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Abstract: In this investigation, we explore the existence and intriguing features of matter wave
positons in a nonautonomous one-dimensional Bose-Einstein condensate (BEC) system with attractive
interatomic interactions. We focus on the Gross-Pitaevskii (GP) equation/nonlinear Schrodinger
(NLS)-type equation with time-modulated nonlinearity and trap potential, governing nonlinear
wave propagation in the BEC. Our approach involves constructing second- and third-order matter
wave positons using a similarity transformation technique. We also identify the constraints on the
time-modulated system parameters that give rise to these nonlinear localized profiles. The study
considers three distinct forms of modulated nonlinearities: (i) kink-like, (ii) localized or sech-like, and
(iii) periodic. By varying the parameters associated with the nonlinearity strengths, we observe a rich
variety of evolution behaviors in the matter wave positon profiles. These behaviors include stretching,
curving, oscillating, breathing, collapsing, amplification, and suppression. Our comprehensive
studies shed light on the intricate dynamics of matter wave positons in BECs, providing valuable
insights into their behavior and characteristics in the presence of time-modulated nonlinearity and
trap potential effects.

Keywords: matter waves; positons; bose-einstein condensates; Gross-Pitaevskii equation; similarity
transformation

1. Introduction

Theoretical investigations into the nonlinear collective excitations of matter waves have emerged
as a highly intriguing and pertinent field, especially in light of experimental observations of
Bose-Einstein condensation (BEC) in vapors of alkali-metal atoms [1,2]. Among the captivating
manifestations of localized waves in atomic matter, solitons hold particular interest. The concept
of solitons was initially introduced to describe nonlinear solitary waves that exhibit remarkable
properties, such as non-dispersive behavior, preserving their localized form and speeds both during
propagation and after collisions [3—6]. These inherent advantages of solitons have sparked significant
interest in the study of nonlinear systems across various fields of physics, particularly in high-rate
telecommunications involving optical fibers, fluid dynamics, capillary waves, hydrodynamics, plasma
physics and so on [4,7-9]. In addition to this, BECs exhibit the emergence of Faraday and resonant
density waves when subjected to harmonic driving [10]. The characteristics of density waves in
dipolar condensates at absolute zero temperature using both mean-field variational and full numerical
approaches has been investigated. The breaking of symmetry resulting from the anisotropy of the
dipole-dipole interaction was found to be a crucial factor in this phenomenon.

From an experimental perspective, precise control over the existence of matter waves in a
BEC system can be achieved by effectively manipulating the nonlinear atom interactions through
the Feshbach resonance technique, as well as by varying the external trap potential [11-14]. This
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flexibility permits us to consider that the coefficient of nonlinearity and the external potential terms
in the Gross-Pitaevskii (GP) equation/generalized nonlinear Schrédinger (NLS) equation can vary
as functions of both time and/or space. Consequently, investigating the distinctive features of
matter waves (solitons, breathers and rogue waves) becomes highly intriguing, given their spatial
and temporal localization, particularly in the context of BEC experiments. Motivated by these
achievements, extensive research has been dedicated to investigating localized matter waves within
quasi-one-dimensional BECs [14-21]. Furthermore, studies focusing on the varible coefficient NLS
equation have unveiled the potential to manipulate and enhance these localized density profiles
through the utilization of inhomogeneity parameters [22-25]. The analysis of soliton propagation
in optical and the condensed matter systems with P7 -symmetry, particularly in inhomogeneous
setups, has gained significant attention. Consequently, considerable efforts have been devoted to
showcasing the existence of stable bright solitons, dark solitons, and vortices within the NLS equation
featuring PT-symmetric potentials [26-28]. In the case of weakly interacting toroidal BECs, the
occurrence of rotational fluxons (commonly known as Josephson vortices) is linked to the spontaneous
disruption of the rotational symmetry within the tunneling superflows [29]. To explore the impact of
controllable symmetry breaking on the resulting state of merged counter-propagating superflows, a
weakly dissipative mean-field model was employed. In line with this research trajectory, our aim is
to construct an intriguing type of localized solution known as positons within the GP equation. We
further endeavor to explore the effects of time-dependent modulation of nonlinearity parameters on
the characteristics of positon profiles.

