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Abstract: Pericyte(s) (Pcs) and resident perivascular macrophages (rPVM®s) are positioned perfectly in the
neurovascular unit (NVU) and perivascular spaces to facilitate metainflammation that results in brain
endothelial cell activation and dysfunction and neuroinflammation. Their positions within the NVU allow
intimate contact with one another as follows: Brain endothelial cells (BECs) and the Pcs via their shared
basement membrane and physical contact peg-socket junctions with N cadherins and gap junctions Cx43; Pcs
and rPVM®s intimate contacts. Additionally, tIPVM®s have intimate contact with the astrocyte endfeet (ACef)
that form the outermost memb rane of perivascular spaces. Importantly, ACef have intimate contact with
BECs that have intimate physical contact with neuronal axons and dendrites to complete NVU coupling. The
multiplicity of itimate contacts of NVU cells allow for continuous crosstalk communications to provide brain
homeostasis. While each of the cells of the NVU play important roles in the development of enlarged
perivascular spaces (EPVS), this review focuses on the Pcs and rPVM®s and discusses each of the intimate
contacts and their functional significance in detail with numerous illustrations and transition electron
microscopic images to demonstrate their role in the development of EPVS. EPVS are known to be biomarkers
for cerebral small vessel disease and impaired glymphatic system waste clearance. Additionally, EPVS
associate with mixed dementias of vascular dementia, vascular contributions to cognitive impairment and
dementia, and Alzehimer’'s disease that results in high economic and psychosocial cost to the global
community.

Keywords: astrocytes; blood-brain barrier; enlarged perivascular spaces; glyphatic system; microglia; MRI;
pericytes; perivascular macrophages; perivascular spaces; small vessel disease

1. Introduction

Perivascular spaces (Virchow-Robin Spaces) and enlarged perivascular spaces (PVS/EPVS)
are fluid filled spaces that ensheath the precapillary arterioles and postcapillary venules [1-4].
Precapillary arterioles are known to deliver cerebrospinal fluid (CSF), while postcapillary venules are
known for their clearance of interstitial fluid (ISF) and metabolic waste (MW) from the interstitial
spaces (ISS) via the PVS that serve as a conduit for the glymphatic system (GS) that bathe the
parenchymal neurons (Figure 1) [5,6].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202307.0461.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2023 d0i:10.20944/preprints202307.0461.v1

Arachnoid

i Dura Venaus Sinus
-Space

Interstita
hid 15)
+uaste
material
WM out.

Figure 1. A collage of cerebrospinal fluid (CSF) bathing the brain, precapillary arterioles and postcapillary
venules and their perivascular spaces (PVS). Panel 1 illustrates the CSF being delivered from the
subarachnoid space (SAS) to the central nervous system (CNS) parenchymal neurons via the perivascular
spaces the ensheath the pia arteries and precapillary arterioles to the true capillaries where solutes and fluids
are delivered and then the postcapillary venules and veins to carry the interstitial fluid (ISF) and metabolic
waste to the SAS and CSF for disposal. Panel 2 depicts this similar finding with greater clarity and further
illustrates the arachnoid granules (AG) that drain the metabolic waste to the dural venous sinuse(s) (DVS) to
the dural lymphatics and systemic circulation. Notably, the cells that comprise the neurovascular unit are
depicted. Panel 3 depicts a longitudinal illustration of the true capillary that transitions to the postcapillary
venule with its perivascular space (PVS), which depicts a resident perivascular macrophage (rPVM®) (#) in the
upper illustration. The lower figures (a’ and b’) depict transmission electron micrograph(s) (TEM) in cross
section of the true capillary (a’) and a longitudinal TEM image (b") depicting a postvenule capillary with its
ensheathing PVS. Scale bars=0.5 ym in a’ and 2um in b’. Modified images provided by CC 4.0 [8]. AC=
astrocyte; @ = lymphocyte; ACef = astrocyte endfeet; BM = basement membrane; CL = capillary lumen; EC = brain
endothelial cell; ecGCx = endothelial glycocalyx; Pc = pericyte; Pcef = pericyte endfeet; RBC = red blood cell; WM = waste
material;.

