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Abstract: Brain-computer interfaces (BCI) from electroencephalography (EEG) provide a practical approach

to support human-technology interaction. In particular, motor imagery (MI) is a widely-used BCI paradigm that

guides the mental trial of motor tasks without physical movement. Here, we present a deep learning methodology,

named Kernel-based Regularized EEGNet (KREEGNet), leveled on Centered Kernel Alignment and Gaussian

Functional Connectivity, explicitly designed for EEG-based MI classification. The approach proactively tackles

the challenge of intra-subject variability brought on by noisy EEG records and the lack of spatial interpretability

within end-to-end frameworks applied for MI classification. KREEGNet is a refinement of the widely accepted

EEGNet architecture, featuring an additional kernel-based layer for regularized Gaussian functional connectivity

estimation based on CKA. The superiority of KREEGNet is evidenced by our experimental results from binary

and multi-class MI classification databases, outperforming the baseline EEGNet and other state-of-the-art

methods. Further exploration of our model’s interpretability is conducted at individual and group levels, utilizing

classification performance measures and pruned functional connectivities. Our approach is a suitable alternative

for interpretable end-to-end EEG-BCI based on deep learning.

Keywords: brain computer interfaces; electroencephalography; motor imagery; regularizer; centered kernel

alignment; functional connectivity; deep learning

1. Introduction

Brain-Computer Interface (BCI) has emerged as a cutting-edge technology that directly connects the human

brain and external devices, bridging the ultimate frontier between humans and computers [1]. This breakthrough

technology has enabled people with neuromotor disorders, nervous system injuries, or limb amputations to

control machines using their brains, as no peripheral nerves or muscles are involved in the process [2]. Motor

Imagery (MI) is one of the essential branches of BCIs control paradigms, which allows users to control robots or

external machines merely by imagining movement without the intervention of peripheral nerves [3]. Regarding

this, BCI technology has significant potential in motor function rehabilitation [4], assistance [5], and other areas,

sparking extensive discussions on MI-based approaches [6].
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Acquiring brain activity is a critical aspect of MI-based BCIs, and multi-channel time series signals such as

EEG are commonly preferred due to their high time resolution, cost-effectiveness, and user-friendliness compared

to other neuroimaging methods [7]. Moreover, using multi-channel time series signals in MI tasks is essential as

it captures the activation of multiple brain regions, enabling a comprehensive understanding of complex neural

activity [8]. These signals facilitate exploring Functional Connectivity (FC) and coordinated patterns between

brain regions during MI while reducing noise and artifacts through redundancy and robust signal processing

techniques [9]. Nonetheless, the insufficient functioning of MI EEG-based BCIs can have severe consequences

for individuals relying on these devices. In fact, suboptimal performance can lead to frustration, inaccuracy, and

reduced functionality [10].

Hence, aiming to enhance effectiveness, it is necessary to prioritize transparency in BCIs. This can result in

improved operational efficiency and smoother integration of BCI technology into daily life, ultimately enriching

the quality of life for individuals with motor disabilities [11]. Still, the factors contributing to the limited

usefulness of MI tasks are complex and varied. Inter-subject variability is a noteworthy aspect that contributes

to poor performance. In this sense, the subject mental state, attention, and fatigue can also substantially

influence [12]. Also, the quality of electrical activity patterns generated by the brain plays a crucial role in

controlling external devices [13]. However, these patterns exhibit substantial variation among subjects, even

under identical stimuli or conditions [14]. Various factors, including gender, age, lifestyle, neurophysiological

and psychological parameters, genetic differences, and cognitive processes, contribute to this variability [15].

Such diversities in brain patterns result in performance fluctuations, impeding the development of reliable and

accurate BCIs [16].

Moreover, noise in EEG signals significantly contributes to this variability, obscuring underlying neural

activity [17]. Notably, noisy records can originate from diverse sources, such as electromagnetic interferences,

movement artifacts, individual skull thickness, and conductivity differences [18,19]. These unwanted signals

make it difficult to identify the neural activity patterns that drive BCI performance accurately. Additionally,

the need for interpretability in BCIs poses a critical challenge, hindering the identification of different patterns

between high-performing and low-performing subjects. The difficulty in interpreting MI EEG-based BCIs and

understanding their decision-making procedures complicates devising and enriching MI functionality [20].

In recent years, several methods have been proposed to enhance the performance of BCIs during the

preprocessing and feature extraction stages. The preprocessing methods aim to mitigate the impact of low

Signal-to-Noise Ratio (SNR) caused by environmental and physiological artifacts such as electrical noise, eye

and muscle movements, heart activity, and respiration [21]. Additionally, the preprocessing stage seeks to

tackle the low spatial resolution challenge caused by the volume conduction effect [22]. Also, artifacts in

EEG signals can be removed using regression-based techniques, which use linear approaches to remove the

noise [23]. Band-pass and notch filters can also eliminate electrical and environmental noise and frequency bands

where neurophysiological information is irrelevant [24]. Blind source separation techniques, such as Canonical

Correlation Analysis (CCA), Principal Component Analysis (PCA), and Independent Component Analysis

(ICA), are commonly used to decompose the contaminated EEG into statistically independent components to

remove or correct the artifact [25]. Of note, ICA is recognized for its success in eliminating various types of

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 July 2023                   doi:10.20944/preprints202307.0406.v1

https://doi.org/10.20944/preprints202307.0406.v1


3 of 24

artifacts [26]. Furthermore, different spatial filters have been proposed to overcome the volume conduction

issue, including the Common Average Reference (CAR) and the Surface Laplacian (SL). The CAR spatial filter

subtracts the average electrical activity measured across all sensors from each sensor to reduce the recorded

noise [27]. Nevertheless, it does not address sensor-specific noise and may introduce noise into an otherwise

clean sensor [28]. In contrast, SL aspires to remove the common brain activity of neighboring sensors due to

the volume conduction effect, which improves local topographical features, facilitates sensor-level connectivity

analysis, and helps to enhance the SNR [29]. Despite the effectiveness of these methods, applying them to all

subjects regardless of the individual noise level can be detrimental to subjects with clean EEG [30].