Positons, unlike exponentially decaying soliton solutions, are weakly localized nonlinear waves
that hold significant importance in the field of nonlinear physics [30-33]. These solutions are obtained
by constraining degenerate eigenvalues within the widely recognized N-soliton algorithm. For
positon solutions, the corresponding eigenvalue in the spectral problem is positive and lies within the
continuous spectrum. It has been observed that when two positons collide, they retain their individual
identities, whereas the soliton remains unchanged following a collision with a positon. However,
the positon experiences an influence from the carrier wave and envelope, resulting in a finite phase
shift [34,35]. Notably, Matveev’s positon solution to the Korteweg-de Vries (KdV) equation exhibited
a spectral singularity [32]. Building on this pioneering work, positon solutions have been derived
for other nonlinear evolution equations successfully [36-40]. Recent efforts by Cen et al. introduced
the concept of smooth positons or degenerate soliton solutions by allowing the spectral parameter
to take complex values [41,42], thereby eliminating the singularity in the KdV equation. Following
these advancements, endeavors have been made to construct smooth positon solutions for various
equations including the focusing mKdV equation [43], complex mKdV equation [46], derivative NLS
equation [44,45], NLS-Maxwell-Bloch equation [47], higher-order Chen-Lee-Liu equation [49] and
Gerdjikov-Ivanov equation [48]. More recently, smooth positons and breather positons have been
derived for the generalized NLS equation with higher-order nonlinearity, along with higher-order
solutions for an extended NLS equation featuring cubic and quartic nonlinearity [50,51]. Inspired by
these advancements in the field of positons, our research aims to construct positon solutions within
the GP equation, incorporating time-varying nonlinearity and trap potential.

The crucial step in this attempt involves utilizing the similarity transformation on a meticulously
chosen ansatz solution. This transformation effectively converts the variable parameter GP equation
into the conventional NLS equation with constant coefficients. By implementing this transformation,
the modified variables allow us to derive new solutions for the considered equation by expressing the
known positon solutions in the altered coordinate system. By leveraging the combination of known
positons of typical NLS equation solutions with similarity transformation functions, one can derive
novel (non-autonomous positon) solutions for the GP equation. The integrability requirements, which
establish the relationship between variable parameters (modulated nonlinearity and trap potential),
and the proposed ansatz solution, serve as the underlying considerations for this procedure. However,
despite the associated costs, this approach holds significant value as it not only reveals new analytical
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solutions for the GP equation but also empowers users to control the outcomes by judiciously selecting
appropriate nonlinearity strengths and trap potentials.

Motivated by the experimental feasibility of studying BECs, our research focuses on exploring the
dynamical characteristics of positons. To achieve this objective, we construct second- and third-order
matter wave positon solutions for the one-dimensional GP equation, considering a variable nonlinearity
parameter and an external trap potential. The construction of these solutions involves transforming
the time-modulated GP equation into a ccNLS equation using a similarity transformation. We establish
that the trapping potential and nonlinearity modulated parameter must satisfy a constraint for the
considered equation to be integrable and yield the desired solutions. By leveraging the known smooth
positon solutions (second- and third-order) of the constant coefficient NLS equation, we present
matter wave smooth positon solutions of the GP equation. We investigate the deformation of positon
density profiles with respect to three different forms of variable nonlinearity parameters, namely (i)
kink-like nonlinearity R(t) = Rp + Rj tanh (Rt + R3), (ii) localized or sech-type nonlinearity R(t) =
Rg + Ry sech (Ryt 4+ R3), and (iii) periodic nonlineaity R(f) = Ry + Ry sin (Rpf + R3), where Ry, Ry,
Ry and Rj3 are arbitrary parameters. Our findings reveal that a range of nonlinear physical phenomena,
including stretching, curving, annihilation, breathing, oscillating, enhancement, and suppression, are
manifested in the underlying matter wave positon density profiles. When considering a kink-like
modulated nonlinearity, the position density profiles of second- and third-order smooth matter wave
positions experience stretching, while their amplitudes can either be enhanced or suppressed. It
is important to note that these profiles vanish during different time intervals, with disappearance
occurring for t < 0 when the parameter R, assumes positive values, and for ¢ > 0 when R, takes
negative values. In the case of a localized or sech-type modulated nonlinearity, the positon density
profiles become compressed and curved within the background density of the condensate. For
periodic modulated nonlinearity, positons exhibit a periodic behavior, and adjusting the strengths of
nonlinearity leads to an increase in their periodicity, as observed in our analysis. This observation
provides valuable insights for experimentalists analyzing novel density profiles in BECs.

