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Abstract: In this investigation, we explore the existence and intriguing features of matter wave

positons in a nonautonomous one-dimensional Bose-Einstein condensate (BEC) system with attractive

interatomic interactions. We focus on the Gross-Pitaevskii (GP) equation/nonlinear Schrödinger

(NLS)-type equation with time-modulated nonlinearity and trap potential, governing nonlinear

wave propagation in the BEC. Our approach involves constructing second- and third-order matter

wave positons using a similarity transformation technique. We also identify the constraints on the

time-modulated system parameters that give rise to these nonlinear localized profiles. The study

considers three distinct forms of modulated nonlinearities: (i) kink-like, (ii) localized or sech-like, and

(iii) periodic. By varying the parameters associated with the nonlinearity strengths, we observe a rich

variety of evolution behaviors in the matter wave positon profiles. These behaviors include stretching,

curving, oscillating, breathing, collapsing, amplification, and suppression. Our comprehensive

studies shed light on the intricate dynamics of matter wave positons in BECs, providing valuable

insights into their behavior and characteristics in the presence of time-modulated nonlinearity and

trap potential effects.

Keywords: matter waves; positons; bose-einstein condensates; Gross-Pitaevskii equation; similarity

transformation

1. Introduction

Theoretical investigations into the nonlinear collective excitations of matter waves have emerged

as a highly intriguing and pertinent field, especially in light of experimental observations of

Bose-Einstein condensation (BEC) in vapors of alkali-metal atoms [1,2]. Among the captivating

manifestations of localized waves in atomic matter, solitons hold particular interest. The concept

of solitons was initially introduced to describe nonlinear solitary waves that exhibit remarkable

properties, such as non-dispersive behavior, preserving their localized form and speeds both during

propagation and after collisions [3–6]. These inherent advantages of solitons have sparked significant

interest in the study of nonlinear systems across various fields of physics, particularly in high-rate

telecommunications involving optical fibers, fluid dynamics, capillary waves, hydrodynamics, plasma

physics and so on [4,7–9]. In addition to this, BECs exhibit the emergence of Faraday and resonant

density waves when subjected to harmonic driving [10]. The characteristics of density waves in

dipolar condensates at absolute zero temperature using both mean-field variational and full numerical

approaches has been investigated. The breaking of symmetry resulting from the anisotropy of the

dipole-dipole interaction was found to be a crucial factor in this phenomenon.

From an experimental perspective, precise control over the existence of matter waves in a

BEC system can be achieved by effectively manipulating the nonlinear atom interactions through

the Feshbach resonance technique, as well as by varying the external trap potential [11–14]. This
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flexibility permits us to consider that the coefficient of nonlinearity and the external potential terms

in the Gross-Pitaevskii (GP) equation/generalized nonlinear Schrödinger (NLS) equation can vary

as functions of both time and/or space. Consequently, investigating the distinctive features of

matter waves (solitons, breathers and rogue waves) becomes highly intriguing, given their spatial

and temporal localization, particularly in the context of BEC experiments. Motivated by these

achievements, extensive research has been dedicated to investigating localized matter waves within

quasi-one-dimensional BECs [14–21]. Furthermore, studies focusing on the varible coefficient NLS

equation have unveiled the potential to manipulate and enhance these localized density profiles

through the utilization of inhomogeneity parameters [22–25]. The analysis of soliton propagation

in optical and the condensed matter systems with PT -symmetry, particularly in inhomogeneous

setups, has gained significant attention. Consequently, considerable efforts have been devoted to

showcasing the existence of stable bright solitons, dark solitons, and vortices within the NLS equation

featuring PT -symmetric potentials [26–28]. In the case of weakly interacting toroidal BECs, the

occurrence of rotational fluxons (commonly known as Josephson vortices) is linked to the spontaneous

disruption of the rotational symmetry within the tunneling superflows [29]. To explore the impact of

controllable symmetry breaking on the resulting state of merged counter-propagating superflows, a

weakly dissipative mean-field model was employed. In line with this research trajectory, our aim is

to construct an intriguing type of localized solution known as positons within the GP equation. We

further endeavor to explore the effects of time-dependent modulation of nonlinearity parameters on

the characteristics of positon profiles.

