the

+v(i . v . . . .
where ¢ =—(0'..—1—s 51]) is the deformation caused by generalized stresses o, ;
14

Kronecker symbol.
With regard to (26), generalized stresses are formulated in the polar coordinate system as

follows:
0, =2Ge, + Ae—Qu+3A)aTlE, (27)
0,, =2Ge,, + Ae—Qu+3A)aTE, o, =0, =Ge,, (28)
E 1
Here 2G=2u=—, 1=——YE _ 2u+30=— | ¢ are defined as (19), (20),
l+v A=-2v)1+v) 1-2v Y
E=g,+&y,.

Let's substitute expressions of stresses (27), (28) into equations of equilibrium (13), (14):
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%(ZGEH +Ae)+ %;T;;Gg” + %(ZGe11 + Ae)- %(ZGSZ2 +Ae)+
d

+*[(2G£” + A€) e,+ Gé‘u(le12 — a)}))+li
or 2 -

1
a(p(Ggue11 +(2Ge,, + /15)(5612 - 0)3)] +

1 1 1 1
+;[(2Gg11 + A€)e, + Gg”(EQIZ - @)J—;(Gelz(aen + )+ (2Gs,, +l€)e22)+ y (29)

L QUFIDATE o+ 3/1)Eai(aT(1+ en)-
r 7

—Qu+ 31)5%;—(0( T(%e,z - @)J +F =0

%a%(stzz +Xe)+ %(Gslz) + ?slz + %%[Gelz(%eu +,)+(2Ge,, + ks)ezz)j +
+%((2G£—:11 + ke)(%elz +m,)+ Gelzezz)] +% [(ZG&:“ + ke)(%elz +0,)+ Gelzezz)} “
+ %[G g,e, +(2Ge, + ks)(% e, — (03)} - %(Zu +3A)alEe, — .

Lowsmea+ ezz)i(ocT(l +ey))— (21 +37»)Ei((xT(lelz + w3)) +F,=0
r foL0) or 2

After the transformations, equilibrium equations (29), (30) will be formulated as follows:
%(ZGe‘“ +Ae)+ %%Gsn + %(ZGs11 + 1) —%(ZGs22 +Ae)+

J 1 10 1
+—£(2G811 +A8) e, +Gey(=e, — 0)3)] + f—(Gelze“ +(2Ge,, + Ae)(—e, — 0)3)) +
or 2 roQ 2

1 1 1 1

+;((ZG€11 +A8)e, + Gglz(ge12 - a)3)) - ;(Gﬂz(gelz +m,)+(2Ge,, + lg)en) + s (31

METLEDLZIon —e“)—(zﬂ+31)aEa—T—(2y+3,1)aE(T%+ena—T]—
r or or or

—2u+30)aE Tli(le12 - a)z)+(le12 —a)S)la—T +F =0
rop 2 ’ 2 r o
li(ZG»s22 +7L»3)+2(G£12)+Es12 +li(G£12(lelz +,) +(2Ge,, +k£)e22)]+
r dQ or r r 0@ 2
0 1 1 1
+$((2Gs11 + ks)(ge12 + o)+ Gelzezz)j + - [(ZG.C,11 + 7»5)(5e12 +o,)+ Gslzezz)}

ar (32)

£
—(2u+ 37\,)0(.E(lel2 + 0)3)8—T - l(2;1 + 3?»)0(ETaei —(Qu+ 37»)0(TEi(le12 +0,)+F,=0
2 o r FoL0) or 2

+1[Gslzell +(2Ge,, + 7\.8)(% e,— (o3)} - l(2;1 +3M)oTEe, — l(2;1 +3M)oE(l+e,,)
T r r

Equilibrium Equations (29), (30) or (31), (32) are formulated for the deformed scheme with
account taken of geometrical nonlinearity (19), (20) and physical linearity (27), (28) under the action
of forced deformations and volumetric forces.

2.5. Relations of Orders for Deformations

The classification of geometrically nonlinear solutions of elasticity theory problems was
proposed by V.V. Novozhilov [21,22,31] and is discussed in [23,24,27,28]. Let’s consider deformations
(19), (20) and equations of equilibrium (29), (30) depending on the orders of elastic body deformation
for the state of plane deformation by using the classification developed by V.V. Novozhilov [21,22].