On the other hand, the feature extraction strategies seek to transform the raw EEG signals into relevant

brain patterns independent of subject-specific differences. This approach allows for identifying common patterns

across individuals, improving the generalizability of BCI systems. Feature extraction techniques can be broadly

categorized into time, time-frequency, and spatial approaches. In the time domain, amplitude modulation [31]

and time-domain analysis of variance [32] are widely used to extract features related to the amplitude and timing

of specific EEG components, providing insights into the underlying neural processes involved in MI. These

features enable the identification of significant differences between classes that can be used to classify the signals

effectively. In the time-frequency domain, wavelet transform [33] is a commonly used method that analyzes

the changes in the frequency content of the EEG signal over time. This method provides information about the

temporal dynamics of neural processes during MI, including evoked-related algorithms and intertrial coherence

to capture the temporal evolution during the MI task [34]. Common Spatial Patterns (CSP) and FCs are standard

methods for feature extraction in the spatial domain. CSP projects the EEG signals into a lower dimensional

space using a set of learned spatial filters that enhance the differences between MI classes [35]. FCs capture

the similarity between EEG channels, providing information on which brain regions interact when a subject

performs the MI task [36]. However, choosing the appropriate feature extraction method for the MI task is

challenging, as it demands considerable subject-matter expertise and prior knowledge about the anticipated EEG

signal [37]. Moreover, the specificity of the EEG signals’ preprocessing steps for the interesting feature could

exclude potentially relevant patterns from the analysis [38].

Nowadays, deep learning methods have emerged as a promising approach to overcoming the limitations of

traditional methods in addressing MI inter-subject variability by automating the preprocessing and extracting

relevant features from EEG signals within an end-to-end framework [39]. In particular, models such as EEGNet,

ShallowConvNet, DeepConvNet, Graph Convolution Neural Networks (GCN) [40,41], and EEG-transformer [42]

have great potential to tackle EEG-based MI challenges. EEGNet and ShallowConvNet utilize convolutional

layers to extract spatial and temporal patterns from EEG data. However, EEGNet may need help with capturing

long-range temporal dependencies [43], while ShallowConvNet may not be as effective as deeper architectures in

capturing complex patterns. DeepConvNet excels at capturing spatial and temporal patterns but requires much

training data to avoid overfitting [44]. GCNs capture spatial relationships between electrodes by aggregating

information from neighboring nodes in the graph. Nonetheless, they are sensitive to graph construction from

EEG signals [45]. Recently, transformer-based models like EEG-transformer have been adept at processing

variable-length sequences by employing a self-attention mechanism to capture dependencies between different
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segments. Nonetheless, these models come with higher computational costs are require large amounts of

samples [46].

Overall, deep learning can be prone to overfitting when they are too complex or the training data is noisy and

insufficient [47]. Diverse regularization techniques have been proposed to tackle this issue. For example, domain

adaptation aims to reduce variability across different subjects by learning a mapping between source and target

spaces [48]. Yet, it requires a substantial amount of labeled data from both domains [49]. Multi-task learning

leverages information from related tasks to improve the performance of individual tasks [50]. Nevertheless, it

assumes the availability of multiple related tasks, which may need to be more practical in specific scenarios [51].

Dropout and batch normalization are also helpful techniques that can reduce overfitting. The former randomly

drops out a fraction of neurons during training to enhance the model’s ability to learn robust features [52]. The

latter normalizes input features across subjects to enhance network stability and convergence [53]. However, both

techniques can increase computational requirements, and their performance can be sensitive to hyperparameters

tunning and noisy samples [54,55]. FC-based regularizers introduce a penalty term to obtain low-rank or sparse

connectivity matrices, reducing the impact of MI inter-subject variability [28]. Regardless, these regularizers

assume a smooth or sparse connectivity structure of the brain, which may not always hold in practice [56].

Here, we introduce a novel deep learning approach for EEG-based MI classification: Kernel-based

Regularized EEGNet (KREEGNet). Our approach addresses the challenges posed by intra-subject variability

in noisy EEG records and the lack of spatial interpretability in existing end-to-end frameworks used for MI

classification. KREEGNet enhances the well-established EEGNet architecture, incorporating a twofold approach:

i) a kernel-based layer for Gaussian functional connectivity estimation is coupled within the EEGNet architecture,

ii) a Centered Kernel Alignment (CKA) loss is associated with conventional Cross-Entropy measure for deep

learning classification to deal with noisy EEG records while preserving the spatial interpretability based on kernel

mappings. Through experimentation on binary and multi-class MI classification databases, we demonstrate the

superiority of KREEGNet over the baseline EEGNet and other state-of-the-art methods. Moreover, we explore the

interpretability of our model at both individual and group levels, employing classification performance measures

and pruned functional connectivities. Our findings highlight KREEGNet as a promising and interpretable deep

learning approach for EEG-based BCI systems.

The agenda is as follows: Section 2 describes the materials and methods. Sections 3 and 4 present the

experiments and discuss the results. Finally, Section 5 outlines the concluding remarks.