Positons, unlike exponentially decaying soliton solutions, are weakly localized nonlinear waves

that hold significant importance in the field of nonlinear physics [30–33]. These solutions are obtained

by constraining degenerate eigenvalues within the widely recognized N-soliton algorithm. For

positon solutions, the corresponding eigenvalue in the spectral problem is positive and lies within the

continuous spectrum. It has been observed that when two positons collide, they retain their individual

identities, whereas the soliton remains unchanged following a collision with a positon. However,

the positon experiences an influence from the carrier wave and envelope, resulting in a finite phase

shift [34,35]. Notably, Matveev’s positon solution to the Korteweg-de Vries (KdV) equation exhibited

a spectral singularity [32]. Building on this pioneering work, positon solutions have been derived

for other nonlinear evolution equations successfully [36–40]. Recent efforts by Cen et al. introduced

the concept of smooth positons or degenerate soliton solutions by allowing the spectral parameter

to take complex values [41,42], thereby eliminating the singularity in the KdV equation. Following

these advancements, endeavors have been made to construct smooth positon solutions for various

equations including the focusing mKdV equation [43], complex mKdV equation [46], derivative NLS

equation [44,45], NLS-Maxwell-Bloch equation [47], higher-order Chen-Lee-Liu equation [49] and

Gerdjikov-Ivanov equation [48]. More recently, smooth positons and breather positons have been

derived for the generalized NLS equation with higher-order nonlinearity, along with higher-order

solutions for an extended NLS equation featuring cubic and quartic nonlinearity [50,51]. Inspired by

these advancements in the field of positons, our research aims to construct positon solutions within

the GP equation, incorporating time-varying nonlinearity and trap potential.

The crucial step in this attempt involves utilizing the similarity transformation on a meticulously

chosen ansatz solution. This transformation effectively converts the variable parameter GP equation

into the conventional NLS equation with constant coefficients. By implementing this transformation,

the modified variables allow us to derive new solutions for the considered equation by expressing the

known positon solutions in the altered coordinate system. By leveraging the combination of known

positons of typical NLS equation solutions with similarity transformation functions, one can derive

novel (non-autonomous positon) solutions for the GP equation. The integrability requirements, which

establish the relationship between variable parameters (modulated nonlinearity and trap potential),

and the proposed ansatz solution, serve as the underlying considerations for this procedure. However,

despite the associated costs, this approach holds significant value as it not only reveals new analytical
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solutions for the GP equation but also empowers users to control the outcomes by judiciously selecting

appropriate nonlinearity strengths and trap potentials.

Motivated by the experimental feasibility of studying BECs, our research focuses on exploring the

dynamical characteristics of positons. To achieve this objective, we construct second- and third-order

matter wave positon solutions for the one-dimensional GP equation, considering a variable nonlinearity

parameter and an external trap potential. The construction of these solutions involves transforming

the time-modulated GP equation into a ccNLS equation using a similarity transformation. We establish

that the trapping potential and nonlinearity modulated parameter must satisfy a constraint for the

considered equation to be integrable and yield the desired solutions. By leveraging the known smooth

positon solutions (second- and third-order) of the constant coefficient NLS equation, we present

matter wave smooth positon solutions of the GP equation. We investigate the deformation of positon

density profiles with respect to three different forms of variable nonlinearity parameters, namely (i)

kink-like nonlinearity R(t) = R0 + R1 tanh (R2t + R3), (ii) localized or sech-type nonlinearity R(t) =

R0 + R1 sech (R2t + R3), and (iii) periodic nonlineaity R(t) = R0 + R1 sin (R2t + R3), where R0, R1,

R2 and R3 are arbitrary parameters. Our findings reveal that a range of nonlinear physical phenomena,

including stretching, curving, annihilation, breathing, oscillating, enhancement, and suppression, are

manifested in the underlying matter wave positon density profiles. When considering a kink-like

modulated nonlinearity, the position density profiles of second- and third-order smooth matter wave

positions experience stretching, while their amplitudes can either be enhanced or suppressed. It

is important to note that these profiles vanish during different time intervals, with disappearance

occurring for t < 0 when the parameter R2 assumes positive values, and for t > 0 when R2 takes

negative values. In the case of a localized or sech-type modulated nonlinearity, the positon density

profiles become compressed and curved within the background density of the condensate. For

periodic modulated nonlinearity, positons exhibit a periodic behavior, and adjusting the strengths of

nonlinearity leads to an increase in their periodicity, as observed in our analysis. This observation

provides valuable insights for experimentalists analyzing novel density profiles in BECs.

We structure our work as follows. In Section 2, we take into account the GP equation with

time-modulated nonlinearity and trap potentials. The second and third-order smooth positon solutions

are deduced for this equation using the similarity transformation. The integrable requirement between

the modulated nonlinearity and trap potential is obtained while employing the integrable technique to

the considered equation. In Section 3, by suitably choosing the different forms of variable nonlinearity

parameter, we explore the various dynamical characteristics in the density of matter wave positon

profiles. Finally, in Section 4, we conclude our observations.

2. BEC Model and Similarity transformation

The behavior of a BEC confined within an external potential can be effectively characterized using

the renowned NLS equation derived from mean field theory, commonly referred to as the GP equation.