PVS are considered enlarged (EPVS) when they are identified by T-2 weighted magnetic
resonance images (MRI) that are approximately 2 millimeter and typically measure between 1 and 3
millimeters in diameter [4,7]. EPVS have been recognized as important structural remodeling
changes in various neuropathologies and are currently known to a biomarker for cerebral small vessel
disease (SVD) and vascular dementia (VaD), which are known to be associated with lacunar stroke
in addition to white matter hyperintensities (WMH) [3,7-12]. Importantly, EPVS associate with
advancing  age, hypertension, lacunes,  microbleeds, intracerebral = hemorrhages,
cerebrocardiovascular diseases with transient ischemic episodes and stroke, SVD, cerebral autosomal
dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADISIL), cerebral
amyloid angiopathy (CAA), obesity, metabolic syndrome (MetS), type 2 diabetes mellitus (T2DM),
WMH, late-onset Alzheimer’s disease (LOAD), sporadic Parkinson’s disease, and non-age-related
multiple sclerosis [2—4,7-10,13-17]. Further, our global population is already one of the oldest in
history and is only expected to continue to increase [18]. Since it is known that EPVS assoicate with
aging it is felt that EPVS will continue to be more prevalent and is expected to grow in the coming
years [8,19]. Additionally, EPVS are related to extracranial atherosclersis, cerebromacrovascular,
and cerebomicrovascular disease in addition to age-related neurodegenerative diseases such as
LOAD and sporadic Parkinson’s disease. EPVS are located primarily in the basal ganglia (BG) and
the centrum semiovale (CS0); however, they have also been identified in the hippocampus, midbrain,
and the frontal cortex [4,9]. Notably, it has been determined that EPVS in the CSO may have a
greater association with amyloid beta pathology [20], and that EPVS of the BG are more indicative of
arteriolosclerosis, hypertensive arteriopathy, diabetes mellitus, hyperlipidaemia, prior stroke,
lacunes, deep microbleeds, and SVD [21-23]. Also, EPVS have been determined to be a marker for
an increased risk of cognitive deline and dementia independent of other small vessel disease markers
over a a four year period [24]. EPVS are known to exist in at least three major subtypes based on the
regions of their occurance as follows: Type I PVS/EPVS are located along lenticulostriate arteries
that enter the BG sometimes referred to as Etat criblé (a collection of multiple radiolucent 1-5 mm of
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EPVS frequently found in the BG in T-2 weighted MRIs); type II are present along the path of
perforating medullary arteries to enter cortical gray matter around high convexities that extend into
the white mater and are associated with CSO regions; type III are located in the midbrain and
surround the penetrating branches of the collicular and assory collicular arteries [25]. Recently,
Paradise et al, have shown that EPVS are a marker for an increased risk of cognitive decline and
dementia, independent of other small vessel disease markers [26]. Further, this group has also
suggested that EPVS should no longer be thought of as just an incidental finding associated with
aging but a biomarker for SVD and cognitive impairment, dementia, and a biomarker of impaired
waste clearance in the brain [26]. Multiple mechanisms are thougt to be involved in the
development of EPVS, which include the followiing: (1) increased fluid and neurotoxic proteins that
entrer the PVS due to BBB dysfunction/disruption due to increased permeability; (2) increased fluid
inflow to the PVS due to ACef dysfunction, detachment, separation and aquaporin-4 dysfunction
with decreased water uptake allowing the accumulation of water in the PVS; (3) stalling or
obstruction of the PVS conduit or impaired glyphatic efflux due to inflammation and the
accumulation of excess leukocytes with phagocytosis and accumulation of excessive phagocytic
debris, oxidative stress, and activation of increased MMPs, which result in stagnation, stalling, and/or
varying degrees of PVS conduit glymphic system obstruction of the waste removal mechanisms; (4)
arteriole or venule vascular stiffening and/or spiraling of arterioles that are associated with decreased
vascular pulsatility, which results in decreased fluid flow within the PVS contibuting to PVS
enlargement; (5) atrophy or loss of surrounding neurons and their axons [2,3,8-11,15,16,27].
Further, EPVS do not develop all at once but are thought to be associated with a sequence of events
and exist as an evolutionary spectrum such that they develop over time to result in SVD,

neuroinflammation, imEaired cognition and neurodeﬁeneration (Fiﬁure 2) [8,28].