We structure our work as follows. In Section 2, we take into account the GP equation with
time-modulated nonlinearity and trap potentials. The second and third-order smooth positon solutions
are deduced for this equation using the similarity transformation. The integrable requirement between
the modulated nonlinearity and trap potential is obtained while employing the integrable technique to
the considered equation. In Section 3, by suitably choosing the different forms of variable nonlinearity
parameter, we explore the various dynamical characteristics in the density of matter wave positon
profiles. Finally, in Section 4, we conclude our observations.

2. BEC Model and Similarity transformation

The behavior of a BEC confined within an external potential can be effectively characterized using
the renowned NLS equation derived from mean field theory, commonly referred to as the GP equation.
In the specific scenario of a cigar-shaped trapping potential, where simplicity and physical significance
coincide, the radial degree of freedom in the three-dimensional GP equation can be eliminated through
integration, leading to the derivation of a dimensionless quasi-one-dimensional equation [1,2,5,14,17]
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where §(x, t) is the condensate wave function. In Equation (1), t and x are time and spatial coordinates

that are expressed in units w ;' and a; = ,/ (F’ﬁ, m is the atomic mass, respectively. The atom-atom

mw
interaction term (scattering length between atoms) denoted by the representation, R(t), is tuneable

using the Feshbach resonance (FR). In a series of exquisite experiments using sodium and rubidium
condensates, Feshbach resonances were investigated. They have also been employed in a variety
of significant experimental studies, such as the creation of bright and dark matter-wave solitons,
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w

are the trap frequency in the axial direction and the radial trap frequency, respectively. In the study
of trapped BECs, the trap frequency along the elongated axis, denoted as w, has been intentionally
selected to vary with time, ¢, in order to investigate the characteristics of BECs within the trap. As
a result, both the coefficient of nonlinearity (R) and the potential parameter (1) can exhibit time
dependence. By appropriately choosing these two time-dependent parameters, the GP equation (1) can
effectively capture the dynamics and manipulation of BECs. These parameters serve as powerful tools
for controlling and manipulating localized matter waves in BECs, achieved through the adjustment
of external magnetic fields and the optically controlled interactions using techniques such as the FR
method [13,17,20].

To study the matter wave positons in (1), we adopt the similarity transformation mentioned below
to map the time-modulated GP equation (1) to the ccNLS equation [5,17,26,28]:

among others. The time-modulated trap potential is described by A?(t) = , where w and w

¥(x,t) = s(t)p(y, T) explib(x, 1)]. @

In Equation (2), the unknown functions, namely s(t),%(x,t),7(t) and 6(x,t) are the amplitude,
similarity spatial variable, the dimensionless time and the phase factor, respectively which are to
be computed. Upon involving the substitution of (2) into (1), we obtain the following set of partial
differential equations that are related to the unknown functions, such as

Nxx = 0,
77t+77x9x:0
() 2(t) =

s'(t) + () Oxx =0,
(

T/ (t) — R(t)s(t) = 0,
0'(t) + %9,% — @xz =0. ®3)

The explicit expressions of the unknown functions can be acquired by solving the aforementioned set
of equations, and they take the form

s(t) =so04/R(1),
7(x, 1) =soR(t)x — bsd / R2(t)dt

Q(x,t):—flg2;2+b01{ x—sz /R2

fso / R2%(t) 4)

where b and sg are arbitrary constants. Additionally, we have found an integrability condition that
imposes a connection between the time-modulated nonlinearity and the trap potential parameter, as

shown by: [5,17,28]
d Rt Rt 2 2
7 () — (> +A%(t) =0. 5)

Using this equation (5), one can find the A(f) by fixing the R(t) and vice versa. In this work, we
consider physically intriguing function R(t) and determine the A(t) by the expression, thatis A(t) =
VR(H)2+R/(t) — R(t)R"(t)

R(f ) '

d0i:10.20944/preprints202307.0404.v1
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In Equation (2), the function ¢ (7, T) is found to fulfill the ccNLS equation as
0P 197 2
1g+iw+|¢|¢—0. (6)

The equation under consideration (6) exhibits a wide range of localized solutions, including solitons,
breathers, rogue waves, and their corresponding profiles. In this study, we focus on the positon
solutions of the NLS equation to investigate matter wave positons in quasi-one-dimensional BECs.