In the specific scenario of a cigar-shaped trapping potential, where simplicity and physical significance

coincide, the radial degree of freedom in the three-dimensional GP equation can be eliminated through

integration, leading to the derivation of a dimensionless quasi-one-dimensional equation [1,2,5,14,17]

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
+ R(t)|ψ|2ψ +

1

2
λ2(t)x2ψ = 0, (1)

where ψ(x, t) is the condensate wave function. In Equation (1), t and x are time and spatial coordinates

that are expressed in units ω−1
⊥ and a⊥ =

√

h̄
(mω⊥)

, m is the atomic mass, respectively. The atom-atom

interaction term (scattering length between atoms) denoted by the representation, R(t), is tuneable

using the Feshbach resonance (FR). In a series of exquisite experiments using sodium and rubidium

condensates, Feshbach resonances were investigated. They have also been employed in a variety

of significant experimental studies, such as the creation of bright and dark matter-wave solitons,
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among others. The time-modulated trap potential is described by λ2(t) =
ω2(t)

ω⊥
, where ω and ω⊥

are the trap frequency in the axial direction and the radial trap frequency, respectively. In the study

of trapped BECs, the trap frequency along the elongated axis, denoted as ω, has been intentionally

selected to vary with time, t, in order to investigate the characteristics of BECs within the trap. As

a result, both the coefficient of nonlinearity (R) and the potential parameter (λ) can exhibit time

dependence. By appropriately choosing these two time-dependent parameters, the GP equation (1) can

effectively capture the dynamics and manipulation of BECs. These parameters serve as powerful tools

for controlling and manipulating localized matter waves in BECs, achieved through the adjustment

of external magnetic fields and the optically controlled interactions using techniques such as the FR

method [13,17,20].

To study the matter wave positons in (1), we adopt the similarity transformation mentioned below

to map the time-modulated GP equation (1) to the ccNLS equation [5,17,26,28]:

ψ(x, t) = s(t)φ(η, τ) exp[iθ(x, t)]. (2)

In Equation (2), the unknown functions, namely s(t), η(x, t), τ(t) and θ(x, t) are the amplitude,

similarity spatial variable, the dimensionless time and the phase factor, respectively which are to

be computed. Upon involving the substitution of (2) into (1), we obtain the following set of partial

differential equations that are related to the unknown functions, such as

ηxx = 0,

ηt + ηxθx = 0,

η2
x − R(t)s2(t) = 0,

s′(t) + s(t)
1

2
θxx = 0,

τ′(t)− R(t)s2(t) = 0,

θ′(t) +
1

2
θ2

x −
λ2(t)

2
x2 = 0. (3)

The explicit expressions of the unknown functions can be acquired by solving the aforementioned set

of equations, and they take the form

s(t) =s0

√

R(t),

η(x, t) =s0R(t)x − bs3
0

∫

R2(t)dt,

θ(x, t) =−
R(t)t

2R(t)
x2 + bs2

0R(t)x −
1

2
b2s4

0

∫

R2(t)dt,

τ(t) =
1

2
s2

0

∫

R2(t)dt. (4)

where b and s0 are arbitrary constants. Additionally, we have found an integrability condition that

imposes a connection between the time-modulated nonlinearity and the trap potential parameter, as

shown by: [5,17,28]

d

dt

(

Rt

R

)

−

(

Rt

R

)2

+ λ2(t) = 0. (5)

Using this equation (5), one can find the λ(t) by fixing the R(t) and vice versa. In this work, we

consider physically intriguing function R(t) and determine the λ(t) by the expression, that is λ(t) =
√

R′(t)2 + R′(t)− R(t)R′′(t)

R(t)
.
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In Equation (2), the function φ(η, τ) is found to fulfill the ccNLS equation as

i
∂φ

∂τ
+

1

2

∂2φ

∂η2
+ |φ|2φ = 0. (6)

The equation under consideration (6) exhibits a wide range of localized solutions, including solitons,

breathers, rogue waves, and their corresponding profiles. In this study, we focus on the positon

solutions of the NLS equation to investigate matter wave positons in quasi-one-dimensional BECs.