Let's consider the following options:

Option I - elongations, shears, and rotations are small and small compared to unity,

Option II - elongations, shears, rotations are not small compared to unity.

Displacements in the zone of the angular cutout of the boundary are small and continuous.

According to [21,22,31], angles of rotations, elongations and shears enter into deformation
relations (19), (20) in the following ways:
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1) parameters e, , e,,, ¢, are linear,

2) products of parameters e, €,, €, €,, €1, €ns €, €,
3) square of the rotation parameter @; ,

4) products of parameters %2 @, €n @

Let’s consider option I.

Case A) — the value of rotation @, is small and of the same or higher order of smallness than

Case B) - values of deformation parameters ¢ ; are small and of the same or higher order of

smallness than squares of rotation @ .

Case A).
Let’s consider small parameters ¢; and small rotations @,, that are smaller than unity:

2 o b) . C ..
e; =o(e;), @ =o(w,) or w;<<e; Wetake values of the first order of smallness ¢ ; , @, asinitial

values.
The value of rotation @, is small and of the same or higher order of smallness than ¢, , so

; 0, =o(wy) =o(e;) .

ou 1ou, u
£,=¢,+o(e)=e, ==, &, =e,+o(e,)=ey, =——+—, (33)
or rdg r
ou, u, 10du
&, =&,=¢,to0(e,)=e, :3_1’2_72+;8_¢1)' (34)

For these orders of smallness of deformation values, in the absence of volumetric forces equations of
equilibrium (29), (30) are formulated as follows:

J 19 26 2u+34)E
7(2G€” +l€)+77(G8]2)+7(€H _‘922)+M0(T(622 —811)
: o r r (35)
_(2ﬂ+3ﬂ,)E§(0{T(1+e“))_M d

1
T(—e, — =0
. p a(p(a (2612 0)3)]

lai(ZG"?zz +ﬁ'€)+§(G812)+§€12 - (2ﬂ+3ﬂ)(ZTE &~
r (0 s r r

. (36)
2u+34)E 9 (1
—gﬁ((ﬁ(l +£,)) - (Qu+ 3,1)E$(ar(gglz + a)3)) =0

Taking into account linear deformations (33), (34), equations (35), (36)
will be formulated as follows:

d 190 2G 2U+30E
_(2Gen +Aley, +€22)+——(Gelz)+—(e” _622)+M05T(622 —e,)—
or r o 7 r 37)
9 2u+3A)E 9 1 ’
—(2/1+3/1)E5(0(T(1+e11))—uﬁ(oﬂ(ng —@)] -0
10 d 2G 2u+3A)aTE
;%(2Gezz +ﬂ(611 +ezz)+a_r(Gelz)+Telz _%elz -
(38)
20+3A)E 9 d 1
—%ﬁ(aﬁ(l tey)) —(2/1+31)E$[0(T(5e12 + w3)j -0

Case A1).
Let the temperature deformations a7'd, have the same order of smallness as ¢;; or a higher

order of smallness than ¢; , ie. aT¢; =o(g;), alTw, =o(®,), then equations (35), (36) are

reformulated as follows:

d 1
g(zGSH +l€)+;£

d 2G oT
(Gen)+7(en —ezz)—(2u+3z)aE§= 0, (39)

lai(2G€22 +ﬂ€)+; (G,912)+£512 _Qu3NeE oT 0

= (40)
radg r r r o

d0i:10.20944/preprints202307.0477.v1
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If deformations (33), (34) are taken into account, equations (39), (40) will be formulated as follows:
d 10 2G 0
g(ZGe11 + Ale, +e22))+;£(Gelz)+T(e” e,)— (2,u+3/1)E (OtT) 0, (41)

i aaq) (2Gey, + Ale, +ey,) + %(Gelz ) +§e12 _w%(aT) =0.
(42)

Case A2).

