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Abstract: This paper presents preliminary research that investigates the relationship between the

flow of a group of jazz musicians, quantified through multi-person pose synchronization, and their

collective emotions. Building upon previous studies that measured the physical synchronicity of

team members by tracking their body movements and measuring the difference in arm, leg, and head

movements, we introduce a novel metric termed "team entanglement". We employ facial expression

recognition to evaluate the musicians’ collective emotions. Through correlation and regression

analysis, we establish that higher levels of synchronized body and head movements correspond to

lower levels of disgust, anger, sadness and higher levels of joy among the musicians. Furthermore, we

utilize a Convolutional Neural Network (CNN) based deep learning model to predict the collective

emotions of the musicians. This model leverages 17 body synchrony keypoint vectors as features,

resulting in a training accuracy of 61.47% and a test accuracy of 66.17%.

Keywords: facial emotion recognition; collective behaviour analysis; multi-person pose

synchronization; convolutional neural networks; affective computing; pose estimation

1. Introduction

Emotion Recognition is an important area of research to enable effective human-computer

interaction [1]. Scientific research has led to applications of emotion recognition in tasks such as

examining the mental health of patients [2], safe driving of vehicles [3], and ensuring social security in

public places [4]. Collective emotions of a team refer to the shared emotional experiences and states

that emerge within a group of individuals working together towards a common goal. These emotions

are not just the sum of individual emotions but are experienced and felt collectively by the team as a

whole. Collective behavior and group dynamics identify the synchronous convergence of an effective

response across a group of individuals using data [5]. This multimodal data may consist of facial

configurations, textual sentiments [6], voice, granular data amassed from wearable devices [7], or

even neurological data obtained from brain-computer interfaces [8]. Analyzing collective behavior

aims to understand the emergent properties that arise from the interactions of individuals within a

group [9]. These emergent properties may include collective intelligence, decision-making processes,

flow, coordination, or conflict resolution [9]. The detection and analysis of emotions leveraging recent

developments in artificial intelligence have seen progressive advancements using multimodal datasets,

machine learning, and state-of-the-art deep learning models. Understanding collective behavior and

group dynamics is crucial for improving team performance [9]. By identifying factors that facilitate or

hinder effective responses across the group, interventions can be developed to enhance collaboration,

decision-making, and overall group performance [9].

Facial Emotion Recognition (FER) is a computer vision task aimed at identifying and categorizing

emotional expressions depicted on a human face [10]. The goal is to automate the process of

determining emotions in real-time, by analyzing the various features of a face such as eyebrows,
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eyes, and mouth, and mapping them to a set of basic emotions like anger, fear, surprise, disgust,

sadness, and happiness [10]. Recently, researchers have turned to explore emotions through body pose

and posture, emotional body language, and motion [11]. The recent improvements in human pose

estimation make pose-based recognition feasible and attractive [11]. Several recent studies propose

further improvements in conducting body language prediction from RGB videos with poses calculated

by OpenPose [12]. This study is also related to emotion recognition. Several previous studies propose

to detect psychological stresses with multi-modal contents and recognize effects with body movements

[13]. Unconsciously shared movement patterns can reveal interpersonal relationships: from the

similarity of their poses, reciprocal attitudes of individuals can be deduced [13]. Estimation of body

synchronization is relevant in a variety of fields like synchronized swimming [14], diving [15] and

group dancing [16] which can profit from an analysis of motion and pose similarity. Organizational

researchers focusing on leadership and team collaboration may be interested in studying human

interactions through synchronization effects [17]. Psychological and sociological research is studying

similar effects, too. For example, exploring the effect of body synchronization on social bonding

and social interaction [18,19]. Interest in body synchronization stems from the objective to transfer

inter-personal entanglement, a social network metric describing the relationship of individuals in their

community, to human body movement. Bodily entanglement is defined as an overarching concept

entailing the synchronization of bodies and their distance [20]. Entanglement as a social network metric

has been proven to be an indicator of team performance, employee turnover, individual performance,

and customer satisfaction [20]. The concept is based on earlier research that studied various forms of

human synchronization, emotional body language, and activities that lead to a state of connection and

flow between individuals [20].