By selecting an appropriate functional form for the time-modulated nonlinearity function R(t)

while ensuring the satisfaction of condition (5), we can derive matter wave positon solutions for the

GP equation (1) in the following form:

ψ(x, t) =s0

√

R(t)φ(η, τ) exp

[

i

(

−
1

2
b2s4

0

∫

R(t)2 dt + bs2
0xR(t)−

x2R′(t)

2R(t)

)]

, (7)

where φ(η, τ) is the solution of the ccNLS equation (6). The solution (7) has the potential to generate

a multitude of novel positon structures that could be experimentally realized. To summarize the

current progress, one can generate several solutions (positons) for the GP model (1) by first obtaining

solutions for the ccNLS equation (6) while satisfying the mentioned relationships. An intriguing

advantage and potential perspective of the similarity transformation is worth emphasizing, as it allows

the extension of this approach to models featuring variable nonlinearity and external trap potential

coefficients dependent on both longitudinal and spatial coordinates. By appropriately tailoring and

imposing constraints, the resulting dynamics of physical systems can be attainable. Consequently, in

Sec. III, we construct positon solutions for the ccNLS equation (6) to analyze matter wave positons in

quasi-one-dimensional BECs.

3. Deformation of matter wave positons in BECs

In this section, we intend to investigate the dynamical characteristics of matter wave positons

using the solution (7) by considering three different forms of time-varying nonlinearity parameter and

the associated trap potentials. For this investigation, in the following, we first derive the second-order

and third-order smooth positon solution of the ccNLS equation (6).

3.1. Second-order smooth matter wave positons

Now, we explore the various novel density profiles of second-order smooth matter wave positons

in BECs. For this objective, we first derive the second-order smooth positon solution for the ccNLS

Equation (6) as [50]

φ[2] =
P11

Q11
, (8)

where

P11 =4 (α1 − α∗1) e2iα1(2α1τ+η)
(

−α1 (η − 4α∗1τ) + α∗1η − 4α2
1τ − i

)

+ 4 (α∗1 − α1) e2iα∗1(2α∗1 τ+η)
(

−α1 (4α∗1τ + η) + α∗1η + 4 (α∗1)
2τ + i

)

,

Q11 =− 2e(2i(α1+α∗1)η+4i(α2
1+α∗2

1 )τ)
(

−1 + 2
(

α1 − α∗2
1

)

η2 + 32α1α∗1 (α1 − α∗1)
2 τ2

+8ητ (α1 + α∗1)
(

α1 − α∗2
1

))

+ e4iα1(2α1τ+η) + e4iα∗1(2α∗1 τ+η), (9)

where α1 is the eigenvalue of the spectral parameter, α∗1 is the complex conjugate of α1, η and τ are

provided in Equation (4). Substituting this solution into (7) along with the suitable form of R(t), we

obtain the second-order smooth matter wave positon solution of (1).
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Now, utilizing the above mentioned solution, we move to investigate its dynamical evolutions

through three different forms of time-modulated nonlinearity parameter, such as (i) kink-like

nonlinearity R(t) = R0 + R1 tanh (R2t + R3), (ii) localized or sech-type nonlinearity R(t) = R0 +

R1 sech (R2t + R3), and (iii) periodic nonlineaity R(t) = R0 + R1 sin (R2t + R3), where R0, R1, R2 and

R3 are arbitrary parameters. In the following, we provide a comprehensive demonstration of the

impact of modulated nonlinearity parameters on the positon density profiles.

To begin, we take the kink-like nonlinearity parameter, that is R(t) = R0 + R1 tanh (R2t + R3) to

reveal the novel features in BECs. Substituting this nonlinearity term in the generalized solution (7),

we find

ψ(x, t) =s0

√

R1 tanh (R2t + R3) + R0φ(η, τ) exp

[

−
i

4R2

(

b2s4
0

(

−2R2
1

× tanh (R2t + R3) + (R0 − R1)
2 log (tanh (R2t + R3) + 1)− (R0 + R1)

2

× log (1 − tanh (R2t + R3)))− 4bs2
0x (R1 tanh (R2t + R3) + R0)

+
2R1R2x2sech2 (R2t + R3)

R1 tanh (R2t + R3) + R0

)]

, (10)

where φ(η, τ) is the second-order smooth positon solution of the ccNLS equation (6). Utilizing this

solution (10), we examine a thorough analysis of the positon density profiles, investigating their diverse

characteristics as we vary the strength of the time-modulated nonlinearity parameter.

Figures 1a-f illustrates the qualitative profile of a second-order smooth matter positon in BECs

corresponding to a kink-like nonlinearity modulated parameter R(t) = R0 + R1 tanh (R2t + R3). By

selecting specific parameter values, R0 = 1.05, R1 = 0.01, R2 = 1.05, and R3 = 0.5, we obtain a

well-localized second-order smooth positon profile associated with the eigenvalue α1 = 0.2 + 0.5i,

as depicted in Figure 1a. Notably, the orientation of the smooth positon density profile changes

when varying the eigenvalue associated with the solution. For instance, by modifying the eigenvalue

to α1 = 0.3 + 0.6i, Figure 1b clearly demonstrates a shift in the orientation of the positon profile

accompanied by an enhancement in its amplitude. Furthermore, we investigate the effects of adjusting

the strengths of the nonlinearity parameters, specifically R0, R1, and R2. For instance, when R0 is

changed to 1.85, the positon profile’s orientation relocates while experiencing a slight increase in

amplitude, as depicted in Figure 1c. Additionally, Figure 1d illustrates that increasing the value of

R1 to 0.5 leads to the collapse of the condensate profile on one side of the positon profile (t < 0).