2. Materials and Methods

2.1. Centered Kernel Alignment Fundamentals

Let X ⊂ X , Y ⊂ Y be a pair of random variables holding samples x ∈ X and y ∈ Y, respectively. The

kernels κX : X ×X → R and κY : Y × Y → R can be defined to code nonlinear relationships among samples

from positive definite functions, yielding:
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κX(x, x′) = 〈φX(x), φX(x′)〉HX
, (1)

κY(y, y′) = 〈φY(y), φY(y
′)〉HY

, (2)

where φX : X → HX and φY : Y → HY, being HX and HY the resulting Reproducing Kernel Hilbert Spaces

(RKHS). Hence, the statistical alignment between κX and κY, ρCKA(X, Y) ∈ [0, 1], referred to as Centered

Kernel Alignment (CKA), is calculated by taking the normalized inner product between them and averaging it

across all pairs of realizations, as shown below [57,58]:

ρCKA(X, Y) =
EXY{κ̃X(x, x′)κ̃Y(y, y′)}√
EX{κ̃X(x, x′)}EY{κ̃Y(y, y′)}

, (3)

where x, x′ ∈ X and y, y′ ∈ Y, E{·} is the expectation operator, and κ̃Z stands for centered kernel aiming to

provide translation invariance, as follows:

κ̃Z(z, z′) = κZ(z, z′)−Ez

{
κZ(z, z′)

}
−Ez′

{
κZ(z, z′)

}
+Ezz′

{
κZ(z, z′)

}
, (4)

which is defined for a given Z ⊂ Z with samples z, z′ ∈ Z. In practical applications, when provided with a

set of input-output pairs {xn ∈ R
P, yn ∈ R

Q}N
n=1, we can compute the kernel matrices KX , KY ∈ R

N×N as:

KX [n, n′] = κX(xn, xn′) and KY[n, n′] = κY(yn, yn′). Utilizing Eqs. (3) and (4), we can calculate the empirical

estimate for the CKA alignment ρ̂CKA(KX , KY) ∈ [0, 1]:

ρ̂CKA(KX , KY) =
〈K̃X , K̃Y〉F√
‖K̃X‖F, ‖K̃Y‖F

, (5)

where ‖ · ‖F and 〈·, ·〉F are the Frobenius norm and inner product, respectively. Besides, the centered kernel

matrices in Eq. (5) are calculated as: K̃X = HKX H and K̃Y = HKY H, with H = I − 1
N 1

⊤
1 (I and 1 are the

identity matrix and the all-one vector of proper size, respectively). As a result, the alignment described in Eq. (5)

serves as a data-driven estimator, enabling us to quantify the similarity between the random variables X and Y.

2.2. Gaussian Functional Connectivity from EEG Records

Let us examine a collection of multi-channel EEG recordings referred to as {Xn ∈ R
C×T}N

n=1, where C

denotes the number of channels, T represents the samples within EEG recordings, and N the number of trials.

Next, let us consider two EEG channels of a given trial xc, xc′ ∈ X, with c, c′ ∈ {1, 2, . . . , C}, a pairwise

correlation between the EEG channels can be computed as:

ρ̂L(xc, xc′) =
1

T
〈xc, xc′〉2, (6)

where 〈·, ·〉2 stands for the inner product. The pairwise linear relationships in Eq. (6) allow computing functional

connections between EEG channels as an undirected graph representation.
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However, we can effectively capture the nonlinear interactions among various channels by operating a

generalized stationary kernel that transforms the input space into an RKHS. This approach enables us to obtain a

more precise depiction of the underlying neural activity. Moreover, employing a stationary kernel guarantees that

the proposed technique can effectively capture the temporal dynamics of EEG signals.

Given these considerations, the Gaussian kernel is widely preferred in pattern analysis and machine learning.

It can approximate any function and offers mathematically tractable properties [59]. Therefore, it is an excellent

choice for computing pairwise connections as a Gaussian-based Functional Connectivity (GFC) measure from

the kernel function κG : RT ×R
T → [0, 1], as [60]:

κG(xc − xc′ ; γ) = exp

(
−

1

2
γ‖xc − xc′‖

2
2

)
, (7)

where ‖·‖2 denotes the 2-norm operator and γ ∈ R
+ represents a scale parameter. The inclusion of a Gaussian

function in Eq. (7) facilitates the accurate and efficient calculation of the nonlinear interactions between xc and

xc′ .

2.3. KREEGNet: Kernel-Based Regularized EEG Network

Let us consider an input-output set consisting of multi-channel EEG records and labels denoted as {Xn ∈

R
C×T , yn ∈ {0, 1}Q}N

n=1. Here, yn gathers the target labels for MI tasks encoded using the one-hot encoding

(with Q classes being considered). Our Kernel-based Regularized EEG Network (KREEGNet), an enhanced

version of the well-known EEGNet [61], enables accurate prediction of the MI label ŷ ∈ [0, 1]Q for a given EEG

trial X. This prediction is accomplished through two primary blocks. Initially, the class membership prediction

is performed as follows:

ŷ = (ϕQ ◦ ϕT ◦ ϕC ◦ ϕF̆)(X), (8)

where notation ϕ(X̃) = ξϕ

(
Wϕ ⊗ X̃ + bϕ

)
stands for deep learning-based layer mapping, ◦ is the function

composition operator, ⊗ is the tensor product, e.g., convolutional or fully connected layer-based operations.

Besides, X̃ is a given network’s feature map of proper size, Wϕ, bϕ gather the weight matrix and bias vector of

the layer, and ξ(·) is a nonlinear activation function. Namely, each layer function in Eq. (8) is described as:

– ϕF̆ : R
C×T → R

F̆,C,T is a convolutional layer holding F̆ filters, a batch normalization, and a linear

activation.

– ϕC : RF̆×C×T → R
αF̆,C,

T
4 is a depthwise convolutional layer holding ELU activation (α gathers the

number of spatial filters), followed by an average pooling and a dropout operation.

– ϕT : RαF̆,C,
T
4 → R

F̆′ T
32 is a separable convolutional layer with ELU activation (F̆′ is the number of

pointwise filters), setting a batch normalization, an average pooling, and a dropout.

– ϕQ : RF̆′ T
32 → [0, 1]Q is a fully connected classification layer fixing a flatten operation and a softmax

activation.

In turn, a kernel-based regularizer is applied by properly computing the data-driven GFC:
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K† = (κ̃ ◦ ϕF̆)(X), (9)

where ϕF̆ is defined as in Eq. (8), κ̃ : RF̆,C,T → [0, 1]F̆,C,C extracts the GFC among EEG channels (see Eq. 7)

along each of the F̆ filters, and K† ∈ [0, 1]F̆,C,C.