Research on the estimation of body synchronization in a group of jazz musicians focuses on

understanding how musicians coordinate their movements and actions during a performance. At

the same time, we also look at how this is related to the overall flow, entanglement, and collective

emotional behavior of the group. Glowinski, D. et al. [21] explore the automatic classification of

emotional body movements in music performances using machine learning. Their study aims to

develop computational models that can recognize and classify the emotions expressed through

body movements. Participants performed musical tasks while their movements were analyzed

and used to train machine learning algorithms. The results demonstrate the potential of automated

systems to recognize affective body movements in music, with applications in affective computing

and human-computer interaction. However, research on predicting the collective emotions of teams

performing music using a quantified metric for body synchronization is lacking due to the limited

availability of reliable tools for multi-person pose synchronization [22]. Existing tools are error-prone

and tailored for specific purposes, hindering comprehensive studies [22]. Furthermore, there is a lack of

integrated research, both technically and conceptually, examining the intricate bodily entanglement and

flow of performing groups, such as jazz orchestras, to identify factors influencing group performance.

Motivated by the aforementioned research problems, we inspect ways of examining the relationship

between team entanglement and the collective emotions of a group of Jazz musicians.

We study the data from a two-hour jazz rehearsal session performed by an orchestra of 19

musicians who were part of the Jazzaar festival (www.jazzaar.com). Figure 1 depicts musicians playing

diverse instruments during the Jazzaar experiment. The chief contributions of the research presented

in this paper are:
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Figure 1. Orchestra of jazz musicians playing diverse musical instruments.

1. We developed a high-performing system for real-time estimation of multi-person pose

synchronization, detecting body synchronization across diverse visual inputs to calculate

synchronization metrics. It leverages Lightweight OpenPose for efficient pose estimation,

achieving a performance of 5-6 frames per second on a regular CPU. By analyzing pre-recorded

rehearsal videos of jazz musicians, we extract 17 body synchronization metrics, encompassing

arm, leg, and head movements. These metrics serve as features for our deep learning model. The

system incorporates a robust synchronization metric, enabling accurate detection across various

pose orientations.
2. To assess the relationship between facial emotions and team entanglement, we compute the

Pearson correlation between facial emotions and various body synchrony scores. Additionally,

we conduct a regression analysis over the time series data, using body synchrony scores as

predictors and facial emotions as dependent variables. This approach allows us to estimate the

impact of body synchrony on facial emotions, providing deeper insights into the connection

between team dynamics and emotional expressions.
3. We propose a machine learning pipeline to predict the collective emotions of Jazz musicians

using body synchrony scores to achieve accurate and interpretable results.

2. Related Work

2.1. Emotions

Psychologists have developed multiple frameworks to understand and classify human emotions.

When it comes to distinguishing one emotion from another, researchers take two different perspectives

[23]. The first perspective suggests that emotions are distinct and fundamentally different constructs.

The second perspective argues that emotions can be characterized along a continuum or dimension.

Paul Ekman, a renowned psychologist, is a key proponent of the former. He identifies six primary

emotions: anger, disgust, sadness, happiness, fear, and surprise. According to this theory, other

complex emotions can be derived from these fundamental emotions [24]. Another model known as

Plutchik’s wheel of emotions presents eight core emotions: joy, trust, fear, surprise, sadness, disgust,

anger, and anticipation [25].

The Circumplex model, following the continuum model, was developed by James Russell [26]. It

presents a dimensional perspective on emotions. According to this model, emotions are organized in a

circular space that encompasses two dimensions: arousal and valence. Arousal is represented along

the vertical axis, while valence is depicted along the horizontal axis. The center of the circle represents

a state of neutral valence and moderate arousal. Within this model, emotional states can be positioned
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at various levels of valence and arousal, or at a neutral level for one or both of these dimensions. The

Circumplex model is commonly utilized to examine emotional responses to stimuli such as words that

evoke emotions or facial expressions conveying emotions.