Possible sequence of events that lead to SVD and the formation of EPVS, WMH, and Lacunes
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Figure 2. A possible sequence of events and a continuous spectrum for the development of enlarged
perivascular spaces (EPVS) over time. There exists a sequence of remodeling changes and events in the
development of enlarged perivascular spaces, white matter hyperintensities, lacunes and small vessel disease.
Image provided with permission by CC 4.0 [8,28]. ACfp = astrocyte endfeet; BBB = blood—brain barrier;
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BEC = brain endothelial cell; BEC act/dys = brain endothelial cell activation and dysfunction; BG = basal
ganglia; BM = basement membrane; CBF = cerebral blood flow; CSF = cerebrospinal fluid; CSO = centrum
semiovale; ISF = interstitial fluid; LOAD = late-onset Alzheimer’s disease; MGC = microglia cell;

mm = micrometer; MRI =magnetic resonance imaging; NO = nitric oxide; NVU = neurovascular unit;

PVS = perivascular spaces; spaces; SAS = subarachnoid space;TIA = transient ischemic attack. WMH = white matter
hyperintensities.

Obesiy, MetS, and T2DM are associated with EPVS and may contribute to accelerated brain
injury and aging due these findings [8]. Notably, the MetS is known to increase the risk for
developing cerebrocardiovascular disease with both macro-and microvascular disease;
arteriolosclerosis as well as T2DM [29]. The MetS has multiple risk factors and variables that would
contribute to EPVS and it is known that T2DM increases the risk for late-onset Alzheimer’s disease
(LOAD) as well as other neurodegenerative diseases including age-related Parkinson’s disease

(Figure 3) [29].
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Figure 3. Metabolic syndrome (MetS), cerebral small vessel disease (SVD) and perivascular spaces
(PVS)/enlarged perivascular spaces (EPVS). The central X has four arms consisting of hyperlipidemia (lower
left), hyperinsulinemia of insulin resistance (IR) (lower right), essential hypertension (upper right), and
hyperglycemia (upper left). It is currently known that EPVS are a biomarker of SVD, cognitive decline and
dementia, and possibly impaired glymphatic system waste removal. Visceral adipose tissue (VAT), increased
triglyceride/glucose index (TG index), and hypertension are known to associate with SVD. Each of these four
arms is either directly or indirectly associated with EPVS and SVD. Importantly, note that the triad of obesity,
MetS, and decreased bioavailable nitric oxide (NO) are also associated with capillary rarefaction.
Importantly, note how metainflammation produced primarily by visceral adipose tissue (VAT) contributes to
the development of HPA axis dysfunction due to neuroinflammation induced by the resident perivascular
macrophage (rPVM®) in the hypothalamic regions and cerebrocardiovascular disease (CCVD), SVD, TIA,
stroke, microbleeds, hemorrhages, and neurodegeneration (red arrows straight and dashed lines). This
modified image is provided with permission by CC 4.0 [8,29] AGE = advanced glycation end-
products; RAGE = receptor for AGE; AGE/RAGE = advanced glycation end-products and its receptor
interaction; BECact/dys = brain endothelial cell activation and dysfunction; eNOS = endothelial nitric oxide
synthase; FFA = free fatty acids—unsaturated long chain fatty acids; IGT = impaired glucose tolerance; LOAD = late-onset
Alzheimer’s disease; Oz *~ = superoxide; ROS = reactive oxygen species; RSI = reactive species
interactome; Sk = skeletal; T2DM = type 2 diabetes mellitus; TG Index = triglyceride/glucose index; TIA = transient
ischemia attack; VAT = visceral adipose tissue.