By selecting an appropriate functional form for the time-modulated nonlinearity function R(t)
while ensuring the satisfaction of condition (5), we can derive matter wave positon solutions for the
GP equation (1) in the following form:

P(x,t) ZSO\/@(P(U, T) exp [i (—;bzsng(t)zdt + bsgxR(t) — x;li;g))] , (7)

where ¢(77, T) is the solution of the ccNLS equation (6). The solution (7) has the potential to generate
a multitude of novel positon structures that could be experimentally realized. To summarize the
current progress, one can generate several solutions (positons) for the GP model (1) by first obtaining
solutions for the ccNLS equation (6) while satisfying the mentioned relationships. An intriguing
advantage and potential perspective of the similarity transformation is worth emphasizing, as it allows
the extension of this approach to models featuring variable nonlinearity and external trap potential
coefficients dependent on both longitudinal and spatial coordinates. By appropriately tailoring and
imposing constraints, the resulting dynamics of physical systems can be attainable. Consequently, in
Sec. III, we construct positon solutions for the ccNLS equation (6) to analyze matter wave positons in
quasi-one-dimensional BECs.

3. Deformation of matter wave positons in BECs

In this section, we intend to investigate the dynamical characteristics of matter wave positons
using the solution (7) by considering three different forms of time-varying nonlinearity parameter and
the associated trap potentials. For this investigation, in the following, we first derive the second-order
and third-order smooth positon solution of the ccNLS equation (6).

3.1. Second-order smooth matter wave positons

Now, we explore the various novel density profiles of second-order smooth matter wave positons
in BECs. For this objective, we first derive the second-order smooth positon solution for the ccNLS
Equation (6) as [50]

_ P

PR =5. ®)
where
Py =4 (g — o) g2 (2 7+7) (—oq (7 — 4a37) + afyy — 4a3T — i)
4 — o) 2o () (—vcl (4aft+n) +aln +4(af) %t + i) ,
Oy = — 9 (2i(w1+a7 ) n+4i(af+ai?) 7) (_1 ) (0‘1 _ aiﬁz) 2+ 320t (g — at)2 12
89T (a1 + ) <1x1 _ “TZD 4 gl (2 TH) 4 e4ia;(2a{r+r;), )

where & is the eigenvalue of the spectral parameter, ] is the complex conjugate of &1, 77 and T are
provided in Equation (4). Substituting this solution into (7) along with the suitable form of R(t), we
obtain the second-order smooth matter wave positon solution of (1).
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Now, utilizing the above mentioned solution, we move to investigate its dynamical evolutions
through three different forms of time-modulated nonlinearity parameter, such as (i) kink-like
nonlinearity R(t) = Ro + Rj tanh (Ryt + R3), (ii) localized or sech-type nonlinearity R(f) = Rg +
R sech (Ryt + R3), and (iii) periodic nonlineaity R(t) = Rp + Ry sin (Rot + R3), where Ry, Ry, Rp and
Rj3 are arbitrary parameters. In the following, we provide a comprehensive demonstration of the
impact of modulated nonlinearity parameters on the positon density profiles.

To begin, we take the kink-like nonlinearity parameter, that is R(t) = Ro + Ry tanh (Raf + R3) to
reveal the novel features in BECs. Substituting this nonlinearity term in the generalized solution (7),
we find

i
¢(x, t) :So\/Rl tanh (sz + R3) -+ Ro(P(ﬂ, T) exp |:_4R2 (bzsg (—ZR%

x tanh (Rpt + R3) + (Rg — Ry) ?log (tanh (Rat + R3) +1) — (Ro + Ry) ?
x log (1 — tanh (Ryt + R3))) — 4bs3x (R tanh (Rat 4 R3) + Ry)

2R;Rpx?sech? (Rat + R3)
Rj tanh (Rpt + R3) + Ro !

(10)

where ¢ (1, T) is the second-order smooth positon solution of the ccNLS equation (6). Utilizing this
solution (10), we examine a thorough analysis of the positon density profiles, investigating their diverse
characteristics as we vary the strength of the time-modulated nonlinearity parameter.