Emotions are commonly expressed through various modes, including language, voice or tone

of speaking, physiology, and facial expressions [27]. Extensive research supports the notion that

both speech data and facial expressions serve as strong indicators for accurately predicting emotions

[28]. Additionally, physiological changes in the body can serve as important indicators of emotions.

They emphasize the significance of physiological cues, such as heart rate, skin conductance, and

hormonal responses, in assessing and understanding emotional experiences [29]. These physiological

changes provide valuable information about an individual’s emotional arousal and can contribute to a

comprehensive understanding of their emotional state. By considering a combination of language,

voice, physiology, and facial expressions, researchers can gain deeper insights into the complex and

multi-faceted nature of human emotions.

2.2. Facial Emotion Recognition (FER)

Emotion recognition models have extensively utilized traditional machine learning algorithms.

Researchers such as Mehta, D. et al. [30] employed Support Vector Machine (SVM), K-Nearest

Neighbours (KNN), and Random Forest (RF) algorithms to achieve intensity estimation and emotion

classification. Happy, S. et al. [31] implemented a facial emotion classification algorithm that combined

a Haar classifier for face detection with Local Binary Patterns (LBP) histograms of various block sizes

as feature vectors. These features were then classified using Principal Component Analysis (PCA)

to identify six basic human expressions. Geometric feature-based facial expression recognition was

explored by Ghimire, D. et al [32] who identified 52 facial points as features. These features were fed

into a multi-class AdaBoost and Support Vector Machine (SVM) system, achieving high recognition

accuracy. Advancements in emotion classification research have seen the integration of deep learning

techniques, including Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM),

a type of Recurrent Neural Network (RNN). Jung, H. et al. [33] proposed a deep learning approach

where one deep network extracted temporal appearance features from image sequences, while another

deep network focused on temporal geometry features from facial landmark points. Jain, D. et al. [34]

combined LSTM and CNN networks in a multi-angle optimal pattern-based deep learning method

to label facial expressions. In a different study, Kahou, S. et al. [35] discovered the superiority of a

hybrid CNN-RNN model over a standalone CNN for facial emotion recognition when leveraging

multiple deep neural networks for different data modalities. Bhave, A. et al. [36] construct a model

using XGBoost to predict the collective facial emotions of a group of Jazz musicians using electrical

signals generated by plants kept in the vicinity. Thus, the field of emotion classification has witnessed

the incorporation of advanced deep learning techniques, demonstrating their efficacy in capturing

nuanced emotional information from facial expressions. These approaches offer promising avenues

for improving the accuracy and complexity of emotion recognition models.

3. Methodology

3.1. Extracting FER Time Series Data

In this experimental study, we have utilized the face emotion recognition (FER) algorithm

developed by Page, P. et al. [37]. The real-time output of this algorithm is depicted in Figure 2,

showcasing its effectiveness. To achieve facial emotion recognition, we have employed the faceapi.js

JavaScript API (available at https://justadudewhohacks.github.io/face-api.js). This API, built on top

of the TensorFlowJS core API, enables face recognition directly within the web browser. The faceapi.js

API consists of two separate neural networks, one for face detection and another for face expression

and emotion recognition. During the experiment, the FER algorithm receives frozen frames per second

from the video window, capturing the feeds from all participants’ cameras. For each detected face,
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the model calculates the average probabilities for the current emotion every second. This process

involves assigning a probability between 0 and 1 to each recognized emotion, including neutral, happy,

sad, angry, fearful, disgusted, and surprised. For instance, a label like "angry (0.8)" indicates that

the particular face appears 80% angry and has a 20% likelihood of being annoyed or disgusted, as

predicted by the model.