Furthermore, the parameter set θ, stacking the weight matrices and bias vectors in Eq. (8), and the scale

parameter γ of the GFC in Eqs. (7) and (9), is optimized using a gradient descent-based framework with

back-propagation [62]:

θ∗ = arg min
θ

(1 − λ)

N

N

∑
n=1

CE(yn, ŷn(θ))−
λ

F̆

F̆

∑
f=1

ρ̂CKA(K̆ f (θ), Kδ), (10)

where λ ∈ [0, 1] is a trade-off hyperparameter and CE(·, ·) stands for the cross-entropy loss defined as:

CE(yn, ŷn(θ)) = −
Q

∑
q=1

ynq log
(
ŷnq(θ)

)
, (11)

with ynq ∈ yn and ŷnq(θ) ∈ ŷn. Moreover, the kernel-matrix K̆ f (θ) ∈ [0, 1]N×N is computed as:

K̆ f [n, n′] =
〈

triu(K†
n(θ; f )), triu(K†

n′(θ; f ))
〉

2
(12)

where triu(K†(θ; f )) ∈ [0, 1]C
(C−1)

2 holds the upper triangular matrix of the GFC stored in K† for filter f .

Likewise, the target kernel matrix Kδ ∈ {0, 1}N×N is built as:

Kδ[n, n′] = δ(|yn − yn′ |1), (13)

being δ(·) the delta function and | · |1 the 1-norm.

The optimization problem outlined in Eq. (10) enables the training of our KREEGNet for MI discrimination.

Figure 1 summarizes the KREEGNet pipeline. To ensure numerical stability and simplicity, the GFC scale

parameter is learned as a mapping of 10γ. It is worth mentioning that a preprocessing stage is included to align

the various database conditions, such as sample frequency, band-pass filtering, and EEG window size.
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DepthWiseConv2D SeparableConv2D ClassificationConv2DPreprocessing

GFC

EEGNet

Raw EEG data CKA based
regularizer Cross entropy lossλ 1-λ

RCKA-EEGNet loss

+

KREEGNet loss

Figure 1. KREEGNet pipeline for Motor Imagery classification from EEG records.

3. Experimental Set-Up

We provide a comprehensive overview of the pipeline used to develop and evaluate the KREEGNet model

for motor imagery discrimination. It includes an analysis of the datasets used, the training phase of the model,

and the techniques employed to assess the proposal’s effectiveness.

3.1. Datasets Description

In order to evaluate the effectiveness of our KREEGNet, we conducted tests on two well-known databases

that involve motor-related tasks.

DBI: BCI Competition 2008 - Graz Dataset 2a (http://www.bbci.de/competition/iv/index.html - accessed

on 1 April 2023). The dataset contains EEG data from nine subjects who participated in a motor imagery

paradigm consisting of four tasks: imagining the movement of the left hand, right hand, both feet and the tongue

(four class problem). The data were collected in two sessions on different days, comprising six runs with 48

trials per run (12 for each class). This resulted in a total of 288 trials per session. A short acoustic warning and a

cross on a black screen signaled the start of each trial, which lasted seven seconds. Then, at two seconds, a visual

cue appeared on the screen for 1.25 seconds, indicating which MI task to perform until the cross disappeared

at six seconds. Next, a short break followed, and the screen went black. The EEG data were recorded using a

22-channel Ag/AgCl electrode montage based on the 10/20 system. In addition, three EOG electrodes were also

used to record ocular artifacts. The signals were sampled at 250 Hz and bandpass-filtered between 0.5 and 100

Hz, with a 50 Hz Notch filter applied. The datasets for each subject and session were stored in the General Data

Format for biomedical signals, with one file per subject and session.

DBII: GiGaScience (http://gigadb.org/dataset/100295 - accessed on 1 April 2023). It includes EEG data

from 52 healthy subjects, although only 50 are available for evaluation. The data were acquired in one session

using the MI experimental paradigm with two classes (left and right hands). Each session comprised five or six

runs with 100 or 120 trials per class. Moreover, each trial lasted seven seconds, starting with a black screen with

a fixation cross within two seconds. A cue instruction appeared randomly on the screen within three seconds,

prompting the subject to perform the indicated MI task. The trial ended with a blank screen and a 4.1 to 4.8
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seconds break. The EEG data were collected using a Biosemi ActiveTwo system with 64 Ag/AgCl electrodes

placed according to the 10/10 international system, sampled at 512 Hz, and stored in *.mat format. Actual

left-hand and right-hand movements and six types of noise (blinking eyes, eyeball movement up/down, eyeball

movement left/right, head movement, jaw clenching, and resting state) were also collected, aside from the MI

recordings.

Figure 2 provides an overview of the DBI (four-class problem) and DBII (binary-class problem) montage

and paradigm used for MI classification.

(a)

Fixation cross

Cue

Motor Imagery Break

Analysis span

2.5 s 5.5 s

t [s]

0 s 1 s 2 s

Beep

3 s 4 s 5 s 6 s 7 s 8 s

Black screen

Motor Imagery

Black screen Break

Analysis span

2.5 s 4.5 s

t [s]

0 s 1 s 2 s

Cue

3 s 4 s 5 s 6 s 7 s 8 s

(b)

Figure 2. The EEG-MI databases examined: DBI (BCI Competition four-class task) and DBII (GigaScience

binary task), displayed in the left and right columns, respectively. The top row shows the EEG montages, while

the bottom row presents the MI paradigm tested.

3.2. KREEGNet Training Details and Assessment

The training of our KREEGNet comprises three stages: i) preprocessing of EEG records, ii) fine-tuning the

network hyperparameters for improved classification performance, and iii) interpreting functional connectivity

by identifying relevant patterns learned during deep learning training.