Conversely, when R1 takes a negative value, such as R1 = −0.5, the reverse phenomenon occurs,

resulting in the disappearance of the density profile in the corresponding plane (t > 0) as represented

in Figure 1e. Moreover, increasing the value of R2 to 3.5 yields a well-localized positon profile that

exhibits a compression within the condensate density background. Additionally, as depicted in Figure

1f, the width of the crest of the positon profile widens over time.

Next, we consider the localized-type or sech-type nonlinearity, namely R(t) = R0 +

R1 sech (R2t + R3) for investigating the distortion of positon profiles in the condensate density

background. Plugging this form of R(t) in (7), we obtain the matter positon solution in the form

ψ(x, t) =s0

√

R1sech (R2t + R3) + R0φ(ξ, τ) exp

[

i

2R2

(

−b2s4
0

(

R2R2
0t

+R2
1 tanh (R2t + R3) + 2R1R0 tan−1 (sinh (R2t + R3))

)

(11)

+bs2
0x (R1sech (R2t + R3) + R0) +

R1R2x2 tanh (R2t + R3)

2 (R0 cosh (R2t + R3) + R1)

)]

,

where φ(η, τ) is the positon solution of the ccNLS equation (6).
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(a)
(b)

(c)

(d)

(e) (f)

Figure 1. Density profile of second-order smooth matter wave positons for (1) with the kink-like

nonlinearity modulated function R(t) = R0 + R1 tanh (R2t + R3). The parameters are (a) R0 = 1.05,

R1 = 0.01, R2 = 1.05, R3 = 0.5; (b) α1 = 0.3 + 0.6i, α∗1 = 0.3 − 0.6i; (c) R0 = 1.85; (d) R1 = 0.5; (e)

R1 = −0.5; (f) R2 = 3.5. The other parameters are α1 = 0.2 + 0.5i, α∗1 = 0.2 − 0.5i, s0 = 1.0, and

b = 0.01.

Figure 2a-f represents the density profile of a second-order smooth matter positon with a

modulated nonlinearity function given by R(t) = R0 + R1Sech(R2t + R3). In this study, we consider

specific parameter values: R0 = 1.05, R1 = 0.01, R2 = 1.05, and R3 = 0.5, aiming to investigate the

intriguing properties exhibited by the positon density profiles. With these initial parameter values,

we obtain the second-order smooth positon profile as shown in Figure 2a. By increasing R0 to 1.85,

we observe a stretching of the positon and an enhancement in its amplitude, as depicted in Figure

2b. Similarly, when we tune the parameter R1 to 0.85, a curvature appears in the condensate profile,

as shown in Figure 2c. Notably, when R1 takes a negative value, we observe the formation of two

peaks at the center (t = 0), accompanied by a suppression in amplitude, as demonstrated in Figure 2d.
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Additionally, in the case where R0 = 1.85 and R1 = 1.75, we observe a gradual increase in amplitude,

further stretching of the positon, and the formation of a curved profile, as shown in Figure 2e. At

R0 = 2.5 and 1.5, a compressed density profile with an identical amplitude is obtained, as depicted in

Figure 2f.

(a)
(b)

(c)
(d)

(e) (f)

Figure 2. Density profile of second-order smooth matter positons for (1) with the localized-type

modulated nonlinearity R(t) = R0 + R1 sech (R2t + R3). The parameters are (a) R0 = 1.05, R1 = 0.01,

R2 = 1.05, R3 = 0.5; (b) R0 = 1.85; (c) R1 = 0.85; (d) R1 = −0.85; (e) R0 = 1.85, R1 = 1.75; (f) R0 = 2.5,

R2 = 1.5. The other parameters are same as in Figure 1.
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Finally, we investigate the influence of a periodically modulated nonlinearity given by R(t) =

R0 + R1 sech (R2t + R3) on the positon density profiles. By inserting this R(t) in (7), we obtain the

explicit form of matter wave positon solution given by

ψ(x, t) =s0

√

R1 sin (R2t + R3) + R0φ(ξ, τ) exp

(

−
i

8R2

(

b2s4
0

(

4R2
0 (R2t + R3)

+R2
1 (2R2t − sin (2 (R2t + R3)) + 2R3)− 8R1R0 cos (R2t + R3)

)

−8bs2
0x (R1 sin (R2t + R3) + R0) +

4R1R2x2 cos (R2t + R3)

R1 sin (R2t + R3) + R0

))

, (12)

where φ(η, τ) is the positon solution of the ccNLS equation (6).