Figures 1a-f illustrates the qualitative profile of a second-order smooth matter positon in BECs
corresponding to a kink-like nonlinearity modulated parameter R(t) = Rp + R; tanh (Ryt + R3). By
selecting specific parameter values, Ry = 1.05, R; = 0.01, R = 1.05, and R3 = 0.5, we obtain a
well-localized second-order smooth positon profile associated with the eigenvalue a7 = 0.2 + 0.5i,
as depicted in Figure la. Notably, the orientation of the smooth positon density profile changes
when varying the eigenvalue associated with the solution. For instance, by modifying the eigenvalue
to a; = 0.3 + 0.6i, Figure 1b clearly demonstrates a shift in the orientation of the positon profile
accompanied by an enhancement in its amplitude. Furthermore, we investigate the effects of adjusting
the strengths of the nonlinearity parameters, specifically Ry, R;, and Rj. For instance, when Ry is
changed to 1.85, the positon profile’s orientation relocates while experiencing a slight increase in
amplitude, as depicted in Figure 1c. Additionally, Figure 1d illustrates that increasing the value of
Rj to 0.5 leads to the collapse of the condensate profile on one side of the positon profile (t < 0).
Conversely, when R; takes a negative value, such as Ry = —0.5, the reverse phenomenon occurs,
resulting in the disappearance of the density profile in the corresponding plane (t > 0) as represented
in Figure le. Moreover, increasing the value of R to 3.5 yields a well-localized positon profile that
exhibits a compression within the condensate density background. Additionally, as depicted in Figure
1f, the width of the crest of the positon profile widens over time.

Next, we consider the localized-type or sech-type nonlinearity, namely R(t) = Rg +
Ry sech (Rat + R3) for investigating the distortion of positon profiles in the condensate density
background. Plugging this form of R(t) in (7), we obtain the matter positon solution in the form

i
IP(JC, t) :so\/RlseCh (th + Rg) + Ro(P(g, ‘L') exp |:2R2 (—bzsg (RzR%t

+R} tanh (Rot + Rs) + 2R Ro tan~" (sinh (Rot + Rs)) ) (11)

RyRyx? tanh (Rot + R3) )}

2
Rysech (Rot + R3) + R
+bspx (Rysech (Rat + Rs) + 0)+2(Rocosh(R2t+R3)+R1)

where ¢(1, T) is the positon solution of the ccNLS equation (6).
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@ (b)

@
(c)

(e )

Figure 1. Density profile of second-order smooth matter wave positons for (1) with the kink-like
nonlinearity modulated function R(t) = Ry + Rj tanh (Rpt + R3). The parameters are (a) Ry = 1.05,
Ry =0.01, Ry = 1.05, R3 = 0.5; (b) a3 = 0.3+ 0.6, a] = 0.3 —0.64; (c) Rg = 1.85; (d) Ry = 0.5; (e)
Ry = —0.5; (f) Ry = 3.5. The other parameters are a7 = 0.2+ 0.5i, a] = 0.2 —0.5i, s = 1.0, and
b = 0.01.

Figure 2a-f represents the density profile of a second-order smooth matter positon with a
modulated nonlinearity function given by R(t) = R + RiSech(Ryt + R3). In this study, we consider
specific parameter values: Ry = 1.05, Ry = 0.01, Ry = 1.05, and R3 = 0.5, aiming to investigate the
intriguing properties exhibited by the positon density profiles. With these initial parameter values,
we obtain the second-order smooth positon profile as shown in Figure 2a. By increasing Ry to 1.85,
we observe a stretching of the positon and an enhancement in its amplitude, as depicted in Figure
2b. Similarly, when we tune the parameter R; to 0.85, a curvature appears in the condensate profile,
as shown in Figure 2c. Notably, when R; takes a negative value, we observe the formation of two
peaks at the center (f = 0), accompanied by a suppression in amplitude, as demonstrated in Figure 2d.
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Additionally, in the case where Ry = 1.85 and Ry = 1.75, we observe a gradual increase in amplitude,
further stretching of the positon, and the formation of a curved profile, as shown in Figure 2e. At
Rp = 2.5 and 1.5, a compressed density profile with an identical amplitude is obtained, as depicted in
Figure 2f.