Javierre-Petit et al., has recently demonstrated that in addition to cerebral infarcts EPVS burden
was associated with diabetes independently of other neuropathologies in a cohort of 654 individuals
from a community-based older adults [30]. Capillary rarefaction (CR) in the brain (loss of
capillaries) has recently been found to be associated with an increase in obesity, MetS, and T2DM
[8,31-33]. Recently, Schulyatnikova and Hayden have hypothesized that capillary rarefaction may
leave an empty space within the PVS that is subsequently filled with interstitial fluid [8]. This loss

d0i:10.20944/preprints202307.0461.v1
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of capillaries within the PVS may allow for an increase in total percentage fluid volume within the
PVS when the capillary undergoes rarefaction and may contribute to the development of EPVS
(Figure 4) [8,34].

i) B . A .
B va} AWl e p| Precapillary
S e § == o <7|~ o)
Sy S [y - ; £ PIE'-m";.”
' Sl e AL (1)
(L Precapillary Arteriole ag il PostapilaryVende J{ €LY ), /1€ D
N X BT b R St ——— b
S s, 1 v TSNS
.a- Y AN , .
o pvs| | Arteriole Postcapillary
f'\.{" J Venule

BV T,

Clevvs \ S Mets i NVU cR

W U
Capillary Rarefaction: Increased
percentage volume of EPVS in MetS

\\ BBB disruption |/

"W Increased
\ permeability

B0 4
L) )

Figure 4. Cross and longitudinal sections representitive of pre- and postcapillary arterioles and venules with
an encompassing surrounding perivascular space (PVS). Panel A depicts a cross section of a capillary
surrounded by a PVS (solid double red arrows) and its increase in total volume to become an enlarged

perivascular space (EPVS) (dashed double red arrows), which represents capillary rarefaction. Panel B
demonstrates a control longitudinal capillary that runs through an encompassing PVS (light blue). Panel C
depicts capillary rarefaction in a longitudinal view and note how the volume of the PVS increases it total
volume once the capillary has undergone rarefaction (double red arrows). Panel D depicts the progression of
a normal precapillary arteriole and postcapillary venule PVS to an EPVS once the capillary has undergone
rarefaction allowing for an increase total percentage volume of the PVS (1.- 3.). Image provided with
permission by CC 4.0 [8,34]. ACef = astrocyte endfeet; AQP4 = aquaporin 4, BEC = brain endothelial cells;

BECact/dys = brain endothelial cell activation and dysfunction; CL =capillary lumen; EC = endothelial cell; IpsEVexos =

lipopolysaccharide extracellular vesicle exosomes; NVU = neurovascular unit; Pcef = pericyte endfeet.

CR is known to occur in multiple clinical situations, including: aging, hypertension, obesity,
MetS, T2DM, SVD, and LOAD. Also, there are multiple proposed mechanisms that may co-occur to
result in CR, including: oxidative — redox stress, inflammation, BECact/dys and loss, Pc dysfunction
and loss, impaired angiogenesis (increased ratio of antiangiogenic factors/proangiogenic factors),
microvessel ischemia with emboli or hemorrhage, decreased microvessel shear stress, increased
microvessel tortuosity, and in some cases increased transforming growth factor beta [34,35]. While
this mechanistic hypothesis for possible expansion of PVS due to CR is plausable, more research will
be required for it to gain support as a mechanism for increased EPVS.