To initiate EEG preprocessing, a custom database loader module, see https://github.com/UN-GCPDS/

python-gcpds.databases (accessed on 8 April 2023), was utilized to load the recordings. Only EEG channels

were considered, and the signals were scaled to µV to ensure suitability for analysis. Any trials marked as bad

were rejected. A fifth-order Butterworth bandpass filter was applied to all channels within the [4, 40]Hz range,

where MI activity is observed [60]. Additionally, each channel’s signal was clipped within the post-cue onset
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time window, retaining only information from the MI task. For DBI, the time window was 0.5 − 3.5s, while for

DBII, it was 0.5 − 2.5s. Then, to ensure the network parameters remained consistent, each channel’s signal was

downsampled in both databases from 256Hz for DBI and 512Hz for DBII to 128Hz. Our preprocessing step is

similar to the one described by the authors in [61].

Next, to ensure a reliable evaluation of our model, we employed the stratified shuffle split 5-fold 80 − 20

scheme within each subject’s data. This process involved shuffling the data and selecting 80% for training while

holding out the remaining 20% for testing. This procedure was repeated five times. Model performance was

evaluated using accuracy, Cohen’s kappa, and the area under the curve ROC [59]. An exhaustive search strategy

for hyperparameter tuning was implemented, and the mean accuracy score across the folds was used to evaluate

each hyperparameter’s performance. In order to train our model, we formulated the loss function as a combination

of the cross-entropy (CE) and the CKA-based regularization, with each component weighted accordingly. The

CE component served as a guide for the model to perform the classification task effectively. On the other hand,

the CKA component played a role in mitigating overfitting by considering the spatial information of the FCs

computed in the GFC layer. The contribution of each term in the cost function was defined as (1 − λ) for the

CE component and λ for the CKA component (see Eq ??). The value of λ, a hyperparameter, was searched

within the set {0, 0.2, 0.4, 0.6, 0.8}. We employed the Adam optimizer with an initial learning rate of 1e − 3 to

optimize the network parameters. Additionally, a callback mechanism was implemented to decrease the learning

rate by 10 when the loss function no longer exhibited improvement. The KREEGNet was trained for 500 epochs,

utilizing all available samples in the training set.

The experiments conducted in this study were performed using Python version 3.8 in both Google

Collaboratory and Kaggle environments. We employed TensorFlow version 2.8.2 to construct models, define

losses, create custom layers, and implement training strategies. To ensure reproducibility and facilitate further

analysis and experimentation, we consistently saved the model weights and performance scores. For those

interested in reproducing the training of our KREEGNet, we have provided a Kaggle notebook accessible at the

following link: https://www.kaggle.com/mateotobonhenao/rcka-eegnet-training (accessed on 8 April 2023). This

resource contains all the necessary details and code to replicate our training procedure.

3.3. Method Comparison

To assess the efficacy of our KREEGNet, we conducted a comprehensive analysis of its classification

performance and the discriminability of estimated FCs. Additionally, we categorized subjects into groups

(for DBII) based on their classification performance to gain insights into the impact of our proposal against

four classical end-to-end deep learning models that incorporate both temporal and spatial information from

EEG signals using stacked 1D convolutions. The first model, the baseline EEGNet [61], utilizes separable

convolutions to reduce parameters while maintaining performance similar to traditional convolutional layers. In

addition, it includes a depthwise convolution layer to capture spatial information and a fully connected layer

with softmax activation for classification. The second model, Shallowconvnet [63], is a simpler architecture

consisting of a single convolutional layer followed by non-linear activation, batch normalization, and pooling

layers. Despite its simplicity, it effectively classifies EEG signals. The third model, Deepconvnet [63], is a deeper
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architecture comprising five convolutional layers, followed by non-linear activation, batch normalization, and

pooling layers. Although it performs well in EEG signal classification, it is computationally more expensive than

Shallowconvnet and EEGNet. Finally, we consider the TCFussionnet proposed in [64]. This model consists of

three main components: a temporal component that learns various bandpass frequencies, a depth-wise separable

convolution that extracts spatial features for each temporal filter, and a Temporal Convolutional Network (TCN)

block that captures temporal features. These features are combined to generate comprehensive feature maps,

which are then classified into different MI classes using a dense layer with softmax activation. The Kaggle

notebook available at (https://www.kaggle.com/mateotobonhenao/dl-methods-comparison - accessed on 8 April

2023) contains the code necessary to assess the MI classification effectiveness of the aforementioned deep

learning models. Besides, the following GitHub repository holds the complete codes related to our experiments (

https://github.com/mtobonh/RCKA-EEGNet - accessed on 8 April 2023).

4. Results and Discussion

4.1. Baseline EEGNet vs. KREEGNet: Subject and Group-Level Results

We conduct a comparative analysis of KREEGNet with the widely recognized benchmark, EEGNet, for

both DBI and DBII in the context of binary MI classification tasks, explicitly focusing on distinguishing between

left and right-hand imagery movements. A subject-specific examination is executed across both databases,

while the group-level analysis is limited solely to DBII due to DBI’s composition of a mere nine subjects. We

construct a scoring matrix for robust validation with rows equivalent to the dataset’s subject count—50 for

DBII—and six columns representing accuracy, Cohen’s kappa, the area under the ROC curve scores, and their

corresponding standard deviations. To maintain the principle of ’the higher, the better’ and restrict all column

values within the [0, 1] range in the scoring matrix, we substitute the standard deviation with its complement

and normalize Cohen’s kappa by adding one and dividing by two. Following that, we utilize this scoring matrix

and the k-means clustering algorithm [59], setting k to three, to train a model that categorizes subject results

based on the benchmark model EEGNet into three groups: top performers (GI), average performers (GII), and

low performers (GIII). Subsequently, our KREEGNet’s subject analysis results are clustered using the trained

k-means and the score matrix. The ultimate goal is to examine and discern how subject classification shifts

between the EEGNet and the KREEGNet-based groups [60].