Figure 2. Output of the real-time group face emotion recognition (FER) algorithm.

To determine the overall audience emotion score, we calculate the mean face emotion value

from all the detected faces. This approach allows us to obtain a comprehensive understanding of the

collective emotional state of the audience. By leveraging the FER algorithm and faceapi.js, we are able

to analyze facial expressions in real time, assigning probabilities to various emotions and deriving

an aggregate measure of audience emotion. This detailed assessment facilitates a deeper exploration

of the emotional dynamics within the audience and enhances our understanding of their emotional

responses.

3.2. Team Entanglement

Entanglement is a metric that measures the synchronization of communication in work settings.

It focuses on the similarity of communication patterns among team members, indicating the extent to

which they communicate in a synchronized rhythm. The research on entanglement is motivated by the

discovery that synchronized physiological signals between team members can enhance performance,

as well as the concept of flow state, where intentions are synchronized and actions are harmonious

[38,39]. In the organizational context, entanglement quantifies the flow state and synchronization in

team communication, considering the internet-mediated interpersonal synchronization [40]. It uses

the similarity of communication time series, such as emails, as a proxy for synchronization, while also

considering the distance between individuals involved in the activity.

Gloor, P. et al. [20] suggest the study of entanglement via body measures. The two overarching

components of bodily entanglement are synchronization and distance. Entanglement describes the

synchronization of communication but also compares the distance of actors’ network positions to

derive information on their interweaving. Synchronization itself is measured in terms of the difference

between variables describing actor behavior. Distance defines the difference of the actors’ positions in

the network. As synchronization is measured through the difference in a certain behavior of actors, a

mapping to the human body is proposed by comparing the postures of individuals via a pose similarity

metric. The distance measure, which compares the actors’ positions in the social network, is proposed

to be transferred by studying the difference in their physical positions in the room. Defining bodily

entanglement as a possible variation of entanglement, it can be composed of bodily synchronization
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and distance. Body entanglement is loosely defined as the set E of body part synchronization Sb and

body distance d,

E = {S, d} (1)

Gloor, P., et al. [20] explore the effect of entanglement on team performance in the context of social

networks. A hypothesis of the effect of bodily entanglement on team performance is derived. Figure 3

summarizes the research model and explains how this hypothesis is derived.

Figure 3. Effect of Bodily Entanglement on Team Performance – Research Model.

3.3. Real-Time Estimation of Multi-Person Pose Synchronization

We create a dedicated software measuring entanglement and body pose synchronization [22].

The software generates synchronization values for 17 keypoint vectors between various body parts

as visualized in Figure 4 and listed in Table 1. The software is a real-time multi-person pose

synchronization estimation system, designed to be user-friendly, intuitive, and fast in execution. To

address the limitations of previous synchronization measures and encompass a broader understanding

of synchronization, four different types of synchronization metrics are made available in this software.

Table 1. Keypoint Vectors of Multi-Person Body Synchronization.

Body Part Keypoint Vector

Right Shoulder Section neck → r_sho
Left Shoulder Section neck → l_sho

Right Upper Arm r_sho → r_elb
Right Lower Arm r_elb → r_wri
Left Upper Arm l_sho → l_elb
Left Lower Arm l_elb → l_wri

Right Upper Bodyline neck → r_hip
Right Upper Leg r_hip → r_knee
Right Lower Leg r_knee → r_ank

Left Upper Bodyline neck → l_hip
Left Upper Leg l_hip → l_knee
Left Lower Leg l_knee → l_ank

Neck Section neck → nose
Right Nose to Eye Section nose → r_eye
Right Eye to Ear Section r_eye → r_ear
Left Nose to Eye Section nose → l_eye
Left Eye to Ear Section l_eye → l_ear
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Figure 4. Keypoints of Lightweight OpenPose.