Pericyte(s) and brain endothelial cell(s) (BECs) are the two mural cells that are essential to
form the multicellular neurovascular unit (NVU) consisting of BECs, Pcs, astrocytes and their
endfeet (ACef), perivascular microglia cell(s) (PVMGCs) and resident perivascular macrophages
(rPVM®s), and neurons [36]. Pcs extend there elongated pericyte foot processes (Pcfp) that
encircle BECs and communicate via physical contact peg sockets and gap junctions connexins. They
are uniquely positioned wihtin the NVU and make phyical and intimate connections with BECs,
ACef, and resident perivascular macrophages (rPVM®s) [3,36]. Pcs are multifunctional and known
to process signaling, integrate and corrdinate signals from BECs, rPVM®s, and neurons to complete
the NVU and provide for NVU coupling to assist in increasing cerebral blood flow (CBF) in regions
of increased neural activity, and signaling [36,37]. Pcs also generate multiple functional responses
critical for central nervious system functions in both health and disease. These functions include the


https://doi.org/10.20944/preprints202307.0461.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2023 d0i:10.20944/preprints202307.0461.v1

regulation and maintenance of the blood brain barrier (BBB), BBB permeability, angiogenesis, NVU
capillary hemodynamic responses, and clearance of metabolic waste including neurotoxins,
hemodynamic responses including NVU coupling via ACef that connect to neurons and control
microvascular cerebral blood flow (CBF) via NVU coupling, and importantly neuroinflammation
[37,38]. Notably, Pcs have been thought to act as pleuripotent mesenchymal stem cells and are
capable of lifting from the NVU niche and migrating to regions of CNS injury [37]. The unique
structural localization of Pcs and their foot processes that are intersperced or sandwiched between
the BEC BMs of the NVU and ACef and the PVS and its outemost ACef place them in pivotal position
to regulate the inflammatory responses of the CNS in the immediate region of the NVU PVS in
addition to the CNS neuronal parenchyma [39,40].

rPVM®s reside within the PVS and are similar to the CNS microglial cells (MGCs), in that,
both are derived from the yolk sack (Figures 1 Panel 3, 5) [41,42].
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" Wy
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i

Figure 5. Enlarged perivascular space (EPVS) and resident-reactive perivascular macrophage (rPVM®s) in a
postcapillary venule compared to a true capillary. Panel A demonstrates a normal true capillary in a 20-week-
old female C57B6/J control model and note how the ACef tightly abut the shared basement membrane of the
brain endothelial cell (BEC) and pericyte foot process (PcP). Panel B depicts an EPVS with a prominent
rPVM® (pseudo-colored red) in a 20-week-old lipopolysaccharide (LPS)-treated CD-1male model and note
how the astrocyte endfeet-foot processes (ACfp) are markedly separated from the capillary mural cells (BEC
and Pc) (red double arrows). Panel C depicts the rPVM®s in intimate contact with the Pcfps basal lamina and
the rPVM® intimate contact with basal lamina of the ACef (outermost boundary of the EPVS abluminal lining)
(dashed blue circles). Modified images provided with permission by CC 4.0 [28]. AQP4 = aquaporin 4; Lys =
lysosomes; Mt = mitochondria; N = nucleus; NVU = neurovascular unit; V =vacuoles; ves = vesicles.

TEM images have consistently shown that rPVM®s are located within the PVS between the
luminal mural cells and the outermost basal lamina of the ACef or glial limitans and the brain
parenchyma as depicted in Figure 5B [42—44]. As one reviews the literature on rPVM®, the term
border-associated macrophages (BAMs) is frequently discussed and these BAMs are now thought to
be rPVM® since they have been shown to reside within the PVS by TEM studies [42—44]. rPVM®s
are known to facilitate BBB integrity, promote glymphatic drainage, and exert immune function such
as phagocytosis and serve as antigen presenting cells within the PVS to facilitate neuroinflammation
once it is initated since they are key components of the PVS and CNS-resident immune system [41].

2. The PVS as an Anatomical Crossroads and Spaces that Provide Multicellular Crosstalk to
Facilitate the Development of EPVS