Figure 3a and 3b present a comparative accuracy analysis of subject-specific and group-level analysis. The

dotted orange line in the figures corresponds to the EEGNet; in contrast, the dotted blue line illustrates the

proposed KREEGNet. The blue and red bars in the figures indicate the impact of employing the KREEGNet

on individual subject accuracy. Specifically, the blue bars denote improvements in accuracy, while the red bars

indicate decreases. These visual cues provide valuable insights into the performance enhancements achieved by

our approach across specific subjects. Moreover, in the context of DBII, the figure’s background incorporates

bars with low opacity in opal green, lemon yellow, and salmon pink. These color-coded backgrounds denote the

grouping of subjects into top-performing, average-performing, and low-performing subjects.
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Our KREEGNet model’s performance regarding DBI reveals a subject-dependent average accuracy of

78.0%, surpassing the baseline EEGNet by 1.6%. Notably, out of all the subjects, only Subject seven (S7)

experienced a marginal decrease in performance, with a decline of less than 1%. Conversely, the remaining

subjects demonstrated improvements in accuracy. Subject four (S4) was particularly impressive, exhibiting a

remarkable performance increase of 4.7%, showcasing the effectiveness of our KREEGNet model in enhancing

subject-specific analysis by coding relevant functional connections among channels within an end-to-end

regularized network.

For DBII, the EEGNet and KREEGNet models achieved subject-dependent average accuracies of 74.4%

and 77.9%, indicating an improvement of 3.5% for our proposal. The standard deviations for EEGNet and

KREEGNet were 14.9% and 13.2%, respectively, suggesting that our approach resulted in less variability among

subjects’ performance. Interestingly, the accuracy of KREEGNet varied across the subjects, with three scenarios

emerging from the results. Firstly, eight subjects showed a decrease in accuracy, with only three experiencing a

reduction of 2% or more. Secondly, two subjects did not show any change in accuracy. Lastly, the remaining

subjects demonstrated an increase in accuracy, with nineteen of them experiencing an increase of more than 5%.

Now, the impact of our method on the performance of different subject groups in DBII was substantial. In

the case of Group GIII, the KREEGNet outperformed the baseline in all but two instances, with a remarkable

increase of over 5% observed in fourteen cases. As for Group GII, four subjects experienced a minor decrease

of less than 2%, while one remained unchanged. On the other hand, twelve subjects showed a performance

improvement, with half achieving an increase of over 3%. Of particular note is Subject 15, which exhibited

an impressive performance boost of 16%, highlighting the strong influence of our CKA-based regularizer on

specific individuals. In Group G III, only two subjects witnessed a decrease in accuracy, while nine subjects

demonstrated improved performance, including two with increases exceeding 3%. So then, our strategy yielded

significant performance enhancements for most subjects across all groups, with a notable benefit observed in the

poorly performing subject group.
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(a) Average Accuracy: EEGNet 76.4%, KREEGNet A 78.0%.
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(b) Average Accuracy: EEGNet 74.4%, KREEGNet A 77.9%.

Figure 3. EEGNet vs. KREEGNet comparison results. The top row demonstrates the subject-specific analysis

for DBI, while the lower row exhibits the group-level evaluation for DBII (KREEGNet gain: GI 1.0%, GII

2.9%, and GIII 5.7%). The reported mean accuracy corresponds to a binary MI classification of left versus

right-hand movement. Subjects have been organized following their EEGNet performance. The blue bars signify

an enhanced performance achieved by our proposed KREEGNet, whereas the red bars highlight instances of

reduced performance. The backdrop for the DBII results visually represents the group membership, with top

performers in GI, average performers in GII, and low performers in GIII.

Similarly, Figure 4 presents the categorization of the subject group and the influence of the KREEGNet.

The initial row displays the arrangement of subjects as per the results of EEGNet, while the final row illustrates

the shift or constancy of each subject’s group derived from the KREEGNet outcomes. For example, in GIII, our

approach promoted four subjects to GII. Likewise, two individuals were elevated from GII to GI. Importantly, no

individual experienced an in-group demotion status, underlining the equal or superior performance of KREEGNet

compared to the standard EEGNet.
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Figure 4. KREEGNet subject group enhancement (Baseline: EEGNet). Note that green, yellow, and red represent

top, average, and low performance regarding the average accuracy along subjects. First row: The arrangement of

subjects according to EEGNet classification. Second row: Alterations in subject group affiliations based on the

results of KREEGNet.

Subsequently, we scrutinized the complex behavior of the hyperparameters λ and γ across different subject

groups in DBII. λ symbolizes the importance given to the CKA-based regularizer in the cost function of

KREEGNet, contributing to enhancing the network’s classification capabilities. Conversely, γ sets the bandwidth

scale for the Gaussian kernel employed in the GFC layer that calculates the FCs. By investigating the dynamics of

these hyperparameters, we seek to understand their influence on performance and the GFC layer’s FC estimation.

Figure 5a presents a boxplot depicting the statistical distribution of the λ hyperparameter among the subject

groups, with the background boxes denoting group membership. Firstly, most tend to possess lower λ values in

GI, specifically below 0.6. This is attributed to the fact that subjects within this group display more evident MI

patterns, readily captured by the standard EEGNet model. Secondly, GII exhibits a more evenly distributed set of

values, with half of the subjects presenting λ values exceeding 0.3. This could imply that some subjects at this

stage demonstrate noisy MI patterns that heighten the risk of overfitting the training data, thereby reducing the

classification performance. Lastly, for GIII, λ values are predominantly higher. Precisely, half of the subjects in

this group have λ values above 0.5, with the majority of the remainder having values ranging between 0.4 and

0.5. The latter suggests that most of the subjects’ data in this group present noisy patterns. Nevertheless, the

CKA-based regularizer, working on the FCs computed by the GFC layer, aids in eliminating this unwanted effect,

leading to improved classification performance.