These metrics aim to incorporate perpendicular body part differences into the synchronization

score and provide the option to compare opposite body sides, considering mirroring as a form of

synchronization. The system’s implementation adheres to the designed framework and employs an

analysis pipeline for each input frame. This pipeline includes pose estimation, derivation of pose

synchronization, body distance, and body height for the current frame. At the end of the system run,

tabular and visual output is generated and provided to the user.

During the implementation process, Lightweight OpenPose as efficient pose estimation model is

used. The system achieves an average frame rate of 5.5 fps on a Mac M1 8-core CPU. It incorporates four

synchronization metrics and offers two different output formats. The design of the system is visualized

in Figure 5. The exemplary visual output generated by the software for an input of recorded videos of

jazz rehearsal is shown in Figure 6. We further describe the three major components implemented in

the system.
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Figure 5. System components.

Figure 6. Exemplary visual output generated by the multi-person pose synchronization software.

3.3.1. Pose Estimation

In this system, pose synchronization analysis relies on pose estimation, which is the derivation

of body poses from the input image. For this purpose, Lightweight OpenPose which runs inference

with 28 frames per second on a device with CPU access is chosen. Pose estimation involves localizing

individual body joints to represent the pose using keypoints. Out of the two types of pose estimation
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approaches: single-person and multi-person, a multi-person pose estimation method is suitably chosen.

Multi-person pose estimation can be categorized as the top-down or bottom-up approach [41]. In

this application, a bottom-up approach is implemented since it is advantageous owing to its runtime

increasing gradually with the number of people in the input. This is crucial as a top-down approach

with a proportionally increasing computational complexity would hinder real-time analysis. The pose

estimation model is capable of inferring poses at a frame rate of several frames per second to fulfill the

real-time requirements.

3.3.2. Synchronization Calculation

The system provides two types of mapping - linear and perpendicular. In the perpendicular

approach, a 90-degree angle between body part vectors indicates a complete absence of synchronization,

while angles approaching zero degrees indicate an improvement in synchronization. Angles nearing

180 degrees also signify an enhancement in synchronization. In contrast, a linear synchronization

variant interprets an angle of 180 degrees as a complete lack of synchronization, with synchronization

improving as the angle approaches zero degrees. The system encompasses four synchronization

metrics as demonstrated in Figure 7 that are defined based on two key axes: the point of minimal

synchronization: 90° angle or 180° angle and the body parts being compared: same-side or

opposite-side as shown in Figure 8. The first axis focuses on how the angle between body part

vectors is translated into a synchronization score, where the score can be zero at either a vector angle

of 90° or 180°. The second axis distinguishes synchronization based on whether it considers same-side

body parts or opposite-side body parts. This classification allows the system user to choose the most

suitable metric for their specific use case, ensuring flexibility and adaptability.

Figure 7. Dimensions and Variants of Synchronization.
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Figure 8. Same-side and opposite-side synchronization option.

3.3.3. Distance

The pose distance in the system is determined by using the hip centers of the poses as reference

points. The hip center would be the center between the two key points L-Hip and R-Hip as shown in

Figure 4. This approach yields a more stable time series compared to using reference points located on

the limbs, which tend to exhibit higher degrees of movement. By calculating the Euclidean distance

between the hip centers and multiplying it by the normalization factor ’H’ which is the sum of

pose-independent body heights ’h’, we obtain the distance between poses.

3.4. Data Extraction & Pre-Processing

The raw dataset of facial emotions comprises time series data for all seven emotions, namely

angry, sad, disgusted, neutral, happy, surprised, and fearful. Each emotion is represented as a probability

score ranging from 0 to 1, reflecting the likelihood of that emotion being expressed collectively at

each second. For instance, a single data point in the dataset might indicate the following emotion

probabilities: angry = 0.674142, happy = 0.152293, sad = 0.118742, neutral = 0.027505, disgusted = 0.007242,

surprised = 0.019037, and fearful = 0.001040. In this example, angry has the highest probability, indicating

that the dominant collective emotion for that specific moment would be labeled as angry. To obtain