Neurological disorders and diseases are known to have heterogenous pathogenesis, with
multiple overlapping contributions of vascular, immune, and neuronal mechanisms of brain injury.
PVS/EPVS in the brain represent a crossroad intersection where those mechanisms interact [16], in


https://doi.org/10.20944/preprints202307.0461.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 July 2023 d0i:10.20944/preprints202307.0461.v1

addition to providing a conduit for the key anatomical component of the glymphatic pathway/system
(GS) [5], which plays a crucial role in waste clearance of interstitial fluid that has been shown to be
linked to neurodegenerative disease [16]. This neuroinflammation occurs initially in the PVS that
has become enlarged (EPVS) due to the obstruction of the PVS/glymphatic system due to the
accumulation of cells and cellular debris due to excessive neuroinflammation that occurs within the
PVS of precapillary arterioles and postcapillary venules. These PVS provide for the inflammation
that occurs due to the extensive crosstalk between BECs that are activated and dysfunctional
(BECact/dys) via peripheral metainflammation associated with obesity, MetS, and T2DM. These
activated BECs undergo extensive crosstalk with adjacent Pcs that are in direct physical cell-cell
contact via peg sockets, gap junction Cx43, and N-Cadherins. In turn, Pcs undergo extensive
crosstalk communication with the PVS rPVM®s, which undergo extensive crosstalk with incoming
leukocytes due to chronic metainflammation peripheral inflammatory leukocyte cells that are passed
into the PVS to travel throughout the CNS. These incoming leukocytes provide the oxidative stress
and phagocytosis that activate MMP 2-9 that are capable of degrading the outer boundary of the
perivascular space glia limitans to allow these perivascular leukocytes to enter the CNS interstitial
spaces (ISSs) to affect local, regional, and generalized neurons to instigate impaired cognition and
neurodegeneration due to CNS neuroinflammation. Thus, the PVS and their subsequent
enlargement act as the crossroad for extensive crosstalk communication between activated BECs, Pcs,
rPVM®s, incoming leukocytes, and ACef to allow leukocytes to pass into the interstitium to result in
CNS neuroinflammation (Figure 6) [16,45].

True capillary

|"'

AN o B W IO 3, Neuronal system
: . & .
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Figure 6. The perivascular spaces/enlarged perivascular spaces (PVS/EPVS) serve as an anatomical crossroads
or intersection for the vascular, neuroinflammatory, and neuronal systems. These three systems interact and
allow for multiple cellular signaling crosstalk communication associated with the metainflammation of
obesity, metabolic syndrome (MetS), and type 2 diabetes mellitus (T2DM) to result in impaired cognition and
neurodegeneration. Panel A demonstrates the normal appearing PVS in control models with the green
background. Note the highway PVS crossroad icon in lower left panel from which this figure was
constructed. Panel B depicts the EPVS with its resident reactive perivascular macrophage (rPVM®) and
leukocytes (neutrophils, monocytes, and lymphocytes) that have undergone diapedisis via paracellular or
transcytotic routes via the activated BECs to enter the EPVS and comprise step 1 of the 2-step process of
leukocytes entering the neuropil interstitial space (ISS). These leukocytes not only undergo cellular crosstalk
with the activated BECs but also crosstalk with one another as well as the resident perivasclar macrophage
(rPVM®) within the PVS/EPVS, the pericyte (Pc), and the astrocyte endfeet (ACef) to result in EPVS, impaired
cognition, and neurodegeration. It is important to note that both the Pc and the rPVM® are known to be
antigen presenting cell(s) (APCs). Additionally, the reactive leukocytes are capable of generating a hugh
amount of reactive oxygen species - oxidative stress and secreation of matrix metalloproteinases 2, 9 that are
capable of degrading the outermost boundary of the PVS/EPVS ACef basal lamina or glia limitans to allow for
the second-step for leukocyte entry into the neuropil interstitial spaces to result in neuroinflammaton and
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subsequent neurodegeration. The PVS/EPVS anatomical crossroad along with its multple celluar crosstalk can
therefore result in a self-perpetration or vicious cycle of brain injury and response to injury wound healthing to
result in neuroiflammation and neurodegeneration with impaired cognition. Additonally, it is important to
note that the PVS forms the conduit for the glymphatic sytem to deliver metabolic waste and toxins from the
interstitial fluid and as the neuroinflammation within the PVS/EPVS. The increased neuroinflammation that
occurs within the PVS/EPVS will develop considerable metabolic waste debris that will slow and cause
delayed efflux to the cerebrospinal fluid to result in further dilation of the PVS/EPVS. BBB = blood-brain
barrier; BECact/dys = brain endothelial cell activation/dysfunction; CL = capillary lumen; EC = brain endothelial cells;
EPVS = enlarged perivascular space; Pc = pericytes; PVS = perivascular space; rPVM® = resident reactive perivascular
macrophage(s).