(b)
(a)

© (d)

Figure 2. Density profile of second-order smooth matter positons for (1) with the localized-type
modulated nonlinearity R(f) = Rg + Ry sech (Rpt + R3). The parameters are (a) Rg = 1.05, Ry = 0.01,
Ry = 1.05, Ry = 0.5; (b) Ry = 1.85; (c) Ry = 0.85; (d) R; = —0.85; (e) Ry = 1.85, Ry = 1.75; (f) Ry = 2.5,
Ry = 1.5. The other parameters are same as in Figure 1.
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Finally, we investigate the influence of a periodically modulated nonlinearity given by R(t) =
Ro + R; sech (Ryt + R3) on the positon density profiles. By inserting this R(t) in (7), we obtain the
explicit form of matter wave positon solution given by

) i
¢(x, t) :SQ\/R1 sin (th + R3> + RQ(P(g, T) exp <_8R2 (bzsg <4R% (th + Rg)
+R? (2Rpt — sin (2 (Rat + R3)) + 2R3) — 8RyRo cos (Rot + R3)>
4R Ryx? cos (Ryt + R3)
Rysin (Rt 4+ R3) + Ry !

—8bsjx (Ry sin (Rot + R3) + Ro) + (12)
where ¢(1, T) is the positon solution of the ccNLS equation (6).

The second-order smooth matter wave positon density profiles are displayed in Figure 3 for
periodic nonlinearity modulated function R(t) = Rg + Rj sin Ryt + R3 in the context of BECs. By
appropriately tuning the parameters Ry, R1, and Ry, we are able to achieve periodic positon solutions.
In Figure 3a, using initial parameter values of Ry = 1.5, Ry = 0.05, Ry = 1.25, and R3 = 0.5, we observe
a periodic behavior in the positon condensate profile. Subsequently, when the nonlinearity strength
Ry is increased to 2.25, the oscillation of the positon becomes more elongated and the amplitude is
raised, as shown in Figure 3b. Moreover, as we increase the value of R; to 0.55, the periodicity of the
positon profile increases along with an increase in amplitude which can be seen in 3c. This trend is
further amplified when the value of R; is increased, as depicted in Figure 3d. When the parameters
Ry = 2.75 and R3 = 5.25 are chosen, the oscillation in the positon profile increases and retains a similar
orientation, as evident in Figure 3e and 3f, respectively.

(a) (b)

() (d)

Figure 3. Cont.

d0i:10.20944/preprints202307.0404.v1
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(e) ®)

15713

Figure 3. Density profile of second-order smooth matter wave positons for (1) with the periodic
nonlinearity modulated function R(¢¥) = Rg + Ry sin Ryt + R3. The parameters are (a) Rg = 1.5,
Ry =0.05, R = 1.25, R3 = 0.5; (b) Ry = 2.25; (c) Ry = 0.55; (d) Ry = 0.85; (e) Ry = 2.75; (f) R, = 5.25.
The other parameters are same as in Figure 1.

3.2. Third-order smooth matter wave positons

In the previous sub-section, we investigated the modifications of second-order smooth matter
wave positon profiles by varying the distributed coefficients (nonlinearity function) in the GP equation
(1). In this sub-section, we delve into the deformations of third-order smooth matter wave positons in
condensates as we manipulate the strength of the modulated nonlinearity parameter. To explore these
intriguing characteristics, we consider the third-order smooth positon solution for the ccNLS equation
(6), which takes the form of [50]

P
91 = oo (13)
where
P, :efi(ZT(:x%Jrai‘Z)+r](rx1+0q)) (PZlEZi(:xl7a1‘)(17+27(o¢1+1x{))
4 Pyye 2l —a)) (+27(ar+a7)) 4 P23> ) (14)
with

Py; = —4(aq —ay) ( 3+ 21(3i + 8tay (wy — o) + 2177 (ag — a})?
+327%a3 (ay — )% — it (&g — a}) (7o —l—tx}‘)) ,
Py = — (e — ) (=3 + dit(or — 76}) (a1 — af) + 220 — )
+327% (g — af)?ai? — 257(ay — o) (3i + 8t} (—ay + uc’{)) ,
Py3 =8(a1 — a7) (3 +dn? (g — ) —2x* (ag — &)t 4 af — 512745 (g — af)*af?
+8inai® — dnait — 8nad(—i+ qai) — 2uqa; (—3 + digad + 4x2w;?)
+167(ay — )2 (=i +in? (g — &f)? + y(eq + af) — 72 (a1 — af)? (a1 + )
+87 (g — ) (ay + ) (—iaf + oy (=i + 4rjaf))
+87%(aq — a})? (a2 — Sinadal +n*(1+ 2404%&1‘2))) , (15)
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and
Q, :46731'(1)6170({)+(17+2T(1X1+/X1 (1 + Qo€ 4i(wy —a7) (727 (a; +af))