the Y-column of our dataset, we further ascertain the dominant collective emotion for each data point

and assign a label accordingly. For our data, we observe that the Y column consists of the labels happy,

sad and angry since these are the dominant collective emotions. To extract the group synchronization

features, we employ the software discussed in Section 3.3, which provides us with a comprehensive

set of 17 body synchrony metrics. Within this software, we are offered a selection among four distinct

synchronization metrics. Among these options, we opt for the perpendicular variant, as it is purported

to offer superior outcomes compared to the linear variant. Given the context of our analysis, wherein

all the musicians are oriented towards the audience during their performance, it is worth noting that

the notion of opposite side synchronization would only hold significance if two individuals were

engaged in a face-to-face interaction, such as a conversation. Thus, the same-side variant emerges as

the most suitable for our purpose. The body synchrony scores include keypoint vectors represented as

values per second, constitute the ’X’ component of our dataset. After data cleaning and feature scaling,

an imbalance is observed in the classes present in the ’Y’ column. The original data comprises 54%

happy, 42% sad, and 4% angry samples. To address this bias, we utilize SMOTE (Synthetic Minority

Oversampling Technique) [40] to generate synthetic samples, resulting in a balanced dataset with each

label representing 33.3% of the samples. We use cubic spline interpolation to smoothen the short-term

data inconsistencies and display long-term trends in the dataset. Additionally, we employ Stratified

K-Fold Cross Validation (K=3) to obtain train and test data splits, which aids in preventing overfitting

and fostering the development of a generalized model.
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4. Results

4.1. Correlation Analysis

We carry out a correlation analysis using the Pearson correlation coefficient comparing facial

emotions and body synchrony scores. We observe an overall negative correlation between the facial

emotions of disgust, surprise, anger, fear, and sadness and the body synchrony scores. The value of N

for these correlations is 7948. In section 5, we further discuss and interpret the correlations showcased

in Figure 9.

Figure 9. Diagonal correlation heatmap of body synchrony scores and the collective emotions of

disgust, surprise, sadness, anger and fear.

4.2. Regression Analysis

We perform a regression analysis on the independent variables of the body synchrony metrics

(keypoint vector scores) and the dependent variables (collective facial emotions). Using SPSS, we

choose the dependent variable as the disgust emotion and the predictors as 17 body synchrony scores

and achieve an adjusted R squared value of 0.584. The value of N for this regression analysis is 6941.

Table 2 exhibits the results of the regression analysis.

4.3. Deep Learning Model

The collective facial emotions of Jazz musicians are predicted by utilizing body synchrony features

extracted from the entanglement software. To achieve this, a Fully Connected Network incorporating

1-d Convolutional Neural Network and Dense Layer is employed for a multi-class classification task. 1-D

CNN applies a set of learnable filters (also known as kernels) to the input features. Each filter performs

a convolution operation by sliding over the input and calculating dot products between the filter

and the local input patches. This process helps in capturing local patterns and features. We build a

CNN-based deep learning model for predicting collective emotions using body synchrony scores. The

neural network architecture is as follows. The input layer consists of the 17 body synchrony scores.

The Convolutional Neural Network (CNN) comprises three 1-D Convolution layers with a kernel size of 3,

filter size of 32, 64, 64 respectively, and ReLU activation function. The layers are interleaved with Max

Pooling layers of size 2. The output of these layers is flattened and fed to Dense layers of 64, 32, and 3

units. The activation function used for Dense Layers is ReLU except for the last layer which employs

the Softmax Activation. We use Adam Optimizer (learning rate of 0.0001) and a batch size of 100 for the

dataset. The categorical cross-entropy loss is used for the multi-class classification. We notice saturation

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 July 2023                   doi:10.20944/preprints202307.0457.v1

https://doi.org/10.20944/preprints202307.0457.v1


12 of 16

during training at around 17 iterations; hence we fix the number of epochs to 20 and train the model on

an NVIDIA Tesla K80 GPU. We achieve a training accuracy of 61.467% and a test accuracy of 66.168%.