The second-order smooth matter wave positon density profiles are displayed in Figure 3 for

periodic nonlinearity modulated function R(t) = R0 + R1 sin R2t + R3 in the context of BECs. By

appropriately tuning the parameters R0, R1, and R2, we are able to achieve periodic positon solutions.

In Figure 3a, using initial parameter values of R0 = 1.5, R1 = 0.05, R2 = 1.25, and R3 = 0.5, we observe

a periodic behavior in the positon condensate profile. Subsequently, when the nonlinearity strength

R0 is increased to 2.25, the oscillation of the positon becomes more elongated and the amplitude is

raised, as shown in Figure 3b. Moreover, as we increase the value of R1 to 0.55, the periodicity of the

positon profile increases along with an increase in amplitude which can be seen in 3c. This trend is

further amplified when the value of R1 is increased, as depicted in Figure 3d. When the parameters

R2 = 2.75 and R3 = 5.25 are chosen, the oscillation in the positon profile increases and retains a similar

orientation, as evident in Figure 3e and 3f, respectively.

(a) (b)

(c) (d)

Figure 3. Cont.
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(e) (f)

Figure 3. Density profile of second-order smooth matter wave positons for (1) with the periodic

nonlinearity modulated function R(t) = R0 + R1 sin R2t + R3. The parameters are (a) R0 = 1.5,

R1 = 0.05, R2 = 1.25, R3 = 0.5; (b) R0 = 2.25; (c) R1 = 0.55; (d) R1 = 0.85; (e) R2 = 2.75; (f) R2 = 5.25.

The other parameters are same as in Figure 1.

3.2. Third-order smooth matter wave positons

In the previous sub-section, we investigated the modifications of second-order smooth matter

wave positon profiles by varying the distributed coefficients (nonlinearity function) in the GP equation

(1). In this sub-section, we delve into the deformations of third-order smooth matter wave positons in

condensates as we manipulate the strength of the modulated nonlinearity parameter. To explore these

intriguing characteristics, we consider the third-order smooth positon solution for the ccNLS equation

(6), which takes the form of [50]

φ[3] =
P2

Q2
, (13)

where

P2 =e−i(2τ(α2
1+α∗2

1 )+η(α1+α∗1))
(

P21e2i(α1−α∗1)(η+2τ(α1+α∗1))

+P22e−2i(α1−α∗1)(η+2τ(α1+α∗1)) + P23

)

, (14)

with

P21 =− 4(α1 − α∗1)
(

−3 + 2η(3i + 8τα1 (α1 − α∗1) + 2η2(α1 − α∗1)
2

+32τ2α2
1(α1 − α∗1)

2 − 4iτ (α1 − α∗1) (−7α1 + α∗1)
)

,

P22 =− 4(α1 − α∗1)
(

−3 + 4iτ(α1 − 7α∗1)(α1 − α∗1) + 2η2(α1 − α∗1)
2

+32τ2(α1 − α∗1)
2α∗2

1 − 2η(α1 − α∗1)(3i + 8τα∗1(−α1 + α∗1)
)

,

P23 =8(α1 − α∗1)
(

3 + 4η2(α1 − α∗1)
2 − 2x4(α1 − α∗1)

4 + α2
1 − 512τ4α2

1(α1 − α∗1)
4α∗2

1

+8iηα∗3
1 − 4η2α∗4

1 − 8ηα3
1(−i + ηα∗1)− 2α1α∗1(−3 + 4iηα∗1 + 4x2α∗2

1 )

+16τ(α1 − α∗1)
2(−i + iη2(α1 − α∗1)

2 + η(α1 + α∗1)− η3(α1 − α∗1)
2(α1 + α∗1))

+8τ3(α1 − α∗1)
3(α1 + α∗1)(−iα∗1 + α1(−i + 4ηα∗1))

+8τ2(α1 − α∗1)
2(α2

1 − 8iηα2
1α∗1 + η2(1 + 24α2

1α∗2
1 ))

)

, (15)
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and

Q2 =4e−3i(α1−α∗1)+(η+2τ(α1+α∗1))
(

1 + Q21e4i(α1−α∗1)(η+2τ(α1+α∗1))

+Q22e2i(α1−α∗1)(η+2τ(α1+α∗1)) + e6i(α1−α∗1)(η+2τ(α1+α∗1))
)