In the same way, Figure 5b displays the boxplot of the γ hyperparameter among different subject groups.

This bandwidth filters the relationships between channels, suggesting that channels with higher noise levels have

lower bandwidth values to circumvent unwarranted connections. The findings imply that subjects in GIII require

more filtering through the γ parameter, hinting that these individuals typically have higher noise in their MI

patterns. Our CKA-based regularizer and the GFC layer contribute to the reduction of these noises, thereby

enhancing classification performance. Notably, our results demonstrate an inverse linear relationship between

the fixed λ and γ values. Specifically, subjects with good performance, i.e., those in G I and some in G II,
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exhibit lower values of λ and higher values of γ, indicating a low contribution of the CKA-based regularizer

and that the bandwidth of the GFC layer is more flexible in filtering out the relationship between channels. This

suggests that the MI patterns for these subjects are cleaner and less affected by noise. Contrariwise, subjects

with poor performance, i.e., those in G III, exhibit higher values of λ and lower values of γ, indicating that

the CKA-based regularizer contributes more to the cost function to reduce the effect of overfitting due to the

presence of noisy. Additionally, γ shrinks the value of the bandwidth in the GFC layer to be more rigid in

filtering out the relationship between channels, thereby avoiding spurious connectivities. These findings highlight

our KREEGNet’s importance in optimizing the performance and interpretability of EEG-based MI tasks.
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Figure 5. Analysis of KREEGNet hyperparameters at the group level for DBII. Boxplot diagrams are provided

for the tuned λ and γ values in relation to the top (GI), average (GII), and low (GIII) performing subjects.

4.2. Relevance Analysis Results

We evaluated the FC variations across subjects, focusing on determining which connections significantly

influence the ability to distinguish between the MI classes. Acknowledging that a strong correlation in the FC

matrix does not automatically translate into enhanced class distinction is essential. In this endeavor, we utilized

the Kolmogorov-Smirnov (KS) statistic [65], a tool that quantifies the disparity between the class distributions

for each FC. Our KS-based connectivity pruning is as follows:

– We categorized each connection’s trials for an individual based on the label, forming the right and left

sample sets.
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– Following this, we calculated the KS statistic for the connectivity between each pair of EEG channels along

the training set trials. A KS value nearing 1 signifies a high level of distinguishability for the connectivity

between two channels, whereas a value approaching 0 suggests a low level of separability.

– Moreover, we utilized the maximum operator across the estimated feature maps to establish a KS statistic

matrix. This matrix denotes the class-separability of each connectivity.

– In order to illustrate the variations in each KS statistic matrix across subjects and groups, we depicted each

matrix of KS statistic values on a two-dimensional scatter representation. Both dimensions were calculated

employing the widely accepted t-SNE algorithm [66].

– Lastly, to fully comprehend the key connectivities and channels involved in the MI classification, we used

topoplots from the KS statistic matrix.

Figures 6 and 7 depict the t-SNE 2D projections of the KS statistic matrices of each subject for DBI and

DBII, respectively. In particular, the color-coded outer square of Figure 7 represents the group affiliation (GI, GII,

and GIII). This visual representation enhances our comprehension of the significant connectivity patterns in the

MI classification task. Figure 6 depicts the optimal performing subjects at the bottom, intermediate performers

towards the left-middle, and the poorly performing ones at the top-left. Notably, the KS statistic matrices of

high-performing subjects are more distinct, except for subject 7. This finding suggests that the FCs estimated by

the GFC layer hold more significance in the MI classification. On the contrary, intermediate and poor performers

show sparse KS matrices, implying their data has a higher noise level, which results in erroneous FCs that overlap

with MI class distributions.

S1

S2

S3

S4 S5

S6

S7 S8S9

Figure 6. DBI-2D t-SNE projection of KS-based pruned FC matrices utilizing our KREEGNet. A gradation of

colors ranging from blue to red represents a continuum from low to high separability.
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Likewise, Figure 7 shows how G III exhibits sparse KS statistic matrices in the bottom-right corner,

indicating that the FCs estimated are not discriminative among classes. This observation can be explained by the

fact that the γ parameter took lower values for this particular group of subjects, which tend to produce sparse

matrices regardless of MI classes. In contrast, the subjects in G I in the top-left tend to have more fired KS

statistics, with a notable concentration over the MI area. Finally, G II reveals more erratic behavior, with the

subjects near G III. The latter may be attributed to individual differences in brain activity during the MI tasks.

G.III
G.II
G.I

Figure 7. DBII-2D t-SNE projection of KS-based pruned FC matrices utilizing our KREEGNet. A gradation

of colors ranging from blue to red represents a continuum from low to high separability. Outer boxes indicate

subject group belongingness: green G I, yellow G II, and red G III.

In order to evaluate the informational dynamics of pruned FCs, we utilized quadratic Rényi’s entropy,

computed over the KS statistic matrices [67]. Our observations suggested that sparse KS statistic matrices

corresponded with higher noise levels, whereas the KS matrices that had been freed up corresponded to lower

noise levels. These statements are corroborated by Figures 8a and 8b. Furthermore, our findings align with the

previously stated remarks. Specifically, the subjects that perform poorly in DBI tend to display higher entropy

values, which is also true for the subjects classified under G III in DBII.
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Figure 8. Renyi’s entropy-based retained information within the estimated functional connectivity matrices (H2

stands for quadratic entropy value). Top: DBI results sorted regarding the classification performance. Bottom:

DBII results where the background codes the group membership (best, medium, and poor-performing subjects.

Boxplot representation is used to present the retained information within each group.

Next, the topoplots in Figures 9a and 9b show the distribution of relevant connectivities and channels.

Relevant subjects are selected for visualization purposes in DBI. Meanwhile, the centroid of each group in

DBII is employed. The results indicate that the sensorimotor area is the most critical region for both databases.