Thus, the vascular, neuroimmune, and neuronal systems can develop a pathological interplay,
which can create a conducive environment capable of promoting a self-perpetration of brain injury
mechanisms across different neurological regions of the CNS and neurological diseases, including
those that are primarily thought of as neurodegenerative, neuroinflammatory or cerebrovascular
diseases [16].

The PVS/EPVS provide a safe sanctuary space region to harbor the incoming
proinflammatory leukocytes due to the NVU BBB disruption with increased permeability due to
obesity, MetS, and T2DM as well as other possible clinical diseases. There is plenty of incoming
proteinacous waste material being taken up by the PVS. The PVS acts as a conduit space of CNS GS
drainage that occurs between the ISF and the contents of postcapillary PVS efflux conduit for human
and rodent models CNS metabolic toxic waste removal that is now widely accepted in the literature
[5,8,34,46,47]. Thus, the postcapillary venule PVS serves as the anatomical conduit for the GS efflux
of metabolic waste [48]. The accumulated leukocytes that reside within the PVS storage santuary
will have plenty of opportunity to phagocytose this proteinacous waste debris to eventually result in
PVS neuroinflammation with stalling of PVS efflux waste removal of ISF flow even to the point of
PVS obstruction with downstream enlargement and EPVS [5,16,25,49,50]. Recently, Mendes et al.,
were able to show that in obese high-fat-diet fed mice (C57BL6) that this induced proinflammator
rPVM®s in the hypothalamus helps to explain the HPA axis dysfunction found in obesity, MetS, and
T2DM (Figures 3 and 7) [51].

TN &

cellular
crosstalk

Figure 7. Perivascular spaces (PVS) and enlarged PVS (EPVS) provide a sancuary space to serve as a crossroad
for multicelluar crosstalk between brain endothelial cell(s) (BECs), pericyte(s) (Pcs), resident perivascular
macrophage(s) ({tPVM®s), leukocytes, and astrocyte endfeet (ACef). Panel A demonstrates the neurovascular
unit (NVU) with its blood-brain barrier/interface (BBB), as a result of the BECs tight and adherens junction(s)
(TJ/AJs). The BECs and encircling Pc and it Pc foot processes (Pcfp) have a unique cell-cell direct physical
contact for cell-cell communicaton via its peg socket morphology and phenotype along with its N-Caderins
junctions and its gap junctions protein connexin 43 (Cx43). Panel B depicts the PVS with its cellular contents
of arPVM®. Importantly note that there are three close intimate cell-cell contact regions for cellular crosstalk
including 1. BEC/rPVM® (yellow boxed-in dashed lines); 2. Pc/rPVM® (red boxed-in dased lines; 3.
rPVM®/ACef (white boxed-in dashed lines). Thus, this figure identifies the Pc and it foot processes along
with the rPVM® as a key cell residing within the PVS/EPVS to provide for this extensive crosstalk
communication and that is why this panel B is pseudo-colored “golden”.
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2.1. Reactive Juxtavascular Microglia Cells (r[VMGCs), Neuroinflammation, and Enlarged Perivascular

Spaces (EPVS)