+Qpetia—ay)(r+2r(ar+ai)) 4 e6i(ﬂ¢1—061‘)('7+2T(“1+“T))) , (16)

where

Qo1 =3+ 10247*03 (ay — )% + 4872 (a1 — a})?(a2 — 6010 + a}?)
4t (ag — aP)t —128iT3 (0 — a}) (g + af)(a? — 4agaf + af?)
+ 813 (a0 — a})3(i + 41(a? — &2)) + 452 (ag — a})? (—3 +12it(a? — a}?)
+167%(ay — a7 )?(aF + 4ajaf + txi‘Z) —16n7(a1 — aj)? (3041‘ —327%ata}

+327%030;% + 8tada} (—3i + 4ta;?) + ay (3 + 24ita? — 3272 *4)> ,

Qo =3+ 10247*a? (a; — ) ;% + 4872 (a1 — a)?(a? — 6010 + a}?)
+dnt(ag —a)t + 12811' (ag — a})? (g + af)(a? — 4aqaf + af?)
+ 8 (01 — )2 (i + 4r(0F — a12)) + 472 (or — )? (=3 — 12i7(a? — a}?)
+167%(ay — a7)?(aF + dajaf + zxi‘z) —16n7(ay — af)? (30(1‘ —327%0ta}

+3272030;? + 8Tade (3i + 47a?) + a1 (34 768iTa ;") )

By substituting the third-order smooth positon solution of the ccNLS Equation (6), along with the
appropriate form of the modulated parameter R(t), into equation (7), we delve into the analysis of the
underlying dynamics of GP equation (1).

Figures 4a-f present the condensate profiles of third-order smooth positons with a kink-like
nonlinearity modulated function R(f) = Ry + Rj tanh (Ryt + R3). By considering initial parameters
Ro =125, Ry =0.01, Ry = 1.05, and R3 = 0.5, an appropriate third-order positon profile is formed
within the condensate density background, as shown in Figure 4a. Notably, a decrease in Ry leads to a
sudden rise in one of the subcrests, as demonstrated in Figure 4b for Ry = 0.85. Furthermore, Figure 4c
illustrates an increase in amplitude when tuning the value of Ry to 1.75. On the other hand, in Figure
4d, when the parameter R; is enhanced to 1.25, the positon tends to disappear within the condensate
profile for t < 0. Interestingly, a reverse scenario occurs when Ry = —0.65, resulting in a higher peak
in one of the profiles and an increased amplitude, as depicted in Figure 4e. Similarly, an increase in Rp
to 3.75 yields a compressed three-positon profile with the same amplitude as Figure 4a, as shown in
Figure 4f.

In Figures 5a-f, we show density profile of third-order smooth matter positons for sech-like
nonlinearity modulated function R(t) = Ry + R; sech (Ryt + R3) for the GP model (1). Taking initial
parameters Ry = 1.25, R; = 0.01, Ry = 1.05, R3 = 0.5, we obtain the conventional smooth three-positon
profile, as shown in Figure 5a. By adjusting Ry to 1.85, the positon undergoes stretching, resulting in
an enhanced amplitude, as depicted in Figure 5b. Similarly, when R; is modified to 1.5, the positon
exhibits curvature in one of its wave crest, as seen in Figure 5c. Figure 5d illustrates a decrease in
the soliton amplitude when R; is set to 0.35. However, no significant changes are observed in the
smooth three-positon profile when altering the value of R2 compared to Figure 5a. This observation is
displayed in Figure 5e. Finally, for Rg = 1.85 and R; = 0.8, the three-positon becomes compressed,
accompanied by a decrease in its amplitude, as shown in Figure 5f.
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Figure 4. Density profile of third-order smooth matter positons for (1) with R(t) = Ry +
Ri tanh (Rt + R3). The parameters are (a) Rgp = 1.25, R; = 0.01, R, = 1.05, R3 = 0.5; (b) Ry = 0.85;
(c) Rp = 1.75; (d) R; = 1.25; (e) Ry = —0.65; (f) Ry = 3.75. The other parameters are a; = 0.2 4 0.75i,
aj =0.2—-0.75i,s5p = 1.0, and b = 0.01.