It suggests that our KREEGNet effectively improves classification performance and model interpretability by

incorporating a CKA-based regularizer and a GFC layer.

For DBI, we analyzed S3, S4, and S6 to represent high-performing, intermediate, and low-performing

subjects. Notably, S3 exhibited a higher number of relevant FCs compared to S4 and S6. Furthermore, the FCs

of S3 and S4 are thickened in the central-brain region, consistent with the MI paradigm. However, S6 displayed a

concentration of FCs in a single channel in the left-central region. Concerning DBII, the analysis of connectivities

and channels in G I subjects revealed that the primary areas of interaction during MI tasks are located in the

left-right central regions. This finding suggests that these subjects exhibit more distinct and reliable patterns of

MI activity. The subjects belonging to G II displayed a pattern of connectivities and channels in the right-central

brain region. However, a diffuse pattern was observed in the left hemisphere, covering some posterior and brain

regions not strongly associated with MI activity. This diffuse pattern may be attributed to noise-induced EEG

features, affecting classification performance. Finally, for the subjects in G III, the connectivities are concentrated

in the central region of both hemispheres, which aligns with the MI paradigm. Similar to G II, the main channels
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are located in the right-left central brain areas, but robust patterns are observed in the left-posterior and frontal

areas, highlighting noisy behavior.
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Figure 9. Visual outcomes of the topographical maps (DBI and DBII results). The top row illustrates the results

related to significant subjects for the DBI. The bottom row displays group-oriented visualizations for the DBII.

Only those connections that hold a value surpassing the 95th percentile are highlighted. The backdrop of these

visualizations corresponds to the normalized cumulative connection strength across channels, which is projected

onto the topographical map.

4.3. Method Comparison Results: Binary and Multi-Class MI Classification

The classification performance of the deep learning models discussed in Section 3.3 for DBI and DBII are

presented in Tables 1 and 2, respectively. The results indicate that the DeepConvenet model performs the worst

for both databases, while our proposed KREEGNet achieves the highest MI classification results. Notably, the

Shallowconvnet, EEGNet, and TCFusionnet networks conduct similarly in both databases. Our KREEGNet

attains outstanding results in all classification measures for DBII, demonstrating its superior performance.

Although our model also achieves the best results for DBI, the difference in performance compared to other

models is less significant. This can be attributed to the fact that DBI has fewer channels, with most of them

concentrated in the central brain area, which limits the effect of the estimated FC by the GFC layer and the

CKA-based regularizer. Then, only interactions between channels located in the same brain region are considered,

reducing the diversity of information.
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Table 1. Multi-class MI classification results for DBI. Average Accuracy, Kappa, and AUC are displayed ± the

standard deviation.

Approach Accuracy Kappa AUC
Deepconvnet [63] 55.5 ± 24.3 40.6 ± 32.4 78.1 ± 20.4

Shallowconvnet [63] 74.9 ± 13.3 66.7 ± 17.7 91.6 ± 7.2

EEGNet [61] 76.4 ± 14.6 68.6 ± 19.5 92.5 ± 0.71

TCFussionnet [64] 77.3 ± 13.4 69.7 ± 17.9 92.6 ± 0.68

KREEGNet (ours) 78.0 ± 14.1 70.7 ± 18.8 92.6 ± 0.7

Table 2. Binary MI classification results for DBII. Average Accuracy, Kappa, and AUC are displayed ± the

standard deviation.

Approach Accuracy Kappa AUC
Deepconvnet [63] 61.9 ± 12.4 23.6 ± 24.9 66.0 ± 16.0

Shallowconvnet [63] 72.5 ± 14.1 44.6 ± 28.3 77.9 ± 15.3

TCFussionnet [64] 73.9 ± 14.8 48.0 ± 30.0 80.0 ± 16.3

EEGNet [61] 74.4 ± 14.9 48.6 ± 29.8 79.6 ± 16.4

KREEGNet (ours) 77.9 ± 13.2 55.7 ± 26.5 82.5 ± 14.5

5. Conclusions

We introduced a novel deep learning approach for EEG-based Motor Imagery classification, named

Kernel-based Regularized EEGNet grounded on Gaussian Functional Connectivity and Centered Kernel

Alignment (KREEGNet). Our proposal addresses the issues of intra-subject variability caused by noisy

EEG recordings and the absence of spatial interpretability in end-to-end frameworks for MI classification.

Specifically, we amplified the widely recognized EEGNet architecture with a kernel-based layer designed to

encode discriminant functional connectivities through a Gaussian similarity layer. Furthermore, the regularizer

rooted in Centered Kernel Alignment seeks to minimize the overfitting effect caused by noise in the EEG data of

subjects, thereby enhancing the performance of Motor Imagery classification.

The experimental outcomes obtained from binary and multi-class EEG-based Motor Imagery classification

databases revealed the superior performance of our KREEGNet compared to the baseline EEGNet and

other state-of-the-art deep-learning models. We further delved into the interpretability of our model at both

the subject-dependent and group levels, using classification performance measures and pruned functional

connectivities specific to our KREEGNet. In classifying subjects into three groups based on their performance,

we showcased the capacity of KREEGNet to improve the MI classification performance, particularly among those

subjects with previously poor performance. This highlights the fact that these individuals are most significantly

impacted by noise.

In summary, the proposed KREEGNet effectively resolves issues like intra-subject variability attributed to

noise in EEG data and the absence of spatial interpretability in deep learning models used for motor imagery

classification. These insights will aid in developing brain-computer interfaces that are more accurate and

interpretable, expanding their potential for diverse applications.

In future research, we aim to augment our KREEGNet to achieve end-to-end functional connectivity

estimation via graph convolutional networks [68]. Additionally, we intend to investigate causal connectivity
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rooted in information-theoretic learning for deep-learning-based estimations [69]. Lastly, we consider conducting

subject-independent experiments and testing transformer networks [70].
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