When neuroinflammation is discussed, the CNS resident immune microglia cell(s) (MGC)
most often comes to mind and is discussed extensively in the literature [52-56]; however, in this
narrative review the focus has been primarily on the rfPVM® that reside within the PVS by TEM
studies. This is not only because PVS and EPVS are important [2,8,57] but also because both MGCs
and PVM®s have been rapidly gaining interest over the past decade. For example, PubMed (NIH
National Library of Medicine) reference entries regarding MGCs have increased from 68/year in 2008
to 374/year in 2022 an increase 306/year. While PVM®s publications have increased from 17/year in
1980 to 160/year in 2022 an increase of 143 with an associated citation rate increasing from 46 in 1997
to a citation rate of 12,104 in 2020 [58]. Additionally, Xie et al., revealed that a bibliometric analysis
linked brain related diseases with rPVM®s and aslo pointed to the interest of reactive peripheral
macrophages in visceral adipose tissue and vascular diseases in obesity, MetS, and T2DM as current
hotspots in research [58]. Notably, CNS rJVMGCs could play a concurrent role along with rPVM®s
in PVS-induced neuroinflammation and enlargement [59]. For example, rJVMGCs are capable of
promoting NVU BBB disruption allowing the diapedesis of leukocytes into the PVS [60] and further,
neurotoxic insults are capable of inducing both rJVMGCs and reactive astrocytes (rACs) [61-63].
Also, rPVMGCs that lie outside of the PVS in the CNS parenchyma are known to be concurrently
associated with rACs when peripheral cytokines/chemokines are chronically increased as in
metainflammation associated with obesity, MetS, and T2DM [61-63].  Additionally, rACs and
rPVMGCs would be capable of increasing CNS-derived proinflammatory cytokines/chemokines as
well as reactive oxygen, nitrogen, sulfur species to result in an increased activity of the reactive
species interactome (RSI), which are known to increase the secretion of matrix metalloproteinases
(MMPs-2, 9) and contribute to BBB disruption [64,65]. These MMPs would be capable of
contributing to the degradation of the ACef basal lamina (glia limitans) to allow the breaching of the
PVS by proinflammatory leukocytes to complete the 2nd step of the 2 step process of CNS
neuroinflammation [45,59]. Notably, Zeng et al., recently demonstrated that EPVS severity was
associated with the progression of tauopathy in LOAD and that rMGCs neuroinflammation
mechanisms mediated this relationship of EPVS and tauopathy [66].

3. Conclusion

EPVS have been previosly noted for decades, but frequently overlooked and were initially
thought to be of uncertain pathophysiology [9]. However, EPVS are currently emerging as
important aberrent morphological findings in association with multiple clincial diseases and aging.
Some have even suggested that it is now uncontested that PVS play critical roles in not only
maintaining homeostasis but also priming neuroinflammation as illustrated in Figure 6 [67].

In this narritave review, the first paragraph of the introduction discusses the importance
and multiple structural and functional aspects of the PVS/EPVS; the second paragraph discusses the
role and the association of obesity, MetS, and T2DM in the development of EPVS; the third paragraph
discusses the key role of Pc cells in the development of EPVS; the fourth paragraph discusses the key
role that rPVM®s play in the development of EPVS. Section 2 discusses the importance of the PVS
and the EPVS as a regional antomical crossroads and spaces that provide for multicellular crosstalk
to facilite the development of EPVS as well as functioning as a repository space for leukocytes that
have undergone diapedesis across the NVU BBB due to BECact/dys. Importantly, the key role of the
rPVM® was explored in more depth as it relates to neuroinflammation and the development of EPVS
than in most of the other papers that have been reviewed. As our knowledge regarding the
development of EPVS continues to grow and we better understand how they are important in their
associated clinical disease states we will undoubtedly continue to make new findings regarding their
development and progression. For example, how might we be able to slow or prevent PVS
enlargemnt and how might EPVS associate with impaired glymphatic waste removal, impaired
cognition, neuroinflammation, and neurodegeneration?

While this narrative review parallels many of the referenced publications regarding
PVS/EPVS and their development, the author has utilized multiple TEM images and multiple
illustrations in order to aid in the understanding of not only structural remodeling but also the
functional changes associated with the development of EPVS. More research in this field is

d0i:10.20944/preprints202307.0461.v1
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necessary and it is obvious that this field is growing rapidly with many different hot spots being
explored along the way, especially in regards to the growing knowledge in the field of the glymphatic
pathway-system that is undergoing exponetntial growth.
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