Finally, we investigate the density profile of the third-order smooth matter positon in
one-component BECs utilizing a periodic nonlinearity modulated function, denoted as R(t) =
Rg + Ry sin (Ryt + R3). Setting the initial nonlinearity strengths as Ry = 1.5, Ry = 0.05, R, = 0.85,
and R3 = 0.5, we aim to obtain an appropriate periodic third-order smooth positon density profile, as
illustrated in Figure 6a. Especially, a remarkable change occurs in the profile when the parameter Ry
is selected as 0.85, resulting in the formation of a sharp ascent on one side of the profile, as depicted
in Figure 6b. Similarly, when we increase Ry to 1.75, the profile returns to its original position, as
displayed in Figure 6¢. Furthermore, in Figure 6d, we observe that the periodicity of the positon
density profiles increases when R; is set to 0.5. Moreover, raising the value of R to 2.25 leads to an
increase in the oscillation amplitude of the positon, as demonstrated in Figure 6e. Finally, when the
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value of R; is further increased to 5.25, we observe no change in the positon amplitude, but a variation
in the oscillation behavior, which is clearly visualized in Figure 6f.

Figure 5. Density profile of third-order smooth matter positons for (1) with nonlinearity modulated
function R(t) = Rg + Ry sech (Rpt + R3). The parameters are (a) Rg = 1.25, Ry = 0.01, R, = 1.05,
R3 =0.5; (b) Ry = 1.85; (c) Ry = 1.5; (d) Ry = 0.35; (e) R, = 2.75; (f) Ry = 1.85, R; = 0.8. The other
parameters are same as in Figure 4.
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Figure 6. Density profile of third-order smooth matter positons for (1) with nonlinearity modulated
function R(t) = Rg + Ry sin (Ryt + R3). The parameters are (a) Ry = 1.5, R; = 0.05, R, = 0.85,
R3 =0.5; (b) Rg = 0.85; (c) Ry = 1.75; (d) Ry = 0.5; (e) Ry = 2.25; (f) Ry = 5.25. The other parameters
are same as in Figure 4.

4. Conclusion

In our study, we have derived the second- and third-order smooth matter wave positon solutions
of the GP equation. These solutions capture the dynamics of one-component BECs subjected to
time-modulated nonlinearity (represented by the effective scattering lengths) and external harmonic
trap potentials. Through a similarity transformation technique, we have mapped the time-modulated
GP equation onto the ccNLS equation, ensuring an integrability condition between the nonlinearity
coefficient and the external trap potential. We have investigated three distinct forms of modulated
nonlinearities: (i) kink-like, (ii) localized or sech-like, and (iii) periodic. By varying the parameters
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associated with the nonlinearity strength, we have observed various nonlinear phenomena in
the positon density profiles. These phenomena include stretching, curving, oscillating, breathing,
collapsing, amplification, and suppression. In the case of a kink-like modulated nonlinearity, the
positon density profiles (represented by the second- and third-order smooth matter wave positons)
undergo stretching, while their amplitudes can be enhanced or suppressed. It is noteworthy that these
profiles vanish for different time intervals, with disappearance occurring for t < 0 and ¢t > 0 when the
parameter R, takes positive and negative values, respectively. For the localized or sech-type modulated
nonlinearity, the density profiles of positons become compressed and curved within the condensate
density background. In the case of periodic modulated nonlinearity, positons exhibit a periodic nature,
and we have observed an increase in periodicity as the nonlinearity strengths are adjusted. Our
findings contribute to a deeper understanding of the behavior of matter wave positons in BECs under
different types of modulated nonlinearities. These results shed light on the intricate interplay between
nonlinearity, external trapping potentials, and the corresponding effects on the density profiles of
positons. The theoretical findings presented in this study, along with previous research in the literature,
offer a valuable groundwork for experimental researchers to explore and validate the deformation of
solitons/positons in P7 -symmetric systems with spatiotemporal modulation. These investigations
can be extended to various fields, such as Bose-Einstein condensates and nonlinear optics, that are
currently of great interest. Additionally, as a future direction, this theoretical study can be readily
expanded to examine higher-order solitons, breathers, and rogue waves. It can also encompass the
exploration of combined spatial and longitudinally varying trap potentials, nonlinear effects, and
novel forms of P77 -symmetric potentials, potentially leading to the discovery of new applications.
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