If the temperature in one area is constant and the other area is free of loads, then for Case A1) we

obtain the following homogeneous system of equations:

J 10 2G
g(ZGe11 + e, +ezz))+;£(Ge,2)+T(e” —e,)=0, (43)
10 0 2G
;%(ZG@Z + e, +ezz)+5(Gen)+Te12 =0. (44)

Case B).
Deformation parameters ¢;; are small and of the same order of smallness as @;: e, i~ @; , or

of a higher order of smallness than @ :¢,;, <<@; or ¢, =o0(c).

Deformation relations (19), (20) will be formulated as follows:

L5 PP >
& =ey +E(w3) 1€y =€y +E(w3) 1€y =8y =€y, E=6 ety (45)

In this case, equilibrium equations (31), (32) will be formulated as follows:

i(2(;(‘5'11 +l(1)32)+/1(e“ ey "'a);j-’-li(Gelz)"'MO{T@22 —a)-
or rog r (46)
—(2,u+3/1)E ((ZT(1+ 11)) Mi(dﬂlem—@)):o
r 09 2
10 1 0 2G
[2G(e22 +— @)+ e, +e, + @ )}+—(Ge12 )+—e, -
ro 2 or r 47)
Qu+3A)E 9 Qu+30elE | _
B — - ‘-

%(QT(1+622)) -

-
Case B1).
Let the temperature deformations a7, have the same order of smallness as @, , i.e., ol ~ @,
, then the value aT®, hasthe order @}, which should be taken into account. In this case equations

(46), (47) will be formulated as follows:

0 1 19
(2G(e11+2a) Y+ Ale, +e, +@; J %(Gelz)

” 2u+34)E 9 ' )
—(2/1+3/1)E 74 GHE3DE 9 orp)=0
r o
li[ZG(e22 +— ! @)+ e, +e, + @, )} J (Ge12)+£e]2 -
rog 2 or r (49)
_(2,u+3/1)Ei(aT) _0
r o

Case B2).

Let the temperature deformations 76, have a higher order of smallness than @, then
equations (48), (49) will be formulated as follows:

d

—(2G(e“ +la)32)+/1(e“ +e,, +w§j+li(Gelz)—(2y+3/l)EiaT =0. (50)
or 2 r o or

d0i:10.20944/preprints202307.0477.v1
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10 1 d 2G
__lizG(ezz +— wsz) + Z’(en tey, + w32):l+_(G612 ) t—ep—
rog 2 or r (51)
_(2,u+3/1)E i(OKT) -0
r oL

If the temperature in one area is constant, the other area is free of loads, then the following
homogeneous system of equations is obtained:

i(ZG(e“+la)32)+/1(e“+e22+cujj+l—a (Ge,)=0, (52)
r 2 r o

19 [ZG(e22 +l @)+ e, +e, +a)32)}+i(Ge]2)+—2G e, =0. (52)
rde 2 or r

Case C).
Displacements u,,u, in the area nearing the vertex of the angular area have a power form:

u =r"£(0), A€]0,0.5], the first derivatives of the displacement function along the radius are of

order r*! :%. The value of % increases for small radii » — 0. Thus, at 1€ (0,0.5) the
r r

value is %e {L,l}, and the square of the value is %ue {l,iz} , so the nonlinear part of the
r Jrr r rr

deformation relations, which takes into account the squares of deformations and rotations (19), (20)

at small radii is significant in value compared to the linear part of the deformation relations.

For such a neighbourhood, excluding the very vertex of the angular cutout of the boundary,
without taking into account the nonlinear part of the deformation relations, stresses and strains of
order 7, ie, O, &~ 7 f(@), Ae(0,0.5), are observed.

For such a neighbourhood, excluding the very vertex of the angular cutout of the boundary, we
assume the deformations and rotations to be of the same order of variation along the radius.
Deformations e, have a higher order of smallness than ¢/, : ¢, =o(e,), rotations @, are of the

A-1

same order as deformations ¢, ,ie. @~r"", @ =o(@’), with the radius being sufficiently small.

ij 7
Deformations (19), (20), taking into account relations ¢, = o(e’ ), 0= o(@’), will be formulated as

follows:

1 1 1 1
&y zEl:ezzz +(Eezl —603)2:|, & zEl:elzl +(Eelz +(03)2:|, (53)

1 1 1 1
En =6 = 811(5612 — ) +ey (Eelz +tw), € :E|:6121 +e§2 +Eelzz +2w32:|' (54)

Let the deformations and rotations be limited to the corresponding area of the angular cutout of
the boundary and have the same second order of variation, taken as the initial one. We disregard
values of the deformation parameters above the third order as those that are leading to a substantial
increase in the potential energy of deformation.