Figure 12 displays the decrease of train and test loss as we reach saturation within 20 epochs. Figure

10 depicts the train and test accuracy whereas Figure 11 demonstrates the confusion matrix for our

deep learning model.

Table 2. Regression Analysis - dependent variable = ’disgust’; R sq. adj = 0.584.

Figure 10. Train and test accuracy of our deep learning model
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Figure 11. Confusion matrix of our deep learning model.

Figure 12. Train and test loss of our deep learning model.

5. Discussion

We refer to Figure 9 for interpreting the results of our correlation analysis. For the collective

emotion of disgust, the r values of r_knee_to_r_ank (-0.51), l_hip_to_l_knee (-0.39), r_hip_to_r_knee (-0.35)

and l_knee_to_l_ank (-0.35) are particularly highly negative, indicating a negative correlation between

the leg movements of jazz musicians and the collective emotion of disgust. We also observe that

the neck_to_nose (-0.43) and l_eye_to_l_ear (-0.39) values are negatively correlated with the disgust

emotion. The movement we are looking at over here is the shaking of head. Apart from the movement

of the legs and head, we also look at the hand movements. The r values of r_elb_to_r_wri (-0.41),

l_elb_to_l_wri (-0.41), r_sho_to_r_elb (-0.36) and l_sho_to_l_elb (-0.41) reveal that the hand movements

of the jazz musicians are also highly negatively correlated with the emotion of disgust. All the above

correlations have a significance value (p) of less than 0.0001. We corroborate that the musicians

engaging in Jazz have reduced levels of disgust and strong feelings of liking and enjoyment and have

the potential to foster a state of synchronicity and flow, wherein they individually and collectively

experience a harmonious alignment in their thoughts, actions, and emotions. Correlation of the surprise

emotion is also observed to be negative having values of r_elb_to_r_wri (-0.44), r_knee_to_r_ank (-0.41),

neck_to_nose(-0.37), l_sho_to_r_elb(-0.36) and l_elb_to_l_wri(-0.36) with a significance value(p) of less

than 0.0001. This can be understood as an implication where being less surprised, having anticipation,

prior instrument practice, and being well-rehearsed can be directly connected to being in a state of flow

and synchronization. The musicians are more likely to be entangled when they collectively practice

more to attain perfect synchronization. Other correlations with emotions of sadness, anger and fear
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also prove to be negative implying that synchronization in head, arm, and leg movements among

musicians indicate strong team entanglement and a state of flow with the musicians feeling more

joyous.

6. Limitations

A key limitation of this work is that the evaluation is based on data from a relatively small group

of musicians. Furthermore, the accuracy of tools used for collecting facial emotions can cause our

model to be less precise. Synchronization estimation can also be improved by integrating multiple

camera views. This way, occlusion issues can be prevented and synchronization scores become more

robust. For the current data, we handled the occlusions by removing data points that had an obstructed

camera view as well as eliminating the snippets where the musicians were not seen to be playing

instruments explicitly.

7. Future Work & Conclusion

We presented a deep-learning approach for detecting group facial emotions leveraging body

synchrony scores as features extracted from real-time multi-person pose synchronization software.

We achieve a training and test accuracy of 61.467% and 66.168% respectively. We also were able

to draw conclusions about the correlations between the collective facial emotions of musicians and

the synchronisation between head, leg and arm movements. Future directions include predicting

human emotions using a larger dataset containing more musicians. We also envision implementing

state-of-the-art deep learning models and studying different modes of data for emotion recognition

like physiological signals or electrical signals generated by plants in the vicinity. This can help us

discover interesting relationships between body synchrony, multimodal data, collective emotionals

and group flow. We aim to build emotion recognition models that use multiple modes of data to yield

a higher accuracy while also preserving human privacy and safety.
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