, (16)

where

Q21 =3 + 1024τ4α2
1(α1 − α∗1)

4α∗2
1 + 48τ2(α1 − α∗1)

2(α2
1 − 6α1α∗1 + α∗2

1 )

+ 4η4(α1 − α∗1)
4 − 128iτ3(α1 − α∗1)

3(α1 + α∗1)(α
2
1 − 4α1α∗1 + α∗2

1 )

+ 8η3(α1 − α∗1)
3(i + 4τ(α2

1 − α∗2
1 )) + 4η2(α1 − α∗1)

2
(

−3 + 12iτ(α2
1 − α∗2

1 )

+16τ2(α1 − α∗1)
2(α2

1 + 4α1α∗1 + α∗2
1

)

− 16ητ(α1 − α∗1)
2
(

3α∗1 − 32τ2α4
1α∗1

+32τ2α3
1α∗2

1 + 8τα2
1α∗1(−3i + 4τα∗2

1 ) + α1(3 + 24iτα∗2
1 − 32τ2α∗4

1 )
)

,

Q22 =3 + 1024τ4α2
1(α1 − α∗1)

4α∗2
1 + 48τ2(α1 − α∗1)

2(α2
1 − 6α1α∗1 + α∗2

1 )

+ 4η4(α1 − α∗1)
4 + 128iτ3(α1 − α∗1)

3(α1 + α∗1)(α
2
1 − 4α1α∗1 + α∗2

1 )

+ 8η3(α1 − α∗1)
3(i + 4τ(α2

1 − α∗2
1 )) + 4η2(α1 − α∗1)

2
(

−3 − 12iτ(α2
1 − α∗2

1 )

+16τ2(α1 − α∗1)
2(α2

1 + 4α1α∗1 + α∗2
1

)

− 16ητ(α1 − α∗1)
2
(

3α∗1 − 32τ2α4
1α∗1

+32τ2α3
1α∗2

1 + 8τα2
1α∗1(3i + 4τα∗2

1 ) + α1(3 + 768iτ3α∗6
1 )

)

.

By substituting the third-order smooth positon solution of the ccNLS Equation (6), along with the

appropriate form of the modulated parameter R(t), into equation (7), we delve into the analysis of the

underlying dynamics of GP equation (1).

Figures 4a-f present the condensate profiles of third-order smooth positons with a kink-like

nonlinearity modulated function R(t) = R0 + R1 tanh (R2t + R3). By considering initial parameters

R0 = 1.25, R1 = 0.01, R2 = 1.05, and R3 = 0.5, an appropriate third-order positon profile is formed

within the condensate density background, as shown in Figure 4a. Notably, a decrease in R0 leads to a

sudden rise in one of the subcrests, as demonstrated in Figure 4b for R0 = 0.85. Furthermore, Figure 4c

illustrates an increase in amplitude when tuning the value of R0 to 1.75. On the other hand, in Figure

4d, when the parameter R1 is enhanced to 1.25, the positon tends to disappear within the condensate

profile for t < 0. Interestingly, a reverse scenario occurs when R1 = −0.65, resulting in a higher peak

in one of the profiles and an increased amplitude, as depicted in Figure 4e. Similarly, an increase in R2

to 3.75 yields a compressed three-positon profile with the same amplitude as Figure 4a, as shown in

Figure 4f.

In Figures 5a-f, we show density profile of third-order smooth matter positons for sech-like

nonlinearity modulated function R(t) = R0 + R1 sech (R2t + R3) for the GP model (1). Taking initial

parameters R0 = 1.25, R1 = 0.01, R2 = 1.05, R3 = 0.5, we obtain the conventional smooth three-positon

profile, as shown in Figure 5a. By adjusting R0 to 1.85, the positon undergoes stretching, resulting in

an enhanced amplitude, as depicted in Figure 5b. Similarly, when R1 is modified to 1.5, the positon

exhibits curvature in one of its wave crest, as seen in Figure 5c. Figure 5d illustrates a decrease in

the soliton amplitude when R1 is set to 0.35. However, no significant changes are observed in the

smooth three-positon profile when altering the value of R2 compared to Figure 5a. This observation is

displayed in Figure 5e. Finally, for R0 = 1.85 and R1 = 0.8, the three-positon becomes compressed,

accompanied by a decrease in its amplitude, as shown in Figure 5f.
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(a)

(b)

(c)

(d)

(e)
(f)

Figure 4. Density profile of third-order smooth matter positons for (1) with R(t) = R0 +

R1 tanh (R2t + R3). The parameters are (a) R0 = 1.25, R1 = 0.01, R2 = 1.05, R3 = 0.5; (b) R0 = 0.85;

(c) R0 = 1.75; (d) R1 = 1.25; (e) R1 = −0.65; (f) R2 = 3.75. The other parameters are α1 = 0.2 + 0.75i,

α∗1 = 0.2 − 0.75i, s0 = 1.0, and b = 0.01.