The first equation of general equilibrium (29) in the absence of volumetric forces:

%[(ZG‘E‘“ +Ae—(2u+34)aTE)(1 +e”)+(G¢»3]2)(%e12 —a)3)j+

+lai[(G€12)(1+€“)+(2G€22 +/1€—(2/1+3/1)05TE)(%e12 —ag)jJr
rog

(35)
+l((2G811 +Ae—Qu+3)alE)(1+¢,)+(Ge,) (%e12 - ag)) -
r

—%((Gslz )(%e12 +m,)+(2Ge,, +le—(2y+3ﬂ)aTE)(1+e22)) =0

is reformulated for the pre-set relations of deformation orders (53), (54) of case C in the form:
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d 10 1
5 (2Ge,, +l€)+:£(G512)+;2G(511 —-£,)

v
-QQu+ 3/1)E%aT(l +e,)—CQu+ 3/1)E%aa—(paT(%el2 -w)+. (56)

-l(zu+3A)aTE(1+e“)+l(2ﬂ+3/1)aTE(1+ezz) =0
r r

The second equation of equilibrium in the general form (30) in the absence of volumetric forces:
%%((qu )(%e12 +@,)+(2Ge, + Ae—(2u+30)oTE)(1+ ezz)j +
+§((2Ge11 +/le—(2/1+3/1)0(TE)(%e12 +m,)+(Ge, ) (1 +e22)j+
lr 1 &7
+—[(2G8” +Ae-Qu +3/’L)0{TE)(Ee12 + a)3)+(Gglz)(1+e22)j+
r

+l((G€lz)(1+e”)+(2G822 +ﬂ£—(2,u+3l)aTE)(%e]2 —a)z)) =0
r

after transformations for these relations of deformations order (53), (54) of case C will be formulated

as follows:

li(2G522 +A¢€) +i(G6‘12 ) +£812 —1(2;1 +3A)aTE e, —
rde or r r (58)

-Q2u +3/1)EliaT(1 +e,)—(2u +3/1)E105T(le12 +@,)=0
r g or 2

Please mind that the form of equilibrium equations (56), (58) for major deformations of the form (53),
(54) coincides with the form of equilibrium equations (35), (36) for minor deformations (33), (34), the
difference being determined by substituting the corresponding deformations (53), (54) or (33), (34).
Case C1)
Let the temperature deformations &7'd; have the same order of variation as ¢,

;@ . We take
the second order of variation of the deformation parameters as the initial one in the corresponding
neighbourhood of the vertex of the angular cutout of the boundary in case of sufficiently small radii:

ie, oTd; =o(e),al =o(e}) . Equations (56), (58) are reformulated as follows:

r

ai(st11 +A¢€) +li(Gg12 ) +lZG(g11 - 822)+l(2/1 +3A)aTE(e,, —¢,,)—
r o r r

0 10 1 ’ 9
—-Qu+3A)E—oTe,, —Qu+30)E——al(=e,—®,)=0

or rdop 2
li(2G‘s‘22 + /1"3)+1(G612)+£€12 —1(2,u+3/1)aTE e, —
roQ or r r (60)

—(2,u+3/1)EliaTe22) —(2,11+3/1)Eio(T(le12 +@,)=0
rog or 2

where ¢, are defined in the form (53), (54).

Further analysis is determined by comparing the orders of deformations, rotations with orders
of forced deformations, similar to that provided for cases A), B) of minor deformations. The physical
relations (27), (28) should be maintained.

3. Results

Equations of equilibrium, formulated according to the deformation scheme, were written in the
general form (2), (3), (4). Equations of equilibrium, formulated according to the deformed scheme in
generalized stresses and deformation parameters (13), (14) were obtained in the polar coordinate
system.