Finally, we investigate the density profile of the third-order smooth matter positon in

one-component BECs utilizing a periodic nonlinearity modulated function, denoted as R(t) =

R0 + R1 sin (R2t + R3). Setting the initial nonlinearity strengths as R0 = 1.5, R1 = 0.05, R2 = 0.85,

and R3 = 0.5, we aim to obtain an appropriate periodic third-order smooth positon density profile, as

illustrated in Figure 6a. Especially, a remarkable change occurs in the profile when the parameter R0

is selected as 0.85, resulting in the formation of a sharp ascent on one side of the profile, as depicted

in Figure 6b. Similarly, when we increase R0 to 1.75, the profile returns to its original position, as

displayed in Figure 6c. Furthermore, in Figure 6d, we observe that the periodicity of the positon

density profiles increases when R1 is set to 0.5. Moreover, raising the value of R2 to 2.25 leads to an

increase in the oscillation amplitude of the positon, as demonstrated in Figure 6e. Finally, when the
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value of R2 is further increased to 5.25, we observe no change in the positon amplitude, but a variation

in the oscillation behavior, which is clearly visualized in Figure 6f.

(a)
(b)

(c) (d)

(e) (f)

Figure 5. Density profile of third-order smooth matter positons for (1) with nonlinearity modulated

function R(t) = R0 + R1 sech (R2t + R3). The parameters are (a) R0 = 1.25, R1 = 0.01, R2 = 1.05,

R3 = 0.5; (b) R0 = 1.85; (c) R1 = 1.5; (d) R1 = 0.35; (e) R2 = 2.75; (f) R0 = 1.85, R1 = 0.8. The other

parameters are same as in Figure 4.
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(a)
(b)

(c)

(d)

(e) (f)

Figure 6. Density profile of third-order smooth matter positons for (1) with nonlinearity modulated

function R(t) = R0 + R1 sin (R2t + R3). The parameters are (a) R0 = 1.5, R1 = 0.05, R2 = 0.85,

R3 = 0.5; (b) R0 = 0.85; (c) R0 = 1.75; (d) R1 = 0.5; (e) R2 = 2.25; (f) R2 = 5.25. The other parameters

are same as in Figure 4.

4. Conclusion

In our study, we have derived the second- and third-order smooth matter wave positon solutions

of the GP equation. These solutions capture the dynamics of one-component BECs subjected to

time-modulated nonlinearity (represented by the effective scattering lengths) and external harmonic

trap potentials. Through a similarity transformation technique, we have mapped the time-modulated

GP equation onto the ccNLS equation, ensuring an integrability condition between the nonlinearity

coefficient and the external trap potential. We have investigated three distinct forms of modulated

nonlinearities: (i) kink-like, (ii) localized or sech-like, and (iii) periodic. By varying the parameters
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associated with the nonlinearity strength, we have observed various nonlinear phenomena in

the positon density profiles. These phenomena include stretching, curving, oscillating, breathing,

collapsing, amplification, and suppression. In the case of a kink-like modulated nonlinearity, the

positon density profiles (represented by the second- and third-order smooth matter wave positons)

undergo stretching, while their amplitudes can be enhanced or suppressed. It is noteworthy that these

profiles vanish for different time intervals, with disappearance occurring for t < 0 and t > 0 when the

parameter R2 takes positive and negative values, respectively. For the localized or sech-type modulated

nonlinearity, the density profiles of positons become compressed and curved within the condensate

density background. In the case of periodic modulated nonlinearity, positons exhibit a periodic nature,

and we have observed an increase in periodicity as the nonlinearity strengths are adjusted. Our

findings contribute to a deeper understanding of the behavior of matter wave positons in BECs under

different types of modulated nonlinearities. These results shed light on the intricate interplay between

nonlinearity, external trapping potentials, and the corresponding effects on the density profiles of

positons. The theoretical findings presented in this study, along with previous research in the literature,

offer a valuable groundwork for experimental researchers to explore and validate the deformation of

solitons/positons in PT -symmetric systems with spatiotemporal modulation. These investigations

can be extended to various fields, such as Bose-Einstein condensates and nonlinear optics, that are

currently of great interest. Additionally, as a future direction, this theoretical study can be readily

expanded to examine higher-order solitons, breathers, and rogue waves. It can also encompass the

exploration of combined spatial and longitudinally varying trap potentials, nonlinear effects, and

novel forms of PT -symmetric potentials, potentially leading to the discovery of new applications.
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