Equations of equilibrium in deformations (29), (30) are obtained under the action of forced
temperature-induced deformations and volumetric forces with account taken of geometric
nonlinearity (19), (20) and physical linearity (27), (28).
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The following options of deformation relations are considered:

Option I - elongations, shears, and rotations are small and small compared to unity,

Option II - elongations, shears, rotations are not small compared to unity.

For options I and 1I, various cases A), B), C) of the orders of values of deformations included in
the nonlinear deformation relations (19), (20), as well as forced deformations, are considered.

Equations of equilibrium (33), (34), or those taking the form (35), (36) were obtained for linear
deformations, rotations, and forced deformations that are small and small compared to unity.

For the case of small deformations (case A)), two option are considered. Case A1) - temperature
deformations a7, have the same order of smallness as parameters ¢ or a higher order of

smallness than e

., equations of equilibrium take the form as in (39), (40) or in (41), (42). In case A2)
temperature in one subarea is constant, another subarea is free from loads; hence, we obtain a
homogeneous system of equations (43), (44).

For large rotations (case B)) in the case of deformation relations (45), linear deformations, shifts

e, are small of the same order of smallness as 6032 , equations of equilibrium of the form (46), (47)

are obtained. In equations (46), (47), rotations @, can be either small or large.

For the case of B two options of large rotations are considered.
Case B1) - temperature deformations a7'0, have the same order of smallness as @, ,

equilibrium equations are obtained (48), (49). Case B2) - temperature deformations a7’ 5,.]. have a

higher order of smallness than @;, equilibrium equations will be the same as in (50), (51). If

temperature in one subarea is constant, and the other subarea is free from loading, then we have a
homogeneous system of equations (52), (53).

For the case of C — the case of large deformation and rotation parameters as in (53), (54); equations
of equilibrium (56), (58) are obtained.

For the case C1) - temperature deformations @75, have the same order of variation as

deformation parameters ¢;; and rotation @,, equilibrium equations (59), (60) were obtained.

Conclusion. Equations of equilibrium in a planar V-shaped area were obtained taking into
account geometrical nonlinearity and physical linearity under the action of free temperature
deformations. The approach to analyzing the type of equations of the plane problem of elasticity
theory in the polar coordinate system, presented in the paper, allows analyzing the relations of orders
of deformations, rotations, and forced deformations in terms of the type of equilibrium equations for
a uniform elastic body in the state of plane deformation.

4. Discussion

The formulation of the problem of the elasticity theory with regard to geometrical nonlinearity
is determined by the type of geometrical relations which depend on relations of orders of linear
deformations, shear, rotations, and pre-set forced deformations. In this case, the geometric relations,
as well as equations of equilibrium in generalized stresses, do not depend on the mechanical
properties of the continuous medium. The paper considers small, large deformations and analyzes
the relations of the orders of their values.

In the transition to equations of equilibrium in deformations and displacements, linear physical
Duhamel-Neumann relations are applied. Equilibrium equations are formulated according to the
deformed scheme for different ratios of orders of values of deformations. The scope application of
such geometric relations is substantiated by the results of the photo-elasticity experiment for a planar
domain with an angular cutout of the boundary.

In the general case of the elasticity problem, the area of application of nonlinear geometric
relations and physical relations should be adjusted by using the experimental data.

It is noteworthy that under these assumptions, the form of equilibrium equations for the
relations of orders of small and large deformations coincides; the difference consists in the
expressions of linear and nonlinear deformations substituted into the equilibrium equation according
to the deformed scheme. Therefore, the area of application of the corresponding deformation
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relations and physical relations is substantial, and it is determined by the mathematical model of the
continuous medium and the experimental data.

5. Conclusions

The considered approach to the analysis of equations of the elasticity theory problem enables
researchers to analyze the effect of relations of orders of deformations, rotations, and forced
deformations on the equilibrium equation in the polar coordinate system for the V-shaped area under
the action of forced temperature-induced deformations with regard for geometric nonlinearity and
physical linearity. The presented mathematical model of an elastic body is applicable to the numerical
analysis of a solution to the elasticity problem with regard to geometric nonlinearity under the action
of forced deformations.
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